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Abstract. A general class of hybrid models has been introduced recently, gathering the
advantages multiscale descriptions. Concerning biological applications, the particular
coupled structure fits to collective cell migrations and pattern formation scenarios. In
this context, cells are modelled as discrete entities and their dynamics is given by ODEs,
while the chemical signal influencing the motion is considered as a continuous signal which
solves a diffusive equation. From the analytical point of view, this class of model has been
proved to have a mean-field limit in the Wasserstein distance towards a system given by
the coupling of a Vlasov-type equation with the chemoattractant equation. Moreover,
a pressureless nonlocal Euler-type system has been derived for these models, rigorously
equivalent to the Vlasov one for monokinetic initial data. In the present paper, we present
a numerical study of the solutions to the Vlasov and Euler systems, exploring general set-
tings for inital data, far from the monokinetic ones.
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1. Introduction and rigorous results previously obtained

Collective motions modelling is attracting the interest of different research fields, due
to the great variety of living and non-living systems exhibiting collective behaviors, see
the seminal paper in [42]. Different approaches have been proposed, depending on the
features models aim at reproducing and on the scale of observation. In a nutshell, all
microscopic models of collective motions are based on one or more of the following
elementary mechanical kind of interactions: alignment, see [41], [11], and references
therein, repulsion and attraction [15, 37]. Concerning alignment models, one of the
first and most popular model is represented by the Cucker-Smale model [11], which
was originally proposed to describe the dynamics in flocks of birds, but then it was ex-
tended to cover more general phenomena, as for instance animal herding [14]. From an
analytical point of view, the model and in particular the time asymptotic behaviour has
been investigated in [11, 21], and then extended in different directions, see for instance
[6] and [31] for a comprehensive list of references. In the biological field, collective
behaviors occur in living processes involving cells dynamics, see [22, 28] for seminal
review paper of the field. The main feature is that collective cells migration is also
driven by a chemical stimuli, and not only by mechanical interactions among agents.
On the one hand, the microscopic approach allows to model in fine details mechanical
interactions among cells. On the other hand, when modelling the evolution in time of
a chemical signal influencing the overall dynamics, the microscopic approach is actu-
ally not convenient, and a continuum approach, based on reaction-diffusion equation
clearly better fullfill the requirement. In order to gather the advantages of microscale
and macroscale approaches, a novel class of hybrid coupled models has been proposed
in the last years. In particular, focusing on the family of Cucker-Smale models, in [16]
a model for the morphogenesis in the zebrafish lateral line primordium was proposed.
Based on the experimental data in [19, 25], the model couple a Cucker-Smale kind
of interaction with other cell mechanisms (chemotaxis, attraction-repulsion, damping
effects) to describe the formation of neuromasts. The description of the cell behaviour
is hybrid: while particles are considered discrete entities, endowed with a radius R
describing their circular shape, the chemical signal φ is supposed to be continuous and
its time derivative is equal to a diffusion term, a source term depending on the position
of each particle, and a degradation term The structure has been extended including
stochasticity and/or further cell mechanism in [?, ?, ?]. From the analytical point
of view, a simplified version of the model in [16] was proposed in [17] to allow a full
analytical investigation of the asymptotic behavior, together with well posedeness re-
sults in R2 of the solutions. Further analytical results on generalized version of hybrid
systems can be found in [29, 30, ?].
Let us describe the class of particle systems we will handle in the present article.
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Consider on R2dN ∋ ((xi(t))i=1,...,N , (vi(t))i=1,...,N) := (X(t), V (t)) the following vector
field

(1)

{
ẋi(t) = vi
v̇i(t) = Fi(t,X(t), V (t))

i = 1, . . . , N, (X(0), V (0)) = (X in, V in) :

where

(2) Fi(t,X, V ) =
1

N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xφ
t(xi) + Fext(xi),

Here Fext is an external force, xi, vi are the position and velocity of the i-th cell and
φ stands for a generic chemical signal produced by the cells themselves and such that
the cells are attracted towards the direction where ∇xφ is growing. In particular, φ
satisfies the equation

(3) ∂sφ
s(x) = D∆xφ− κφ+ f(x,X(s)), s ∈ [0, t], φs=0 = φin

for some κ,D, η ≥ 0 and function f of the form

(4) f(x,X) =
1

N

N∑
j=1

χ(x− xi), χ ∈ C1
c .

The function γ : Rd × Rb → R× Rd models the interactions among agents and it is
supposed to be Lipschitz continuous1.
Note that the case Fext = φ = 0, γ(y, w) = ψ(y)w, ψ bounded Lipschitz, covers the

standard case of Cucker-Smale models.

For any fixed function φin and any t, N we define the mapping Φt
N = Φt by

(5)

{
Φt
N : R2dN −→ R2dN

Z in = (X in, V in) −→ Z(t) = (X(t), V (t)) solution of (1, 2, 3, 4).

Note that Φt
N is not a flow.

In [32] a kinetic model was derived, corresponding to system (1, 2, 3, 4), that is the
one particle (non-linear) PDE satisfied by the first marginal2 ρt of the push-froward3

Φt#ρin where ρin ∈ P(R2dN), the space of probability measures on R2dN and Φt
N is the

mapping defined by (5): this is the (following non local in time) Vlasov system

(6) ∂tρ
t + v · ∇xρ

t = ∇v(ν(t, x, v)ρ
t), ρ0 = ρin

where

(7) ν(t, x, v) = γ ∗ ρt(x, v) + η∇xψ
t(x) + Fext(x)

1through this paper we define Lip(f) for f : Rn → Rm,m, n ∈ N, as Lip(f) :=

√
m∑
i=1

(Lip(fi)2.

2definition of marginals
3We recall that the pushforward of a measure µ by a measurable function Φ is Φ#µ defined by

∫
φd(Φ#µ) :=

∫
(φ ◦ Φ)dµ for every test

function φ.
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and ψs satisfies

(8) ∂sψ
s(x) = D∆xψ − κψs + g(x, ρs), ψ0 = φin.

with

(9) g(x, ρs) =

∫
R2d

χ(x− y)ρs(y, ξ)dydξ.

The hydrodynamic limit of Cucker-Smale models has provided up to now a large
literature, whose exhaustive quotation is beyond the scope of the present paper. We
refer to [6] and the large bibliography therein. In [6], the corresponding Euler equa-
tion is derived for Cucker-Smale systems with friction, using the empirical measures
formalism and in a modulated energy topology. The approach and results in [32] are
different: we consider generalizations of frictionless Cucker-Smale models, coupled to
chemotaxis through a diffusive interaction, for large numbers N of particles and we pro-
vide explicit rates of convergences in the quadratic Wasserstein metric towards Euler
type equations.
Indeed one easily sees that, in the case where ρin is monkinetic, i.e.

ρin(x, v) = µin(x)δ(v − uin(x)),

the monokinetic form is preserved by the Vlasov equation (6) and the solution is
furnished by the solution of the Euler type equation:{

∂tµ
t +∇(utµt) = 0

∂t(µ
tut) +∇(µt(ut)⊗2) = µt

∫
γ(· − y, ut(·)− ut(y))µt(y)dy + ηµt∇ψt + µtF

where

∂sψ
s = D∆ψ − κψ + χ ∗ µs, s ∈ [0, t], Ψ0 = φin,

More precisely, let the Wasserstein distance of order two between two probability
measures µ, ν on Rm with finite second moments be defined as

W2(µ, ν)
2 = inf

γ∈Γ(µ,ν)

∫
Rm×Rm

|x− y|2γ(dx, dy)

where Γ(µ, ν) is the set of probability measures on Rm × Rm whose marginals on the
two factors are µ and ν (see [43, 44]), the two main results of [32] are the following.

Theorem 1.1. Let ρin be a compactly supported probability on R2dN , let Φt
N be the

mapping generated by the particles system (1, 2, 3, 4) as defined by (5), and let τρin be
the function defined in [32, Formula (41)].
Then, for any t ≥ 0,

W2

(
(Φt

N#(ρin)⊗N)N ;1, ρ
t
)2 ≤ τρin(t)


N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

where ρt is the solution of the Vlasov equation (6, 7, 8, 9) with initial condition ρin

provided by [32, Theorem 8.1].
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Moreover, let us denote by φtZin the chemical density solution of (1, 2, 3, 4) with initial
data (Z in, φin) and by ψtρin the one solution of (6, 7, 8, 9) with initial data (ρin, φin).
Then ∫

R2dN

∥∇φtZin −∇ψtρin∥2∞(ρin)⊗N(dZin) ≤ τc(t)


N− 1

2 d = 1

N− 1
2 logN d = 2

N− 1
d d > 2

where τc is defined below by [32, Formula (54)].
Finally, the functions τ(t), τc(t) depend only on t, Lip(γ),Lip(χ),Lip(∇χ), and the

supports of Φt
N#(ρin)⊗N and ρt, and satisfies the following estimate for all t ∈ R,

τρin(t) ≤ ee
Ct

, τc(t) ≤ ee
Cct

for some constants C,Cc,depending on Lip(γ),Lip(χ),Lip(∇χ) and |supp(ρin)|.
Theorem 1.2. Let µt, ut, ψt be a solution to the following system

∂tµ
t +∇(utµt) = 0

∂t(µ
tut) +∇(µt(ut)⊗2) = µt

∫
γ(· − y, ut(·)− ut(y))µt(y)dy + ηµt∇ψt + µtF

∂sψ
s = D∆ψ − κψ + χ ∗ µs, s ∈ [0, t],

(µ0, u0, ψ0) = (µin, uin, ψin) ∈ Hs, s > d
2 + 1.

where µt, ut ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−1), ψt ∈ C([0, t];Hs) ∩ C1([0, T ];Hs−2) ∩
L2(0, T ;Hs+1) 4.
Then ρt(x, v) := µt(x)δ(v − ut(x)) solves the following system

∂tρ
t + v · ∇xρ

t = ∇v(ν(t, x, v)ρ
t),

ν(t, x, v) = γ(x, v) ∗ ρt + η∇xψ
t(x) + Fext(x),

∂sψ
s(z) = D∆zψ − κψ + g(z, ρs), ψ0 = ψin,

ρ0(x, v) = µin(x)δ(v − uin(x)).

The Euler system in Theorem 1.2 can be compared to the model of vasculogenesis
in [34], which reads: ∂tµ

t +∇(utµt) = 0
∂t(µ

tut) +∇(µt(ut)⊗2 + P (µt)) = −νµtut + µt∇ψt
∂sψ

s = D∆ψ − κψ + χ ∗ µs, s ∈ [0, t],

with P denoting a pressure term.
The friction term can be easily introduced in our model, without changing qualita-

tively the results, and of course the exterior force Fext can be reduced to zero.
The main difference between system (10) and the Euler system in Theorem 1.2 is

the pressure term, which is replaced by the nonlocal term. This gives a derivation
from microscopic setting of a the phenomenological pressure gradient non local in the
density. The recent paper [40] presents a systematic study of the long-time swarming
behavior of hydrodynamic Euler system accounting both alignment interaction and
pressure term.

4We suppose this regularity because it is somehow standard for mixed hyperbolic-parabolic systems (see [27, Theorem 2.9 p. 34 ], one

certainly could low it down.
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Nevertheless our derivation is not fully satisfactory in the sense that it uses the
very unsatisfactory monokinetic hypothesis on the initial data at the microscopic level.
This hypothesis infers a very strong constraint on the initial data: they have to be
included in an Nd submanifold of the 2Nd dimensional phase space, instead of having
the freedom of filling the entire phase space R2Nd.
This remark suggests that the following question arises naturally: are the zeroth and

first moments (in v) of the solution to the Vlasov system with general initial data ρin

well approximated by the solution of the Euler system with initial data the zeroth and
first moments of the initial condition ρin (see Section 3 for details)?
The numerical study of this question is one of the main objectives of the present

article.
The paper is organized as follows: Section 2 review the previous numerical results

established for the particle, Vlasov and Euler systmes. In Section3 we state the setting
and motivations of our computation, whose precise results are contained in Section
4. We finish by Section 5 devoted to perspectives. The numerical tools used in the
computations are exposed in Appendix A. Let us finish this section by recalling the
three following dynamics involved in this paper, denoted by (P) for (Particles), (V) for
(Vlasov) and (E) for (Euler).

(P )



ẋi = vi, v̇i = Fi(t,X(t), V (t)), (X(0), V (0)) ∈ R2dN

Fi(t,X, V ) = 1
N

N∑
j=1

γ(vi − vj, xi − xj) + η∇xφ
t(x)i + Fext(xi),

∂sφ
s(x) = D∆xφ− κφ+ f(x,X(s)), s ∈ [0, t], φ0 = φin,

f(x,X) =
N∑
j=1

χ(x− xj);

(V )



∂tρ
t + v · ∇xρ

t = ∇v(ν(t, x, v)ρ
t), ρ0 = ρin ∈ P(R2d)

ν(t, x, v) = γ ∗ ρt(x, v) + η∇xψ
t(x) + Fext(x),

∂sψ
s(x) = D∆xψ − κψ + g(x, ρs), ψ0 = φin.

g(x, ρs) = χ ∗ ρs(x).

(E)


∂tµ

t +∇(utµt) = 0

∂t(µ
tut) +∇(µt(ut)⊗2) = µt

∫
γ(· − y, ut(·)− ut(y))µt(y)dy + ηµt∇ψt + µtF

∂sψ
s = D∆ψ − κψ + χ ∗ µs, s ∈ [0, t],
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2. Previous numerical results

2.1. Particle dynamics. The discrete-continuum hybrid system investigated in [16]
correspond to (P ) with d = 1, choosing a Cucker-Smale like interaction function

(10) γ (vi − vj, xi − xj) =
1(

1 +
∥xi−xj∥2

R2

)β (vj − vi)

where β > 0 is the alignment parameter and R > 0 is the radius of the disk modelling
each particle.
Initial data are given by initial position and velocity for each particle:

X(0) = X0, V (0) = V0,

with X(t) = (x1(t), . . . , xN(t)), V (t) = (v1(t), . . . , vN(t)) for any t ≥ 0, and by the
initial concentration of signal, that it is assumed

φ0 = 0.(11)

On a linearised version of the system, authors analytically prove that the particles’
aggregate exponentially converges to a state in which all agents share the same posi-
tion, and the velocity converges to zero. The behavior of the full nonlinear system is
investigated with a numerical approach, showing a good agreement between numerical
simulations and the theoretical results on the linearised version.

2.2. Vlasov equation. In the present literature, several numerical methods for mean
field Vlasov equations have been proposed (see [1, 7, 8] for seminal papers in the
field). In particular, in [1], several stochastic Monte Carlo methods, improving classic
Monte Carlo approaches, are presented, whereas in [8] deterministic splitting methods,
together with semi-Lagrangian and flux balance methods, are analyzed. To the best
of our knowledge, the structure of system (V), where a Vlasov-like equation is coupled
with a parabolic diffusion equation, has not been investigated from a numerical point
of view. For that reason, in this paper we will show numerical simulations of the novel
setting.

2.3. Euler system. Numerical investigations on pressurless Euler systems, without
chemotaxis, have been presented in [9]. Previous analytical results on this kind of
system have been obtained in [5]. Authors use a Lagrangian numerical scheme to
approximate the solution of one dimensional hydrodynamic systems. In particular,
numerical simulations with different initial data are performed, in order to investigate
regularity of the solutions, comparing global solutions and solutions exhibiting finite
time blow up.

3. Setting and motivation of the present numerical study

In the present paper, we study numerically the solutions of the Vlasov and Euler
systems, for various alignment models and with and without chemotaxis.
Precisely, we will study the case (10) with λ = R = 1, for various values of the

parameters β and η. As we have seen in Section 2.1, parameter β leads to conditional or
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unconditional flocking for the Cucker-Smale model, which can be obtained considering
η = 0. Values of η ̸= 0 introduces the coupling of the microscopic system to the
chemical activity. Here we are interested in positive chemotactic phenomena, since
cells move towards higher concentration of chemical, hence in the following we will
consider η > 0.
The path

microscopic −→ V lasov −→ Euler

corresponds to successive lacks of knowledge of the system: the meanfield limit, leading
to the Vlasov equation, is obtained out of the microscopic system by averaging on all
particles but one, and the passage from Vlasov to Euler retains only the moments of
order zero and one in the momentum of the solution.
On the other side, the benefit of these succesive transformation is clear: the kinetic

Vlasov equation deals with probabilities on finite dimensional phase spaces instead of
the infinite dimensional ones of the original system, and the Euler setting describes
the system by mean of densities and velocity fields on physical (configuration) spaces,
that is quantities directly observable.
Finally, as explained in Section 1, the passage form Vlasov to Euler was obtained by

a monokinetic hypothesis on the solution to Vlasov of the form ρt(x, ξ) = µt(x)δ(ξ −
ut(x)), shown to be rigorously equivalent for the couple (µt, ut) satisfying the Euler
system. If we notice that for any ρt of this form, one might wonder if, for more general
(non monokinetic) solution to Vlasov, the quantities defined by (12) still satisfy, at
least approximatively, the Euler system of equations. From a numerical point of view,
this would be even more appealing for computations based on finite difference schemes,
since solving a system of two PDEs, each of them in a m− dimensional space, is much
more economical than solving one, having dimension 2m .
The motivation of our work is therefore threefold.

(i) show that the different features of the microscopic dynamics observed numerically
in Section 2.1 are still present in the numerics of Vlasov and Euler situations.

(ii) compare, for ρin non-monokinetic, the moments of the solution to Vlasov as
defined by (12) with the solution of the Euler system with initial data

(12)

{
µin(x) =

∫
ρin(x, ξ)dξ

uin(x) =
∫
ξρin(x, ξ)dξ

(iii) evaluate on the settings (i) and (ii) the influence of the chemical coupling by
varying the value of the parameter η from 0 to > 0.

4. Main results

In the following section we present our main numerical results. The aim of this pa-
per is to analyze numerically some of the open problems related to generalizations of
theoretical results obtained in [32]. Our aim is to present numerical insights concern-
ing general initial data, far from the mono-kinetic one, and to investigate the role of
chemical gradients at kinetic and hydrodynamic level. We restrict ourselves to observe
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the behavior of the solutions of systems (P), (V) and (E) in the 1-dimensional case
(d = 1), leaving higher dimensional cases for future research.

4.1. Numerical Simulations of (P) and (V). In this section we present numerical
test of (V), investigating the role of alignment and chemotaxis on the overall dynamics.
In each of the proposed tests we present the comparison with the particle system (P).
The schemes implemented to approximate the solution of (P) and (V) are based on

finite difference approach, both for the particle/kinetic dynamics and for the parabolic
equation coupled to the systems. Details of the different schemes can be found in the
Appendix A.
We run the different numerical codes on a laptop equipped with an Intel Core i7-

1060NG7 processor and 16 GB RAM.

4.1.1. alignment without chemotaxis. Negletting chemotaxis and considering only an
alignment kind of interaction, systems (P) and (V) reduce to a Cucker-Smale model in
a particle and kinetic regime, respectively. In the following we compare the numerical
solution of the following system, hence comparing the particle and the kinetic level,
respectively: 

ẋi = vi,

v̇i =
1

N

N∑
j=1

1

(1 + |xi − xj|2)β
(vj − vi)

(13)


∂tρ

t + v∂xρ
t = ∂v(ν(t, x, v)ρ

t),

ν(t, x, v) =

∫
R2

v − w

(1 + |x− y|2)β
ρt(y, w)dydw.

(14)

As already stated, numerical simulations of this kind of Vlasov equation have been
already performed in [1, 7].
With respect to the previous work of the literature, here we consider a different nu-

merical scheme, based on finite difference. In order to show that the obtained numerical
solution is in good agreement with the results in [7], in this section run the numerical
code starting with the same initial distribution

(15) ρ0(x, v) =
1

2πσxσv
e

−x2

2σ2x

(
e

−(v+v0)
2

2σ2v + e
−(v−v0)

2

2σ2v

)
.

with v0 = 3.5, σx =
√
0.1, σv =

√
0.5.

We consider two different scenarios, depending on the value of β. In fact, as proved
in the seminal paper [21], if β > 0.5 convergence to a uniform velocity is not ensured.
On the contrary, if β ≤ 0.5, the distribution function ρ tends to concentrate on a delta
function in the velocity space and to be distributed only along the spatial dimension.
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The phase space representation is obtained using the space-velocity domain [−20, 20]×
[−5, 5], with ∆x = ∆v = 0.1. The time interval [0, T ] = [0, 5] with ∆t = 0.001.
Figure 1 shows three different screenshots of a numerical simulation performed with

β = 0.05. In the microscopic scale, particles’ velocities tend to a common one. In
a similar way, we observe that the distribution function tends to be distributed only
along the spatial dimension, concentrating around the null value in the velocity space.
Figure 2 shows three screenshots of a numerical simulation performed with β = 0.95.
We observe that, in that case, velocities do not converge to a common one.
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Figure 1. Test1: Numerical simulation of Cucker-Smale model with β = 0.05, at particle level (first
line) and kinetic (second line) level.
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Figure 2. Test2: Numerical simulation of Cucker-Smale model with β = 0.95, at particle level (first
line) and kinetic (second line) level.

4.1.2. alignment with chemotaxis. On the microscopic scale, the coupling between
Cucker-Smale model and chemotaxis reads:

ẋi = vi,

v̇i =
λ

N

N∑
j=1

1

(1 + |xi − xj|2)β
(vj − vi) + η∂xφ(xi),

∂tφ = D∂2xφ− κφ+
N∑
j=1

χ(x− xj),

(16)
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Let now focus on the novel coupled Vlasov-chemotaxis system, which reads as

∂tρ
t + v∂xρ

t = ∂v(ν(t, x, v)ρ
t),

ν(t, x, v) =

∫
R2

v − w

(1 + |x− y|2)β
ρt(y, w)dydw + η∂xψ

t(x),

∂sψ
s(x) = D∂2xψ − κψ +

∫
R

∫ x+R

x−R
ρs(y)dydξ,

(17)

with R, η > 0.
To the best of our knowledge, there is no other works of the literature showing a

numerical approach to this coupled system. The obtained results, and the comparison
with the corresponding particle simulations, are not obvious and give some interesting
insights.
Parameters used in the presented simulation are: R = 10∆x, D = 1, κ = 0.01,

η = 1.4. We consider a null initial data for the chemical concentration, ψ0 = 0 and the
same initial distribution of the previous simulation, defined in (15).
Starting from the particle level, in [16] it has been proved that the introduction of

chemotactic effects ensure convergence to a flocking state for the Cucker-Smale model,
even in the cases of conditional flocking (β > 0.5). Figure 3 shows three screenshots of
a numerical simulation of (17). In order to compare the behavior in the case without
chemotactic interactions, we consider the same parameter setting of the simulation
shown is Figure 2. Numerical evidence show that, due to the presence of a chemotactic
gradient, the behavior analytically proved on the microscopic scale, is recovered also
in the kinetic regime.
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Figure 3. Test3: Numerical simulation of Cucker-Smale model with chemotaxis at particle level (first
line) and kinetic (second line) level, with β = 0.95 and η = 1.4.
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4.1.3. chemotaxis without alignment. In order to investigate the role of the alignment
term, we here show the result of a numerical simulation in the case of a pure chemotactic
kind of interaction. We consider system (17), negletting the alignment interactions,
hence the integral term. The evolution in time of the density is influenced by the
gradient of the chemicals. At particle level, the absence of alignment results in an
oscillatory behavior of the particles around the center of mass. Figure 4 shows three
screenshots of a numerical simulation, at three different time instant. The initial
condition is the same of the previous tests. We observe that the oscillating behavior
observed in particle dynamics, is reproduced even at the kinetic level.

∂tρ
t + v∂xρ

t = ∂v(ν(t, x, v)ρ
t),

ν(t, x, v) = η∂xψ
t(x),

∂sψ
s(x) = D∂2xψ − κψ +

∫
R

∫ x+R

x−R
ρs(y)dydξ,

(18)
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Figure 4. Test 4: Numerical simulation of (18) with η = 1.4

4.2. Numerical Simulations of (E). We present some numerical simulations of (E),
both in absence and in presence of chemotaxis. This model writes as a hyperbolic-
parabolic non local system for macroscopic quantities: density, momentum and con-
centration of a chemoattractant.

∂tµ
t + ∂(utµt) = 0

∂t(µ
tut) + ∂(µt(ut)2) = µt

∫
γ(· − y, ut(·)− ut(y))µt(y)dy

+ηµt∂xψ
t

∂sψ
s = D∂2xψ − κψ +

∫ x+R

x−R
µs(y)dy, s ∈ [0, t].

(19)
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As for system (V), we will investigated, from a numerical viewpoint, the effect of
chemotaxis on the solution, comparing two cases: η = 0 and η ̸= 0. The final aim is
in fact to gain some numerical insights on the role of chemotaxis on the solution of
pressureless Euler system.

4.2.1. without chemotaxis: finite time blow up of solution. As a first step, we neglect
chemotaxis, and system (19) reduces to a 1-dimensional pressureless Euler-alignment
system: 

∂tµ
t + ∂(utµt) = 0

∂t(µ
tut) + ∂(µt(ut)2) = µt

∫
γ(· − y, ut(y)− ut(·))µt(y)dy(20)

Analytical results and numerical insights on the stability of flock solutions for this
system can be found in [10, 9]. In [10], authors distinguish between supercritical and
subcritical region: initial data lying in the supercritical region lead to blow up of
the solution, whereas starting with data in the subrcritical region global existence
of the solution is ensured. In [9] different numerical simulations, with data lying in
both regions, are performed. In particular, numerical simulations are performed in the
spatial domain [−0.75, 0.75] discretized with 200 uniformly distributed points, choosing
initial data

(21) µ0(x) = c1 cos
(πx
1.5

)
,

(22) u0(x) = −c2 sin
(πx
1.5

)
where c1 is the normalization factor, and c2 > 0 is varied in the different simulations,
in order to show the behavior of the solutions.
With respect to the Lagrangian numerical scheme adopted in the previous paper, we

here implement a finite difference numerical scheme based on a Relaxation scheme for
Euler system [2]. Starting with the same initial data, the obtained results are in good
agreement with the ones in [9].
Figure 5 (first line) shows the density and velocity profile obtained for c = 0.2 for

three different time instants. This case correspond to initial data in the subcritical
region, and the convergence of the velocity to zero correspond to the expected global
consensus. On the contrary, figure 5 (second line) shows the density and velocity profile
obtained for c = 0.5, which correspond to initial data in the supercritical region. The
velocity profiles, with derivative getting larger negative at the origin as time goes,
reflect in high values of the density solution, which almost cannot be solve numerically
after t ≈ 3.
The obtained results represent the starting point for some numerical investigations,

concerning the effect of the introduction of a chemotactic effect and a damping term.
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Figure 5. Test5: Numerical simulation of (20)-(22) for c2 = 0.2 (first line) and c2 = 0.5 (second line).

4.2.2. with chemotaxis and/or damping. Let now consider the full Euler-coupled sys-
tem in (19), also adding a possible damping term:

∂tµ
t + ∂x(u

tµt) = 0

∂t(µ
tut) + ∂x(µ

t(ut)2) = µt
∫
γ(· − y, ut(·)− ut(y))µt(y)dy

+ηµt∂xψ
t − αµtut

∂sψ
s = D∂2xψ − κψ +

∫ x+R

x−R
µs(y)dy, s ∈ [0, t].

(23)

where η and α are nonnegative constants regulating the chemotactic and the damping
influence, respectively.

Concerning the numerical scheme, we put in implicit the damping term in the equa-
tion of the momentum, and approximate the solution of the parabolic equation as
already explained.
Figure 6 shows the results of three different tests. First, we simulated the setting

with data in the subcritical region already seen (c2 = 0.2, α = 0) adding the chemical
influence (η = 1). Numerical evidence show that the global consensus is still preserved,
and the addiction of a chemotactic influence enhance the effect. In the other test
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Figure 6. Test6: Numerical simulation of (23) with initial condition (21),(22). First line: c2 = 0.2,
η = 1, α = 0; second line: c2 = 0.5, η = 1, α = 0; third line c2 = 0.5, η = 0, α = 1.

(Figure 6, second and third lines) we investigate the role of chemotaxis and damping
in suppressing the blow-up phenomena (c2 = 0.5). Numerical evidence (Figure 6,
second line) show that a pure chemotactic effect (η = 1, α = 0) enhance the blow-up
phenomena: density value at the origin is higher than the case without chemotaxis,
and the derivative of the velocity is sharper. The presence of a damping term seems to
play the crucial role, as shown in (Figure 6, third line). Here, the blow up exhibited in
the same setting without damping (see Fig. 5) is recovered: velocity converges to zero
and global consensus is reached.



16 M. MENCI, R. NATALINI, AND T. PAUL

4.3. Numerical comparison between (V) and (E). We introduce the following
notation for the zero-th and first order moments of the solution ρ, respectively

(24) νt0(x) =

∫
ρt(x, ξ)dξ,

(25) νt1(x) =

∫
ξρt(x, ξ)dξ

In the following we compare, for different choices of ρ0 involving different scenar-
ios, ranging from almost monokinetic to largely non-monokinetic, the moments of the
solution to Vlasov with the solution of the Euler system with initial data

(26)

 µ0(x) = ν00(x)

Q0(x) = ν01(x)

where Qt := µtut denotes the momentum for any t ≥ 0.
We now compute initial data (µ0, Q0) for the Euler system as defined in (26), and we

numerically solve (E). As in the previous simulations, we will consider two scenarios:
without and with chemotaxis. Our aim is to compare the behavior of νt0 and νt1 with
density µt, and momentum Qt, in order to investigate, from a numerical view point,
the case of non monokinetic initial data.

4.3.1. Monokinetic initial data. We recall that analytical results obtained in [32] ensure
a complete correspondence between Vlasov moments and Euler solutions, in case of
monokinetic initial data. As a preliminary test, we consider a numerical approximation
of the monokinetic initial data, choosing a gaussian distribution with low value of σv
parameter. In greater detail, in this test we choose

(27) ρ0(x, v) =
1

2πσxσv
e

−(x−x0)
2

2σ2x
+

−(v−v0)
2

2σ2v .

with x0 = −2, v0 = 1.5, σx =
√
0.2, σv =

√
0.001. Clearly, even choosing a small

value for σv, we are considering an approximation of the monokinetic case, and we do
not expect a full correspondence with the analytical results on this case. We choose
initial conditions for (E) are defined as in (26), and run the simulations for the case
without and with chemotaxis.
Figure 7 shows the plot of ρ0 in the phase space, and the profile of initial data for

(E) (blue dotted line), which are defined in (26) and correspond to Vlasov moments
(cyan line) . Figure 8 shows the behavior, at the same time instant t = 2, of νt0 and
νt1 together with µ

t and Qt respectively, both without (first line) and with chemotactic
effect (second and third line). The evolution of Vlasov dynamics preserve the monoki-
netic (approximated) initial structure, and Vlasov moments and Euler solutions are
in good agreement when simulating the case without chemotaxis. Numerical evidence
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show that adding chemotaxis, the approximated monokinetic-like structure is not pre-
served for long time. As already observed at particle level, the presence of a chemical
gradient influencing the dynamics tends to concentrate the density profile in the same
point, and to asymptotically let the velocities converge to zero. This can be seen in the
phase space (first column, second line). Moreover, introducing also a damping term,
the momentum tends to zero faster (third line). Focusing on the Vlasov moments,
we observe that as soon as the monokinetic structure is lost, the agreement between
Vlasov moments and Euler solution is worse. In particular we observe a blow-up of the
density profile. In conclusion, the monokinetic property seems to play a crucial role.
For that reason we exploit with several tests the case of largely non monokinetic initial
data.
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Figure 7. Test 7: Initial condition

4.3.2. Non monokinetic initial data. In section 4.1 we already considered a non monoki-
netic initial data for Vlasov equation, see (15). In particular, Test 2 and Test 3 exploit,
at kinetic level, the case without and with chemotaxis. We complete our multiscale
analysis, choosing as initial data for Euler equation (26) with initial distribution func-
tion as in (15). Figure 9 shows initial conditions for the following Test 8 and Test
9.
In Test8 we compare the moments νt0 and νt1 of the solution of (14)-(15) with the

solution of system (20) with initial conditions (26). Since u0(x) = 0, the velocity ut

remains zero, being a stationary solution for Euler system. On the contrary, the first
order moment profile shows the separation due to the effect of speeds. As shown in
Figure 10, there is no agreement between Vlasov moments and Euler solutions. This
in due to the fact that, in Euler system, the role of v as a variable is lost.
Let now solve (23), with η = 1.4. Figure 11 shows three different snapshots of the

numerical simulation performed. At the beginning, we observe that the spreading of
the speed in the density, solution of Vlasov equation, is stronger than the chemistry,
and two separate peaks appear. With respect to the previous case, the presence of the
chemotactic gradient prevent the separation observed for longer time, leading to the
convergence to a unique bump. Concerning the first order moment (Vlasov) and the
momentum (Euler), at the beginning they are both null. Due to the presence of chem-
icals, ut(x) = 0 is no longer a stationary solution for Euler but asymptotically in time
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Vlasov phase space νt
0 and µt νt

1 and Qt
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Figure 8. Test 7: approximation of monokinetic initial data. Comparison between zero-th order moment
of the solution of (V) and µt (second column), first order moment of the solution of (V) and Qt (third
column): without chemotaxis (first line: η = 0, α = 0 at t = 2), with chemotaxis (second line: η = 0.2,
α = 0 at t = 2), with chemotaxis and damping (third line: η = 0.2, α = 2 at t = 2).

moment and momentum decay to zero, as seen at particle level, and the convergence
is faster adding the damping term.
We observe that, as time grows, the agreement between Vlasov moments and Euler

solution is quite good especially for the density. One could think that chemical plays
the crucial role. For that reason we consider the scenario without alignment, where only
a chemotactic effect rules the dynamics. At kinetic level, we have already discussed
the results (see Test 4 and Figure 4). Figure 12 shows the results of the comparison.
We observe that the agreement between Vlasov moments and solutions of Euler is
not recovered. The zero-th order moment shows the observed oscillations, with two
bumps separating and merging, as reflecting by the sign of the first-order moment.
The oscillating behavior is not reproduced in the solution of Euler, where the speed
variable does not play a role as in Vlasov. To conclude, numerical evidence shows
that, starting with a non monokinetic initial data exhibited in Figure 9 the combined
effect of alignment kind of interaction and chemotaxis asymptotically leads to a good
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agreement. Numerical evidence seems to suggest that the combination of alignment
and chemotaxis play a crucial role in the comparison among the two scales.
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Figure 9. Test8, Test9, Test10: Initial condition
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Figure 10. Test 8: Comparison between zero-th order moment of the solution of (V) and µt, first order
moment of the solution of (V) and Qt at a),b) t = 1, c),d) t = 3. Here η = 0 (no chemotaxis), α = 0.
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Figure 11. Test 9: Comparison between zero-th order moment of the solution of (V) and µt, first order
moment of the solution of (V) and Qt at a),b) t = 0.5, c),d) t = 1, e),f) t = 7. Here η = 1.4, α = 0.
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Figure 12. Test 10: Comparison between zero-th order moment of the solution of (V) and µt, first order
moment of the solution of (V) and Qt at a),b) t = 0.5, c),d) t = 2, e),f) t = 3. Here η = 3.4, α = 0 and
the integral term in (E) is negletted.
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5. Comments and perspectives

Let us remind the link between the particle system (1)-(4) and the corresponding
Vlasov system (6)-(9). One first consider a ‘chaotic” probability density

(28) ρinN := (ρin)⊗N

on R2dN , ρin being a probability density on R2d. The meaning of ρinN (XN , ZN) =
ρN(x1, . . . , xN ; v1, . . . , vN) is clear : it is the probability that every particle indexed by
i = 1, . . . , N is at the position xi and has the velocity vi. The hypothesis (28) means
that all particle are in the same initial “state”, namely have the same probability
distribution in phase space (chaotic assumption). To ρinN we associate for any time t
its pushforward

(29) ρtN := Φt#ρin

by the flow Φt
N defined by (5), strictly tight to the particle system. Note that if Φt

N

defined by (5), i.e. the particle system (1)-(4), define ρtN , the inverse is also true: the
knowledge of ρtN for every ρinN determines Φt

N . Once again the link between the particle
and the Vlasov systems works the following way: to the N -particle distributionρtN =
Φt#(ρin)⊗N we associated its first marginal (ρtN)N ;1 whose definition is recalled in the
footnote 1, proved to tend as N → ∞ to the solution of the one-particle Vlasov system
(6)-(9) with initial data ρin. Of course, at time t = 0 the consistency is total, even at
N fixed, since for any integer N , tautologically

(30) (ρt=0
N )N ;1 = ((ρin)⊗N)N ;1 = ρin,

so that the initial probability distribution for the Vlasov equation is nothing but the
common initial probability distribution of each particle for the particle system . But
(30) is not anymore valid for t > 0 since the interaction between particle breaks the
factorization property (28): (ρtN)N ;1 ̸== ρt but, as N → ∞, (ρtN)N ;1 → ρt. To put it
in a nutshell:
averaging a particle system over all particles but one leads when the number of particle

diverges to a nonlinear one-particle conservation law driven by the vector field obtained
by averaging the original one by the solution itself.
This last aphorism shows clearly that the link between particle systems and thier

corresponding Vlasov’ s noes is subtle, more subtle according to us (us?) than a
simple discretization of a PDE. It correspond to a somehow mysterious, at lesat non
trivial, intertwining property between two averaging process: a first one on moving
(N − 1) particle and a second one on the generator of a 1-particle conservation law.
Although this propagator is related to the original particle system, the fact that this
intertwining holds true is not obvious, and, more than that, it seems to us that the
phenomenological comparison of the solution of a particle system and its associated
Vlasov one - a fortiori when one adds the Euler one - is an issue, specially considering
the fact that different computational complexities are involved. This is what we believe
is the interest of our work.
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Indeed in this paper we investigated numerically three different levels of descriptions
of several models of dynamics of interacting cells subject to chemotaxis: the microscopic
particle one (P ), introduced in [17], the phase space (position-momentum) density
Vlasov type description (V ) and the physical space density-velocity field Euler type
description (E), these two last ones having been introduced and analytically studied
in [32].
Although each passage between the three levels consists in loosing some information

- averaging on every but one particle and letting the number of particles diverge for
(M) → (V ) and taking only zeroth and first moments in velocity for (V ) → (E) -
we show that in many situations the most striking features of the particle level (P ) -
conditional and non conditional alignment, chemo-attraction - are preserved by passing
from the paradigm of N particles to the one of Vlasov at N → ∞. Obviously this seems
to us an interesting result as solving a 2D PDE is numerically more easy than a truly
infinite number on ODE.
For the passage (V ) → (E), realizing an even more economical numerical gain as

passing from a 2D PDE to a system of two 1D PDEs, the situation is more diverse:
the fidelity of Euler versus Vlasov is always increased by the presence of the chemical
interaction (in fact the mixing of the alignment and chemotaxis), leading to positive
results event for systems not presenting the condition of a corresponding rigorous math-
ematical result. In this framework the sensitivity to the form of the initial condition
remains a serious issue.
The first perspectives following this work will be the case of two dimensional setting

for the particle system, that is 4D Vlasov equation, and to inquire the (possibly very)
long time behavior of all these correlations between three different scales description
of biological systems.

Appendix A. Numerical schemes

In the following we detail the numerical schemes used for the numerical simulations
of the different equations.
Particle level: numerical scheme for (P)
For the ODE part of the coupled system, we implemented the well-known implicit

Euler method, whereas the chemotaxis equation is discretized computing at each time
the value of the solution on grid point discretizing the spatial domain.
We consider the simulation time interval [0, T ], for some T > 0, divided into subinter-

vals of same size ∆t, assuming that T is a multiple of ∆t to avoid rounding. We define
nT := T

∆t ∈ N, and denote the time grid points as {t0, . . . , tnT}. Finally, (xki , vki ) denote
approximations of position and velocity of agent i at time tk, for any i = 1, ..., N ,
k = 1, ..., nT starting with initial condition (x0i , v

0
i ).
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Focusing on the chemotaxis equation, we eliminate the stiff degradation term per-
forming the classical exponential transformation φs(x) = e−κsus(x), where u solves

(31) ∂tu = D∂2xu+ eκt
N∑
j=1

χ(x− xj),

We approximate the solution by means of a second order centered finite differences
method in space and a classical explicit-implicit Crank-Nicholson integration in time,
assuming periodic boundary conditions. The computational domain Ω × [0, T ], for
some Ω ⊂ R, is divided in cells of side ∆x × ∆t, where ∆x denotes the space step,
and the time step is the same used for the ODE part. We denote with nΩ the total
number of the spatial grid points {ω0, . . . , ωnΩ}. In greater details, denoting with ukl
the approximation of u at the grid point (yl, t

k), the numerical scheme reads

(32)

uk+1
l − ukl
∆t

= D
ukl−1 − 2ukl + ukl+1

(∆x)2
+

1

2
eκ(k+1)∆t

N∑
j=1

χ(yl − xk+1
j )

+
1

2
eκk∆t

N∑
j=1

χ(yl − xkj )

The coupling between the particle dynamics and the chemotaxis equation is realized by
means of the gradient of φ, evaluated, at each time instant tk, in the position of agent
i at that time. The values of the gradient at grid points is approximated with centered

difference, i.e. ∂lφ
k ≈ φk

l+1−φk
l−1

2∆x . Since xki does not necessarely correspond to one of the
grid point yl, we approximate ∂xφ

s at time tk with a linear interpolation of the values
of the gradient at the nearest grid points, in the following denoted as Φxki

(∂lφ
k).

Recalling the choice of γ performed in (10), the numerical scheme implemented for
(P ) reads 

vk+1
i = vki +

∆t
N

N∑
j=1

vk+1
j −vk+1

i(
1+∥xki−xkj∥

2
)β + η∆tΦxki

(∂lφ
k)

xk+1
i = xki +∆tvk+1

i

φkl = e−κk∆tukl with ukl approximated as in (32)

(33)

Kinetic level: numerical scheme for (V)
Let now focus on system (V). The computational domain Ω× [0, T ] is divided in cells

of side ∆x × ∆v × ∆t where ∆x, ∆v, are the space and velocity steps and ∆t is the
time step. Let us assume that T is a multiple of ∆t to avoid rounding.
We choose Ω as a rectangular domain of size nx∆x × nv∆v, with nx, nv ∈ N the

number of inner point discretizing the space and velocity domain. The generic point of
the 2-dimensional grid is hence denoted as (xi, vj) with i = 0, ..., nx, j = 0, ..., nv. We
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consider periodic boundary condition with respect to the x variable, and null condition
with respect to the v variable. For any time instant tk we denote the approximation
of ρ and ν at (xi, vj) with ρki,j and Vk

i,j, respectively. The first-order upwind scheme
implemented reads:

ρk+1
i,j − ρki,j

∆t
= − vj

2∆x

(
ρki+1,j − ρki−1,j

)
+

|vj|
2∆x

(
ρki+1,j − 2ρki,j + ρki−1,j

)
− 1

2∆v

(
ρki+1,jVk

i+1,j − ρki−1,jVk
i−1,j

)
+

1

2∆v

(
ρki+1,j

∣∣Vk
i+1,j

∣∣− 2ρki,j
∣∣Vk

i,j

∣∣+ ρki−1,j

∣∣Vk
i−1,j

∣∣) .
(34)

At each time step, a CFL condition of the form

(35) 1− ∆t

∆x
|vmax| −

∆t

∆v
max
i,j

Vk
i,j ≥ 0

must be satisfied.
As at particle level, we approximate the solution of the chemotaxis equation by

means of a second order centered finite differences method in space and a classical
explicit-implicit Crank-Nicholson integration in time. The only difference is given
by the source term. We approximate the two-dimensional integral in (17) using a
rectangular quadrature formula. In greater details, it holds:∫

R

∫ x+R

x−R
ρs(y)dydξ ≈

∑
m,n:

xm∈[xi−R∆x,xi+R∆x],
n=0,...,nv

ρkm,n∆x∆v

Concerning the coupling through the gradient, the approximation of ∂xψ is required
at spatial grid point. We approximate its value at each time instant using centered

finite difference ∂iψ
k ≈ ψk

i+1−ψk
i−1

2∆x .
Macroscopic level: numerical scheme for (E)
We describe the numerical scheme for the most general Euler system. The scheme

used for system (20) and (23) can be obtained simply considering ε = 0, η = 0, α = 0
and ε = 0, respectively.
Denoting W = W (x, t) = (µt(x), µt(x)ut(x))T the vector of unknowns, density and

momentum, we rewrite the hyperbolic part as

(36) Wt + A(W )x = S(W ),

where A and S are defined as follow:

A(W ) =

(
µu

µu2 + εP (µ)

)
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S(W ) =

(
0

µ
∫
γ(· − y, u(·)− u(y))µ(y)dy + ηµ∂xψ − αµu

)
We approximate the solution at each time step starting from the relaxation tecniques

originally proposed in [?] In few words, the idea is to approximate hyperbolic system
of equations through a BGK relaxation, which leads to a linear advection system with
a relaxation source term. The advantage lies in the fact that at each time step tk, in
order to find the solution at tk+1, it is required to solve a system of linear, transport
problems, which reduces the computational complexity.
We denote with X ⊂ R the computational domain. We approximate the solution

of Euler system W k
i = (µki , µ

k
i u

k
i )
T and of the parabolic equation ψki at each point of

the grid xi = i∆x, i = 1, ..., nx − 1. At boundary, we assume W0 = Wnx = (0, 0)T

The parabolic equation is approximated using the classical explicit-implicit Crank-
Nicholson method, as previously explained. The algorithm requires to first solve a
homogeneous system of equations and then a time integration of the source part is
performed. Let now focus on the homogeneous part of (36). Using BGK approximation
with two velocities of equal speed and opposite sign, i.e. λ1 = λ = −λ2 we denote with
fr = (fµr , f

µu
r ), r = 1, 2, the components of BGK model approximating W . For a

complete description of the relaxation technique see [?]. At each time iteration we
solve

(37) ∂t

(
f1
f2

)
+


λ 0 0 0
0 λ 0 0
0 0 −λ 0
0 0 0 −λ

 ∂x

(
f1
f2

)
= 0

with initial states given by the Maxwellian functions

(
f01
f02

)
=

1
2

(
W (x, 0) + A(W (x,0))

λ

)
1
2

(
W (x, 0)− A(W (x,0))

λ

)
Denoting with (fr)

k
i , the approximated value of fr, at time tk at grid point xi, we

compute (fr)
k+1/2
i running the following numerical upwind scheme:

(fr)
k+1/2
i = (fr)

k
i −

∆t

2∆x
λkr

(
(fr)

k
i+1 − (fr)

k
i−1

)
+

∆t

2∆x
|λkr |

(
(fr)

k
i+1 − 2(fr)

k
i + (fr)

k
i−1

)
for any i = 1, ..., nx, r = 1, 2, with λk1 = maxi

(
|uki |+

√
P ′(µki )

)
, λk2 = −λk1. The

stability of the scheme is guaranteed choosing, at each time step, ∆tk = 0.9∆x
λk1
.

The solution W at time tk+1 is obtained adding the discretization of the source term
S(W ). The integral term and the chemotaxis gradient are treated explicitly, whereas
the damping term in implicit, due to stiffness problem. The approximated value of the
integral term, in the following denoted as Iki , is obtained by a first-order quadrature
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formula, which has to be solved at each iteration. Finally we get

W k+1
i = (f1)

k+1/2
i + (f2)

k+1/2
i +∆t

(
0, µki Iki + ηµki

ψki+1 − ψki−1

2∆x

)
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