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Context and problem
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• A cloud of points is a sample of n un-
ordered points X = {x1, ...,xn} with xi ∈
Rd.

• Metamodel functions defined over clouds
of points using Gaussian process.

• Design stochastic, evolutionary, algo-
rithms with operators based on Wasser-
stein barycenter.

• Note the set of clouds of points as X and
the set of finite discrete measures defined
over Rd as P

An evolutionary algorithm

• Clouds can be viewed as measures through
the bijective mapping : φ : X −→ P
X = {x1, ...,xn} 7−→ PX = 1

n

∑n
i=1 δxi

• Given two clouds of points X and X ′,
we denote W 2

2 (PX , PX′) the 2-Wasserstein
distance between PX and PX′ (see [3] for
details)

A stochastic (evolutionary) optimizer over
clouds of points is defined by the following:

• Crossover as Wasserstein barycen-
ter: X ′′ = W-barycenter(X,X ′)
where X ′′ is the discrete mea-
sure minimizing 1

2 (W
2
2 (PX”, PX) +

W 2
2 (PX”, PX′)).

X” can have different sizes according to X
and X ′ (see [2] for details).

• Mutation: with probability p, do X ′′′ =
W-barycenter(X ′′, (X ′′∪Dom)). Dom is a
set of points at the domain boundary. For
a square domain, Dom can be the corners.

The crossover promotes recombination of shapes
while the mutation increases the spread of
clouds.

Wind-farm test functions

F90, F45, F0 and F40d are analytical functions
X → R mimicking the power production of wind
farms with wind directions 90◦, 45◦, 0◦ and 40
averaged directions, respectively.
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MMD-based Gaussian process through measure modeling

• Let H be a Reproducing Kernel Hilbert Space with a characteristic kernel kH such as Matérn
5/2. The characteristic nature guarantees the injectivity of the embedding map [1]: PX 7−→
µX =

∫
PX(x)kH(x, .)dx. θ1 and θ2 are 2 hyper-parameters scaling the dimensions between

two points x and x′ through |x1 − x′
1|/θ1 and |x2 − x′

2|/θ2.

• The correlation kernel K(X,X ′) = σ exp(− ||µX−µX′ ||2H
2θ2 ) is symmetric and semi-definite posi-

tive.

• Learned on 300 clouds of points, we get the following correspondence between the vector θ and
the functions. The Q2 values obtained by prediction on 1000 unseen (but of same type ) clouds
of points are

Functions F90 F45 F0 F40d

Q2 0.899 0.868 0.906 0.906
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Figure 1: Vectors of length scales of the MMD embedding kernel learned by maximum likelihood on the wind
farm proxy for various wind directions. Left: reminder of the turbine contributions for winds at 90◦,45◦,0◦

and 40 directions (left to right, top to bottom). Right: (θ1, θ2)
⊤ vectors of length scales of the embedding

kernel.

Best designs found with the evolutionary optimizer

• We add the two following test functions Finert({x1, ...,xn}) =
∑n

i=1 ||xi − X̄||2 and
FminDist({x1, ...,xn}) = mini ̸=j ||xi − xj ||.

• The following designs correspond to the ones found respectively on F0, F45, F90, F40d, Finert

and FminDist. The inputs are clouds of points (in squares) with varying size (10 to 20).

• We observe an adaptation of the returned designs to the optimized functions. The points are
placed optimally according to the wind’s direction for wind-farms analytical functions. The
algorithm returns also the optimal design for Finert.

• These results illustrate that modeling clouds of points as finite discrete measures
allow their processing without loss of geometrical information.

40 20 0 20 40

40

20

0

20

40

40 20 0 20 40

40

20

0

20

40

40 20 0 20 40

40

20

0

20

40

40 20 0 20 40

40

20

0

20

40

40 20 0 20 40

40

20

0

20

40

30 20 10 0 10 20 30

30

20

10

0

10

20

30

Figure 2: The designs correspond respectively to F0, F45, F90, F40d, Finert and FminDist

(left to right, top to bottom).


