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Non parametric harmonization of a tabla’s membrane

Sylvain Maugeais

Abstract

The musical drums of the Indian subcontinent are known for their harmonic quality due to their non uniform
membrane, requiring a precise distribution of mass. Extending the works of previous authors, the present work uses
a non-parametric optimisation procedure to find an optimal density for a membrane loaded by air. The modes of the
loaded membrane are computed using a Finite Element Method coupled with a Boundary Element Method, and a
mimimum of inharmocity if found using a gradient algorithm with an explicitly computed gradient.

1 Introduction
The tabla, along with other Indian percussion instruments
like pakhawaj and mridangam, is known amongst mem-
branophones for its harmonic quality (cf. [18]) and res-
onance (cf. [19], chapter 6.3). These specificities are
mainly due to the syahi, which is an extra mass added
at the center of the membrane. Although it used to be
made of clay that had to be applied each time the instru-
ment was used (cf. [3] chapter 33, verse 25-26), it is now
made either of single use dough (bass side of pakhawaj of
mridangam) or syahi : “a paste of starch, gum, iron oxide,
charcoal, or other materials.” (cf. [8] chapter 18.5) (for
tablas). The process of either applying the dough (cf.
[3]) or the syahi (cf. [19]) is quite complex. The latter
requires the application of different layers of syahi paste,
drying after each step and rubbing with a stone. These
different steps ensure there is a reticulum of cracks form-
ing in the syahi (see fig. (1)), which reduces the stiffness
of the added mass (cf. [19], chapter 5.11).

Figure 1: Close up of the syahi. The reticulum of cracks
and different layers can be seen

The shape of the syahi has to be very precise to achieve
harmonicity. Leaving aside the sustain, various authors
have tried to describe the its geometry by numerically
optimising the inharmonicity: from [17] (refined by [10])
viewing it as a composite membrane, [21] and [20] in
a similar way but with a smooth approximation of the
composite density, to [16] and [1] who used non paramet-

ric optimisation. All these articles found inhomegeneous
membranes whose first in vacuo eigenfrequencies are al-
most harmonic, and whose shape is very similar to that
of an actual physical tabla.
On the other hand, following [5] who studied air loading

on timpani membrane, [22] applied the same optimisa-
tion procedure as [17] on composite membranes but tak-
ing into account the air loading. They too obtained an
almost harmonic set of frequencies. As a byproduct, they
also got decay times. Unfortunately, these are sometimes
unrealistic mainly because their model does not take into
account the viscoelastic losses, which can be incorporated
along the line of [9] who studied it for the kettledrum.
The present article expands these results by applying

a non parametric optimisation (like [1]), taking into ac-
count air loading (like [22]) and viscoelastic losses (like
[9]), and imposing conditions on the density ensuring the
playability of the tabla (like [16]).
Following [12] in their work on optimisation of musical

instruments, the finite element method has been chosen
to compute the eigenfrequencies relative to general densi-
ties. Together with boundary element method and opti-
misation, these techniques form the technical core of the
present work.
The remainder of the article is organised as follows: in

section 2, the model used for the tabla and air loading
is described and the modes in vacuo are computed using
the finite element method (FEM). In section 3, the ma-
trices involved in the boundary element method (BEM)
are computed, first outside the kettle, and then inside.
In section 4, the solutions of the complete system, mem-
brane together with air loading, is computed, and are
compared with the results of the bibliography. Finally,
in section 5, the actual optimisation is carried out and
discussed. The article concludes with open questions and
future directions.

2 Problem formulation

Throughout the text, the only concern is that of the right
hand tabla. The left hand one, although it has also been
studied in other works (eg. [22]), is much more difficult
to model as the player’s wrist is usually used during play-
ing by resting at different positions and applying different
pressures while fingers strike the membrane ([13] chapter
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Σ Surface of the drumhead
F Infinite flange
a Radius of the drumhead (in m) = 0.05m for a tabla
L Height of the kettledrum (in m) = 0.1m for a tabla
x = (ρ, θ, z) Point in space, cylindrical coordinates
r = (ρ, θ) Point in the membrane, polar coordinates
σ Surface density of the drumhead (in kg/m2)

= 0.245kg/m2 for a uniform tabla membrane
η Transverse displacement of the drumhead (in m)
T Membrane tension (in N/m) = 1822N/m for a tabla
ν Viscoelastic coefficient of the drumhead (in s)

= 0.6× 10−6s
pin Pressure inside the kettledrum
pout Pressure above the flange F
ρ0 Air density = 1.20kg/m3

ca Speed of sound = 344m/s

Table 1: List of symbols

Figure 2: Model of the tabla

7), therefore changing considerably the boundary condi-
tions, and producing a continuous range of pitches.

2.1 Model
Following [5], the tabla is modeled as a rigid cylinder of
radius a and height L, capped at the top by a membrane
Σ and at the bottom by a rigid disk. An infinite rigid
plane flange enclosing the membrane in the plane of the
membrane is assumed (see ibid. concerning the validity
of this assumptions).
Let us write x = (r, θ, z) for the cylindrical coordinates,

the membrane Σ being positioned in the z = 0 plane and
the center of the membrane at r = 0.
Following [5] (and [9] for the viscoelastic term), the dis-

placement η of the membrane is governed by the equation

σ
∂2η

∂t2
= T∆

(
η + ν

∂η

∂t

)
+ pin

∣∣
z=0
− pout

∣∣
z=0

(1)

where σ(x) is the (non uniform) density of the membrane
at the point x, T is the membrane tension by unit length,
ν is the viscoelastic damping coefficient, pin and pout are
the acoustic pressure fields inside and outside the kettle
(i.e. above the plane z = 0). Assuming the membrane is
fixed at the rim yields

η(x, t) = 0 for all t and x ∈ ∂Σ (2)

As the kettle acts as a baffle, a Neuman condition is
used on the fixed borders of the kettle

∂pin
∂ρ

∣∣∣∣
ρ=a

=
∂pin
∂z

∣∣∣∣
z=−L

= 0 for all t. (3)

In the same way, the assumption that the membrane is
surrounded by an infinite plane flange implies

∂pout
∂ρ

∣∣∣∣
ρ>a,z=0

= 0 for all t. (4)

Denote by η̂ (resp. p̂in, p̂out) the temporal Fourier trans-
form of η (resp. pin, pout) with variable ω. The global
acoustic pressure field p composed of pin and pout satis-
fies the wave equation(

∆+
ω2

c2a

)
p̂ = 0 (5)

where ca denotes the speed of sound in air.
Denote by Gωin and Gωout the Green functions for equa-

tion (5) for the inside and outside domains. Then the
pressure fields can be computed (cf. [5], eqs. (21) and
(22))

p̂in(x) =

∫
Σ

Gωin(x|x′)
∂p̂in
∂z′

∣∣∣∣
z′=0

dx′ (6)

p̂out(x) =

∫
Σ

Gωout(x|x′)
∂p̂out
∂z′

∣∣∣∣
z′=0

dx′. (7)

The compatibility of the speeds of air and membrane at
z = 0, together with linearized fluid dynamics, imply

∂p̂in
∂z

∣∣∣∣
z=0

=
∂p̂out
∂z

∣∣∣∣
z=0

= ω2ρ0η̂, (8)

with ρ0 denoting the density of air at equilibrium. Finally
the equation verified by η̂ is given by

− ω2ση̂ = T∆(η̂ − jωνη̂)+

ω2ρ0

(∫
Σ

Gωin(x|x′)
∣∣
z′=0

η̂(x′)dx′ −∫
Σ

Gωout(x|x′)
∣∣
z′=0

η̂(x′)dx′
)
. (9)

2.2 Description of the elements and solu-
tions in vacuo

The membrane is meshed uniformly with triangles and
a spectral element method of order n is used. Let S
be the set of shape functions defined on the triangula-
tion using Legendre-Gauss-Lobatto points that are not
on the boundary of ∂Σ. Define a hermitian product on
the Sobolev space H1

0(Σ) by

⟨f, g⟩ =
∫
Σ

f(x)g(x)dx. (10)

For the density function σ on Σ and tension parameter
T , define the matrices

Aσ = (⟨σφ, ψ⟩)φ,ψ∈S (11)

B = T (⟨gradφ, gradψ⟩)φ,ψ∈S . (12)

The computation of the scalar products for computing the
matrices Aσ and B are performed using the collocation
method.
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Figure 3: Relative error in cents for the modes in vacuo
for a uniform circular membrane compared to theoretical
values, for different uniform meshes and different orders.

The lossless in vacuo equation implied by (9) is given
by

−ω2AσΦ = BΦ (13)

and its solutions ω,Φ are obtained through the computa-
tion of eigen-pairs, and are Galerkin weak approximations
of in vacuo frequencies and modes of the membrane with
density σ.

According to [2] (see also [15] for a general discussion
on the size of the mesh), the error term for ω or Φ can
be bounded for small enough eigenvalues by hnω2, where
h denotes the mesh-size, which is the maximum diameter
of the triangles of the mesh.

The ωs are counted with multiplicities and sorted by
their magnitude as a set

(
ωi
)
i∈I where I denotes the set

of eigen-pairs of (13), and the corresponding eigenvector
is denoted by Φi.

The error on frequencies in cent for different meshes
and different orders are given on figure (3) for the first
120 modes (extra logarithmic scale on the cents is used to
allow the comparison between high and low order). This
number of modes is necessary to ensure a good preci-
sion during the next step of the computation (cf. section
4.1). As expected, the error increases with frequency (cf.
[2]) and should be minimal for the first ones. The poor
precision on the first eigenvalues is explained by the ap-
proximation of the geometry: a lesser number of points
in the mesh implies a worse approximation of the circle.

As the number of modes is important for the precision
required in section 4.1, and the speed of computation is
not relevant, order 3 and 1096 points are used in the rest
of the article.

The numerical method was implemented in Python from
scratch on a desktop computer without using any finite
element package.

3 Boundary element method
Contrary to [5], [22] and [9], the integrals in (9) are not
computed “explicitly” because the density of the mem-
brane is not constant, so the projection onto the eigen-
functions of the radial component of the membrane equa-
tion cannot be readily applied. Instead, the Boundary
Element Method (BEM) is used (cf. for example [11] or
[14]), together with a spectral element methods (SEM) of
order 3. All the integrals involving only regular functions
are computed using collocation methods.

3.1 Computation of the outside Green
function

According to [5], equation (20), Gout can be expressed as

Gωout(x|x′) =
−1
4π

(
ej

ω
ca

∥x−x′∥

∥x− x′∥
+
ej

ω
ca

∥x∗−x′∥

∥x∗ − x′∥

)
(14)

with x∗ = (r, θ,−z) if x = (r, θ, z). In particular, when
r, r′ ∈ Σ we get

Gωout(r|r′) =
−2
4π

ej
ω
ca

∥r−r′∥

∥r− r′∥
. (15)

Define the matrix Gout(ω) whose entries are

(Gω
out)φ,ψ =

−1
4π

∫
Σ

φ(r)

∫
Σ

ψ(r′)
ej

ω
ca

∥r−r′∥

∥r− r′∥
dr′dr. (16)

for any two φ,ψ ∈ S shape functions.

Denote by κψ(r) =
∫
Σ

ψ(r′)
ej

ω
ca

∥r−r′∥

∥r− r′∥
dr′ so that

(Gω
out)φ,ψ =

−1
2π

∫
Σ

φ(r)κψ(r)dr (17)

For each s ∈ S, denote by rs its node point and ws
its weight in the Lobatto quadrature. As κφ is regular,
(Gω

out)φ,ψ is approximated by

(Gω
out)φ,ψ

∼=
−1
4π

∑
s∈S

wsφ(rs)κψ(rs) = wφκψ(rφ) (18)

To compute κψ, the usual technique is used (cf. [6], 6.1):
separate the singular part and compute it analytically,
the rest of the integral is computed numerically. For this

write e
j ω
ca

∥rφ−r′∥

∥rφ−r′∥ = 1
∥rφ−r′∥ − E(∥rφ − r∥′, ω), with E is

a regular function. Then

κψ(Pφ) =

∫
Σ

ψ(r′)
1

∥rφ − r′∥
dr′︸ ︷︷ ︸

κ∗
φ,ψ

+

∫
Σ

ψ(r′)E(∥rφ − r′∥, ω)dr′

The first integral κ∗φ,ψ can be computed explicitly us-
ing a polar parametrization of triangles, together with
antiderivatives of trigonometric polynomials. As for the
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Figure 4: Relative error in cents for the eigenvalues of the
Laplace operator with zero Neuman boundary condition,
for different uniform meshes and different orders.

second, E being regular, it can be approximated using
the collocation method∫

Σ

ψ(r′)Eφ(r
′, ω)dr′ ∼= wψE(∥rφ − rψ∥, ω).

Finally

(Gω
out)φ,ψ

∼=
−1
2π

wφ
(
κ∗φ,ψ + wψE(∥rφ − rψ∥, ω)

)
which is an approximation of order n thanks to Lobatto’s
quadrature.
Finally, define the matrices H and E(ω) by

Hφ,ψ = wφκ
∗
φ,ψ (19)

Eφ,ψ(ω) = wφwψE(∥rφ − rψ∥, ω) (20)

so that
Gω
out =

−1
2π

(H+E(ω)) (21)

3.2 Computation of the Green function
inside the shell

Let (Ψn)n∈N be a complete system of eigenvectors for
the Laplace operator on Σ with Neuman boundary con-
ditions, and denote by ϖn its eigenvalue.This data can
be computed using the finite element method as above
changing the boundary condition, the weak approxima-
tion now taking place in the Sobolev space H1(Σ) instead
of H1

0(Σ).
Figure 4 gives the error in the computations of the ϖn

for different meshes and different orders. As for the
Dirichlet condition, order 3 with 1096 points give very
good results.
A computation following [5] equation (19) gives an ex-

plicit form for the Green function inside the shell:

Gωin(r|r′) = −
∑
n

Ψn(r)Ψn(r
′)

cotan(µnL)
µn

(22)

with µn =
√
ϖ2
n − ω2

c2a
.

To compute the weak approximation matrix of Gωin at
entries φ,ψ ∈ S remark that

(Gω
in)φ,ψ =

∫
Σ

∫
Σ

Gωin(r|r′)φ(r)ψ(r′)drdr′, (23)

so that

(Gω
in)φ,ψ = −

∑
n

cotan(µnL)
µn

⟨Ψn, φ⟩⟨Ψn, ψ⟩ (24)

3.3 Projection onto the space of in vacuo
modes

To keep track of the right symmetries when looking for
eigenmodes, as well as reducing the dimension of the
search space, it is convenient to use a projection of
the equations onto the space of eigenmodes in vacuo
Hvac = vect (Φi)0≤i≤ℓ. It is a good candidate for the
approximation of the exact solution u thanks to Sturm-
Liouville’s theory. Restricting to this space is the equiva-
lent of the truncation of the infinite series done in [5] for
equations (38) and (46).
For any matrix N among A, B, Gω

in, Gω
out, define its

restriction to the space Hvac by

Ñi,j =
tΦiNΦj . (25)

for all 0 ≤ i, j ≤ ℓ.
The projection of the fundamental equation (9) can then

be written as

−ω2ÃσM = (1−jων)B̃M+ω2ρ0

(
G̃ω
in − G̃ω

out

)
M (26)

In general, the results depend on the value of ℓ, a bigger
value of ℓ giving more precise results. We found that a
typical value of ℓ = 80 is a good choice for the compu-
tations to ensure a good precision for the first 15 modes
(cf. section 5). This high value of ℓ is the main reason
why order 3 methods were chosen (see figures 3 and 4).

4 Solutions of the complete system

The last step to find the eigenmodes of the loaded non
uniform membrane is to solve equation (26) which is non
polynomial in ω because of the presence of this variable
in the matrices G̃ω

in and G̃ω
out. This is achieved following

the same “fixed point” strategy as in [5]. It should be
noted however that this method does not always give a
solution (see ibid. section IV) and is also confronted to
the well known problem of spurious eigenvalues and non-
uniqueness of solutions (see [4]). Although this is a real
problem for bigger drums, we found that all the solutions
given by this method for the tabla are of the same order as
that of a physical tabla, owing to the relatively small size
of the membrane and the reduced air loading compared
to that of the timpani.
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4.1 Fixed point algorithm

The method chosen here follows only the “simple case”
of [5] section IV: start with an eigensolution in vacuo
(ω0,M0), where M0 denotes the coordinates of the solu-
tion in the basis of the Φis. In particular, M0 is part of
the canonical basis:

M0 = t(0, · · · , 0,
m
1 , 0, · · · , 0).

Denote by m the non zero coordinate.
Then solve recursively the eigenvalue problem

− ζ2ÃσΛ =(
(1− jωnν)B̃+ 2ω2

nρ0

(
G̃ωn
in − G̃ωn

out

))
︸ ︷︷ ︸

depends only on ωn

Λ (27)

with indeterminates ζ and Λ, where the previous guess
ωn has been replaced in the Green functions and the vis-
coelastic losses.
In general, this system has ℓ+ 1 eigensolutions. To en-

sure that the chosen solution has the same kind of symme-
tries as the initial guess M0 in terms of nodal cirlces, the
one that has the largest relative m-th coordinate (hence
closest to M0) is picked. This is the crucial step and
requires that the perturbation is not too strong ([5] sec-
tion IV). This hypothesis not only allows the fixed point
method to converge, but also gives realistic results for the
tabla.
The fixed point method is described precisely below (cf.

algorithm 1).

Algorithm 1: Fixed point algorithm
Data: m < ℓ
Result: solution of (26)
ϖ0 = ωm
do

S ←− {(ζs,Ms)} = set of normalized
eigen-solutions of (27)
i←−
argmax{m-th coordinate of|Ms|, (ζs,Ms) ∈ S}
ϖn+1 ←− ζi
n←− n+ 1

while |ϖn+1 −ϖn| > ε

The output of this algorithm is compared on figure 5
for the uniform membrane of a timpani to the results
of [5] table I, for different meshes and different orders.
The modes (0, 1) and (0, 2) where removed because the
algorithm does not converge in that case (or sometimes
converges to a spurious mode) which is in agreement with
the discussion of [5], section IV. Indeed, these two modes
are the most perturbed ones, and the real solutions are far
from the modes in vacuo. However, for the other modes,
the results are within the margin of error as the results in
op. cit. are given with a precision of only 10 cents. The
results obtained in this figure confirm that a high order
scheme is necessary, together with a fine mesh.

Figure 5: Relative error in cents for the timpani compared
to [5], table I, for different uniform meshes and different
orders. Modes (0, 1) and (0, 2) where removed because of
convergence problems.

4.2 Comparison with known results

Case of tabla

The results obtained by the fixed point algorithm for dif-
ferent uniform meshes and different orders are compared
to those of [22], table II for the in vacuo modes (see figure
6) and for modes loaded by air (see figure 7). As for the
uniform membrane detailed on figure 5, the results are
within the margin of error, as the results in [22] Table II
are given only with a precision of 10 cents. However, the
effect of high order is less clear on these figures than for
figure 5. This is due to the discontinuity of the compos-
ite membranes which induces less regularity on the FEM
problem and a slower convergence.
The modes in vacuo and loaded are well approximated

at order 2 and 3 for a uniform mesh of 1096 points.

Regularisation of the composite membrane

To get a clearer result, the method is tested on a regu-
larisation of the composite density and compared to the
computation with the same algorithm but with degree 3
and finer mesh (1096 points). The results can be seen on
figure 8 for different mesh sizes and are compatible with
convergence of the method.

On the necessity of the viscoelastic losses

Because the only dissipative mechanism used in the mod-
els of [5] and [22] is the sound radiation, both articles give
unrealistic values for τ60’s of some modes (cf. [5], section
IV and [22], section III.C). To get more realistic decay
times, a straightforward improvement is to add viscoelas-
tic losses, as in [9] who studied the timpani model of [5]
together with such an added term. From here onwards,
we consider the same value as [9] for the viscoelastic co-
efficient: ν = 0.6× 10−6s.
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Figure 6: Relative error in cents for inharmonicities of
the modes in vacuo relative to mode (0, 2), compared to
[22], table II, for different uniform meshes and different
orders. Mode (0, 2) is removed as it is taken as reference

Figure 7: Relative error in cents for inharmonicities of the
modes in vacuo relative to mode (0, 2) compared to [22],
table II, for four different uniform meshes and different
orders. Mode (0, 2) is removed as it is taken as reference

Figure 8: Relative error in cents for the eigenfrequencies
of the loaded modes for a regularisation of the composite
density of [22], table II, for four different uniform meshes.
The comparison is made with order 3 and 1096 points.
The top right corner shows the regularisation used

Figure 9: Comparison between the τ60 obtained by [5],
table III (black curve for the computation, blue curve
for the experiment) and the FEM/BEM method (green
curve).
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The comparison of τ60’s obtained from the FEM/BEM
method exposed in section 3 taking the viscoelastic losses
into account are presented on figure 9. As pointed out
in [9], the addition of the viscoelastic losses give more
realistic values for all the modes and the remaining dif-
ferences could come from the model of the room acoustics
(cf. [22]).

5 Optimisation
The goal of this section is to give the optimisation tools
necessary to find a solution to the tuning process. The
method chosen here relies on the gradient algorithm as a
“natural” way to go toward a minimum. This method is
not only suitable because of the big dimension space in
which the optimisation process takes place (the dimension
of the space is given by the number of forms in the FEM
method, which is here about 10 000) but also because it
gives a natural, local direction to search for the minimum.

5.1 Computation of gradients
The goal of this section is to study the dependence of
solutions of the system

−σω2η̂ = (1− jνω)T∆η̂ +Gω ∗ η̂ (28)

under small deformations of the functional parameter σ
For this, consider the perturbed system

− (σ + εσ̃)(ω + εω̃)2(η̂ + εη̃) =

(1− jν(ω + εω̃))T∆(η̂ + εη̃)+

ρ0(ω + εω̃)2Gω+εω̃ ∗ (η̂ + εη̃) (29)

where ε denotes a “small” parameter.
Taking the Taylor expansion in ε and keeping only the

part in ε give

−
(
σ̃ω2η̂ + 2σωω̃η̂ − jνω̃T∆η̂

+ ρ0ω̃

(
2ωGω + ω2 ∂Gω

∂ω

)
η̂

)
=

σω2η̃ + T (1− jνω)∆η̃ + ρ0ω
2Gω η̃. (30)

To simplify this equation, take the scalar product ⟨., η̂⟩
with the complex conjugate η̂ of η̂ of the whole equation,
and use the hermitian symmetries of the operators ∆,
Gω∗ and ∂Gω

∂ω ∗. The fact that (ω, η̂) is a solution of (9)
yields

〈
σ̃ω2η̂ + 2σωω̃η̂ − jνω̃T∆η̂+

ρ0ω̃

(
2ωGω + ω2 ∂Gω

∂ω

)
∗ η̂, η̂

〉
= 0. (31)

Thereby giving

Figure 10: Evolution of frequencies along the line σU+δσ̃
together with the derivative computed with the real part
of formula (32).

gradσω =

−ω2

2ω⟨ση̂, η̂⟩ − jνT
〈
∆η̂, η̂

〉
+ ρ0ω

〈(
2Gω + ω ∂Gω∂ω

)
∗ η̂, η̂

〉 η̂2
(32)

Any perturbation of σ along a direction εσ̃ can then be
computed as

ω(σ + εσ̃) = ω(σ) + ε⟨σ̃, gradσω⟩ (33)

Note that this is true for both real and imaginary parts,
so that it is possible to see the tendency of both frequency
and decay time in a particular direction. This is what is
done on figures 10 (for the frequency) and 11 (for decay
time) taking for σ the uniform density σU = 0.245, for σ̃
a regular function that cancels on the rim

σ̃(ρ, θ) = σU (1− ρ/a)2

and a not so small parameter δ ∈ [−0.3, 0.3] so that the
evolution along δσ̃ can be compared with the derivative
computed using the gradient. Note that δ is also chosen
so that the density remains positive. For both figures,
the colored curves represent the frequency or decay time
for the different modes computed with de FEM/BEM
method (using a 1096 points mesh and order 3, together
with ℓ = 80) and the dashed lines represent the deriva-
tives computed with formula of the gradient (formulas
(32) and (33)).
Evolution of both frequencies and decay times are very

well predicted by the gradient alone.

5.2 Definition of inharmonicity

As was already noticed by Raman in [18], the first nine
modes of a tabla are in an almost harmonic progression.
The different modes, defined by their nodes, are described
on figure 12 together with the approximate ratio to the
mode (1, 1) which serves as a reference.
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Figure 11: Evolution of τ60 along the line σU+δσ̃ together
with the derivative computed with the imaginary part of
formula (32)

Figure 12: First nine modes of the tabla and ratios
2f/f(1,1)

Figure 13: Gradient of inharmonicity computed for a uni-
form density

It should be noted that this description of the modes
hides the fact that most of them are actually degenerate:
for symmetry reasons, each mode (α, β) is actually dou-
bled if α > 0. However, among the twin modes, only the
mode shapes differ (by a rotation) and not the frequency.
The inharmonicity function is therefore be defined as

I(σ) =
∑

m∈modes

γm

(
2ℜ(ωm(σ))

pmℜ(ω(1,1)(σ))
− 1

)2

(34)

where γm designates a weight affected to mode m. The
choice of these weights is actually crucial as they favor
which modes are to be optimised first.
For example, [21] chose γm = p2m which gives a relatively

strong weight to high frequency modes. This choice leads
in our case to the gradient algorithm to not converge.
Another interesting choice is the one by [22], equation

(24), which is closely related to the uniform case but tak-
ing into account psychoacoustic phenomena.
The present article follows [10] (with a different choice

of target ratios p(0,3)) and [16], giving the same weight
to all modes γm = 1. This choice makes the gradient
algorithm converge toward a physically realistic solution
(cf. figure 17).

5.3 Monotonification
As can be seen on figure 13, the gradient of the inhar-
monicity is neither of constant sign, nor monotonic (as a
function of r), and does not even have a precise circular
symmetry. All these characteristics are however expected
from the density of the syahi.
The non constancy of the sign is problematic to build

the syahi, as it would necessitate to remove some matter,
even maybe to the point of having negative density at
some places: the syahi is usually built by adding small
layers of mass.
The non circularity of the gradient comes from the fact

that only a finite set of modes taken into account for
the calculation of inharmonicity, together with the choice
of the limits in the definition of inharmonicity and the
precision of the computations. This “problem” is more
of a numerical nature, but is relatively natural for the
“monotonification” process described hereafter.
Finally, even for densities with circular symmetry, an

optimal solution could have non playable shapes (for ex-
ample those proposed in [1] Figure 7) which could be

8



Figure 14: Function σ0 − δgradσ I(σ0) as a multivalued
function of r (in black) together with its monotonification(
σ0 − δgradσ I(σ0)

)♮ (in red).

harmful to the player. Moreover, owing to the current
building process of the syahi (cf. [19] or [7]), which is
done by adding small concentric layers of paste of de-
creasing radius, letting them dry and rubbing them with
a stone to produce the characteristic cracks (cf. figure 1),
one hypothesis that seems reasonable, and which is found
in actual physical tablas, is to suppose that the density
is monotonic as a function of r.
A simple way to achieve all three hypotheses is to use

a process called here “monotonification” which is done in
three steps: for any real valued function λ on Σ

• transform λ into a non negative function,

• take the maximum of λ for every fixed radius r, thus
ensuring the circular symmetry,

• take the cumulative maximum, thus ensuring the
monotonicity in r.

These steps can be summarized in the formula

λ♮(r) = max
r′≥r

(
max
|r|=r′

(
max(λ(r), 0)

))
(35)

giving a new function which depends only on r, is non
negative and decreasing.
On figure 14, the monotonified version of(

σ0 − δgradσ I(σ0)
)♮

is given for a uniform density σ = 0.245 and a parameter
δ given by the first step of the gradient algorithm (see
algorithm 2). It should be noted that σ0 − δgradσ I(σ0)
is drawn only as a function of r, which is why it appears
as a multivalued function.

5.4 Gradient algorithm

The algorithm used in this article is the usual gradient de-
scent algorithm. Although there are more effective algo-
rithms to find a global minimum, this one is very suitable
for our application as the dimension of the search space

is quite big (about 10 000) and it gives a result in only
a few steps (about 30 steps for the order 3 FEM/BEM
method with a mesh of 1096 points). The algorithm used
for optimisation is detailed hereafter in algorithm 2.

Algorithm 2: Gradient algorithm with monotoni-
fication of σ
Data: σ
Result: locally optimal density
n←− 0
σ0 ←− σ
I0 ←− inharmonicity(σ0)
do

grad = gradient of inharmonicity(σn)
δ ←− −In/⟨grad, grad⟩
σn+1 ←−

(
σn + δ.grad

)♮
In+1 ←− inharmonicity(σn+1)
n←− n+ 1

while In > In−1

The only significative difference with the usual gradi-
ent algorithm is the use of monotonification in the step
σn+1 ←−

(
σn + δ.grad

)♮.
It should be noted that another choice is possible by ap-

plying the monotonification on the gradient, rather than
on the density. This latter choice has the effect of pro-
ducing a series of increasing densities : σn+1 ≥ σn, which
may be closer to the reality of construction of the syahi,
but give results that are further from the optimal.

5.5 Results of optimisation
The results of the gradient algorithm are given on figures
15 to 18 for an initial uniform density σ0 = 0.245kg/m2

as in [22], Table II. The parameters used for the tabla
are therefore T = 1822N/m, a = 0.05m and L = 0.1m.
Denoting by σT the optimal density obtained in loc. cit.,
we get I(σT ) = 0.00229 with formula 34, which is different
from the inharmonicity computed in [22] because of the
choice of weights. It should be noted that, although σT
was obtained for another choice of weights, it is very close
to the optimal inharmonicity, emphasizing the robustness
of the composite density.
The decrease of inharmonicity is clearly seen on figure

15 and the algorithm stops after 36 steps for an optimal
density σopt for which I(σopt) = 0.00019. The fact that
I(σT ) > I(σopt) is not a surprise as σT verifies all the
hypotheses (symmetry, monotonicity) that are imposed
upon the search space, which therefore include that of
[22].
The evolution of the frequency of each mode, normalised

by the frequency of mode (1, 1), can be seen on figure 16.
It seems that the higher the frequency, the slower the
convergence. This is readily explained by the choice of
weights that is made, which favours the low frequency.
The evolution of the density is displayed in figure 17, to-

gether with the composite optimal σT in red for reference.
The proximity of σT and σopt is striking, emphasizing the
fact that seeing the syahi as a composite membrane is a
very good approximation.
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Figure 15: Evolution of inharmonicity during optimisa-
tion (blue curve). Inharmonicity of the optimal obtained
in [22] is printed for reference (dotted red curve)

Figure 16: Evolution of inharmonicity of each mode rel-
ative to the mode (1, 1) during optimisation
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Figure 17: Evolution of density during optimisation, to-
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0 1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930313233343536
Optimisation step

10 1

100

6
0

(s
)

[0, 1]

[1, 1]

[2, 1]

[0, 2]

[3, 1]

[1, 2]

[3, 1]

[1, 2]

[0, 3]

Figure 18: Evolution of τ60 of each mode during optimi-
sation

It should be noted that from the very beginning of the
optimisation, the rightmost point where σn > σ0 shifts to
the left during optimisation. This is due to the choice of
taking the monotonification on σ, rather than on gradσI.
It allows the optimisation process to get a smaller support
for the syahi.
A third ramp can be seen on the last obtained densi-

ties around r = 0.01m. This suggests that to improve
even further the composite membrane of [22], another
ring should be added (see [23] for a study in this direc-
tion without the air loading).
The evolution of decay time for each mode can be seen

on figure 18. During all the optimisation process, the
decay times are increasing, giving for the optimal density
a sustain that is up to 10 times greater for σopt than
for σ0, in particular for the low frequency modes. This
is compatible with the knowledge of tabla makers, that
adding smaller central circle adds to the resonance (cf.
[19], section 6.3).

10



Sounds obtained at each step of the simulation
are available online at http://perso.univ-lemans.fr/
~smauge/tabla/

6 Conclusion
A non parametric optimisation procedure is proposed to
produce a non homogeneous membrane loaded by air
whose first partials are harmonic. Together with mild hy-
potheses ensuring the playability of the membrane, this
procedure gives a realistic density that is close to that
of an actual physical tabla. As a byproduct, it gives an
explicit formula for the changes in frequencies and de-
cay times of eigenmodes with respect to an infinitesimal
variation of the density. Moreover, being based on finite
elements and boundary elements methods, it can readily
be applied to non circular geometries.
The method developped here gives a density close to

those obtained in previous studies, highlighting the good
aproximation given by a composite membrane. The main
novelty of the present article lies in the numerical scheme,
which uses a non parametric optimisation together with
mild hypotheses that are inherent to the manufacture of
the syahi : circular symmetry and radial monotonicity.
As such, it could be used in more complex settings where
no obvious solution such as the composite one is known.
As for the previously developed methods, the optimisa-

tion is done only for the first five frequencies (equivalent
to 15 eigenmodes, some of them being degenerate). This
is justified as these are the only prevalent frequencies ob-
served in the spectrum of the tabla. It was conjectured by
Raman in [18] that the reason for this limited spectrum is
the presence of a second, annular shaped membrane that
rests on the main one. We hope that the tools developed
in the present article will help investigate this conjecture.
One of the main drawback of the method is the assump-

tion that the stiffness is negligible. This would require a
precise investigation as the added mass is important and
the material appears to be quite rigid. As stated in the
introduction, the usual explanation for this low stiffness is
the reticulum of cracks which, to our knowledge, has not
been studied in depth and would deserve more attention.
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