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Abstract: This paper presents a new approach to integral sliding mode control for discrete nonlinear
systems with time delay. The approach is based on an event-triggered scheme and is applied to
Takagi–Sugeno fuzzy models. In the first step, a new integral sliding function is constructed, which
avoids the limited assumptions of most existing fuzzy sliding mode control schemes. The design
parameter matrices defining the sliding surface are obtained by solving linear matrix inequalities. In
the second step, an event trigger-based integral sliding mode control protocol is developed to ensure
the state trajectories of the Takagi–Sugeno fuzzy systems with time delays. Finally, the proposed
strategies are evaluated through a simulation example to demonstrate their effectiveness.

Keywords: event-triggered control; integral sliding manifold; fuzzy system; time-varying delay;
linear matrix inequalities
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1. Introduction

In recent years, T-S fuzzy models have gained widespread attention for their effective-
ness in system control [1–3]. Takagi–Sugeno (T-S) models typically consist of linear models
connected together which are enclosed by nonlinear membership functions. These mem-
bership functions rely on the premise variables. These models offer a flexible framework
for approximating complex systems with the ability to incorporate linguistic variables,
making them an appealing choice for control applications. In this context, the multi-model
approach is used to describe the nonlinear behavior of physical systems as accurately as
possible. In the majority of cases, the stability and stabilization issues of T-S fuzzy models
have been analyzed through the direct Lyapunov method, which has been thoroughly in-
vestigated for the past 20 years [4,5]. Although the original T-S model formulation does not
account for significant delays in the input, output, or system state, several recent research
endeavors have focused on studying nonlinear systems with time delay.

Time delay is often considered the primary cause of system instability and poor
performance, making its analysis one of the most challenging issues in the control of
dynamic systems. To study these systems, a range of approaches have been developed, such
as synthesizing control laws [6,7], stability analysis [8–10], and designing observers [11–14].
Traditional control techniques for time delay systems, such as PID control and state and
output feedback control, have garnered the attention of numerous researchers [15–17]. The
latter can be ineffective when the system model does not accurately describe the real system
behavior due to the existence of time delay, varying parameters, and external disturbances.
Then, it is advisable to resort to robust control techniques. One of the techniques, which is
easy to implement and for obtaining robust control laws, is sliding mode control (SMC).
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SMC is a control technique that was introduced in the early 1980s, and it involves a
two-step process. The first step involves constructing a sliding surface, while the second
step entails designing a feedback control law to ensure that the system trajectory converges
to the sliding surface within a specified time. Many researchers have focused on solving
the SMC problem in T-S fuzzy systems with time delay, which has led to several proposed
approaches [18–20]. However, some of these approaches have limitations, such as the
assumption that the input matrices of all linear local models must be equal [18,19,21].
This limited assumption is not suitable for various real systems, including the inverted
pendulum [22]. On the other hand, an ISMC scheme was proposed in [20] which identified
two necessary assumptions for developing sliding mode controllers for T-S fuzzy systems.
The first assumption is that the input matrices of all models in the T-S fuzzy system must
be identical, and the second assumption is that the product of a parameter matrix in the
sliding variable and the diffusion matrices of all linear models must be zero. In order to
remove this restrictive assumption, a novel integral sliding surface is proposed in this work.

The rapid evolution of information technology has rendered conventional control
systems inadequate in meeting actual production needs, particularly in the industrial field.
To address this problem, network control systems have become essential, as they offer
benefits such as easy resource sharing, simple installation and maintenance, and quick
fault diagnosis. However, hardware and network technology limitations may lead to issues
such as data packet loss, time delays, and communication limitations, which greatly affect
system behavior and make it challenging to analyze control systems comprehensively.
As a solution to these issues, and to make the best use of network resources, the event-
triggered (ET) technique has garnered considerable attention in the literature. The ET
framework is carried out only when the trigger condition is fulfilled. In fact, this technique
is characterized by a reasonable and effective use of resources, and the extended use time
of the controller is reduced. Several works have been developed the T-S fuzzy system
based the ET mechanism, such as the finite-time H∞ control problem for switched fuzzy
systems [23], observer-based ET control for T-S fuzzy system [24], and fault-tolerant,
control-based aperiodic adaptive event triggered for nonlinear systems [25]. Furthermore,
several researchers have been interested in the event-trigger-based sliding mode control
(ET-SMC) approach, where the latter decreases the chattering caused by the discontinuous
term. In [26], the author investigated the ET mechanism based on novel dynamic SMC
for continuous-time nonlinear systems. The design of event trigger-based ISMC for a T-S
fuzzy model was studied in [27]. In this paper, we employ the event detector method
introduced in [28], which aims to reduce network burdens and conserve communication
resources, compared with the schemes proposed in [29,30]. In addition, this method has
the potential to save transmission energy in wireless networks, leading to a longer battery
lifespan for nodes.

This study was motivated by the aforementioned work, and it aims to propose a dis-
crete event trigger-based integral sliding mode control (ET-ISMC) approach for a nonlinear
system represented by coupled multi-models. The main contributions of this article can be
summarized as follows:

1. We propose a novel, discrete integral sliding manifold for nonlinear systems to avoid
the restrictive assumptions in most existing T-S fuzzy SMC methods.

2. The event-triggered scheme is combined with the ISMC design approach. In this
scheme, data in the system are transmitted only when the trigger condition is met,
which prevents redundant information, saves valuable network resources, and re-
duces the chattering phenomenon.

The rest of this paper is organized as follows. The description of the system model is
given in Section 2. Section 3 focuses on the construction of novel integral sliding manifolds.
In Section 4, the design of event-triggered communication is presented. The control law is
synthesized in Section 5. A simulation example is used to illustrate the effectiveness of the
proposed approaches in Section 6. Finally, the paper is concluded in Section 7.
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Notations: For a matrix, A−1 and AT denote the inverse and transpose of matrix A, respectively,
and sym{A} stands for the expression A + AT . In addition, diag{. . .} represents a block-diagonal
matrix, and the symbol * stands for the symmetric term in a symmetric block matrix. Sn denotes the
set of n× n real symmetric positive definite matrices. Rn stands for the n-dimensional Euclidean
space, and Rn×m is the set of n×m real matrices. Any symmetric matrix means P = PT , and
P > 0 (≥ 0) represents a positive (positive semi) definite matrix; that is, xT Px > 0 (≥ 0) for all
x ∈ Rn, and ‖.‖ is the Euclidean norm of a vector and its induced norm of a matrix.

2. Problem Formulation

The given system can be described as a T-S fuzzy model with r plant rules, where the
system is discrete and includes a time-varying delay:

Plant Rule i: IF α(t)1 is µi
1, and . . . , and α(t)p is µi

p, THEN
x(t + 1) = Aix(t) + Aτi x(t− τ(t)) + Biu(t)

+Did(t)
y(t) = Cix(t) + Cτi x(t− τ(t))
x(t) = ψ(t), ∀t = −τM,−τM + 1, . . . ,−τm

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq, and d(t) ∈ Rp represent the state vector, control
input, measured output, and exogenous disturbance, respectively. The initial state is
represented by the variable ψ(t), and the time-varying delay is denoted by τ(t), which
must satisfy the condition that τm ≤ τ(t) ≤ τM. The matrices Ai ∈ Rn×n, Aτi ∈ Rn×n,
Bi ∈ Rm×n, Ci ∈ Rq×n, Cτi ∈ Rq×n, and Di ∈ Rp×n have appropriate dimensions for
the ith local model such that i = 1, 2, . . . , r, where r represents the number of plant rules.
Additionally, α(t) =

[
α1(t), . . . , αp(t)

]
represents the measurable premise variables, and µi

j
represents the number of fuzzy sets, with j ranging from 1 to p. The fuzzy basis functions
can be given by

mi(α(t)) =
∏

p
j=1 µ

j
i
(
αj(t)

)
r
∑

i=1
∏

p
j=1 µ

j
i
(
αj(t)

) (2)

where µ
j
i
(
αj(t)

)
represents the grade of membership of αj(t) in µ

j
i . In addition, for all t, we

have mi(α(t)) ≥ 0 (i = 1, 2, . . . , r), and
r
∑

i=1
mi(α(t)) = 1.

The dynamic fuzzy model in Equation (1) can be expressed using the regular fuzzy
inference methodology described in [31]. This methodology involves adopting a singleton
fuzzifier, weighted average defuzzifier, and product fuzzy inference. The resulting global
model can be represented as follows:

x(t + 1) =
r
∑

i=1
mi(α(t))[Aix(t) + Aτi x(t− τ(t))

+Biu(t) + Did(t)]

y(t) =
r
∑

i=1
mi(α(t))[Cix(t) + Cτi x(t− τ(t))]

x(t) = ψ(t), ∀t = −τM,−τM + 1, . . . ,−τm

(3)

For simplicity, we will replace mi(α(t)) with mi, and for a series of matrices Yi (i = 1, . . . r),
the single and double sums can be written as Ym = ∑r

i=1 miYi and Ymm = ∑r
i=1 mi ∑r

j=1 mjYiYj,
respectively. Then, Equation (3) can describe them as follows:

x(t + 1) = Amx(t) + Aτmx(t− τ(t)) + Bmu(t)
+Dmd(t)

y(t) = Cmx(t) + Cτmx(t− τ(t))
(4)
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Note that in the fuzzy SMC scheme proposed in [18,19,21], the below assumptions
are required:

• A1: The input matrices Bi (i = 1, . . . , r) must be equal.
• A2: There must exist a matrix M such that det(MBi) 6= 0.

These assumptions constrain the application of the methods. In Section 6, we demon-
strate that the model which describes the balancing of the inverted pendulum on a cart fails
to satisfy both of the above assumptions. In this context, the present methods in [18,19,21]
are not applicable. One contribution of this work is the development of a suitable sliding
mode scheme for T-S fuzzy systems. Notably, the proposed scheme does not rely on the
two assumptions mentioned earlier.

To fulfill this aim, the following lemmas are required for the study of the stabilization
and stability criteria:

Lemma 1 ([32]). For a given symmetric positive definite matrix R ∈ Sn, integers d1 ≤ d2, and
vector function µ : {d1, d1 + 1, . . . , d2} → Rn such that the following sum is well defined, then

d
−d1

∑
h=−d2+1

µT(h)Rµ(h) ≤
[

ζ1
ζ2

]T[ R 0
0 3λ(d)R

][
ζ1
ζ2

]
(5)

where λ(d) =
(

d+1
d−1

)
and

µ(h) = µ(h + 1)− µ(h), d = d2 − d1
ζ1 = x(−d1)− x(−d2)

ζ2 = x(−d1) + x(−d2)− 2
d+1

−d1
∑

h=−d2

x(h)

In some cases with time-varying delays, the factor
(

d+1
d−1

)
might raise some computa-

tional burden. Thus, the following alternative lemma is introduced:

Lemma 2 ([32]). For a given symmetric positive definite R ∈ Sn, integers d1 ≤ d2, and vector
function µ : {d1, d1 + 1, . . . , d2} → Rn such that the following sum is well defined, then

d
−d1

∑
h=−d2+1

µT(h)Rµ(h) ≤
[

ζ1
ζ2

]T[ R 0
0 3R

][
ζ1
ζ2

]
(6)

where µ(h), ζ1 and ζ2 are defined in Lemma 1.

Lemma 3 ([33]). Given two matrices Z1 ∈ Sn1 and Z2 ∈ Sn2 , if there exists a matrix N ∈ Rn1×n2 ,
then the inequality  1

ω
Z1 0

0
1

1−ω
Z2

 ≥ [ Z1 N
∗ Z2

]

holds with any scalar ω ∈ (0, 1) such that[
Z1 N
∗ Z2

]
≥ 0

where (∗) denotes the transpose.



Mathematics 2023, 11, 2326 5 of 19

3. Discrete Fuzzy Integral Sliding Surface Design

In the first example, a discrete integral sliding manifold is introduced to avoid the
limited assumptions A1 and A2 for the T-S fuzzy system in Equation (3). Therefore, the
integral sliding manifold is given as follows:{

S(t) = Mx(t)−Mx(0)− β(t)
β(t) = β(t− 1)− δ(t− 1)

(7)

where δ(t) is given by

δ(t) = M(Am + BmKm − I)x(t) + MAτmx(t− τ(t)) (8)

where Km
∆
= ∑r

i=1 miKi is the real matrix to be conceived and M ∈ Rm×n is the parameter
matrix that ensures the non-singularity of MBm.

For this purpose, the approach in [34] can be used. By defining B = 1
r

r
∑

i=1
Bi it follows that

Bm = B + HF(m̄(α(t)))G (9)

where m̄ = [m1, m2, . . . , mr] and

H = 1
2 [B− B1, B− B2, . . . , B− Br], F(m̄) = diag{

(1− 2m1)I, (1− 2m2)I, . . . , (1− 2mr)I}, G =
T

[I, I, . . . , I]︸ ︷︷ ︸
r

Hence, the following result can be inferred from the method in [34]:

Lemma 4 ([34]). There exists Q, g1, g2, g3 with Q > 0 such that the following LMIs hold:[
−I ∗

g1H −I

]
< 0,

[
Q ∗
I g2 I

]
> 0, Q < g3 I

 2g1
√

λmin(BT B) ∗ ∗
rg2 rg1 ∗
rg3 0 rg1

 > 0

(10)

Then, there exists a parameter matrix

M =
(

BTQ−1B
)−1

BTQ−1

such that MBm is non-singular.

Remark 1.
• The matrix B can be selected as the convex combination of Bi such that i = 1, . . . , r; that is,

B = ∑r
i=1 ξiBi with ξi > 0 and ∑r

i=1 ξi = 1. From the property of convex combinations, it
follows that if only one of the Bi is non-singular, then there should be a collection of scalars ξi,
i = 1, 2, , r such that the non-singularity of B can be ensured. In this situation, set

Hc =
1
2 [B− rξ1B1, B− rξ2B2, . . . , B− rξrBr, 2ζ I],

Fc(m̄) = diag{(1− 2m1)I, (1− 2m2)I, . . . ,

(1− 2mr)I, 1
ζ

r
∑

i=1
mi(1− rξi)Bi

}
Gc =

[
GT I

]T
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where ζ =

∥∥∥∥ r
∑

i=1
mi(1− rξi)Bi

∥∥∥∥.

It can be demonstrated that Bm = B + H1F1(m̄(α(t)))G1. Thus, the result in Lemma 3 also
applies to H, G, and r being replaced by Hc, Gc, and r + 1, respectively.

• Let us note that when B1 = B2 = . . . = Br, by choosing Q = I, and without solving the LMIs

in Equation (10), the parameter matrix M can be given as M =
(

BT B
)−1BT , since it was

proven in [35] that this set is optimal in the sense that the Euclidean norm of the mismatched
disturbances is minimized.

The SMC strategy aligns the system state trajectories with the predefined sliding
manifolds, leading to satisfaction of the ideal sliding surface for the nonlinear discrete-time
system. Specifically, this condition can be expressed by the following equation:

∆S(t) = S(t + 1)− S(t) (11)

Then, we obtain

∆S(t) = MBmu(t) + MDmd(t)−MBmKmx(t) = 0 (12)

Since MBm is non-singular, the equivalent control can be obtained as follows:

ueq(t) = Kmx(t)−MDmd(t) (13)

4. Design of the Event-Triggered Communication Scheme

In this work, the T-S fuzzy system dynamics (Equation (4)) with event-triggered
control is proposed as follows:

x(t + 1) = Amx(t) + Aτmx(t− τ(t)) + Bmu(ts)
+Dmd(t)

(14)

for t ∈ [ts, ts+1), where ts and ts+1 represent the triggering instants and the next triggering
instants, respectively. Then, the following calculation of the next triggering instants with
the event-triggered condition is proposed:

ts+1 = inf{t > ts| h(t) > 0} (15)

such that
h(t) = eT(t)Λe(t)− εxT(t)Λx(t)

where e(t) = x(ts)− x(t) is the transmission error, ε represents the threshold value, for
which ε ∈ [0, 1), and Λ is a positive definite weighting matrix with an undetermined value.

By referring to Equation (15), it is evident that no event will be triggered for all values
of t belonging to the interval [ts, ts+1). Consequently, we can deduce the following outcome:

eT(t)Λe(t) ≤ εxT(t)Λx(t) (16)

We can express the equivalent sliding mode controller, which takes into account the
event-triggered control strategy, in a new form:

ueq(ts) = Kmx(ts)−MDmd(t) (17)

By replacing Equation (14) with the equivalent SMC law (Equation (17)), we can derive
the sliding mode dynamics:

x(t + 1) = Amx(t) + Aτmx(t− τ(t)) + BmKmx(ts)
+(I − Bm M)Dmd(t)

(18)
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Based on Equations (15) and (17), Equation (18) can be rewritten as follows:

x(t + 1) = Acx(t) + Aτmx(t− τ(t)) + Bce(t) + Dcd(t) (19)

where
Ac = Am + BmKm, Bc = BmKm, Dc = (I − Bm M)Dm

Theorem 1. The closed loop of the system in Equation (19) is asymptotically stable with anH∞
performance λ if there exist P̃,Λ̃ Q̃l , R̃l (with l = 1, 2), and K̃xj ∈ Rn×m, j = 1, . . . r such that the
following matrix inequalities hold (s = 1, 2).

Minimize λ, subject to

Ξ̃(s)
ii < 0, i = 1, . . . r

Ξ̃(s)
ij + Ξ̃(s)

ji < 0, 1 ≤ i < j < r
(20)

such that

Ξ̃(s)
ij =

[
Ξ̃(s)

1ij
Ξ̃2ij

∗ −I

]
(21)

where
Ξ̃(s)

1ij
= sym

(
Ψ̃ij
)
+ Υ(s)

1 P̃Υ(s)T

1 − Υ(s)
2 P̃Υ(s)T

2 + Υ3Q̃ΥT
3

− Υ4Ω̃1ΥT
4 − Υ5R̃ΥT

5 + Υ6Φ̃ΥT
6 + εqT

2 Λ̃q2 − qT
9 Λ̃q9

−qT
10λ2q10

Ξ̃2ij = qT
2 X̃CT

i + qT
4 X̃CT

τi

(22)

and
Ψ̃ = qT

1
[
X̃q1 + Ãcq2 + Ãτq4 + B̃cq9

]
(23)

with 

Υ(1)
1 =

[
q1 τ1q6 − q3 q7 + τ̄q8 − q4 − q5

]
,

Υ(2)
1 =

[
q1 τ1q6 − q3 τ̄q7 + q8 − q4 − q5

]
,

Υ(1)
2 =

[
q2 τ1q6 − q2 q7 + τ̄q8 − q3 − q4

]
,

Υ(2)
2 =

[
q2 τ1q6 − q2 τ̄q7 + q8 − q3 − q4

]
,

Υ3 =
[

q2 q3 q5
]
,

Υ4 =
[

q2 − q3 q2 + q3 − 2q6
]
,

Υ5 =
[

q3 − q4 q3 + q4 − 2q7 q4 − q5
q4 + q5 − 2q8],

Υ6 =
[

q1 q2
]
,

Q̃ = diag
{

Q̃2, Q̃1 − Q̃2, Q̃1
}

,
Φ̃ = τ̄2R̃1 + τ2

mR̃2; τ̄ = τM − τm

Ω̃1 = diag
{

R̃2, 3
(

τm+1
τm−1

)
R̃2

}
,

Ω̃2 = diag
{

R̃1, 3R̃1
}

,

R̃ :=
[

Ω̃2 Ñ
∗ Ω̃2

]
such that Kj = K̃jX̃−1, i, j = 1, . . . r.
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Proof. For the sake of simplicity, we denote η(t) = x(t + 1)− x(t). Let

ξ(t) =
[
xT(t + 1), xT(t), xT(t− τm), xT(t− τ(t)),

xT(t− τM), ϕT
1 (t), ϕT

2 (t), ϕT
3 (t), eT(t), dT(t)

]T

qi := [0n×n, . . . , 0n×n︸ ︷︷ ︸
i−1

In×n 0n×n, . . . , 0n×n]
T︸ ︷︷ ︸

10−i

,

where i = 1, . . . 10 and

ϕ1(t) = 1
τm+1

t
∑

i=t−τm

x(i),

ϕ2(t) = 1
τ(t)−τm+1

t−τm
∑

i=t−τ(t)
x(i),

ϕ3(t) = 1
τM−τ(t)+1

t−τ(k)
∑

i=t−τM

x(i)

We choose the Lyapunov function as follows:

V(t) = V1(t) + V2(t) + V3(t) (24)

where

V1(t) =


x(t)

t−1
∑

i=t−τm

x(i)

t−τm−1
∑

i=t−τM

x(i)


T

P


x(t)

t−1
∑

i=t−τm

x(i)

t−τm−1
∑

i=t−τM

x(i)


V2(t) =

t−τm−1
∑

i=t−τM

xT(t)Q1x(t) +
t−1
∑

i=t−τm

xT(t)Q2x(t)

V3(t) = τ̄
−τm−1

∑
i=−τM

t−1
∑

h=t+i
ηT(t)R1η(t)

+τm
−1
∑

i=−τm

t−1
∑

h=t+i
ηT(t)R2η(t)

(25)

with P = PT , QT
i , and RT

i (with i = 1, 2) as the Lyapunov matrix.
Notice that

τ1 = τm + 1, τ2 = τ(t)− τm + 1, τ3 = τM − τ(t) + 1

The finite difference of ∆V1(t) is expressed as follows:

∆V1(t) = V1(t + 1)−V1(t)

=

 x(t + 1)
τ1 ϕ1(t)− x(t− τm)

τ2 ϕ2(t) + τ3 ϕ3(t)− x(t− τ(t))− x(t− τM)

T

×P(∗)

−

 x(t)
τ1 ϕ1(t)− x(t)

τ2 ϕ2(t) + τ3 ϕ3(t)− x(t− τ(t))− x(t− τm)

T

(26)
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×P(∗)

= ξT(t)
{

Υ1(τ(t))PΥT
1 (τ(t))− Υ2(τ(t))P

ΥT
2 (τ(t))

}
ξ(t)

where
Υ1(τ(t)) =

[
q1 τ1q6 − q3 τ2q7 + τ3q8 − q4 − q5

]
,

Υ2(τ(t)) =
[

q2 τ1q6 − q2 τ2q7 + τ3q8 − q3 − q4
]

For ∆V2(t), we have

∆V2(t) = V2(t + 1)−V2(t)

= xT(t)Q2x(t)− xT(t− τM)Q1x(t− τM)

+xT(t− τm)(Q1 −Q2)x(t− τm)

= ξT(t)
{

Υ3QΥT
3
}

ξ(t)

(27)

with
Q = diag{Q2, Q1 −Q2, Q1}, Υ3 =

[
q2 q3 q5

]
Furthermore, ∆V3(t) can be expressed as follows:

∆V3(t) = V2(t + 1)−V2(t)

= ηT(t)
(
τ̄2R1 + τ2

mR2
)
η(t)

−τm

t−1

∑
i=t−τm

ηT(t)R2η(t)︸ ︷︷ ︸
ψ1

−τ̄
t−τm−1

∑
i=t−τM

ηT(t)R1η(t)︸ ︷︷ ︸
ψ2

(28)

Now, by applying Lemma 1, the expression ψ1 can be bounded by

−τm
t−1
∑

i=t−τm

ηT(t)R2η(t)

≤ −
[

x(t)− x(t− τm)
x(t) + x(t− τm)− 2ϕ1(t)

]T

Ω1(∗)

(29)

with
Ω1 = diag

{
R2, 3

(
τm+1
τm−1

)
R2

}
,

Υ4 =
[

q2 − q3 q2 + q3 − 2q6
]
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On the contrary, for the sum ψ2, we have to split it into two terms as follows:

−τ̄
t−τm−1

∑
i=t−τM

ηT(t)R1η(t) = −τ̄
t−τm−1

∑
i=t−τ(t)

ηT(t)R1η(t)︸ ︷︷ ︸
ψ21

−τ̄
t−τ(t)−1

∑
i=t−τM

ηT(t)R1η(t)︸ ︷︷ ︸
ψ22

(30)

Similarly, by using the Lemma 2, ψ21 is bounded as follows:

−τ̄
t−τm−1

∑
i=t−τ(t)

ηT(t)R1η(t)

≤ − 1
α(t)

[
x(t− τm)− x(t− τ(t))

x(t− τm) + x(t− τ(t))− 2ϕ2(t)

]T

Ω2(∗)

(31)

where Ω2 = diag{R1, 3R1} and α(t) = τ(t)− τm
/
τ̄.

In addition, ψ21 is bounded by

−τ̄
t−τ(t)−1

∑
i=t−τM

ηT(t)R1η(t)

≤ − 1
β(t)

[
x(t− τ(t))− x(t− τM)

x(t− τ(t)) + x(t− τM)− 2ϕ3(t)

]T

Ω2(∗)

(32)

such that β(t) = 1− α(t).
We can utilize Lemma 3 of the reciprocally convex approach to handle the time-varying

terms in Equations (31) and (32). By applying this approach to any matrix N, we obtain

−τ̄
t−τm−1

∑
i=t−τ(t)

ηT(t)R1η(t)− τ̄
t−τ(t)−1

∑
i=t−τM

ηT(t)R1η(t)

≤


x(t− τm)− x(t− τ(t))

x(t− τm) + x(t− τ(t))− 2ϕ2(t)
x(t− τ(t))− x(t− τM)

x(t− τ(t)) + x(t− τM)− 2ϕ3(t)


T

R(∗)

≤ −ξT(t)
{

Υ5RΥT
5
}

ξ(t)

(33)

where 
R :=

[
Ω2 N
∗ Ω2

]
,

Υ5 :=
[

q3 − q4 q3 + q4 − 2q7 q4 − q5
q4 + q5 − 2q8]

Then, we obtain
∆V3 ≤ ξT(t)

{
Υ6ΦΥT

6 − Υ5RΥT
5

}
ξ(t) (34)

such that Φ = τ̄2R1 + τ2
mR2 and Υ6 =

[
q1 q2

]
.
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Furthermore, for any matrix X with appropriate dimensions, we have

2ξT(t)
(
XqT

1
)
[−q1 + Acq2 + Aτq4 + Bcq9

+Dcq10]ξ(t) = 0
(35)

Hence, ∆V(t) is given by

∆V(t) ≤ ξT(t)
(
sym(Ψ) + Υ1(τ(t))PΥT

1 (τ(t))

−Υ2(τ(t))PΥT
2 (τ(t)) + Υ3QΥT

3 − Υ4Ω1ΥT
4

−Υ5RΥT
5 + Υ6ΦΥT

6
)
ξ(t)

(36)

with
Ψ = qT

1 X[−q1 + Acq2 + Aτq4 + Bcq9 + Dcq10]

Consider the event-triggered conditions in Equation (15). For any t ∈ [ts, ts+1), it is
satisfied that

εxT(t)Λx(t)− eT(t)Λe(t) ≥ 0 (37)

Then, we have

∆V(t) ≤ ξT(t)
(
sym(Ψ) + Υ1(τ(t))PΥT

1 (τ(t))

−Υ2(τ(t))PΥT
2 (τ(t)) + Υ3QΥT

3 − Υ4Ω1ΥT
4

−Υ5RΥT
5 + Υ6ΦΥT

6 + εqT
2 Λq2 − qT

9 Λq9
)
ξ(t)

(38)

Our goal is to select the gain Kj (j = 1, . . . r) such that the closed-loop system in
Equation (19) is asymptotically stable while satisfying theH∞ criterion:

‖y(t)‖l2 ≤ λ‖d‖l2 (39)

where λ > 0 represents the level of disturbance attenuation that we aim to minimize.
In order to ensure that the expected performance (Equation (39)) of the designed ISMC

is guaranteed, it is necessary to satisfy the following condition:

∆V(t) + yT(t)y(t)− λ2dT(t)d(t) ≤ 0 (40)

Based on Equation (3) and by applying the Schur complement, we obtain

∆V(t) ≤ ξT(t)Ξ(τ(t))ξ(t) (41)

where

Ξ(τ(t)) =
[

Ξ1(τ(t)) Ξ2
∗ −I

]
(42)

with
Ξ1(τ(t)) = sym(Ψ) + Υ1(τ(t))PΥT

1 (τ(t))− Υ2(τ(t))P

ΥT
2 (τ(t)) + Υ3QΥT

3 − Υ4Ω1ΥT
4 − Υ5RΥT

5

+Υ6ΦΥT
6 + εqT

2 Λq2 − qT
9 Λq9 − qT

10λ2q10

Ξ2 = qT
2 CT

m + qT
4 CT

τm
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Now, we can pre- and post-multiply Equation (36) by

bloc− diag
{

X̃, . . . , X̃︸ ︷︷ ︸
9

, In, In}

such that X̃ = X−1, as well as their transposes. Note that P̃[kl] = X̃P[kl]X̃T (k, l = 1, 2, 3),
Q̃i = X̃QiX̃T , Λ̃ = X̃ΛX̃T , and R̃i = X̃RiX̃T . We obtain the following inequality:

∆V(t) ≤ ξT(t)Ξ̃(τ(t))ξ(t) (43)

where

Ξ̃(τ(t)) =
[

Ξ̃1(τ(t)) Ξ̃2
∗ −I

]
(44)

where
Ξ̃1(τ(t)) = sym

(
Ψ̃
)
+ Υ1(τ(t))P̃ΥT

1 (τ(t))− Υ2(τ(t))

P̃ΥT
2 (τ(t)) + Υ3Q̃ΥT

3 − Υ4Ω̃1ΥT
4 − Υ5R̃ΥT

5

+Υ6Φ̃ΥT
6 + εqT

2 Λ̃q2 − qT
9 Λ̃q9 − qT

10λ2q10

Ξ̃2 = qT
2 X̃CT

m + qT
4 X̃CT

τm

and
Ψ̃ = qT

1
[
X̃q1 +Acq2 +Aτq4 +Bcq9 +Dcq10

]
such that Ac = AmX̃T + BmK̃m, Bc = BmK̃m, and Dc = (I − Bm M)Dm.

Note that Equation (43) can also be written as

Ξ̃ =
r

∑
i=1

m2
i Ξ̃ii +

r

∑
i=1

∑
i<j

mimj
(
Ξ̃ij + Ξ̃ji

)
< 0 (45)

It is straightforward that from Equation (43), we obtain the constraint described in the
theorem.

5. Sliding Mode Control Synthesis

In this part, ISMC is developed, and the analysis of the sliding mode stability is
presented. In particular, the design of ISMC is based on an equivalent control law and a
nonlinear switching control law in order to tolerate disturbances or parameter uncertainties.
Hence, global ISMC is given by the theorem below:

Theorem 2. For the T-S fuzzy system described in Equation (1) as well as the sliding manifold
designed in Equation (7), ET-ISMC is proposed as follows:

u(t) = Kx(ts)− σS(t)− ρ× sat(t) (46)

where ρ = d̄‖MDm‖ and

sat(t) =

{
S(t)/

ϕ, ‖S(t)‖ ≤ ϕ

sign(S(t)), ‖S(t)‖ > ϕ

In addition, the sliding manifold function attached to the event-triggered approach is developed
as follows: {

S(t) = Mx(ts)−Mx0 − β(ts)
β(ts) = β(ts − 1)− δ(ts − 1)

(47)

where
δ(ts) = M(Am + BmKm − I)x(ts) + MAτmx(ts − τ(t))
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Proof. The following Lyapunov function is selected:

V(t) =
1
2

ST(t)S(t) (48)

From the derived sliding mode surface function in Equation (47), we have

∆S(t) = S(t + 1)− S(t)
= MBmu(t)−MBmKmx(t) + MDmd(t)
= MDmd(t)− σS(t)− ρsat(t)

(49)

Then, by inferring the increment from V(t) and considering the ET-SMC law in
Equation (46) and ∆S(t), we obtain

∆V(t) = V(t + 1)−V(t)
= ST(t)∆S(t) + 1

2 ∆ST(t)∆S(t)
= ST(t)(MDmd(t)− ρsat(t))− σST(t)S(t)
+ 1

2 ∆ST(t)∆S(t)
≤ −σST(t)S(t) + 1

2 ∆ST(t)∆S(t) +
∥∥ST(t)

∥∥
‖MDm‖‖d(t)‖ − ρST(t)sat(t)
≤ −σST(t)S(t) + 1

2 ∆ST(t)∆S(t) +
∥∥ST(t)

∥∥ρ

−ρST(t)sat(t)

(50)

Based on the saturation function sat(t), we derive that if
∥∥ST(t)

∥∥ ≤ ϕ, with the
designed controller in Equation (22), we obtain

∆V(t) ≤ −σST(t)S(t) + 1
2 ∆ST(t)∆S(t)

+ρ
(
‖S(t)‖ − ‖S(t)‖2

/
ϕ
)

≤ −σST(t)S(t) + 1
2 ∆ST(t)∆S(t)

(51)

If
∥∥ST(t)

∥∥ > ϕ, with the designed controller in Equation (22), we obtain

∆V(t) ≤ −σST(t)S(t) + 1
2 ∆ST(t)∆S(t) (52)

Therefore, σ can be chosen appropriately, which can ensure that ∆V(t) ≤ 0. The proof
is completed.

6. Simulation Results

To illustrate the effectiveness of the obtained results, we consider the problem of
stabilizing an inverted pendulum on a cart. The nonlinear model of the pendulum is
given by 

ẋ1
ẋ2
ẋ3
ẋ4

 =


x2
f1
x4
f2

+


0
g1
0
g2

u(t) + Dd(t) (53)

with

f1 =
−g sin(x1)− amlx2

2 sin(2x1)
/

2
4l
/

3− amlcos2(x1)
, g1 =

−a cos(x1)
/

2
4l
/

3− amlcos2(x1)

f2 =
mag sin(2x1)

/
2 + 4amlx2

2 sin(x1)
/

3
4/3− amlcos2(x1)

, g2 =
4a/3

4/3− amlcos2(x1)

where g = 9.8 m
/

s2 is the gravity acceleration, m = 2 kg and M = 8 kg are the mass of
the pendulum and the cart, respectively, 2l = 1 m is the length of the pendulum, and
a = 1

/
(M + m).

The system is linearized around x1 = 0 and x1 ± π
4 , and a fuzzy model is obtained

from [36] as follows.
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Model 1: IF x1 is 0 THEN

ẋ(t) = A1x(t) + B1u(t) + Dd(t)
y(t) = C1x(t)

(54)

Model 2: IF x1 is ±π
4 THEN

ẋ(t) = A2x(t) + B2u(t) + Dd(t)
y(t) = C2x(t)

(55)

such that

A1 =


0 1 0 0

−17.31 0 0 0
0 0 0 1

1.7312 0 0 0

, A2 =


0 1 0 0

−14.32 0 0 0
0 0 0 1

0.716 0 0 0

,

B1 = [0 − 0.1765 0 0.1176]T , B2 = [0 − 0.1147 0 0.1176]T ,

C1 = C2 =

[
1 0 0 1
0 1 1 1

]
, D1 = D2 =

[
0 0 0 1
0 0 0 1

]T

The overall output of the T-S model is represented as follows:

ẋ(t) =
2
∑

i=1
mi(Aix(t) + Biu(t) + Dd(t))

y(t) =
2
∑

i=1
miCix(t)

(56)

where

m1(t) =
(

1− 1

1+e(−14(x1(t)−
π
8 ))

)
× 1

1+e(−14(x1(t)+
π
8 ))

;

m2(t) = 1−m1(t)

We assume that the pendulum is subject to delay. The global output becomes

ẋ(t) =
2
∑

i=1
mi[(1− s)Aix(t) + sAix(t− τ(t))+

Biu(t) + Did(t)]

y(t) =
2
∑

i=1
mi[(1− s)Cix(t) + sCix(t− τ(t))]

(57)

We discretize Equation (57) with the sample time Te = 0.05s and s = 0.1, and we obtain
x(t + 1) =

2
∑

i=1
mi[Adix(t) + Adτix(t− τ(t))+

Bdiu(t) + Ddid(t)]

y(t) =
2
∑

i=1
mi[Cdix(t) + Cdτix(t− τ(t))]

(58)
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where

Ad1 =


0.9 0.045 0 0

−0.7789 0.9 0 0
0 0 0.9 0.045

0.0779 0 0 0.9

,

Adτ1 =


0.1 0.005 0 0

−0.0865 0.1 0 0
0 0 0.1 0.005

0.0087 0 0 0.1

,

Bd1 = [0 −0.0088 0 0.0059]T ,

Ad2 =


0.9 0.045 0 0

−0.6444 0.9 0 0
0 0 0.9 0.045

0.0322 0 0 0.9

,

Adτ2 =


0.1 0.005 0 0

−0.0716 0.1 0 0
0 0 0.1 0.005

0.0036 0 0 0.1

,

Bd2 = [0 −0.0057 0 0.0054]T ,

Cd1 = Cd2 = 10−1 ×
[

0.45 0 0 0.45
0 0.45 0.45 0.45

]
,

Cdτ1 = Cdτ2 = 10−2 ×
[

0.5 0 0 0.5
0 0.5 0.5 0.5

]
,

Dd1 = Dd2 = 10−1 ×
[

0 0 0 0.5
0 0 0 0.5

]T

such that x0 = [−0.2 0 0.2 0]T for t = −τM, . . . ,−τm is the initial condition of the states.
The external disturbance is given by

d(t) =
[

0.1e−0.1t

0.1e−0.1t

]
The time-varying delay is between τm = 2 and τM = 6.
The ensuing discussions aim to elucidate the distinctions between the existing method

and our proposed strategy:

• The SMC scheme, which is presented in [19], is built on an assumption that the

system
(

Ai, 1
r

r
∑

i=1
Bi

)
can be expressed in the regular form

([
Ai

11 Ai
12

Ai
21 Ai

22

]
,
[

0
B

])
(where

det(B) 6= 0) through suitable transformation. Nevertheless, for this transformation to take place,
it is necessary that the input matrices of all linear models are identical. For this reason, we have
developed an SMC scheme in this work that overcomes this constraint.

• In [20], the ISMC design for a class of nonlinear systems, which are depicted by T-S fuzzy
models, was investigated. However, this suggested scheme is based on two highly restrictive
assumptions. The first assumption is that all linear local models of the T-S fuzzy system share a
common input matrix (i.e., Bi ≡ B (where i = 1, . . . , r)). Secondly, there exists a matrix G with
an appropriate dimension such that GB is non-singular. Furthermore, both of these assumptions
greatly limit real-world applications, including the widely known inverted pendulum on a
cart [22]. By removing this assumption, our proposed SMC method can robustly stabilize fuzzy
systems with different input matrices.
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By solving the LMI conditions of Lemma 4, we obtain

M = [0 −85.8124 0 66.5105]

Some other parameters are given, such as the event-triggered parameter ε = 0.1. By
solving Theorem 1, the following designed matrices are obtained:

Λ =


3.5949 −0.0937 −0.8182 −1.3304
−0.0937 0.0024 0.0213 0.0347
−0.8182 0.0213 0.1865 0.3032
−1.3304 0.0347 0.3032 0.4931


K1 = [453.9662 −11.8263 −103.9457 −169.0464]

K2 = [442.9797 −11.5434 −100.3551 −163.1753]

λ = 0.07

Furthermore, Table 1 displays the results of 400 independent simulation steps for
different values of the event-triggering parameter ε, showing that the event-triggered ratio
(i.e., the number of event-triggering release instants over the total number of simulation
steps) decreased as the value of ε increased. Therefore, this also suggests that the proposed
method has the ability to decrease the number of required data transmissions, thereby
reducing the communication burden.

Table 1. Event-triggered rates with different ε values.

Triggering Parameter ε 0 0.05 0.1 0.3 0.6

Event-Triggered Rates 100% 61.5% 45% 40% 23.25%

The simulation results for the designed ISMC model based on the ET are presented in
Figure 1, where ε = 0.1 (and in Figure 2, where ε = 0.6). The evolution of the states vector
of the nonlinear system is given in Figure 1a. The control input is plotted in Figure 1b,
and this shows that the control remained constants until an event was triggered to update
the control signal. The sliding function is shown in Figure 1c, and the evolution of the
event-triggered signal transmission is given in Figure 1d.
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Figure 1. Cont.
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Figure 1. The simulation results with (ε = 0.1). (a) The states vector. (b) The control law. (c) The
sliding function. (d) The inter-event time.

Analysis of Figure 1 reveals that within the time interval of [0, 20 s], a total of 180
sampled signals were transferred, which led to a transmission rate of 45%. This means that
a significant 55% of communication information and resources can be saved.

Similarly, based on Figure 2, we observe that 90 sampled signals were transferred
in the time interval [0, 20 s], resulting in a transmission rate of 23.25%. This means that a
significant 76.75% of communication information and resources can be saved.

The simulation results indicate that the proposed event trigger-based integral sliding
mode control law is a practical and effective solution for the considered nonlinear system
with time-varying delay. Therefore, it can be concluded that this advanced control strategy
can significantly improve the system’s performance and reduce the resource utilization,
providing valuable insights into the development of control techniques for complex and
dynamic systems.
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Figure 2. The simulation results with ε = 0.6. (a) The states vector. (b) The control law. (c) The sliding
function. (d) The inter-event time.
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7. Conclusions

This paper presents a design for an event-triggered integral sliding mode control
(ISMC) model specifically developed for T-S fuzzy systems with time-varying delay and
measurement noise. The proposed approach introduces an integral sliding function for
a class of nonlinear systems which removes the restrictive assumptions of many existing
fuzzy SMC approaches. This paper formulates sufficient conditions in terms of linear matrix
inequalities (LMIs) to guarantee the achievement and maintenance of sliding motion, as
well as asymptotic stability of the residual system. Additionally, the ISMC design approach
is improved by integrating an event-triggered scheme. This scheme ensures that data are
transmitted only when the specified triggering condition is met, which helps to avoid the
transmission of redundant information, conserve valuable network resources, and minimize
the chattering phenomenon. Finally, a verification example is presented using a pendulum
system to illustrate the effectiveness and potential of the theoretical results obtained.

As a future work, we propose studying the design of an interval observer based on
the novel integral sliding mode control (SMC) analyzed in this paper in combination with
an event-triggered control approach.
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