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Abstract: Microemulsions are novel drug delivery systems that have garnered significant attention in
the pharmaceutical research field. These systems possess several desirable characteristics, such as
transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic
and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to
the formulation, characterization, and applications of microemulsions, with a particular emphasis on
their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming
bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough
understanding of their formulation and characterization in order to optimize their effectiveness and
safety. This review will delve into the different types of microemulsions, their composition, and
the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery
systems for skin applications will be discussed. Overall, this review will provide valuable insights
into the advantages of microemulsions as drug delivery systems and their potential for improving
cutaneous drug delivery.

Keywords: microemulsions systems; drug delivery; cutaneous drug delivery; microemulsion bioavail-
ability; skin penetration

1. Introduction

Current skin drug delivery methods play a pivotal role in achieving effective thera-
peutic outcomes and addressing various dermatological conditions [1–3]. Topical admin-
istration is a widely utilized approach for delivering drugs to the skin, offering several
advantages such as localized treatment, reduced systemic side effects, and enhanced pa-
tient compliance [4–6]. Traditional methods, such as creams, ointments, and gels, have
been employed for decades to deliver drugs to the skin [7]. However, these conventional
formulations often face limitations in terms of drug penetration and controlled release [8].
In recent years, advanced skin drug delivery techniques have emerged [9]. One such
promising technology is microemulsions (MEs), which have gained significant attention
in the pharmaceutical research field due to their unique properties and potential applica-
tions in delivering both hydrophilic and hydrophobic drugs [10–13]. Skin drug delivery
is particularly important due to the accessibility and large surface area of the skin, en-
abling the effective treatment of dermatological conditions, wound healing, and localized
therapy [14,15]. Moreover, by delivering drugs directly to the site of action, skin drug
delivery can bypass first-pass metabolism and systemic degradation, resulting in enhanced
bioavailability and therapeutic efficacy [16]. Exploring innovative approaches for skin
drug delivery is crucial in expanding treatment options, improving patient outcomes, and
advancing the field of dermatology [2].
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Microemulsions are optically transparent [17], thermodynamically stable [10,18], and
possess a low interfacial tension, making them an attractive option for drug delivery [19].
They are typically composed of an oil phase, a surfactant, a co-surfactant, and an aqueous
phase [17,20]. The small droplet size, typically ranging from 10 to 100 nm, of microemul-
sions enables efficient drug solubilization and enhanced bioavailability [21,22]. However,
the stratum corneum, the outermost layer of the skin, poses a significant barrier for drug
penetration [23]. Microemulsions have emerged as a promising approach for enhancing
drug delivery through the skin [11,17,21]. Their unique properties play a crucial role in
overcoming the skin barrier and facilitating efficient drug absorption [21,24]. The use of
microemulsions in cutaneous drug delivery offers several benefits, such as enhanced skin
permeation, improved drug stability, and controlled release kinetics [10,24]. By exploiting
the optimized formulation and characteristics of microemulsions, researchers can achieve
the effective delivery of both hydrophilic and hydrophobic drugs to the target site on the
skin [25].

In this comprehensive review, we aim to provide a detailed overview of microemul-
sions as an advanced drug delivery system, with a particular emphasis on their potential
for cutaneous drug delivery. We will discuss the formulation and characterization of mi-
croemulsions, including the different types of microemulsions, their composition, stability,
and characterization techniques. Moreover, we will highlight the advantages and limitations
of microemulsions as a drug delivery system, as well as their potential use in topical formula-
tions. Overall, this review aims to provide valuable insights into the role of microemulsions in
overcoming drug delivery challenges and improving cutaneous drug delivery.

2. Background and Definition of Microemulsions

Microemulsions are a type of nanocarrier that consist of an oil phase, a surfactant, a
co-surfactant, and an aqueous phase [26]. These components are carefully selected and
mixed to form a thermodynamically stable system that is optically transparent and has a
low interfacial tension [17,19,27]. In addition, microemulsions have several advantages
over conventional drug delivery systems [28]. They can improve drug stability, enhance
drug permeability, and provide sustained drug release [10,29]. Moreover, microemulsions
are versatile and can be used to deliver drugs through various routes, including oral,
parenteral, and topical [11].

Microemulsions have been in use for a long time, even before they were officially
described. For example, Australian women used a transparent emulsion containing eu-
calyptus oil, water, soap flakes, and gasoline to wash wool. A patent was filed in the
mid-1930s for the creation of a single-phase system by mixing water and oil with the assis-
tance of a surfactant [17]. However, it was not until 1943 that the first academic research on
the topic was conducted [30]. In 1959, Schulman et al. coined the term ‘microemulsion’ to
describe the spontaneous emulsification process facilitated by a powerful surface-active
agent. [31]. These systems typically contain a hydrophobic or a hydrophilic compound, a
surfactant, and a cosurfactant [31]. However, the term “microemulsion” has been incor-
rectly used to describe other systems, such as micelles, reverse micelles, mesophase or
liquid crystalline systems, and even coarse emulsions that have undergone micronization,
causing confusion [32]. To address this, Danielsson and Lindmann proposed a definition
in 1981 that states, “A microemulsion is a thermodynamically stable isotropic liquid system com-
prising an aqueous phase, an oil phase, and an amphiphilic substance” [33]. Microemulsions
differ from emulsions in that they are transparent, thermodynamically stable, and contain
droplets with sizes smaller than 200 nm, while emulsions are opaque, thermodynamically
unstable, and have droplet sizes larger than 200 nm [34–36]. Additionally, microemulsions
form spontaneously, while energy input is required for emulsions [37]. It is important
to note that miniemulsions are a type of emulsion, and should not be confused with
microemulsions [38,39].

Microemulsions can be classified based on their structure, which can be water-in-oil
(W/O), bicontinuous, or oil-in-water (O/W) (Figure 1) [40]. In a W/O microemulsion, water
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droplets are dispersed within an oil phase, whereas in an O/W microemulsion, oil droplets
are dispersed within a continuous aqueous phase [36]. Bicontinuous microemulsions
have a complex, interconnected structure in which both the oil and water phases are
continuous and dispersed throughout the system [40]. W/O microemulsions are typically
used for delivering hydrophilic drugs [41], while O/W microemulsions are preferred for
hydrophobic drugs [42]. Bicontinuous microemulsions have been shown to be effective for
delivering both hydrophilic and hydrophobic drugs [43].
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3. Formulation of Microemulsions

Formulation is a crucial aspect of developing microemulsions for drug delivery appli-
cations [44,45]. A well-designed formulation can ensure that the microemulsion system
possesses the desired physicochemical properties such as stability, size, and drug loading
capacity [46,47]. Typically, microemulsions are composed of four basic components: the
oil phase, surfactant, co-surfactant, and aqueous phase [17,48]. The choice of these com-
ponents depends on the physicochemical properties of the drug and the desired route of
administration [49,50].

The oil phase, which can be hydrophobic or hydrophilic, is a key component in
determining the stability of the microemulsion [35]. The selection of an appropriate oil
phase is based on factors such as solubility of the drug and its compatibility with the
surfactant [51]. The surfactant is another critical component, which lowers the interfacial
tension between the oil and water phases and stabilizes the microemulsion system [51,52].
The selection of a surfactant depends on its ability to form a monolayer at the oil–water
interface and its compatibility with the co-surfactant [53].

The co-surfactant is typically a short-chain alcohol or a glycol, which enhances the
solubilization capacity of the surfactant and helps to stabilize the microemulsion [20,54].
The aqueous phase can be composed of water or an aqueous buffer, depending on the
desired pH of the system [47,55]. Additionally, the presence of co-solvents, such as ethanol,
can improve the solubility of the drug in the microemulsion [56,57].

Various methods can be used for formulating microemulsions, including phase in-
version temperature (PIT) [58], spontaneous emulsification [38], and ultrasound-assisted
emulsification [59]. In the PIT method, the microemulsion is formed by heating the mixture
of oil, surfactant, co-surfactant, and water above the phase inversion temperature, followed
by cooling to room temperature [60]. The spontaneous emulsification method involves the
gradual addition of the aqueous phase to the mixture of oil, surfactant, and co-surfactant
with constant stirring [61]. Ultrasound-assisted emulsification involves the application
of high-frequency ultrasound waves to the mixture of oil, surfactant, co-surfactant, and
aqueous phase to generate microemulsions [62].

The formulation of microemulsions should consider the desired route of administra-
tion, the physicochemical properties of the drug, and the stability of the microemulsion



Nanomaterials 2023, 13, 1688 4 of 19

system [63]. The use of suitable oils, surfactants, and co-surfactants can enhance the stabil-
ity and drug loading capacity of the microemulsion [64]. The selection of an appropriate
method for formulation is also crucial in determining the quality of the microemulsion
system [65].

3.1. Surfactants

When formulating microemulsions for drug delivery, the choice of surfactant is crucial
for achieving successful outcomes [49,66]. Several factors should be considered when
selecting a surfactant, including microemulsifying properties, compatibility with the route
of administration, and the solubility of active ingredients. There are different classes of
surfactants (Figure 2) [67]. Ionic and nonionic surfactants are the two main types [68], with
ionic surfactants being further divided into anionic, cationic, and amphoteric surfactants
based on the dissociation of their hydrophilic group in water [69,70]. Cationic surfactants
such as hexadecyltrimethylammonium bromide [71] and dodecyl trimethyl ammonium
bromide [72], anionic surfactants such as dioctyl sodium sulfosuccinate [73] and sodium
dodecyl sulfate [74], and amphoteric surfactants such as lecithins and phospholipids [75]
have been commonly used in studies. Nonionic surfactants, which include a wide range of
options such as polysorbate 80 [76], PEG-8 [77], Pluronic F-68 [78] and vitamin E TPGS [79],
do not dissociate into ions in aqueous solutions, and are classified based on their specific
hydrophilic group [80]. Alkyl polyglycosides such as Oramix CG-110 have gained attention
for their excellent biodegradability and renewable sources, making them an attractive
option for microemulsion formulation for various applications, including skin delivery [81].
The selection of surfactant should be based on the specific requirements of the intended
application [67].
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3.2. Co-Surfactants

In order to induce a much lower interfacial tension decrease, the addition of a co-
surfactant is often necessary in microemulsion formulations [82]. Short-chain alcohols such
as ethanol and isopropanol, alkanediols such as propylene glycol, sucrose ethanol blends,
medium chain monoglycerides and diglycerides, alkyl monoglycosides, and geraniol
are commonly used co-surfactants [83]. Additionally, glycol ethers such as Transcutol®

have been shown to have amphiphilic properties and absorption-enhancing capabilities,
making them widely used co-surfactants for oral and dermal applications due to their
high solubilizing potency [84,85]. Figure 3 provides examples of the most commonly used
co-surfactants in microemulsion formulations. The addition of co-surfactants can lead to the
thinning of the interfacial film, which prevents the formation of liquid crystalline structures.
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These co-surfactants are also distributed between the aqueous and oil phases, helping to
moderate the hydrophilicity and lipophilicity of the two phases [5,6,13–15]. Recent studies
have also explored the use of natural co-surfactants such as lecithin and phospholipids for
microemulsion formulation, which have been shown to have good biocompatibility and
potential for drug delivery applications.
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3.3. Oil Phase

The oil phase in microemulsions can consist of various types of compounds, including
fatty acids such as oleic acid, alcohols such as octanol and decanol, and esters of fatty
acids or alcohols such as isopropyl myristate, isopropyl palmitate, ethyl oleate, isostearyl
isostearate, and cetearyl octanoate [66]. Medium-chain triglycerides of caprylic or capric
acid and triesters of glycerol and acetic acid such as triacetin are also common in oil phase
formulations [25,66]. In addition, some terpenes such as limonene, cineole, camphor, and
menthol have also been used in recent studies [86]. The selection of the oil phase depends
on various factors such as solubility of the drug, targeted application, and stability of the
microemulsion [21].

3.4. Aqueous Phase

The choice of aqueous phase in microemulsion formulation is crucial for achieving
the desired properties and functionality [86]. In addition to water, viscosifiers such as
Carbopol® and xanthan gel can be used to control the viscosity and stability of the mi-
croemulsion [87]. For microemulsions intended for parenteral or ocular routes, NaCl is
added to ensure the osmolarity with plasma and tear fluid [52,88]. Buffer solutions are
also added when lecithin is used as a surfactant to maintain pH values between 7 and 8,
which is important to protect phospholipids and triglycerides from degradation [89,90].
Absorption enhancers can be added to improve drug delivery [91], but their compatibility
with the other components of the microemulsion should be carefully evaluated to avoid
chemical incompatibilities that may compromise the stability of the system [92]. Overall,
the choice of aqueous phase and any additives used should be carefully considered to
achieve optimal stability and functionality of the microemulsion [66].

3.5. Active Pharmaceutical Ingredients (API)

The selection of the appropriate active pharmaceutical ingredient (API) is crucial in the
formulation of microemulsions for drug delivery applications [17]. The physicochemical
properties of the API such as logP, pKa, structure, molecular weight, and presence of ioniz-
able groups can significantly influence the phase behavior and microemulsion structure [93].
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For example, ionic surfactants such as dioctyl sodium sulphosuccinate could be affected
by the presence of diclofenac sodium hydrochloride, leading to changes in the properties
of the resulting microemulsions [93]. On the other hand, certain active ingredients with
surface activity can expand the area in which microemulsions are formed [94], while others,
such as tricyclic amines, can act as co-surfactants and reduce the amount of surfactant
required [49,95].

It is important to note that some lipophilic compounds may also act as oils and
compete or be added to the oil phase during microemulsion formation, which may require
an adjustment in the amount of surfactant or co-surfactant used [49,95]. Therefore, the
selection and study of the API should be considered an essential step in achieving a stable
and effective drug delivery system using microemulsions [17,93].

It is also important to consider the issue of using high concentrations of surfactants
in microemulsion formulation, as this can lead to potential toxicity concerns [96]. Recent
studies have investigated the use of natural surfactants and co-surfactants, as well as the
incorporation of stimuli-responsive polymers and nanoparticles, to reduce the surfactant
concentration and enhance the stability and performance of microemulsions as drug de-
livery systems [97,98]. These approaches offer promising directions for future research in
microemulsion drug delivery systems [99].

4. Characterization of Microemulsions

The importance of microemulsions in the pharmaceutical industry has made their
characterization a widely studied aspect in the literature [83]. There are several methods
available for the characterization of microemulsions, which can provide information about
their droplet size, zeta potential, viscosity, and thermodynamic stability [100,101].

One commonly used method for microemulsion characterization is dynamic light
scattering (DLS), which measures the size distribution of the droplets in the microemul-
sion [102]. DLS is a non-invasive, fast, and reliable method that provides information on
the particle size distribution, polydispersity index, and zeta potential of the droplets [103].
Other methods such as transmission electron microscopy (TEM) [104] and cryogenic trans-
mission electron microscopy (Cryo-TEM) can also be used to visualize the microemulsion
droplets and their structure [105].

The thermodynamic stability of microemulsions can be assessed using different tech-
niques, such as conductivity measurements, phase behavior studies, and centrifugation
tests [54,106,107]. Conductivity measurements can provide information about the amount
and type of surfactants present in the microemulsion [54]. Phase behavior studies involve
the construction of ternary phase diagrams to identify the regions of microemulsion forma-
tion and to determine the optimal composition for the microemulsion [106]. Centrifugation
tests can provide information about the stability of the microemulsion by measuring the
sedimentation rate of the droplets [107].

Several factors can affect the characterization of microemulsions, including the compo-
sition of the microemulsion, the method of preparation, and the storage conditions [93,108].
The method of preparation, such as the order of addition and mixing speed, can also
impact the droplet size and stability of the microemulsion [109]. Storage conditions, such as
temperature and time, can affect the physical and chemical properties of the microemulsion
and alter its stability [37].

The toxicity or biocompatibility of a drug delivery system is a crucial consideration
in its development [110]. To assess the suitability of microemulsions as drug carriers,
various characterization methods are employed to evaluate their potential toxicity and
biocompatibility [26]. Cytotoxicity assays play a significant role in assessing the effects of
microemulsions on cell viability and proliferation [111,112]. Techniques such as the MTT
assay [113], Alamar Blue assay [114], and LDH release assay [115] are commonly used
to determine cell viability and measure the cytotoxic effects of microemulsions. Hemo-
compatibility assays are employed to evaluate the compatibility of microemulsions with
blood components, including assessments of hemolysis, coagulation, platelet activation,
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and complement activation [116]. Furthermore, skin irritation and sensitization tests,
such as the Draize test and patch testing, are conducted to determine the potential of
microemulsions to cause skin irritation or allergic reactions [117,118]. Additionally, in vitro
and in vivo biocompatibility studies provide insights into the response of living tissues or
organisms to microemulsions, including histological analysis, the assessment of inflam-
matory responses, immunotoxicity evaluations, and systemic toxicity studies in animal
models [26,116]. Genotoxicity and mutagenicity assessments are performed to investigate
whether microemulsions induce DNA damage or mutations [119,120]. Techniques such
as the Ames test [121], micronucleus assay [122], and comet assay [123] are employed for
this purpose. Furthermore, the biodegradation and biocompatibility of microemulsions are
examined through enzymatic degradation assays and studies on their fate and clearance in
biological systems [124,125]. These characterization methods enable researchers to evaluate
the toxicity and biocompatibility profiles of microemulsions, providing valuable insights
into their safety and potential as effective drug delivery systems.

In conclusion, the characterization of microemulsions is crucial to ensure their efficacy
and safety as a drug delivery system. Various methods are available to characterize the
microemulsion droplets, and the stability of the microemulsion can be assessed using dif-
ferent techniques. Several factors can affect the characterization of microemulsions, and a
thorough understanding of these factors is necessary for the optimal formulation and char-
acterization of microemulsions. It is worth mentioning that there exist a range of techniques
that can be utilized for the evaluation of microemulsions’ toxicity and biocompatibility.

5. Ternary Phase Diagrams of Microemulsions

A phase diagram is a graphical representation that displays the thermodynamic
equilibrium between phases of a system at different compositions, temperatures, and
pressures [126]. In the case of microemulsions, a phase diagram is used to determine the
region of thermodynamic stability for different microemulsion formulations [126].

The phase diagram for microemulsions typically displays the composition of the
oil, surfactant, co-surfactant, and water, as well as the regions of the different types of
microemulsions formed [127]. These regions include the oil-in-water (O/W) region, the
water-in-oil (W/O) region, and the bicontinuous region, which represents a mixture of both
O/W and W/O microemulsions (Figure 4).
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The phase behavior of microemulsions is influenced by several factors, including
the chemical nature and concentration of the components, temperature, pressure, and the
presence of electrolytes [45]. The phase diagram can be used to optimize the formulation
of microemulsions, as it enables the selection of the most stable composition and the
identification of the boundaries of the different microemulsion types [128].
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Various techniques can be used to construct a phase diagram, including the titration
method, conductivity measurement, visual observation, and turbidity measurement [129].
These techniques are used to determine the point at which the microemulsion forms and
the region of stability [129].

In conclusion, the phase diagram is a crucial tool for the formulation of microemul-
sions, as it enables the identification of the composition and stability of the microemulsion
system. It is important to consider the factors that influence the phase behavior of mi-
croemulsions when constructing a phase diagram, and to use appropriate techniques to
accurately determine the phase boundaries.

6. Life Science Applications of Microemulsions

Microemulsions have been extensively studied in the pharmaceutical research field due
to their unique properties and potential applications in drug delivery [19,75]. As mentioned
before, their optically transparent and thermodynamically stable nature, coupled with their
ability to deliver both hydrophilic and hydrophobic drugs, make them an attractive option
for drug delivery.

Microemulsions have shown great promise in overcoming bioavailability concerns and
enabling sustained drug delivery (Figure 5). In drug delivery, microemulsions have been
used for various applications, including oral, topical, and parenteral administration [11].
Oral microemulsions have been used to enhance the bioavailability of poorly soluble
drugs [57]. Topical microemulsions have shown potential for enhancing the delivery of
drugs across the skin [21]. Parenteral microemulsions have been used for the delivery of
lipophilic drugs and targeting the lymphatic system [130].
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Of particular interest in this review is the potential of microemulsions for cutaneous
drug delivery [21,41]. Microemulsions have been shown to improve the skin permeation
and retention of drugs following the mechanism shown (and explained in the figure
caption) in Figure 6 [24]. Additionally, they have been used for the topical delivery of
various drugs, including anti-inflammatory active molecules [131], anti-cancer drugs [132],
and anti-fungal agents [133]. The ability of microemulsions to deliver drugs through the
skin has been attributed to their small droplet size (generally below 100 nm) and the ability
to penetrate through the lipid bilayers of the skin [134].
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Figure 6. Representation of different routes of penetration of microemulsions through the skin:
(1) by the appendageal route, (2) by the intracellular route, or (3) by the intercellular route. The
appendageal route involves particles entering sweat glands, hair follicles, or skin furrows for either
penetration into the dermis or retention for increased release of the drug. The intracellular route
comprises a direct path via cell membranes containing multiple epidermal layers. The intercellular
route comprises a more tortuous path between epidermal cells. The path taken by particles depends
on dimensions, charge, shape, and material. Reproduced with permission from [135]. Copyright
2023, Multidisciplinary Digital Publishing Institute.

Table 1 presents the compositions and applications of recently developed microemul-
sions, with a specific focus on their applications in skin delivery. It is evident from the
table that the majority of the active pharmaceutical ingredients (APIs) were hydrophobic in
nature, and the microemulsions were designed for various applications. The transdermal
delivery of drugs via microemulsions offers a convenient method for achieving systemic
pharmacological action. In the reviewed microemulsions, water was the most commonly
used continuous phase, while isopropylmyristate and isopropylpalmitate were frequently
employed as oil phases. In addition to their use as drug delivery systems, microemulsions
have also found applications in various other fields [136]. For instance, they have been
used as templates for the synthesis of polymer-based nanoparticles and nanocapsules. They
have also been used as lubricants, cutting fluids, and in the food industry, including as a
nanoreservoir of flavors.

Table 1. Some examples of microemulsions for skin delivery.

API ME Type Aqueous Phase Surfactant/Co-Surfactant
(S and Co-S) Oil Phase Application Ref.

Sulfamerazine
Indomethacin O/W

Water
Or
PBS

S: Phosphatidylcholine; sodium
oleate; Eumulgin® HRE40;
Co-S: N/A

Soybean oil Antimicrobial [137]

Curcumin W/O Water S: Labrasol®, glyceryl oleate
Co-S: propylene carbonate Isopropyl palmitate Anti-inflammatory [138]

Pseudolaric acid B O/W Water S: Cremphor EL®

Co-S: Transcutol P® Isopropyl Myristate Fungicidal [139]

Pentoxifylline W/O Water S: Tween 80; Brij 52
Co-S: N/A

Caprylic/Capric
Triglycerides

Inflammatory
dermatological
diseases

[140]

Clobetasol O/W Water S: Cremophor EL
Co-S: isopropyl alcohol Isopropyl myristate Vitiligo [141]
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Table 1. Cont.

API ME Type Aqueous Phase Surfactant/Co-Surfactant
(S and Co-S) Oil Phase Application Ref.

Betahistine
hydrochloride W/O Water S: Capryol 90®

Co-S: Transcutol® Ethyl oleate
Regulation of feeding
behavior and weight
control

[142]

Ropivacaine O/W Water S: Labrasol®

Co-S: Ethanol Capryol® 90 Anesthesia [143]

Penciclovir O/W Water S: Cremorphor EL
Co-S: Ethanol Oleic acid Antiviral [144]

Zidovudine O/W Water S: Labrosol
Co-S: Oleic Plurol Isopropyl myristate Antiretroviral therapy [145]

Curcumin O/W Water S: Chitosan
Co-S: Ethanol Oleic acid Rheumatoid arthritis

anti-inflammatory [146]

Diacetyl boldine
(DAB) W/O Water

S: Solutol® HS 15; ethanol and
Lecithin
Co-S: Propylene glycol
(co-surfactant)

Medium-chain
triglyceride

Melanoma skin cancer
treatment [147]

Lidocaine O/W Water S: Polyoxyl 15 hydroxystearate
Co-S: Ethanol Ethyl oleate Anesthetic therapy [148]

Oxcarbazepine W/O Water/buffer
solution

S: Tween 80; Labrasol
Co-S: PEG 400; Transcutol® P

Oleic acid and
cineole

Antiepileptic drug for
epilepsy [149]

Acemetacin O/W Water
S: Transcutol HP; Labrafil M1944
CS
Co-S: Ethanol

Isopropyl myristate analgesic and
anti-inflammatory [150]

Imiquimod O/W Water S: Phospholipids (PL)
Co-S: Ethanol Oleic acid psoriasis

anti-inflammatory [151]

Etofenamate O/W Water
S: Cremophor EL or Span 80
with Tween 20
Co-S: Transcutol HP; Ethanol

Oleic acid Osteoarthritis
treatment [152]

Diclofenac W/O Water S: Labrasol®

Co-S: Labrafil® Limonene
Non-steroidal
anti-inflammatory
drugs

[153]

Finasteride W/O Water S: Poloxamer 124
Co-S: Transcutol P Oleic acid Androgenetic alopecia

treatment [154]

Finasteride-cinnamon W/O Reverse osmosis
water

S: Tween® 20
Co-S: Propylene glycol Cinnamon oil Androgenetic alopecia

treatment [155]

Gallic acid W/O Water
S: Labrasol®/HCO-40® or
Tween 80/Span 80
Co-S: Transcutol® or Ethanol

Isopropyl myristate Antioxidant activity [156]

Dencichine O/W Water/[HOEIM]Cl S: Tween 80/[BMIM]C12SO3
Co-S: Propylene glycol Isopropyl myristate Hemostatic activity [157]

Curcumin O/W Water S: Cremophor® RH 40
Co-S: Transcutol P

Oleic
acid/limonene

Anticancer/antioxidant
. . . [158]

Celecoxib W/O Water
S: Phosphatidylcholine;
decylglucoside
Co-S: Ethanol; propylene glycol

Monocaprylin Breast cancer
treatment [159]

Nifedipine O/W PBS S: PPG-5-Ceteth-20
Co-S: N/A Oleic acid Anti-hypertensive

Activity [160]

Celecoxib W/O Water

S: PEG-6 Caprylic/Capric
Glycerides
Co-S: PEG-35 castor oil or PEG-7
glyceryl cocoate

Isopropyl myristate Anti-inflammatory
drugs [161]

Coenzyme Q10 O/W Water S: Cremophor EL®

Co-S: Transcutol® HP
Isopropyl myristate Antioxidant activity [162]

API: active pharmaceutical ingredient; ME: microemulsion.

However, it is important to note that the application of microemulsions in drug
delivery is still in its early stages, and several challenges remain to be addressed [75]. For
instance, the optimization of microemulsion formulations for specific drugs and routes of
administration requires a thorough understanding of the factors that affect their stability,
such as surfactant and co-surfactant concentrations, and the pH and ionic strength of the
system [75]. Furthermore, the toxicity and safety of microemulsions must be thoroughly
investigated before their clinical use can be considered [50].
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In conclusion, microemulsions are promising drug delivery systems that have shown
potential for various applications in pharmaceuticals, including cutaneous drug delivery.
Their unique properties and advantages have made them an attractive option for drug
delivery, and their potential applications in other fields further highlight their versatility.
However, further research is needed to optimize their formulation and characterization, as
well as to investigate their safety and toxicity before their clinical use can be fully realized.

7. Advantages of Microemulsions as a Drug Delivery System

As previously mentioned, microemulsions have been extensively studied as a drug
delivery system due to their unique properties and potential applications in delivering both
hydrophilic and hydrophobic drugs. One of the main advantages of microemulsions is
their ability to improve drug solubilization and bioavailability, which are major challenges
for drug delivery [163]. Their small droplet size enables efficient drug solubilization and
enhanced bioavailability, making them an attractive option for drug delivery [163]. Addi-
tionally, they have a low interfacial tension and a large interfacial area, which promote drug
release and absorption [164]. Compared to other drug delivery systems, microemulsions
have several advantages, including their high drug solubilization capacity, low toxicity,
and cost-effectiveness [165].

Microemulsions have a high solubilizing power for a variety of molecules, including
hydrophilic, lipophilic, and amphiphilic compounds [51,166]. The solubilizing power
of microemulsions has been demonstrated for a variety of hydrophobic drugs, such as
ibuprofen, cyclosporine A, and curcumin [167]. In addition to their solubilizing power,
microemulsions have also been shown to improve the skin permeation of drugs [24]. The
small droplet size of a microemulsion allows for enhanced penetration of drugs through
the skin barrier [168]. Additionally, the use of surfactants in microemulsions can disrupt
the stratum corneum, further enhancing skin permeation [169].

The potential of microemulsions for cutaneous drug delivery is noteworthy, as they have
shown efficient skin penetration and drug delivery [21,41]. Microemulsions can penetrate the
skin more efficiently than other delivery systems, such as creams and ointments, due to their
small droplet size [170]. This makes them a potential candidate for delivering drugs to treat
skin diseases and disorders [140]. Overall, the ability of microemulsions to solubilize various
molecules and facilitate skin permeation makes them promising delivery systems for a wide
range of drugs, including those with poor solubility or low skin permeability.

8. Challenges and Future Directions

Despite the numerous advantages of microemulsions as drug delivery systems, there
are still several challenges and limitations that need to be addressed [52,165]. One major
challenge is the complexity of microemulsion formulation, which requires a thorough under-
standing of the physicochemical properties of the components and their interactions [171].
Furthermore, the optimization of microemulsion formulations can be time-consuming and
costly [172].

Another limitation is the potential toxicity of the surfactants and co-surfactants used
in microemulsion formulations [50,96]. Although the toxicity of these components can be
minimized by selecting biocompatible surfactants and co-surfactants, there is still a risk of
adverse effects, particularly with chronic use [97,98].

In addition, the stability of microemulsions can be affected by environmental fac-
tors such as temperature, pH, and ionic strength, which can lead to phase separation or
droplet aggregation [35]. Therefore, there is a need for the development of more stable
microemulsion formulations that can withstand these challenges.

To overcome these challenges, several potential solutions have been proposed. One
strategy is to use natural surfactants and co-surfactants, such as phospholipids and bile
salts, which are biocompatible and have lower toxicity compared to synthetic surfac-
tants [97,98]. Another approach is to use nanoparticles, such as liposomes or solid lipid
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nanoparticles, as carriers for the microemulsion, which can improve stability and enhance
drug targeting [173].

Future directions for research in microemulsion drug delivery systems include the de-
velopment of new methods for characterizing and optimizing microemulsion formulations,
as well as the exploration of new applications in different therapeutic areas. Additionally,
there is a need for further investigation of the pharmacokinetics and toxicity of microemul-
sion formulations, particularly with chronic use.

In conclusion, microemulsions represent promising drug delivery systems with nu-
merous advantages, including high solubilization capacity, improved bioavailability, and
versatility in delivering both hydrophilic and hydrophobic drugs. However, there are
still challenges and limitations that need to be addressed, such as formulation complexity,
potential toxicity, and stability issues. With the development of new strategies and the
advancement of research in this field, microemulsions have the potential to become widely
used drug delivery systems for various therapeutic applications.

To illustrate the advantages and limitations of microemulsions for drug delivery,
Table 2 is provided in this review. This table highlights the potential benefits of microemul-
sions, such as improved drug permeability, sustained drug release, and versatile drug
delivery routes. It also summarizes the limitations of microemulsions, including potential
toxicity, formulation complexity, and scaling-up challenges. The table serves as a useful
reference for researchers and practitioners working in the field of drug delivery. By carefully
considering the benefits and limitations of microemulsions, researchers can develop more
efficient and effective drug delivery systems that can improve patient outcomes.

Table 2. Advantages and limitations of microemulsions for drug delivery.

Advantages of Microemulsions Limitations of Microemulsions

- Enhanced drug solubilization [24];
- Improved drug stability [93];
- Increased drug permeability [24];
- Sustained drug release [174];
- Versatile drug delivery [21];
- Biocompatibility [26]
- Long shelf life [82]
- Ease of formulation [93];
- Targeted drug delivery [19];
- Reduced toxicity [131];
- Versatility (oral, parenteral, and topical) [11];
- Stable thermodynamically after preparation [25,75]

- Toxicity of high surfactant and co-surfactant
concentrations [57];

- Limited drug loading capacity [175];
- Risk of leakage, which can lead to drug loss and reduced

efficacy [176];
- Regulatory issues (safety and efficacy testing before

approval for human use) [24]
- Sensitivity to environmental factors during the

preparation steps (Temperature, pH, and salt
concentration) [133]

9. Conclusions

In this comprehensive review, we have discussed the potential of microemulsions
as innovative cutaneous delivery systems. We began by providing a brief overview of
drug delivery systems in pharmaceuticals and explaining the characteristics of microemul-
sions, including their composition and properties. We then discussed the formulation of
microemulsions and the various techniques used for their preparation.

We also highlighted the importance of characterizing microemulsions and discussed the
different methods for their characterization, as well as the factors affecting their characteriza-
tion. Furthermore, we provided an overview of the potential applications of microemulsions
in drug delivery, with a particular emphasis on their use in cutaneous drug delivery.

The advantages of microemulsions as drug delivery systems were also discussed,
including their high stability, efficient drug solubilization, and potential for targeted drug
delivery. We also compared microemulsions with other drug delivery systems, such as
liposomes and nanoparticles.

Despite their many benefits, microemulsions face some challenges and limitations
in drug delivery. We reviewed these challenges, including the complexity of formulation
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and potential toxicity concerns. We also discussed potential solutions to overcome these
challenges, including the use of safer surfactants and co-surfactants.

In conclusion, microemulsions represent a promising and innovative drug delivery
system for cutaneous applications. Their unique properties, such as high stability and
efficient drug solubilization, make them an attractive option for targeted drug delivery.
However, further research is needed to address the challenges and limitations of microemul-
sions and to explore their full potential in drug delivery. With ongoing advancements in
microemulsion technology, it is clear that these systems have a bright future in the field of
pharmaceutical research and development.
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