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Abstract. In this article, we propose a hierarchical deep learning frame-
work for the nuclei 3D reconstruction from a stack of microscopic images
representing 3D cancer cell culture. The framework goes through three
successive stages namely: at the slice level of the stack i) the spheroid
detection and ii) their nuclei segmentation then at the stack level iii)
nuclei 3D reconstruction. For this purpose, we prepared a dataset of
bright-field microscopic images acquired from 3D cultures of HeLa cells
and manually annotated by the experts for both tasks (spheroids de-
tection and nuclei segmentation). Two CNN models namely YOLOvbx
and U-Net-VGG19 have been trained and validated on our dataset for
the detection and the segmentation tasks respectively. For the 3D recon-
struction task, the delaunay triangulation technique has been adopted
by exploiting point cloud clusters that represent the segmented nuclei
in the stack. Our framework offers to the biologists an efficient assisting
tool for quantifying the number of spheroids and analyzing the mor-
phology of their nuclei. The conducted experiments on our generated
dataset show the promising results obtained by our framework with no-
tably an average precision of 0,892 and 0,76 on the spheroids detection
and nuclei segmentation respectively. Moreover, our 3D reconstruction
technique shows visually a consistant representation of nuclei in term of
volumetery and shape.

Keywords: 3D cell culture, confocal microscopy, z-stack images, deep
learning, object detection, segmentation, 3D reconstruction

1 Introduction

In drug screening process against cancer, in-vitro 2D cell culture technique is
widely used due to its simplicity and its low-cost [1]. However, this technique
does not fully represent the physiological characteristics of the cells leading to a
limited biological interpretation of the effectiveness of a candidate drug [2]. To
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overcome this limit, 3D cell culture technique has been introduced [3]. Indeed,
this technique has shown its ability to ensure cell to cell communication and
interaction which permit to better mimic the tissue structure as well as function
[2]. Neverthless, due to the translucent environment of this type of culture, the
acquired microscopic images are affected by several artefacts impacting the visual
appearance of the cell environment objects. Figure 1 illustrates the degraded
visual quality of such type of images (bright-field images) while emphasizing
blurred objects namely spheroids (see on the left the first slice of the z-stack
images). The figure shows also the complexity of distinguishing the nuclei due to
their confusing contours (see on the right, the nuclei of one spheroid). In addition,
the 3D information generated by the depth propagation along the z-axis of the
confocal microscopy remains insufficient to guarantee a faithful representation
of the whole environment notably with regards to occluded objects (spheroids
hidden by other spheroids located at the same 2D position with different z-
depth). All these observations make the automatic analysis of these images a
great challenge.

Fig.1: A z-stack images of 3D culture HeLa cells showing blurred spheroids on
the left and a focus on the nuclei of one spheroid with confusing contours on the
right.

In this context, nuclei segmentation is a fundemental step for the 3D recon-
struction [4]. To address the segmentation task, the deep learning based seg-
mentation algorithms such as U-Net [5] [6] could be exploited. Indeed, these
algorithms have demonstrated a high efficiency in the field of medical imaging
segmentation [7]. However, this type of approach is well adapted for analyzing:
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1) data caracterized by a single level of semantic information (for instance a
population of cells or a population of nuclei) which is not the case of our 3D
culture-based images. More precisely, the images contain two levels of seman-
tic information, namely a population of spheroids, each of which representing a
population of nuclei. 2) a population of separated objects with regular shapes
which is also not the case of our 3D culture-based images as highlighted in Fig-
ure 1. This also raises the problem of preparing a training dataset with manual
segmentations of all the nuclei.

In this article we propose a hierarchical deep learning framework for the
nuclei 3D reconstruction from a stack of microscopic images. The framework
goes through three successive stages namely: at the slice level of the stack i) the
spheroid detection and ii) their nuclei segmentation then at the stack level iii)
nuclei 3D reconstruction. In fact, our observation on the multi-level semantic in-
formation that characterize our data has motivated our strategy of hierarchical
analysis where spheroids are first detected and then their nuclei are segmented
from each slice in the stack. We precise that we chose to detect spheroids instead
of segmenting them because they represent an agregation of small objects (nu-
clei) without a continuous contour. To deal with the confusing contours of the
nuclei, we propose to segment only the most visible nuclei having explicit con-
tours. Indeed, we make the assumption that the fact to detect all the spheroids,
to partially segment their nuclei from each slice in the stack and then apply a
3D reconstruction on the segmented nuclei should permit a relevant quantitative
data analysis. More specifically, having an assisting tool for quantifying the num-
ber of spheroids and measuring their sizes offers to the biologists a first level of
interpreting the effectiveness of a drug. Furthermore, the identification of some
nuclei inside each spheroid will offer a second level of analysis with respect to
their morphology. To demonstrate the efficiency of our framework, we prepared
a dataset of bright-field microscopic images acquired from in-vitro 3D culture of
HeLa cells (cervical cancer cells cultured in our laboratory). The images have
been manually labeled by experts for both tasks namely spheroids detection and
nuclei segmentation. It is worth mentioning that the partial manual segmenta-
tion of nuclei still allowed to train a segmentation model on a weakly-labeled
dataset. The conducted experiments on our dataset shows the promising results
of our framework notably outperforming direct nuclei segmentation methods.
Our dataset and source code will be made available upon request.

2 Related Work

Several works have been proposed in the literature to address nuclei segmentation
from microscopic images [4]. Nevethless, as raised in [4] most of the proposed
methods deal with microscopic images acquired from 2D cell culture. In this
context, the 2018 Data Science Bowl contest [5], revealed the high interest shown
by the scientific community on this task. Indeed, as indicated in [5], the contest
has attracted 3,891 teams worldwide challenged on a dataset of 841 2D images
containing 37333 nuclei manually annotated. The evaluation protocol established
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in the frame of this contest has shown that the best performing solution was
based on a variant of the U-Net deep learning architecture. This latter result
has motivated the community to pursue the efforts on the development of new
variants of U-Net architecture such as Cellpose [8] and StarDist [9]. However,
these methods are not adapted to perform an efficient nuclei segmentation from
3D culture-based images in reason of their strong hypothesis with regard to the
analyzed patterns. More specifically, they are designed and trained to segment
a population of patterns sharing all the same shape (a repetetive shape) and
having explicit contours.

In the case of 3D cell culture, Blazej et al. [10] have proposed a 3D recon-
struction method of the nuclei surface from a z-stack images. To this end, they
adopted a 2D image analysis approach that aims to delimit the contours of the
nuclei from one image slice and to track their continuity over the stack to re-
construct the final surface. For the contour delimitation (nuclei segmentation)
they exploited hand crafted geometric features that permit to generate a set
of boundary points. As raised by the authors, the proposed method performs
well for nuclei with convex shapes and with the assumption that for each recon-
structed 3D nucleus object there exist at least one 2D slice where the considered
object is well separated. Wu et al. [11] proposed a deep learning method to
detect and quantify the 3D nuclei centers from 3D fluorescence microscopic im-
ages. They based their calculations on the estimation of 2D centroids of these
objects from 2D slices. The authors raised that the performance of their detec-
tion method is affected by nuclei with non ellipsoidal shapes. Maylaa et al. [12],
proposed a comparative study of several hand crafted machine learning meth-
ods for the segmentation of nuclei from a z-stack image. For this purpose, they
trained several classifiers that allow to identify nuclei objects pixels from one
slice image and reconstruct final objects. As raised by the authors, although
the trained classifiers succeeded to detect the nuclei pixels they failed to delimit
the nuclei contours resulting in a blob-like objects. The obtained results in the
afformentioned works on 3D culture cells show that nuclei segmentation and
reconstruction tasks are still challenging and require the development of new
efficient methods. This observation has been also confirmed in the recent survey
[4]. Moreover, the survey highlighted also the lack of public datasets as well as
manual annotations.

Regarding spheroids detection from 3D cell culture images, recently Grexa et
al. [13] proposed rather to segment the spheroids by exploiting several techniques
namely classical ones (Otsu threshold and watershed techniques) and deep learn-
ing ones (U-Net and R-CNN models). Neverthless as raised by the authors the
delimitation of the spheroids contours remains challenging specifically in the case
of close or adjacent spheroids. To the best of our knowledge, no work has been
proposed in the frame of 3D cell culture on the detection of spheroids issued
from the growth of cancer cells [14]. However, in the field of computer vision,
object detection is a well established axis. Indeed, several deep learning based
architectures have been proposed to address this task such as the YOLOv series
[15] and detection transformers [16].
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3 Materials and Methods

3.1 Dataset

Image generation — To generate the image dataset, we first prepared in our
laboratory 3D cultures of HeLa cells (cervical cancer cells) following a standard
cell proliferation protocol based on BIOMIMESY'S technology [17]. Indeed, cer-
vical cancer is currently ranked at the top 4 worldwide cancers within women
[18]. For the microscopic image acquisition, we used the ImageXpress system
from molecular device company illustrated in Figure 2. For this purpose, the mi-
croscope confocal magnification has been set to 20-x. In total, 600 z-stack (z—0
to z=50um) bright-field images with a resolution of 2048 x 2048 pixels have been
acquired from a 24-well plate.

[T
i
Ly

Fig.2: Our microscopic image acquisition system.

Dataset organization — Due to the high amount of generated images (30
000 images), the manual labelling process required to build our training and
validation sets for both spheroids detection and nuclei segmentation rapidly be-
came a tedious task for the experts. For this reason, we considered only a subset
of z-stack images namely 50 stacks for the detection and among them 29 stacks
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for the segmentation. The remaining stacks have been kept for qualitative tests.
To ensure a good generalization during the training process of our models, the
selected stacks for the labelling have been randomly picked from several wells.
Furthermore, from each stack, the experts have labeled one slice image that they
have selected along the z-depth according to their own visual perception. More
specifically, they have been requested to select the most informative slice in term
of spheroid objects for the detection and the nuclei for the segmentation. Fol-
lowing these steps, we created two datasets: 1) a spheroid dataset composed of
50 labeled images with 854 bounding boxes of spheroids. The set has been split
into 40 images for training and 10 images for validation. 2) a nuclei dataset com-
posed of 326 spheroid patches (issued from the 29 images) with 1996 delineated
nuclei. In this latter case, the set has been split into 249 patches for training
and 77 patches for validation. We precise that we made sure that the training
patches and validation patches do not come from the same slices. Additionnaly,
only separated nuclei with explicit contours have been delineated by the experts.

3.2 Methods

Workflow process — As illustrated in Figure 3, our framework takes in input
a stack of images (Figure 3(A)) for which a set of spheroids are detected at the
slice level (see traced bounding boxes in Figure 3(B)) based on a deep learn-
ing model. Each detected spheroid is then cropped and placed into the center
of a black background square patch of 512 x 512 pixels (see Figure 3(C)). The
choice of this latter resolution has been established empirically based on the
largest width and height of the spheroids of our dataset. Each spheroid patch
is then passed into our deep learning segmentation model which generates a bi-
nary mask of identified nuclei (see Figure 3(D)). Each binary mask is denoised
by removing tiny surfaces according to an empirical threshold. A global binary
mask (see Figure 3(E)) of the original input image is then generated based on
the set of previous masks as well as the spheroid bounding boxes. The resulting
spheroid bounding boxes and their nuclei delimited by contours are visualized
in Figure 3(F). The 3D surface of each segmented nuclei over the stack is then
reconstructed as shown in Figure 3(G).

Deep learning based spheroids detection model — To train our detection
model we considered two types of deep architectures namely YOLOv5x [19] [20]
and DETR-Resnet50 [16]. Indeed both of these recent architectures have demon-
strated a high efficiency over several datasets such as COCO [21] and Pascal [22].
We used the Adam optimizer for both architectures which is the recommended
one in the referenced articles. We also used the recommended loss functions
namely IOU and hungarian for YOLOv5x and DETR-Resnet50 respectively.
The two architectures have been trained following a transfer learning strategy.
More specifically, they have been pretrained on the COCO dataset and then
trained and validated on our spheroid image dataset producing two detection
models.
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Fig. 3: Workflow process of our hierarchical deep learning framework for nuclei
3D reconstruction.

Deep learning based nucler segmentation model — To train our segmen-
tation model we considered the U-Net deep architecture [7]. Indeed, this archi-
tecture is widely exploited in the field of medical image segmentation [23]. In
our case, we customized the architecture by replacing its orginal CNN backbone
by a VGG19 [24] [25] one which offers a good tradeoff between the architecture
depth and its learning capacity. The model has been trained and validated on
our nuclei dataset using Adam optimizer and Jaccard index loss function which
is the complement of IOU metric [26].

Unsupervised learning based nuclei 3D reconstruction model — Our
built model goes through three main steps (See Figure 4). First, it takes in in-
put the stack of binary masks representing all segmented nuclei and convert it
into a 3D point cloud representation. Then, a density-based spatial clustering
technique (DBSCAN) [27] is applied in order to identify clusters of 3D points
that represent separated nuclei. Finally, the resulting clusters are then used to
reconstruct the underlying surfaces of the nuclei using the Delaunay triangula-
tion technique [28].

FEvaluation metrics — To evaluate the performance of our detection and seg-
mentation models we adopted standard metrics namely the Precision (Prec),
Recall (Rec) and Average Precision (AP) defined as follow:

TP

Prec = TP+ FP (1)
TP

_ 2

Rec = 7p T FN (2)
TP

AP (3)

“TPYFP+FN
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DBSCAN
—

- Clustering.

Fig.4: 3D stack reconstruction pipeline

where TP, FP and FN correspond to True Positive, False Positive and False
Negative objects. In the case of spheroid objects TP/FP/FN rates are calcu-
lated based on an IOU (intersection over union) metric between ground-truth
spheroids (i.e. manual annotations of bounding boxes made by the experts) and
predicted ones according to several thersholds set in the range [0,5 to 0,9]. The
same calculation methodology is applied for estimating the TP/FP/FN rates
of nuclei objects. In this latter case, the ground-truth segmentation of nuclei
correspond to binary masks of these objects issued from the manual delineation
of their contours by the experts. For the 3D reconstruction quality evaluation,
we limit our experiments in this study on a visual analysis of the shape and the
volume of the generated nuclei.

4 Experimental study

To evaluate the performance of our framework, we organized our experimental
study into 4 sections: the first section is dedicated to the results obtained by our
detection models, the second concerns the segmentation model, the third is re-
lated to a performance comparison with the direct nuclei segmentation methods
from the state of the art and the last section presents some qualitative results.

4.1 Spheroids detection performance

Figure 5 shows the AP (Average Precision) curves of the two detection models
namely YOLOv5x and DETR-Resnet50 obtained on the validation image set
(10 images). One can notice that the YOLOv5x have reached the highest perfor-
mance with notably an AP of 0,848 at an IOU thresholod of 0,5. Nevethless, the
DETR model reached also competitive performance. To further improve the per-
formance of the best model namely YOLO we trained it on augmented dataset.
More specifically, based on the original training set (40 images) we generated 3
augmented sets: 1) spatial-based augmented set (240 images), 2) texture-based
augmented set (200 images) and 3) combined augmented set (400 images). For
the spatial augmentation, we applied 3 rotations (90, 180 and 270 degrees) and 2
flips (horizontal and vertical). For the texture augmentation, we applied 2 levels
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Fig. 5: Performance of the spheroids detection models obtained on the validation
set.

of contrast and brightness variations. The combined augmentation corresponds
to the merge of all the afformentioned augmentations. Figure 6 shows the ob-
tained AP curves on the validation set for each augmentation scenario together
with the original train set (without augmentation). The figure shows that the
combined augmentation has permitted to gain 4,4% more in term of AP reaching
a score of 0,892 at IOU threshold equal to 0,5. Table 1 sumarizes for this latter
scenario the TP /FP/FN rates as well as Prec and Rec metrics calculated on the
basis of an IOU threshold set to 0,5. The table shows the high performance of
the trained detection model.

Table 1: Performance of the YOLOv5x-based spheroids detection model obtained
on the validation set with IOUgqq 5. Model trained on the combined augmented
set (400 images).

TP FP FN Prec Rec
157 012 007 0,929 0,957
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Fig. 6: Performance of four YOLOv5x-based spheroid detection models obtained
on the validation set. The models are trained following four scenarios of data
augmentation.

4.2 Nuclei segmentation performance

Similarly to the detection model, we have trained our segmentation model on 4
training sets including the original training set (249 patches) and 3 augmented
sets following the same strategies indicated in the previous section, i.e. spatial
(1494 patches), texture (1245 patches) and combined (2490 patches) augmen-
tations. Table 2 summarizes the obtained performance by our models on the
validation set (77 patches) for each training scenario and with an IOU threshold
set to 0,5. The table shows that the highest performance are obtained by the
model trained on the spatial-based augmentation set. The model has reached a
Rec score of 0,723 indicating that a weak number of ground-truth nuclei have
been missed by it. However, the Prec score of the model is low indicating the
high number of detected FP nuclei. In fact, after visually analyzing these FP
by the experts it was found that several objects among them are correspond-
ing to true nuclei. Figure 7 highlights this observation through a compartive
example between a ground-truth nuclei segmentation vs. predicted one on the
same spheroid patch. Hence, the nuclei ground-truth of the validation set has
been updated by adding correctly predicted nuclei by our model. Following this
update, the number of ground-truth nuclei has increased from 301 to 519. In
addition, the Prec and the AP have increased to 0,911 and 0,760 respectively.
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Table 2: Performance of nuclei segmentation models obtained on the validation
set of spheroid patches with IOUgg 5.
Augmentation Prec Rec AP

None 0,535 0,616 0,401
Texture 0,649 0,369 0,307
Spatial 0,594 0,723 0,484

Combined 0,620 0,608 0,443

(a) (b)
Fig. 7: Manually labeled nuclei (a) vs Predicted nuclei (b).

4.3 Segmentation performance comparison: our framework vs. state
of the art direct segmentation methods

We considered two methods from the state of the art: Cellpose [8] and StarDist
[9]. The Cellpose is a generalized segmentation method that is designed and
trained to efficiently segment a population of objects with repetitive shapes what-
ever their natures (cells, neurons, etc.) and their geometric forms. The StarDist
is a nuclei segmentation method that aims to delimit contours of objects (nu-
clei cells) having a convex shape. Both of the methods are built on a U-Net
architecture. To evaluate these two methods on our dataset: i) The StarDist
model pretrained on the Bowl 2018 nuclei dataset has been fine-tuned on the
slice images of our training set. To this end, ground-truth global masks have
been generated from shperoid patches. ii) The Cellpose method has not been
trained since it offers a generalized nuclei segmentation model trained on several
combined microscopy datasets including the Bowl 2018 nuclei dataset. However,
the model has been parametrized by setting up its nuclei diameter option ac-
cording to our dataset nuclei.The two models have been tested on our updated
nuclei validation set (519 nuclei). In addition, we trained a U-Net with a VGG19
backbone directly on the slice images and validated it on the same set (519 nu-
clei). Figure 8 shows the AP curves of the 3 models compared to the AP curve
of our framework. One may observe that our framework outperformed the three
methods. More specifically, it has reached an AP of 0,76 at an IOU set to 0,5.
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Fig. 8: Segmentation performance comparison between our framework and state
of the art methods obtained on the validation set.

We can observe also that the StarDist model has the lowest AP (0,174) although
it has been trained (fine-tuned) on our nuclei training set. This result was ex-
pected due to the unadapted criterion to our data on which the architecture
was designed namely the convexity of the nuclei shape. The Cellpose reached a
better AP (0,295) than StarDist although it has been tested directly on the val-
idation set without training. However its score remains low in comparison with
our framework showing again the diffculty of segmenting the nuclei of our data
by exploiting a direct segmentation approach. Finally, this latter observation
is confirmed with the U-Net-VGG19 model that has been trained on the slice
images and reached an AP of 0,509. These results demonstrate the contribution
of our analysis strategy which first detect the spheroids and then segment their
nuclei. Moreover, as illustrated in Figure 9 our strategy permits to cover all the
spheroids and thus detect nuclei in each of them which is not guaranteed with
the direct segmentation methods.

4.4 Qualitative results

Generalization of detection and segmentation models — To analyze the
generalization potential of our framework as well as its z-depth sensitivity, we
have tested it on several blind z-stacks (stacks that haven’t been exploited in the
training/validation sets). Figure 10, illustrates some qualitative results obtained
on one z-stack with z= 3, 12, 26 and 48. One can observe that our framework has
succeeded to detect almost all the spheroids and segment some of their nuclei
whatever the slice depth. We also observe that the framework offers a good
robustness against noise present in the slices. Indeed, all the identified objects
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a) Original image (b) Ground-truth

) Our framework (d) U-Net-VGG19

) StarDist (f) Cellpose

Fig.9: Qualitative results of segmentation obtained by our framework and state
of the art methods.

either from the detection model or from the segmentation model are relevant
objects.

3D Reconstruction —In Figure 11(A) we show the result of our reconstruc-
tion model on a blind stack (not used in the training and validation process). In
order to analyse the impact of the clustering technique on the resulting recon-
struction, we have replaced DBSCAN by the Mean Shift Clustering (MSC) [29].
The reconstruction results obtained on the same blind stack is shown in Fig-
ure 11(B). One can notice that from a global point of view the reconstruction
model is able to generate surfaces of several objects whatever is the exploited
clustering technique. Nevertheless, as illustrated in the Figure, a special focus on
a small area of the 3D view permits to highlight the efficiency of the DBSCAN
compared to the MSC. More specifically, we can observe that the 3D nuclei
surfaces generated from MSC are not well separated, are cracked, and include
noise. To understand the reasons of this result, we have investigated the cor-
relation between the identified clusters and the binary masks of the segmented
nuclei. Figure 12 illustrates an example of this correlation on a small patch ex-
tracted from one slice image. One may observe that, contrary to the MSC, the
DBSCAN is able to correctly identify the nuclei objects since each one of them
is represented by one separated cluster.
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(c:ze (d) z=48

Fig. 10: Qualitative result obtained by our framework on a blind stack (not ex-
ploited in the training and validation sets) along several z-depth.
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(A) DBSCAN+ Delaunay (B) MSC+ Delaunay

Fig. 11: Comparison between two 3D reconstruction mesh results formed with
two different two clustering methods (DBSCAN and MSC) with the Delaunay
triangulation

5 Conclusion

In this article, we have presented a hierarchical deep learning framework for the
nuclei 3D reconstruction. For this purpose we prepared a dataset of bright-field
microscopic images composed of 854 manually anotated spheroids and 1996 de-
lineated nuclei by the experts. The two trained CNN models namely yolov5x
for the detection and Unet-VGG19 for the segmentation have shown high per-
formance on our validation set by reaching an AP (Average Precision) scores of
0,892 and 0,76 respectively. Several findings have been revealed in our study:
1) combined augmentations based on spatial and texture transformations have
permitted to improve the precision of the detection model while only spatial
transformations permitted to improve the precision of the segmentation model.
2) segmentation model trained on weakly labeled data succeeded to segment
nuclei that have not been annotated by the experts. 3) hierarchical analysis
(spheroids detection then nuclei segmentation) permitted to improve the seg-
mentation quality compared to direct segmentation methods from the state of
the art. 4) training the models on the most informative slices (only one slice
picked from each stack) permitted to ensure a good generalization potential of
these models, a result that has been confirmed qualitatively on several stacks
along the z-depth. 5) The Delaunay triangulation applied on segmented nuclei
achieved a better 3D visual representation when using DBSCAN clustering.
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(a) MSC (b) DBSCAN

Fig.12: MSC vs DBSCAN clustering results

References

1.

M. Kapalczyiiska, T. Kolenda, W. Przybyla, M. Zajaczkowska, A. Teresiak,
V. Filas, M. Ibbs, R. Blizniak, ¥.. Luczewski, K. Lamperska, Archives of Med-
ical Science : AMS 14(4), 910 (2018). DOI 10.5114/aoms.2016.63743. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040128/

O. Habanjar, M. Diab-Assaf, F. Caldefie-Chezet, L. Delort, International Journal
of Molecular Sciences 22(22), 12200 (2021). DOI 10.3390/ijms222212200. URL
https://www.mdpi.com/1422-0067/22/22 /12200

B.W. Graf, S.A. Boppart, in Live Cell Imaging, vol. 591, ed. by D.B.
Papkovsky (Humana Press, Totowa, NJ, 2010), pp. 211-227. DOI
10.1007/978-1-60761-404-3 13. URL  http://link.springer.com/10.1007/
978-1-60761-404-3 _13. Series Title: Methods in Molecular Biology

R. Hollandi, N. Moshkov, L. Paavolainen, E. Tasnadi, F. Piccinini, P. Horvath,
Trends in Cell Biology p. S0962892421002518 (2022). DOI 10.1016/j.tcb.2021.12.
004. URL https://linkinghub.elsevier.com /retrieve /pii/S0962892421002518

J.C. Caicedo, A. Goodman, K.W. Karhohs, B.A. Cimini, J. Ackerman,
M. Haghighi, C. Heng, T. Becker, M. Doan, C. McQuin, M. Rohban, S. Singh, A.E.
Carpenter, Nature Methods 16(12), 1247 (2019). DOI 10.1038/s41592-019-0612-7.
URL http://www.nature.com/articles/s41592-019-0612-7

C. Ling, M. Halter, A. Plant, M. Majurski, J. Stinson, J. Chalfoun, in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) (IEEE, Seattle, WA, USA, 2020), pp. 4157-4163. DOI 10.1109/
CVPRW50498.2020.00491. URL https://ieeexplore.ieee.org/document /9150701 /
O. Ronneberger, P. Fischer, T. Brox, in Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2015, vol. 9351, ed. by N. Navab, J. Hornegger,
W.M. Wells, A.F. Frangi (Springer International Publishing, Cham, 2015), pp.
234-241. DOI 10.1007/978-3-319-24574-4 28. URL http://link.springer.com/10.
1007/978-3-319-24574-4 28. Series Title: Lecture Notes in Computer Science

C. Stringer, T. Wang, M. Michaelos, M. Pachitariu, Nature Methods 18(1), 100
(2021). DOI 10.1038/s41592-020-01018-x. URL http://www.nature.com/articles/
s41592-020-01018-x



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

hierarchical deep learning framework 17

U. Schmidt, M. Weigert, C. Broaddus, G. Myers, in Medical Image Computing and
Computer Assisted Intervention — MICCAI 2018, vol. 11071, ed. by A.F. Frangi,
J.A. Schnabel, C. Davatzikos, C. Alberola-Lopez, G. Fichtinger (Springer Interna-
tional Publishing, Cham, 2018), pp. 265-273. DOI 10.1007/978-3-030-00934-2 _30.
URL http://link.springer.com/10.1007 /978-3-030-00934-2_30. Series Title: Lec-
ture Notes in Computer Science

B. Ruszczycki, K.K. Pels, A. Walczak, K. Zamlynska, M. Such, A.A.
Szczepankiewicz, M.H. Hall, A. Magalska, M. Magnowska, A. Wolny, G. Bokota,
S. Basu, A. Pal, D. Plewczynski, G.M. Wilczynski, Frontiers in Neuroanatomy
13, 81 (2019). DOI 10.3389/fnana.2019.00081. URL https://www.frontiersin.org/
article/10.3389/fnana.2019.00081 /full

L. Wu, S. Han, A. Chen, P. Salama, K.W. Dunn, E.J. Delp, in 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
(IEEE, Nashville, TN, USA, 2021), pp. 3750-3760. DOI 10.1109/CVPRW53098.
2021.00416. URL https://ieeexplore.ieee.org/document /9522908 /

T. Maylaa, F. Windal, H. Benhabiles, G. Maubon, N. Maubon, E. Vandenhaute,
D. Collard, Current Computer-Aided Drug Design 18 (2022). DOI 10.2174/
1573409918666220208120756. URL https://www.eurekaselect.com/200924/article
I. Grexa, A. Diosdi, M. Harmati, A. Kriston, N. Moshkov, K. Buzas, V. Pietidi-
nen, K. Koos, P. Horvath, Scientific Reports 11(1), 14813 (2021). DOI 10.1038/
$41598-021-94217-1. URL http://www.nature.com/articles/s41598-021-94217-1
F. Bubba, C. Pouchol, N. Ferrand, G. Vidal, L. Almeida, B. Perthame, M. Sabbah,
Journal of Theoretical Biology 479, 73 (2019). DOI 10.1016/j.jtbi.2019.07.002.
URL https://linkinghub.elsevier.com /retrieve /pii/S0022519319302796

U. Nepal, H. Eslamiat, Sensors 22(2), 464 (2022). DOI 10.3390/s22020464. URL
https://www.mdpi.com/1424-8220/22/2/464

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, in
Computer Vision — ECCV 2020, vol. 12346, ed. by A. Vedaldi, H. Bischof,
T. Brox, J.M. Frahm (Springer International Publishing, Cham, 2020), pp. 213—
229. DOI 10.1007/978-3-030-58452-8 13. URL https://link.springer.com/10.
1007/978-3-030-58452-8 13. Series Title: Lecture Notes in Computer Science

E. Vitali, I. Boemi, G. Tarantola, S. Piccini, A. Zerbi, G. Veronesi, R. Baldelli,
G. Mazziotti, V. Smiroldo, E. Lavezzi, A. Spada, G. Mantovani, A.G. Lania, Can-
cers 12(8), 2143 (2020). DOT 10.3390/cancers12082143. URL https://www.mdpi.
com/2072-6694/12/8 /2143

World Health Organization. Cervical cancer. URL https://www.who.int/
health-topics/cervical-cancer#tab=tab 1

G. Jocher. Yolovh ultralytics. URL https://github.com/ultralytics/yolov5

W. Zhan, C. Sun, M. Wang, J. She, Y. Zhang, Z. Zhang, Y. Sun, Soft Computing
26(1), 361 (2022). DOI 10.1007/s00500-021-06407-8. URL https://link.springer.
com/10.1007/s00500-021-06407-8

T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, C.L.
Zitnick, in Computer Vision — ECCV 2014, ed. by D. Fleet, T. Pajdla, B. Schiele,
T. Tuytelaars (Springer International Publishing, Cham, 2014), pp. 740-755

M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, In-
ternational Journal of Computer Vision 88(2), 303 (2010). DOI 10.1007/
$11263-009-0275-4. URL http://link.springer.com/10.1007 /s11263-009-0275-4

N. Siddique, S. Paheding, C.P. Elkin, V. Devabhaktuni, IEEE Access 9, 82031
(2021). DOI 10.1109/ACCESS.2021.3086020. URL https://ieeexplore.ieee.org/
document /9446143/



18

24.

25.

26.

27.
28.
29.

Tarek Maylaa et al.

F. Xu, X. Li, H. Yang, Y. Wang, W. Xiang, Biomedical Signal Processing and Con-
trol 73, 103416 (2022). DOI 10.1016/j.bspc.2021.103416. URL https://linkinghub.
elsevier.com /retrieve/pii/S1746809421010132

F. Liu, L. Wang, Construction and Building Materials 322, 126265 (2022). DOI 10.
1016 /j.conbuildmat.2021.126265. URL https://linkinghub.elsevier.com/retrieve/
pii/S0950061821039957

T. Eelbode, J. Bertels, M. Berman, D. Vandermeulen, F. Maes, R. Bisschops,
M.B. Blaschko, IEEE Transactions on Medical Imaging 39(11), 3679 (2020). DOI
10.1109/TMI.2020.3002417. URL https://ieeexplore.ieee.org/document/9116807/
M. Ester, H.P. Kriegel, X. Xu, p. 6

Boris Delaunay, Bull. Acad. Science USSR, VII: Class. Sci. Mat 17(8), 793 (1934)
Yizong Cheng, IEEE Transactions on Pattern Analysis and Machine Intelligence
17(8), 790 (1995). DOI 10.1109/34.400568. URL http://ieeexplore.icee.org/
document /400568 /



