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Abstract: Prognosis and health management depend on sufficient prior knowledge of the degra-
dation process of critical components to predict the remaining useful life. This task is composed
of two phases: learning and prediction. The first phase uses the available information to learn the
system’s behavior. The second phase predicts future behavior based on the available information of
the system and estimates its remaining lifetime. Deep learning approaches achieve good prognostic
performance but usually suffer from a high computational load and a lack of interpretability. Complex
feature extraction models do not solve this problem, as they lose information in the learning phase
and thus have a poor prognosis for the remaining lifetime. A new prepossessing approach is used
with feature clustering to address this issue. It allows for restructuring the data into homogeneous
groups strongly related to each other using a simple architecture of the LSTM model. It is advan-
tageous in terms of learning time and the possibility of using limited computational capabilities.
Then, we focus on the interpretability of deep learning prognosis using Explainable AI to achieve
interpretable RUL prediction. The proposed approach offers model improvement and enhanced
interpretability, enabling a better understanding of feature contributions. Experimental results on the
available NASA C-MAPSS dataset show the performance of the proposed model compared to other
common methods.

Keywords: prognostic and health management; remaining useful life; feature clustering; Explainable
Artificial Intelligence (XAI)

1. Introduction

In recent years, the manufacturing sectors have taken a new approach, involving
technological innovations, aimed to modernize and optimize production. This new concept
is characterized by automizing mechanical processes using artificial intelligence. These
techniques allow what is called “Industry 4.0” for the evolution of maintenance, and, more
particularly, predictive maintenance. Due to artificial intelligence, predictive maintenance
can anticipate anomalies (e.g., the life of computer servers, and the electrical installation
of dysfunctional subway trains). In addition, intelligent maintenance requires a multistep
approach, from monitoring, through analysis and decision support, to validation and
verification. These steps are part of a discipline called PHM (prognostics and health
management), linking the study of failure mechanisms and life cycle management.

Prognostics, in general, require two types of techniques: (1) an application-dependent
technique that aims to detect precursors to estimate the system’s health state, and (2) a pre-
diction technique to predict the remaining useful life (RUL). Prognostic and health man-
agement (PHM) is an engineering field whose goal is to provide users with a thorough
analysis of the health condition of a machine and its components [1]. Relying on human
operators to manage atypical events is quite difficult when dealing with complex equip-
ment and attempting to retrieve information and patterns of different equipment failures.
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It aims to better manage the health status of physical systems while reducing operation
and maintenance costs [2]. The implementation of PHM solutions is becoming increasingly
important, and the prognostic process is now considered one of the main levers of action in
the quest for overall performance [3]. It is generally described as a combination of seven
layers that can be divided into three phases: observation, analysis, and action.

The remaining useful life (RUL) is the length of time a machine is likely to operate
before it requires repair or replacement. By taking RUL into account, maintenance can be
scheduled to optimize operating efficiency and avoid unplanned downtime. For this reason,
estimating RUL is a top priority in predictive maintenance programs. Based on aging
models (degradation of the monitored system), prognostics determine the health status
of a system and predict the RUL. This prediction can be obtained using a physical-model-
based approach [4], a data-driven approach [5], and a new hybrid approach [6] merging
the first two approaches. Data-driven algorithms can be divided into three categories:
statistical methods including Markov models, Weibull distribution, and Kalman filters;
machine-learning-based methods such as support vector machines (SVMs) [7] and deep
belief networks (DBNs) [8]; and deep learning methods [9]. Different works have shown
the effectiveness of data-driven approaches [10], and especially deep learning, in estimating
the RUL of a turbofan engine. A turbofan engine consists of several key components
including a fan, compressor, combustion chamber, turbine, exhaust nozzle, and bypass
duct, as well as various sensors to understand the condition of the engine. One of the
advantages of data-driven deep learning approaches over the physics-based approach is
that they can take into account the complexity of the structure and variety of sensors, which
can affect the RUL of the turbofan engine, including operating conditions, maintenance
history, and design features of the engine. To predict the RUL of a turbofan engine, several
deep learning algorithms have been used, such as multilayer perceptrons, long short-
term memories (LSTMs) [11], bidirectional LSTMs (Bi-LSTMs) [12], and convolutional
neural network (CNN) algorithms [13], as well as combined algorithms to achieve higher
accuracy. Advanced data-driven deep learning methods can have high predictive accuracy
but are considered “black box” models because they suffer from a lack of interpretability.
While these models can have high predictive accuracy, it can be difficult to understand
how they arrive at their predictions, which can make it difficult to use the predictions to
inform maintenance decisions. Explainable Artificial Intelligence (XAI) techniques such
as SHapley Additive exPlanations (SHAP) values can be applied to explain the prediction
process by providing information on how to estimate the contribution of each feature
to the final prediction. However, their use in the predictive maintenance process has
some limitations [14]. SHAP values assume that each feature contributes to the prediction
independently of the others and is not able to capture their interactions, which can limit
their accuracy and usefulness. Indeed, features interact with each other in ways that can
be challenging and can affect the final prediction. Similar to many other permutation-
based interpretation methods, SHAP values methods suffer from including unrealistic
data instances when features are correlated [15]. They are also subject to limited human
interpretation. These issues have received less attention in the scientific literature. To
address these limitations, a deep-learning-based feature clustering with SHAP values
approach is proposed to offer an efficient and interpretable model, leading to more accurate
RUL predictions.

This study aims to answer questions about how to improve preprocessing to help
with both interpretability and model performance as well as how to use predictions to
build confidence in predictive maintenance models. The goal is to highlight the benefits of
Explainable AI in the prognostic lifetime estimation of turbofan engines.

The accuracy of the model’s prediction depends on the quality and relevance of the
data that influence the engine’s RUL. It is difficult to build accurate models with noisy
data or complex features and to identify patterns. To address the challenge, a number
of techniques can be used, such as dimensionality reduction, which reduces the number
of dimensions. Unfortunately, popular techniques such as principal component analysis
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(PCA) would generally transform the data in a way that damages the interpretability of the
model [16]. This is because each transformed feature is a combination of all of the original
features. Feature clustering tools capture relations between features that can preserve
predictive power and yet retain interpretability.

The main contributions of this paper are summarized below:

• We propose a deep-learning-based feature clustering with SHAP values to explain the
model’s RUL estimation. Feature clustering is used to capture the relationship between
features that can potentially influence the final prediction and improve interpretability,
enabling a better understanding of feature contributions. It could be considered part
of the Explainable AI field, as it promotes a better comprehension of the model. Using
the feature clustering eliminates the need to use complex models; instead, an LSTM
model with a single hidden layer is used. In the post-model phase, SHAP values are
applied to facilitate the interpretation of RUL prediction and help determine the cause
of the engine’s failure.

• We discussed and analyzed the settings and effects of some critical parameters as well
as the comparison with other methods. Therefore, we open the code of this experiment,
in order to contribute to future developments.

To present our work, this paper is organized as follows: Section 2 explains Explain-
able Artificial Intelligence’s (XAI’s) need in PHM and reviews related work in this field.
Section 3 provides an overview of previous related work to our study. Section 4 outlines
the techniques used in this study and the proposed framework. An overview of the dataset
and experiments setting are illustrated in Section 5. Results are presented and discussed in
Section 6. Section 7 concludes the article.

2. Explainable Artificial Intelligence’s (XAI) Need in PHM

System prognostics is a safety-sensitive industry field. It is therefore crucial to ensure
the use of a properly regulated AI in this area. Deep learning networks are artificial neural
networks that include many hidden layers between the input and the output layers. These
approaches often offer better performance but are accused of being black boxes. They suffer
from a lack of interpretability and analysis of prediction results. It is difficult to know how
information is processed in the hidden layer. Therefore, explanatory capabilities are needed
in RUL prediction to improve system reliability and provide insight into the parts that
caused the engine failure. Explainable AI (XAI) has been presented as a solution to this
problem. It is able to analyze the black box inside, verify its processes, and provide an
understandable explanation of the logic behind the prediction. Several approaches can be
applied to Explainable AI systems for prediction [17].

Carvalho et al. [18] classified the interpretability methods into three groups according
to the moment when these methods are applicable: before (pre-model), during (in-model),
or after (post-model) the construction of the model to predict. Some authors [18,19],
consider that PCA, distributed stochastic neighbor embedding (t-SNE), and clustering
methods can be classified under pre-model interpretability and can be part of the XAI field.
The field of in-model interpretability is mainly focused on intrinsically interpretable models
that are specifically designed to be transparent, such as decision trees, rule-based models,
Bayesian models, and hybrid models.

Post-model interpretability refers to the improvement of interpretability after a model
has been built (post hoc). Two approaches can be model-specific or model-agnostic. Model-
specific interpretability includes self-explanation as the additional output, such as attention
mechanisms [20] and capsule network (CapsNets) [21] that focus on the most relevant
parts of the input data when making a prediction. Other examples of model-specific
interpretability techniques include saliency maps and layer-wise relevance propagation.
The post hoc model-agnostic interpretability approach consists of analyzing root causes by
manipulating inputs and visualizing outputs without relying on the trained model. These
approaches include local model analysis, global model analysis, and feature importance
analysis. These methods can be used to identify the input features that contribute to the
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predictions and have the greatest impact on the output of the model. In this study, SHAP
values [22] are used on synthetic features to identify their contribution to the prediction
and find the key factors that affect the RUL of a turbofan engine.

3. Related Work

The C-MAPSS dataset is one of the most used datasets for the goal of improving
RUL estimations. Whether using machine learning models or deep learning models,
many approaches and methods have been developed and proposed throughout the years.
Wang et al. [23] built a fusion model that extracts features from the data based on a broad
learning system (BLS) and integrates LSTM to process time series information. Heimes [24]
was the first to implement a recurrent neural network (RNN) for RUL prediction. de
Oliveira da Costa et al. [25] proposed a domain adversarial neural network (DANN)
approach to learning domain-invariant features using LSTM. Jiang et al. [26] used a fusion
network combined with a bidirectional LSTM network to estimate the RUL with the use
of sequenced data. Zhao et al. [12] used a bidirectional LSTM (BiLSTM) approach for
RUL estimation by taking sequence data in bidirection, and a model optimization was
necessary to obtain the best results possible. Zhang et al. [27] proposed an LSTM-fusion
architecture, concatenating separate LSTM subnetworks, on sensor signals with feature
window sizes. Listou Ellefsen et al. [28] proposed a semisupervised approach based on
LSTM using a genetic algorithm (GA) to adjust the diverse amount of hyperparameters
in the training procedure. Zheng et al. [29] used a deep LSTM model for RUL estimation
feeding sequenced sensor data to the model to reveal hidden features when multiple
operational conditions are present. Lee [30] adopted a new approach by normalizing the
sensor data per operational condition, as well as rectifying the RUL; it was achieved by
setting an early RUL, removing the initial cycles where the engine is at a healthy state
and only focusing on the degradation period. Recently, Palazuelos et al. [31] extended
capsule neural networks for fault prognostics, particularly remaining useful life estimation.
Chen et al. [32] applied an attention-based deep learning framework hybrid LSTM with
feature fusion able to learn the importance of features. Quin et al. [33] proposed a slow-
varying dynamics-assisted temporal CapsNet (SD-TemCapsNet) to simultaneously learn
the slow-varying dynamics and temporal dynamics from measurements for accurate RUL
estimation. Li et al. [34] proposed a cycle-consistent learning scheme to obtain a new
representation space, considering variations in the degradation patterns of different entities.
Ren et al. [35] proposed a lightweight and adaptive knowledge distillation for enhancing
industrial prediction accuracy. To address the sensor malfunction problem, the authors
in [36] introduced adversarial learning to extract generalized sensor-invariant features.
To handle the presence of uncertainties and find the key features that contribute to the
precipitation forecasting process. Manna et al. [37] incorporated a rough ensemble on fuzzy
approximation space (RSFAS) into the LSTM method.

4. Materials and Methods
4.1. Feature Clustering: ClustOfVar

As mentioned previously, feature clustering can be classified as pre-model inter-
pretability and is part of the XAI domain. It facilitates visualization and understanding
of relationships between features and pattern identification. Feature clustering obtains
clusters of related and redundant features. It creates synthetic features that best summarize
the relevant information provided by the initial features. This approach can be considered
as a dimension-reduction step and seems to be a good alternative to principal component
analysis. Indeed, it allows for removing the redundancies of information in the available p
features. The synthetic features will be constructed only with the features of the group, con-
trary to the principal component analysis where the synthetic features are constructed with
all the features. It thus makes it easier to interpret the synthetic features. The homogeneity
criterion of a cluster is the squared correlations summarizing the features in the cluster.
The ascendant hierarchical clustering method is used. At each stage, the two clusters that
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minimize the loss of homogeneity are aggregated. Each feature is then reassigned to the
cluster that is closest to it, i.e., the one with the highest squared correlation between the
feature and the cluster representative. To evaluate the stability of the partition, a bootstrap
approach is used; it allows the determination of suitable numbers of clusters. ClustOfVar
approaches [38] implemented in the R packages are used.

4.1.1. Definition of the Synthetic Feature of the Cluster

Each cluster Ck can be summarized by a numerical synthetic feature noted yk defined
as follows:

yk = arg max
u∈Rn ∑

j∈Ck

r2(xj, u
)

(1)

r2(xj, u
)
∈ [0, 1] is the square of the linear Pearson correlation between the feature xj and

the synthetic feature u.

4.1.2. Homogeneity H of the Cluster Ck

The homogeneity H of the partition Pk = (C1, . . . , Ck) is defined as the sum of the
homogeneities of its k clusters:

H(PK) =
K

∑
k=1

H(Ck) (2)

The goal of the hierarchical ascending classification algorithm is to find a partition of
a set of p features that maximize the homogeneity H (Pk).

4.1.3. The Hierarchical Clustering Algorithm

The aim is to find a partition that maximizes the homogeneity function H defined
in (2) in such a way that the features within a cluster are strongly related to each other. The
hierarchical bottom-up classification algorithm starts with the partition into p clusters. At
each step, the two classes A and B that minimize the loss of homogeneity are aggregated.
Thus, the two clusters with the smallest dissimilarity d are chosen. It is defined as follows:

d(A, B) = H(A) + H(B)− H(A ∪ B) (3)

Using this aggregation measure, the new partition maximizes H among all partitions
obtained by aggregating two clusters.

4.1.4. Stability of Feature Partitions

To assess the stability of all partitions into 2 to p − 1 classes resulting from the hierar-
chical clustering, a bootstrap resampling procedure is used to determine the appropriate
number of feature classes that can be retained for analysis. The right choice for this number
of classes is the one that retains the most stable partition. B bootstrap replications of the
original data are generated and the associated B dendrograms are obtained. The partitions
of these B dendrograms are compared to the partitions of the original hierarchy through the
adjusted Rand index [39]. The stability of the partition is evaluated based on the average of
the values of the adjusted B Rand indices. The closer the Rand index value is to 1, the more
similar the partitions are.

4.2. Long Short-Term Memory Neural Network

A type of recurrent neural network was developed by [40], long short-term memory
(LSTM), becoming a powerful model for processing temporal data with complex structures.
It was a solution to the problem of the optimal gradient of the backpropagation to change the
weights of the network. This is a promising approach to service life prediction, providing
valuable short- and long-term information. The LSTM network is shown in Figure 1 for
a unit at step t with no indication of weight.
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Figure 1. Structure of an LSTM network unit.

Each unit is linked to a hidden state h and to a state c of the cell that serves as a memory.
Three gates regulating the flow of information represent the structure of the LSTM network:
the input gate allows or blocks the update of the cell c, the forget gate allows the reset of
the cell state, and the output gate controls the communication from the cell c to the output
of the unit. The activation function used is the hyperbolic tangent function. It transforms
the values between −1 and 1 and prevents the outputs from becoming large.

Ft = σ(WFxt + UFht−1 + bF) (forget gate)

It = σ(WI xt + UIht−1 + bI) (input gate)

Ot = σ(WOxt + UOht−1 + bO) (output gate)

ct = Ft ◦ ct−1 + It ◦ tanh(Wcxt + Ucht−1 + bc)

ht = Ot ◦ tanh(ct)

ot = f (Woht + bo)

(4)

The inputs of each gate are weighted by the gate weights and by a bias. There are
four weight matrices whose dimensions depend on the dimensions of ht−1 and xt:

• WF: weight of the forget gate;
• WI : weights of the input gate;
• Wc: weights of the data that will be combined with the input gate to update the cell state;
• Wo: weights of the output gate.

In our proposed model, we used one LSTM layer to extract the temporal synthetic
features included in the previous time windows with size Tw before estimating the RUL.

4.3. SHAP (SHapley Additive Explanations)

SHAP (SHapley Additive Explanations), proposed in [22], is a method used to improve
the interpretability of artificial intelligence methods. Issued from game theory, it computes
Shapley values [41] to each predictor to indicate its contribution to the final result. The idea
is to average the impact of a feature over all possible combinations of features in a linear
model. The Shapley value φj is defined as follows:

φj( f , x) = ∑
S⊆{x1,...,xp}\{xj}

|S|!(p− |S| − 1)!
p!

( fx(S ∪ {j})− fx(S)) (5)

where p is the number of all features, S is a subset of features used in the model, and j is
the jth feature. f x is the prediction function of a single input x, defined as

fx(S) =
∫

f̂
(
x1, . . . , xp

)
dPx/∈S − EX( f̂ (X)) (6)
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It performs several integrations for each feature that does not contain S. A linear g
model is finally fitted to the features and their impacts, represented as follows:

f (x) = g
(

x′
)
= φ0 +

p

∑
i=1

φixi (7)

where f (x) represents the original model, g(x) is the explanation model, x′—simplified
input, such that x = hx(x′), it has several omitted features, and φ0 = f (hx(0)); it represents
the model output with all simplified inputs missing. Shapley values are the only set of val-
ues that satisfy the following three properties: local accuracy, missingness, and consistency.
Baptista et al. [42] found that SHAP values are very close to three properties: monotonic,
trendable, and prognosable, as model complexity increases. David Solís et al. [43] intro-
duced a new proxy, “acumen”, which aims to detect whether the XAI method depends on
temporal dependencies. Their results showed that SHAP provided the best “acumen”.

4.4. Proposed Method

The LSTM-based feature clustering with SHAP values approach is shown in Figure 2.
The C-MAPSS dataset FD004 of NASA is selected, and is simulated under six operating
conditions and two failure modes. The data are first normalized based on operating condi-
tions for the training and test sets. Exponential smoothing is then applied to reduce noise.
A fixed-length sliding time window (TW) and RUL rectification are used to emphasize
the degradation part when training the model. The data are then processed using a fea-
ture clustering technique to reduce the dimensionality of the input space and enhanced
interpretability. It represents the new dataset to predict RUL. The synthetic feature training
data are trained using an LSTM model. The model learns using one hidden layer. Once
the training is complete, the final model is set, and the prediction and the RUL error are
then calculated by applying the clustered test data to this model. Finally, among the Ex-
plainable Artificial Intelligence techniques, SHAP values are applied to clustered features.
It provides a way to understand the role of each factor cluster in an aircraft’s turbofan
engine. This allows us to determine the source of degradation at the engine level in order
to facilitate maintenance.

Figure 2. The flowchart of the proposed method.
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5. Experiment Settings

In this section, we explain the proposed model to predict the RUL. The experi-
mental environment was DELL-Intel Core vPRO i9, 64 GB RAM, 16 GB GPU NVIDIA
RTX A5000, and Microsoft 10 operating system. The models and algorithms were im-
plemented in Python language, with an exception when using the R language for the
ClustOfVar package to compute the feature clustering. The frameworks used were Tensor-
Flow and Keras on Jupyter-Notebooks IDE. The experiment’s code is available on GitHub
(https://github.com/adam-aalah/Feature-clustering-and-XAI-for-RUL-estimation, (ac-
cessed on 17 May 2023)).

5.1. Data Overview

NASA has developed a generic military turbofan engine simulation [44], the Modular
Aero-Propulsion System Simulation (C-MAPSS), which has been released for public use
to rapidly implement and test control algorithms on a validated engine model. C-MAPSS
simulates an engine model of the 90,000 lb thrust class and the package includes an
atmospheric model capable of simulating operations at an altitude ranging from sea level
to 40K ft, Mach number from 0 to 0.90, and sea-level temperatures from −60 to 100 °F.

The C-MAPSS engine contains five rotating components, Figure 3. These components
can be divided into two subcategories: a low-pressure shaft that contains fan, low-pressure
compressor (LPC), and a low-pressure turbine (LPT); and a high-pressure shaft that contains
a high-pressure compressor (HPC) and a high-pressure turbine (HPT).

To comprehend how the engine operates, we need to understand each component
and its role (Figure 3). The fan is the first component located at the entrance of the
turbofan engine. The rotation of its blades causes the suction of large quantities of air.
Followed by the compressor, being the first component in the engine core, it contains two
subcomponents: a low-pressure compressor (LPC) and a high-pressure compressor (HPC).
The compressed air obtained is then pumped into the combustion chamber, where the
injected fuel is mixed and burned. This provides a high-temperature airflow that is supplied
to the turbine. The turbine contains two subcomponents: a high-pressure turbine (HPT)
and a low-pressure turbine (LPT). The high-energy airflow comes out of the combustor
chamber into the turbine, causing the turbine’s blades to rotate. The air sucked into the
turbofan engine is split into two parts; the first part moves to the combustor chamber,
passing through the compressor, and the second part moves through the bypass. The role of
the bypass is to increase thrust without increasing fuel consumption, as well as to provide
cooling air.

We choose to work with the C-MAPSS subset FD004, as it is the most complex dataset
out of four subsets (see Table 1), containing two fault modes and six operational conditions
which are detailed in Table 2. The data was collected using 21 sensors located in different
parts of the engine presented in Figure 3. The different sensors are summerized in Table 3
as well as their description. The experiments can be conducted through three stages:
preprocessing, training and RUL estimation, and then explaining the degradation.

Table 1. Detailed information of the C-MAPSS subsets.

FD001 FD002 FD003 FD004

Units (Train) 100 260 100 249
Units (Test) 100 259 100 248

Operation condition 1 6 1 6
Fault modes 1 1 2 2

https://github.com/adam-aalah/Feature-clustering-and-XAI-for-RUL-estimation
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Figure 3. C-MAPSS engine components.

Table 2. Operational conditions at which the data were simulated.

ID Name Alt, ft Mach TRA,
deg

Fan
Speed,

rpm

Core
Speed,

rpm

Fuel
Flow,
pps

T48, °R

1 FC09 42K 0.84 100 2212 8317 1.518 1744
2 FC08 35K 0.84 100 2223 8346 2.120 1750
3 FC07 25K 0.62 60 1915 8006 1.670 1534
4 FC06 20K 0.70 100 2324 8719 3.863 1909
5 FC05 10K 0.25 100 2319 8774 4.661 1947
6 FC01 0K 0 100 2388 9051 6.835 2072

Table 3. C-MAPSS 21 sensor readings.

Symbol Description Unit

T20 Total temperature at fan inlet °R
T24 Total temperature at LPC outlet °R
T30 Total temperature at HPC outlet °R
T50 Total temperature at LPT outlet °R
P20 Pressure at fan inlet psia
P15 Total bypass-duct psia
P30 Total pressure at HPC outlet psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio (P50/P20) -

Ps30 Static pressure at HPC outlet psia
φ Ratio of fuel flow to Ps30 pps/psia

NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass ratio -
farB Burner fuel–air ratio -

htBleed Bleed enthalpy -
N fdmd Demanded fan speed rpm

PCN f Rdmd Demanded corrected fan speed rpm
W31 HPT coolant bleed lbm/s
W32 LPT coolant bleed lbm/s
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5.2. Preprocessing Approach
5.2.1. Normalization According to Operation Condition

Since FD004 was simulated under six different operational conditions [30], normal-
ization was then performed to each operational condition. The operational condition is
identified by the Mach number, altitude, and ambient temperature of an aircraft engine.
It is a controlled setting or environmental parameters. Normalizing the sensors to this
information has a significant impact on the performance of the model. Normalized values
are found within the range [−1, 1] using the min–max normalization method:

norm
(

xi,j
t

)
=

xi,j
t −min

(
xj)

max
(
xj
)
−min

(
xj
) − 1 (8)

5.2.2. Data Smoothing

Normalizing the data is not enough to produce a reasonable and accurate RUL estima-
tion due to the large amount of noise present in the data. Exponential smoothing is applied.
It uses a parameter α that controls the smoothing factor. The value of α lies between 0 and
1. The fitted values are written as follows:

ŷt+1|t = αyt + (1− α)ŷt|t−1 (9)

• α = 0: signifies that those future forecasted values are the average of historical data,
giving more weight to historical data.

• α = 1: signifies that future forecast values are the results of the recent observation,
giving more weight to recent observations.

A value close to 1 indicates fast learning (that is, only the most recent values influence
the forecasts), whereas a value close to 0 indicates slow learning (past observations have a
large influence on forecasts). A grid search was performed to find the best value of α in the
range of [0.1; 0.9], which turned out to be equal to 0.3. However, the effect of the smoothing
value α on the performance of the model will be investigated in further experiments.

5.2.3. Feature Clustering

Feature clustering is illustrated on the combined preprocessed train and test sets, and
then we carried out a hierarchical feature clustering, reducing the inputs of the LSTM
neural network. The stability criterion is employed based on a bootstrap approach to
choose the number of clusters using the “ClustOfVar” R-package [38].

The stability in Figure 4 is achieved up to seven clusters and then restabilizes from
nine clusters. Based on the stability, the choice of three clusters gives a gain in cohesion
equal to 66.98%, while the choice of seven clusters gives a gain in cohesion equal to 90.09%.
Therefore, it seems reasonable to keep seven clusters, as it allows us to give a deeper insight
into how the engine’s degradation occurs.

Figure 4. Stability criterion for the partitions obtained by the hierarchical clustering of the features.
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According to Figure 5, the sensors are distributed across the seven clusters. These
synthetic features are structured as follows:

cluster 1 = 7.856395− 3.887295× T24− 3.847008× T30− 3.245412× T50
−2.964724× Ps30− 3.533685× htBleed

(10)

cluster 2 = −3.447993 + 4.611694× P15 (11)

cluster 3 = −3.345230 + 5.308207× P30 + 5.164441× φ (12)

cluster 4 = −4.890251 + 6.789197× N f + 6.588968× NR f (13)

cluster 5 = −3.642547 + 7.101891× Nc + 7.607409× NRc (14)

cluster 6 = −2.868859 + 8.863718× epr (15)

cluster 7 = −2.891498− 4.090116× BPR + 5.704820×W31 + 5.630470×W32 (16)

Figure 5. The dendrogram obtained by the hierarchical clustering of the features.

The synthetic feature scores for each observation are extracted. This represents the
new dataset applied to predict the RUL.

5.2.4. Time Window and Rectified RUL

After reducing the noise using exponential smoothing, a fixed-length sliding time
window (TW) processing is applied to convert multivariate time series data into sequential
measurement cycle data. A time window is moved each time by one measurement cycle
to generate a new TW. A longer length of TW can contain more local information and
therefore impacts the performance of the proposed model. Simultaneously, it slows down
the learning speed of the model. A grid search was performed on time window size for
values ∈ [30,60], using the LSTM model, and led to a TW value equal to 30. The engine
fails at an unknown time and is healthy before the failure, so a linear degradation model
is essential for model convergence. After fixing the time window to 30, and based on
different values of rectified RUL [29], we set an early RUL value equal to 130. The engine is
considered healthy until it reaches cycle 130, where degradation can be observed. Since
all engines are healthy from cycle 130 onward, the remaining life of the train and test set
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was rectified. This allowed the model to learn from the critical cycle interval instead of the
whole life of the engine.

We examine the effect of the time window size and the rectified true RUL setting on
the model performance in the subsequent experiments.

5.3. Model Setup
5.3.1. Hyperparameters

The proposed model is built with a simple long short-term memory neural network,
LSTM. Its architecture is composed of one LSTM layer with an activation ‘tanh’, one dense
layer with an activation function ‘ReLu’, followed by a dropout layer with an activation
layer ‘ReLu’ and a dense (1) layer. The grid search cross-validation method is used for
parameter optimization. The best hyperparameters with the lowest RMSE used in this
study are shown in Table 4.

Table 4. Hyperparameters used for the LSTM model.

Hyperparameter Value

Number of Hidden Layers 1
Nodes 128

Dropout 0.2
Batch-size 384

Epochs 20
Learning-Rate 0.01

Experiments were conducted on seven synthetic features with a time window equal to
30 and an early RUL value equal to 130. The Adam optimizer was applied, given the best
results with a learning rate set to 0.01. For the proposed model, the LSTM used a single
hidden layer with 128 nodes, and the dropout was set to 0.2.

5.3.2. Prognostic Metrics

To evaluate the model’s performance, two metrics are used in this paper: root mean
square error (RMSE) and the scoring function.

• RMSE evaluates the prediction error. It is represented as follows:

RMSE =

√
1
n

Σn
i=1(di)2 (17)

with di = RUL′i − RULi
• Based on the PHM data challenge in 2008 [45], a scoring function, S-score, was defined

to penalize a lot more late predictions in comparison to early predictions of the
remaining useful life. It is described as follows:

S-score =


∑n

i=1

(
e−

di
13 − 1

)
for di < 0

∑n
i=1

(
e

di
10 − 1

)
for di ≥ 0

(18)

where n denotes the total number of test sets, the RUL′i represents the predicted RUL,
the RULi denotes the actual RUL, and di represents the prediction error.

6. Results Analysis

To better estimate the remaining useful life of the units, we study the effect of dif-
ferent parameters on the model’s performance, such as data smoothing parameter α, the
time window size, and the piecewise rectified RUL. The proposed model was used on
our new preprocessed dataset containing synthetic features. Experimental results were
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averaged by 30 independent trials to ensure the accuracy of the results and reduce the effect
of randomness.

6.1. Parameters Study

We first adjusted the data smoothing parameter α to 0.2, 0.3, 0.7, and 0.9, consistent
with previous studies. After 30 independent trials, the results are shown in Figure 6. The
95% confidence interval of the RMSE is displayed for each α value. The red dot indicates
the average RMSE. The best value of the smoothing parameter α is equal to 0.3, which leads
to the smallest root mean square error (RMSE).

Figure 6. 95% CI for average RMSE by smoothing parameters α.

Regarding the size of the time window, most studies using the C-MAPSS FD004
database set it at 30. Nevertheless, we believe that this parameter should be investigated.
Setting α to 0.3, we adjusted the time window to 10, 20, 30, 40, and 50. Each configuration
was repeated 30 times independently. The results in Figure 7 show that the RMSE first de-
creases as the window size increases and exceeds the value of 30, indicating that a window
size that is too large does not help improve performance. This is because the current RUL is
correlated with data from the most recent period, and the correlation decreases as the time
interval increases. Including these data may result in too much noise. On the other side,
the test results’ variance increases with the time window’s size, indicating that the model
learning is indeed perturbed by noise. The best results are obtained with a time window
size of 30.

Figure 7. 95% CI for average RMSE by time window sizes.
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In addition, we studied the impact of the rectified RUL, as per the window size
experiments. Setting a time window to 30, we adjusted RUL early to 130, 140, and 150 and
repeated each trial 30 times independently. The results in Figure 8 show that the lowest
RMSE is achieved with a rectified RUL equal to 130.

Figure 8. 95% CI for average RMSE by rectified RUL values.

6.2. Ablation Study

In this section, we perform an ablation study to show the effectiveness of using feature
clustering in preprocessing, improving model performance and overfitting problems by
reducing the influence of input sensors. First, our results are compared to those obtained by
deploying a one, two, and three-hidden-layer LSTM network without dimension reduction,
presented in Figure 9. Second, the results are compared to those obtained by the PCA
dimension reduction method with 3 PCs, 4 PCs, and 16 PCs using a single hidden layer
LSTM network, found in Figure 10. This comparison mainly shows the motivation behind
using feature clustering. This approach extracts information from correlated features to
reveal hidden patterns, thus providing a simpler model with fewer hidden layers. Our
subsequent experiments validate this assumption.

Figure 9. Impact of LSTM layers using all sensors in terms of RMSE.

The sensors were smoothed using α equal to 0.3, the time window equal to 30, and
rectified RUL set to 130. The results in Table 5 and Figure 9 show that when no dimension
reduction is performed, two layers are required to achieve better performance with the
LSTM network. Furthermore, the experimental results in Figure 11 show also that increas-
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ing the complexity of the LSTM network does not lead to the prediction accuracy found
with feature clustering.

Table 5. Results using different inputs: All sensors, feature clustering, and PCA components.

Method Input Features + Model RMSE S-Score

All sensors + LSTM
1 layer 22.56 5127.79
2 layers 17.64 1823.05
3 layers 18.83 3063.82

PCA + LSTM (1 layer)
16 PC * 20.10 2949.82
4 PC * 19.84 2524.4
3 PC * 20.63 2924.69

Proposed method 7 clusters 16.14 1299.19

* Principal components.

According to Figure 10, the best results using the PCA method were obtained with
four principal components catching all the variance in the original data. This result in-
dicates that reducing the number of components reduces the complexity of the model,
which improves the prediction accuracy. However, with excessive dimension reduction, the
features required for the prediction cannot be learned. In addition, our model performed
better than the model using PCA dimension reduction (Figure 11).

Figure 10. Impact of PCA dimension reduction with LSTM (1 layer) in terms of RMSE.

Figure 11. Comparative study.
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Compared to the other models, in Table 5, the proposed model performs better, with
the lowest average RMSE value (16.14) and the lowest average S-score (299.19). It also
provides the smallest standard deviation (values in brackets), showing that the performance
of our model is more accurate. These results indicate that, with feature clustering as a part of
the preprocessing, reducing the complexity of the model does not decrease the information
needed for learning.

6.3. Case Study

The estimated RUL values at each run are compared to the true RUL values for
4 different engines randomly selected, for the training subset of FD004, when using RUL.
The aqua-clear blue, orange, and red lines correspond, respectively, to the estimated RUL
values found by 2-layer all-sensor LSTM, 4PCA + LSTM (1 layer), and our proposed model
with 7ClustOfVar + LSTM (1 layer).

The engines are sorted by ascending order of real RUL values and are represented
in dark blue, demonstrating the lifetime of the aircraft engine until its failure. These real
values are used to observe the performance of our model, indicating the error between the
true and the predicted RUL.

The comparison between the estimated RUL using the different methods for randomly
selected engines is shown in Figure 12. It highlights that the estimated RUL values with
the proposed method are closer to the true RUL values of the training subset than to those
estimated using the four principal components or the LSTM model with two hidden layers
without performing any type of dimension reduction as inputs.

Figure 12. Comparing the estimated RUL using different methods 7ClustOfVar + LSTM(1),
4PC + LSTM(1), and LSTM(2), for randomly selected engines.

Figure 12 indicates that when using the clustered features as input, the model tends to
learn the hidden pattern available within these clusters well, whereas when using either
four principal components an LSTM model with two hidden layers without performing
any type of dimension reduction, it fails to learn well, and either estimates the RUL early
or late, which can be an issue when considering the turbofan engines, as it can lead to
a disastrous outcome in a real-life scenario.
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The prediction results of randomly selected engines from FD004 train sets are pre-
sented in Figure 13. The majority of the errors based on [46] fall within the confidence
interval, defined by the lower bound di = −13 and the upper bound di = 10, proving that
the model’s performance was well trained.

Figure 13. Estimated RUL using our proposed model for randomly selected engines.

In order to evaluate the model’s performance, graphically, the predicted error di for
the test subset of FD004 is represented. The green and purple lines correspond, respectively,
to the lower limit di = −13 and the upper limit di = 10.

As illustrated in Figure 14, most of the values fall within this confidence interval
determined with the lower and upper limit of di, showing the efficiency of the proposed
model’s estimation. These values help identify the values that were correctly predicted
within the confidence interval, with the blue color and those which were either an early
or a late prediction, respectively with colors yellow and red. A comparison between the
predicted RUL and the rectified true RUL can also be seen in Figure 15.

After examining the predicted error values, it is necessary to evaluate how the error
values are translated in terms of actual values, which is why a comparison between
predicted and true RUL values is necessary. The dashed red colored line in Figure 15
represents the predicted RUL values, and the dashed gray colored line represents the given
ground truth RUL of the 248 engines of the test subset of FD004. Generally, the predicted
values for each engine have a small difference from the true RUL, with some values that
were predicted either early or late. Overall, our model performs well in estimating the
remaining useful life of the engines, despite some engines being too noisy and affecting
the model’s training and performance, especially when the model predicted fewer late
RUL values.



Aerospace 2023, 10, 474 18 of 23

Figure 14. The Predicted error values for the test FD004 subset using the proposed model with respect
to the confidence interval determined with the lower and upper limit of di.

Figure 15. Comparison of the rectified true values and predicted values of RUL, of all engines in the
test set using the proposed model.

6.4. Comparison with Other Work

A comparison of the proposed method with state-of-art studies is presented in Table 6.
It illustrates a comparison of works using the FD004 C-MAPSS dataset and summarizes
the researcher with the publication date, network algorithm, predicted RMSE, and S-score
results from previous studies. The value in brackets denotes the standard deviation of the
metrics for the experiments in the study.

Table 6. Results comparison of different approaches using the FD004 dataset.

Authors Approach RMSE S-score

Sateesh Babu et al., 2016 [47] Semisupervised setup 22.66 2840
Zheng et al., 2017 [29] Deep LSTM 28.17 5550

Listou Ellefsen et al., 2019 [28] GA + LSTM 22.66 2840
Zhang et al., 2020 [27] LSTM-fusion 21.97 7726.9
Zhao et al., 2020 [12] BiLSTM 24.86 5430
Jiang et al., 2020 [26] BiLSTM-fusion 29.16 7886

de Oliveira da Costa et al., 2020 [25] DANN-LSTM 21.30 2904
Palazuelos et al., 2020 [31] CapsNet 18.96 (0.27) 2625.64 (266.83)

Chen et al., 2020 [32] Hybrid LSTM with attention 27.08 5649.14
Wang et al., 2022 [23] B-LSTM 16.24 5220
Qin et al., 2022 [33] SD-TemCapsNet 16.49 804.05
Ren et al., 2022 [35] Lightweight and Adaptive KD 15.10 1508.84
Li et al., 2023 [36] Advertisal neurons network 26.64 (0.29) 10,343 (783)

Proposed method LSTM-based feature
clustering 16.14 (0.96) 1299.19 (255.25)
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Accuracy has been improved by using advanced deep learning algorithms, with
a deeper network layer or by using fusion algorithms. Compared with work carried out
in recent years, the RUL predictions of turbofan engines show the effectiveness of our
approach. As some methods tend to have a lower S-score or RMSE, the proposed method
achieves better results in terms of the trade-off between performance and explainability,
while using a simple architecture with only a single-layer LSTM. For a PHM solution, the
more insightful the model, the greater its reliability.

6.5. Interpretability of Results

SHapely Additive exPlanation (SHAP) values are a great tool to understand com-
plex tree-based and deep network model outputs. SHAP values can link local and global
interpretations. Deep neural networks, known as black-box, are difficult to understand.
However, they can be explained by SHAP values, which determine the factors respon-
sible for the outcome and decision. SHAP values are used on independent synthetic
features, preventing its limits, in order to understand the role of each factor in an aircraft’s
turbofan engine.

The results of the average SHAP values of the predictive model are shown in Figure 16.
It shows the clusters with the greatest influence on the RUL prediction, placing the largest
cluster on top. The x-axis represents the average absolute SHAP values of each cluster.
Clusters with larger absolute SHAP values correspond to the most important clusters.
Cluster 1 represents the features that contribute the most to the prediction, followed by
cluster 5, cluster 3, cluster 2, and cluster 7.

Figure 16. SHAP values importance ranking of clusters.

Based on Figure 17, the x-axis represents the SHAP values, and the y-axis represents
all clusters. Red color means a high value of a cluster; blue means a lower value of a cluster.
Clusters are presented in order of importance of all clusters, with the first cluster being the
most important and the last being the least important. This distribution shows the overall
impact of the cluster directions. Clusters 1 and 7, with high values, contributed positively
to the prediction, while with low values, they contribute negatively. On the other hand,
clusters 5 and 3 have a negative influence on the prediction when they have high values,
and a positive influence when they have low values.
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Figure 17. SHAP values for the proposed model.

Cluster 2 has a low contribution to the prediction. Clusters 6 and 4 have almost
no contribution to the prediction, whether their values are high or low. To relate these
results to the initial features, we use the equations found by ClustOfVar in Section 5.2.3.
Cluster 1, represented in Equation (10) by the combination of features T24, T30, T50, PS30,
and htBleed, has a positive contribution when its values are high, and a strong negative
contribution when its values are low. A high value of cluster 1 (for each additional value of
these features, cluster 1 decreases by 9.6) corresponds to a low value of total LPC outlet
temperature T24, total HPC outlet temperature T30, total LPT outlet temperature T50, static
pressure at HPC outlet PS30, and purge enthalpy htBleed. They have the greatest power
to predict failures; their higher values increase the remaining useful life and subsequently
decrease failure degradation. Cluster 5 has a strong negative contribution when its values
are high and a positive contribution when its values are low. A high value of Cluster 5
corresponds to a high value of the physical core speed Nc and a high value of the corrected
core speed NRc. That means that a low core speed increases the remaining useful life and
so the failure degradation decreases. Cluster 3 with low values does not contribute to
prediction, but high values cannot specify contribution to the prediction. This cluster is
represented in Equation (12) by the ratio of fuel flow to Ps30 and the total pressure at the
HPC outlet. Cluster 2 is represented in Equation (11) by total bypass-duct. It has a low
contribution to the prediction. A high value of total bypass-duct does not contribute to
RUL prediction. On the other hand, a high value cannot confirm the way of contribution to
the prediction. Cluster 7 is represented in Equation (16) by bypass ratio, BPR, negatively,
and strongly positively by HPT coolant bleed, W31, and LPT coolant bleed, W32. Low
values of HPT coolant bleed and LPT coolant bleed correspond to decreased RUL and thus
increased failure degradation. We can conclude that:

1. The higher the values of total LPC outlet temperature T24, total HPC outlet tempera-
ture T30, total LPT outlet temperature T50, static pressure at HPC outlet PS30, and
purge enthalpy htBleed, the higher chance of failure due to degradation.

2. Higher values of physical core speed Nc and a high value of the corrected core speed
NRc may result in lower RUL values and, therefore, a higher chance of failure due to
degradation.

3. Higher values of φ, the ratio of fuel flow to static pressure at the HPC outlet, and P30,
the total pressure at the HPC outlet, may result in a lower RUL values, resulting in
a higher chance of failure due to degradation.

4. Low values of HPT coolant bleed, W31, and LPT coolant bleed, W32, correspond to
decreased RUL and thus increased failure degradation.
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7. Conclusions

In this paper, we proposed a deep-learning-based feature clustering with an XAI
approach to predictive maintenance. The proposed model applied feature clustering on
sensors during the preprocessing phase and built one single hidden LSTM layer algorithm.
Our model was implemented and evaluated to predict the RUL of engines on the NASA
turbofan engine dataset FD004. An ablation study was performed and compared to those
obtained without any dimension reduction using LSTM with different numbers of hidden
layers and those using a PCA dimension reduction algorithm. The experimental results
indicate the effectiveness and suitability of the proposed method. SHAP values were used
to explain decisions based on the predictive model outputs, help understand the decision of
the LSTM model, and highlight the most important features contributing to the degradation
of turbofan engines.

With regard to future work, a promising direction could be followed by applying the
technique to other datasets to validate the proposed approach. In addition, another exciting
topic is driving causality in post hoc XAI tools to provide more reliable and interpretable
explanations and a better understanding of which part of the machine needs maintenance.
It provides valuable information to perform proactive maintenance before the aircraft
engine fails.
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