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Abstract

In this article, we study some anisotropic singular perturbations for a class of linear
elliptic problems. A uniform estimations for conforming @1 finite element method
are derived, and some other results of convergence and regularity for the continuous
problem are proved.
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Introduction

The numerical study of singular perturbations problems keeps an important place nu-
merical analysis. Consider an elliptic problem P.(u.) = 0 where ¢ € (0,1] is a small
parameter. Let P p(uepn) = 0 be the numerical approximation of the continuous prob-
lem P.. The estimations obtained by a classical analysis, for instance, by the Céa’s
lemma, is of the form

h
ltten = ucla < € (1)

where || - ||q is some norm on a suitable space on €. To ensure a good numerical
approximation of the exact solution u. when € is very small one must take h very small
than e which is impractical from the numerical point of view. For some kind of numerical
scheme which called asymptotically preserved, that is when we have lim¢limjy u. ) =
limy, lime u, 5, one can obtain e—uniform estimations. In [1] J. Sin gave a simple method
to obtain such estimations. The idea is combining (1) with an other estimation of the
form

Hue,h - ueHQ S C(Eﬁ + h7)> (2)
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to obtain the e—uniform estimation
min( 25 )
[ten — uello < CR™Haw7,

For isotropic singular perturbations, which model diffusion phenomena in isotropic
medium, many authors studied conforming and non conforming Galerkin methods for
the following problem

—e?Au, + aue = f, with u = 0 on 99,

where Q is square or a cube and f is sufficiently regular (of class C?) with some com-
patibility condition, that is when f is zero on the edge of the vertices of 2. For instance,
in [2] a uniform estimation of the form |||uc s, — ucl|lo = O(h'/?) is proved, where ||| - |||o
is a variant of the energy norm. Some other quasi-uniform logarithmic estimations have
been proved, see for instance the references [4], [5], [6] and those cited therein.

In this article, we deal with anisotropic singular perturbations, which model diffusion
phenomena in anisotropic medium. We will prove some uniform estimations for the con-
forming Galerkin method in 2D and 3D for an elliptic problem with a general diffusion
matrix, and a source term with low regularity. A prototype of such problems is given
by the following bi-dimensional equation

— €02 ue — P uc = f. (3)

For the several results proved in this paper, we will consider different assumptions for
the regularity of f, we give here the principal ones

/e LX), (4)

f e HA(Q). (5)
We will deal with the following general set-up of (3) [7]
—div(AcVu,) = f in Q, (6)
supplemented with the boundary condition
ue = 0 in 09Q. (7)
Here, Q = w; X wy where w; and wsy are two bounded open sets of R? and RY~¢, with

N > ¢ > 1. We denote by = = (z1,...,7x) = (X1, X2) € R? x R¥N~7 i.e. we split the
coordinates into two parts. With this notation we set

Vx
(00, )T = [ VX)),
V ( 17 ’ N ) (vX2>

where

VX1 = (arm '~')8$q)T and VX2 = (8wq+1’ ""axN)T



The matrix-valued function A = (a;j)i<ij<n @ @ — Mn(R) satisfies the classical
ellipticity assumptions

e There exists A > 0 such that for a.e. x €
A()E - € > A¢]? for any ¢ € RY. (8)
e The elements of A are bounded that is
a;j € L°(Q) for any (i,5) € {1,2,...., N}2. 9)
For the H? estimations, we suppose that A satisfies the regularity assumption
ai; € Wh(Q) for any (i,7) € {1,2,...., N}?, (10)
and the boundary condition
For every i # j : a;; = 0 on 0S). (11)

We have decomposed A into four blocks

A A12>
A =
<A21 Az

where Aj1, Ay are ¢ x ¢ and (N — q) x (N — ¢q) matrices respectively. Notice that (8)
implies that A satisfies the ellipticity assumption

For a.e. 2 € O : Agy()Ey - £a > N|&o|? for any & € RNV™9, (12)

For € € (0, 1], we have set
A _ €2A11 €A12
‘ €Ag1 A

For the estimation of the global rate of convergence for the continuous problem, we
suppose the following additional assumption

The block Ass depends only on Xs (13)

The weak formulation of the problem (6)-(7) is

JoAVue - Vpdr = [, f edr, Ve € HY(Q) (14)
ue € HE (),

where the existence and uniqueness is a consequence of the assumptions (8), (9). The
limit problem is given by

- diVX2 (Aggvu) = f in Q, (15)



supplemented with the boundary condition
u(X1,+) = 0in dws, for X € wy. (16)

We recall the Hilbert space [§]

H&(Q§W2) = {

v € L*(Q) such that Vx,v € L2(Q)N ¢
and for a.e. X € wy, v(Xy,-) € Hi(ws) [’

equipped with the norm ||V x, ()| ;2(q)~-s- Notice that this norm is equivalent to

1/2
(IO + IV Olpa)
thanks to Poincaré’s inequality
1l z20) < Con VX0l 2 gyv-a » for any v € Hy(Q;ws). (17)

The space Hi(Q) will be normed by [|[V(-)]| 2o~ One can check immediately that

the embedding H{(Q)) < HE(Q,ws) is continuous. The weak formulation of the limit
problem (15)-(16) is given by

oy A22(X1, ) Vxu(Xy,-) - Vx,0d Xy = [, f(X1,-) d X, Vip € Hj(ws)
u(Xy,-) € H(ws), for a.e. X7 € wy,

(1)
where the existence and uniqueness is a consequence of the assumptions (9),(12). Recall
that we have u € H(Q;ws) and ue — u in H(Q;wy) as € — 0 [8]. Notice that for
¢ € HL(Q;ws), then for a.e X7 in wy we have (X7, ) € Hi(ws), testing with it in (18)
and integrating over wy yields

/ AV x,u - Vx,pdr = / f edr, Yo € Hy (S ws). (19)
Q Q

Notice that (19) could be seen as the weak formulation of the limit problem (15)-(16)
in the Hilbert space H}(2;ws) (thanks to Poincaré’s inequality (17)).

Finally, for the estimation of the global rate of convergence, let us recall this result
proved in our paper [8]

IV, (e — W)l 2y« < Ce, for f € HY (),

here H{(Q;wi) is similarly defined as H}(Q;ws). The main results of the article are
given in two sections:

e In the first section, we show a version of the previous estimation for more general
f, and we show some high order regularity estimations for the solutions u. and u,
for general domains in arbitrary dimension N > 2.

e In the second section, we use the results of the first section to analyse a ()1 finite
element method for problem (14) when €, is a square or a cube . In the case of
regular perturbation (i.e. no boundary layers), that is when f € H} N H?(Q), we



derive a uniform estimation of the form
1
HVX2 (uah — ’LLE) HLZ(Q)qu S Ch3 .

In the case of singular perturbation (i.e. with boundary layer formation), that is
when f € H?(Q2), we derive a uniform estimation of the form

1
1V x, (Ue,h - ue)HLZ(Q)qu < Chs.

Notice that throughout this article C'y 4 .. ete. denotes a generic positive constant de-
pending only on the objects f, A ... etc..

1. Some results for the continuous problem

1.1. Rate of convergence for general data

In this subsection, we suppose that the block A, satisfies the assumption
Oiaij S L”(Q),ﬁjaij S LOO(Q) fori=1,..,qand j=q¢+1,...,N. (20)

In [8] (Theorem 2.3), we have proved the following estimation.

Theorem 1.1. [8] Let Q@ = w; X wy where wy and wy are two bounded open sets of
R? and R4 respectively, with N > ¢ > 1. Suppose that A satisfies (8), (9), (13) and
(20). Let f € H} (2, w1), then there exists Cy g 4 > 0 such that:

Ve € (0,1] 2 IV, (e =)l 2oy < CraalllVx fll 2o + 1l 2) x & (21)

where wu, is the unique solution of (14) in HZ () and u is the unique solution to (19) in
HE(; wsy), moreover we have u € H(Q).

When f does not have the H{ regularity in the X direction i.e. f ¢ HE(Q,w1), we
will show a rate of convergence of order O(e®), 0 < s < 1. The argument is based on the
interpolation trick (see for instance [10]). In the above reference, Lions shows that every
H! function could be splitted into a H-function with a big H! norm, and a H!-function
with a small L2 norm, when the domain  is regular (of class C"!, or of class C? for the
decomposition of H? functions). Here, we will prove some decomposition lemmas for
functions with a partial H! regularity and for domains with a very low regularity.

Definition 1.2. Let O be a bounded open set of R?. we say that O satisfies the
decomposition hypothesis if there exist positive constants ¢; and ¢y such that for any
d € (0,1) there exists O5 CC O open such that

meas(O\Os) < ¢16 and dist(Os,00) > 20 (D)

One can show that polygonal domains, or more generally Lipschitz domains, satisfy
the decomposition hypothesis (D). That is still true for some non-Lipschitz domains, for
example, for the following open set of R?, O = {|y| < 22, 0 < x < 1}. Notice that there
exist bounded open sets which do not satisfy the decomposition propriety, for instance
in dimension d > 1, the open set Bq(0,1)\{U32;S4(0, 1)}, where By(0,1) is the unite



euclidean ball of R? and Sy(0, %) is the euclidean sphere of R? of center 0 and ray %,
gives such an example. Now, we have to prove the following

Lemma 1.3. Let Q = w; X wy be a bounded open set of RY x RN=% Let f € L"()
for some 7 > 2 such that Vy, f € L*(Q)9. Suppose that w; satisfies (D), then there
exist C' C > 0 such that for any § € (0, 1) there exist fi € H}(Q,w;) and

fier,eq,w? T fep,we

f2 € L*(Q) with Vx, f# € L*(Q)4 such that f = f} + fZ with:

1

Hle f61||L2(Q)q < Cf,cl,c27w26_§_;7 and ||f52”L2(Q) <C oz .

fre1,wa

5=

Proof. Let us recall the space

H Qs or) = v € L*(Q) such that Vy,v € L?(Q)4
OVHHLT ) and for ae. Xy € wa, v+, Xy) € Hi(wy) [

and the anisotropic Poincaré’s inequality
0]l 2y < Con IV x,0[| 202y » for any v € Ho(Qs1). (22)
Let 6 € (0,1), since w; satisfies (D) then there exists w{ CC w; such that
meas(wi\w) < 16 and dist(w$, w) > 26

Let K5 = {X; € wy, dist(Xy,wf) < 22}, We define the bump function ps € D(w;) by

ps(X1) = o5 (X1 —y)dy,
Ks 3

where 6,(-) = (i)qﬁ(;), with # € D(R?) such that [, 0(X1)dX; = 1 and Supp(f) C

By(0,1). We can check that

31V x|

ps = Lonwi, supp(ps) C wr, and [Ipslloe <1, [Vxipslloo < ===
2

We define

fs = psf and f§ = f — psf.

It is clear that f} € H}(Q;w1) and f} € L*(Q) with Vx, fZ € L?(Q)%.
Now, let 1 <17 < g, we have

3(|9:0]|
10: 5 122y < N10:if [l L2 () + THJCHL%(M\wf)wa)a
whence by Holder inequality we get
3(/0i0| o :

18: 31 z20) < 106 20y + | Fllzrey x (erleals)™

025



and the first inequality of Lemma 1.3 follows. Similarly, we obtain the second inequality
of Lemma 1.3. O

Now, we are able to prove the following theorem

Theorem 1.4. Assume that €2 and A are given as in Theorem 1.1, assume in addition
that wy satisfies (D). Suppose that f € L"(2) for some oo > r > 2 such that Vx, f €
L?(€2), then there exists C) f4.0 > 0 such that

Ve € (Oa Hv Hsz (ue - U)HLQ(Q)N*LI < C)\,f,A,Q X €2

In particular, when r = oo we have

N =

Ve € (Ov 1]7 ”VX2(UG - U)HLQ(Q)N*‘I < C,\,f,A,Q X €2,

Proof. Let f = f} + f? be the decomposition of Lemma 1.3. Let u! (resp. u?) be the

solution of (14) with f replaced by f} ( resp. f2). The linearity of the problem shows
that

ue = ul +u?. (23)

Similarly, Let u' (resp. u?) be the solution of (19) with f replaced by f} ( resp. f?), we
also have

u=u'+u?. (24)
Now, according to Theorem 1.1 we have

|Vl =)

Vlegl‘

+ Hfal

< C)\,Q,A( ) X €, (25)

L2(Q)N - L2(Q)e L2(Q)
By using the anisotropic Poincaré’s inequality (22), which holds because fi €

H (9, w1)), we obtain from (25)

1 1 1
HvXQ(ue U )‘ L2(Q)N—q < OW’A x Hlef5 ‘ L2(Q)9 x € (26)
By applying Lemma 1.3 on the right hand side of the previous inequality we get
1 1 11
HVX2 (ue —u )‘ L2(Q)N -1 SO o X 07277 Xe (27)

Now, let us estimate ||V, (u? — u2)||L2(Q)N,q. We test by u? (resp. u?) in the corre-
sponding weak formulation i.e. (14) with f replaced by fZ ( resp. (19) with f replaced
by f§), we get

2
Hszue

L2(Q)N—a < CQAHf(?HLQ(Q) and HVXQUQ‘

L2(Q)N—4a < CQ/\HfzSQHL?(Q)

Therefore, by the triangle inequality and Lemma 1.3 we get

NI
3=

HVXQ(UE—UQ) X 0

rayv-e = Cran

7



Finally, by using the decompositions (23), (24), and inequalities (27), (28) and the
triangle inequality we get

1

11 1_1
1V 5, (ttc = )| pagayv-o < Cran (675 Fe+6577)

Notice that this last inequality holds for every § € (0,1) and every e € (0,1]. Whence,
we can choose 6 = ¢ and we get the expected estimation. The case r = oo follows
immediately by letting » — oo in the first estimation. OJ

Let us finish by this particular case which will be used in the analysis of the numerical
scheme. In fact, we have the following analogous of Lemma 1.3

Lemma 1.5. Let Q be a bounded open set of RY. Let f € H?(2) N L>(£). Suppose
that Q satisfies (D), then the exist C,  ,,C > 0 such that for any § € (0, 1) there

27 7 fieq,e9,82

exist fi € H} N H%(Q) and f?2 € H*(Q) such that f = f! + f? with:

15 1@y < Coyad 20 153 lz2c) < 1220

and

3
2

and || f3llr2@) < C,., 00"

fie1,92

1£5 120y < Coyad™

The proof is similar to that of Lemma 1.3. Here, we can notice that if €2 is Lipschitz
then the assumption f € L*°(Q), is automatically satisfied in dimension 2 and 3 thanks
to Sobolev embeddings.

1.2. Some Regularity estimations for the solution of the perturbed
problem

In this subsection, we suppose that €2 is of the form
N
i=1

where [q, ..., [Ny are positive real numbers, and N > 2. We will prove the following

Theorem 1.6. Assume (8), (10), and (11). Let €2 such that (29). Let f such that (4)
is satisfied. Let ue be the solution of (14) then there exists a constant C, , , , > 0 such
that, for any € € (0, 1]

EZHDg{erHp(Q)qZ + €||D§(1X2U6HL2(Q)4<N*Q> + ||D§(2Ue||L2(Q)(N—q>2 < C)\,f,A,Q
In addition, if A € C'(Q) then the strong convergences

€2D§(1U5 — 0, D§(1X2ue — 0 and D§(2u6 — Dg(zu,

hold in L2(Q)7°, L2(Q)4N-9) and L2(Q)N-9” respectively.



s D2 (92). . 2 ._ (52 - 2 .
Here, we used the notation: D%, := (0;;)1<ij<q¢> D%, = (05;)14¢<ij<n, and D%, x, =

(07))1<i<, g+1<5<N
In [9], we have a local version of this result. The proof of Theorem 1.6 is based on a
symmetrization trick and the application of the local result.

. N -
We introduce Q = [] (—1;,2l;), and we denote sub(§2) the set of all disjoint subsets of
i=1

- N

Q of the form I = [] I; where each [; has one of the forms (—I;,0), (0,1;), (1;,2l;). For
i=1

0 < j < N fixed we denote sub(Q)_1;, sub(Q)1;, sub(Q)a; the subsets of sub(Q) such

that [; is of the form (—1;,0), (0,1;), (I;,2l;) respectively. It is clear that these three

subsets define a partition of sub(2). For x = (x;)1<i<y € I, we denote
y = (si(I) +ri(I)z)1<i<n € Q

where 7; and s;, 1 <47 < N, are defined on sub(ﬁ) by :

—1 else

si(l) = 0if I € sub(ﬁ)—u U SUb(Q)Li
' 2, if T € sub(Q)a

Now, we define the function f € L2 (ﬁ) by

Forx el e sub (H ri( ) (y)1<i<n), and f: 0 else.

Similarly, we define the extension @, of u. by:

Foer]Esub( (Hn ) X ue(y), and @, = 0 else.

We define A = (az;) the extension of A as follows: For z € 6, there exists I € sub(Q)
such that € I, in this case we set

a;;(x) =ri(I)rj(1ai;(y), i,7 =1,...,N.

Notice that assumption (11) implies that the value of each A(x) does not depend in the
choice of I so A is well-defined. Notice also that (10) implies that A is Lipschitz on Q.
Moreover, we can check immediately that A satisfies the ellipticity assumption (8) with

the same constant. Finally, we define A, as we have defined A, (see the introduction).
Under the above notations we have the following Lemma:

Lemma 1.7. Suppose that assumptions of Theorem 1.6 hold. Let . constructed as



above, then u, is the unique weak solution in H&(Q) to the elliptic equation
—div(A Vi) = f.
Moreover, we have i, € H2 ().

Proof. At first, one can check immediately that the restriction of u. to each I € S ub(ﬁ)

belongs to H(I) and hence %, € HL(Q), and moreover for 1 < j < N and I € sub(Q),
we have :

For a.e. x € I : Ojuc(x) =r;( (Hrl >8u6
Now, let ¢ € D(Q) we have

/~ AV, Vodr= Y / AV, - Vd,
Q

I€Sub(Q)
by a change of variables we get
/~ AV, Vods= Y / ANV, - V§de, (30)
¢ I€Sub(Q)

where @7 is defined on Q by

N
= (H TiU)) er((si(l) +ri(D)w)1<i<n),
i=1
and g is the restriction of ¢ on I. Let us show that

> @re Hy(Q). (31)
T€Sub(Q)

It is clear that Zlesub(ﬁ) @1 € HY(Q) N C(Q), it is enough to show that it vanishes on
0. So, let 20 = (UU?)lgigN be an element of 02, then there exists at least 1 < j < N
such that m? =0or x? =1j.

1)If 29 =0:Forany I € Sub(ﬁ)zj, we }}vave Yy = sj(I)+r;(I)ah = 215, then y° € o0
therefore @7 (z) = 0. Now, for any I € sub(2)_1 5, we have y§ = s;(I)+7r;(I)2) = —29 =
0, and any [ € sub(ﬁ)lvj, we have : y) = s;(I) + r;j(I)zY = 29 = 0, notice that there is
a bijection from sub(€2)1; onto sub(€)_1; defined by : I+~ I’ such that I and I’ have
the same intervals except for the j™ one we have I; = (0,1;) and I} = (—I;,0). For such
I and I' we have r;(I) = 1 and r;(I') = —1, then @;(2°) + $p(2°) = 0. Finally, we get

= 0y

Z[eSub(ﬁ) pr(27) = 0. B B

2) If 2) = I; : For any I € sub(Q)_1, y? =s;(I) + 7"](]) 29 = —l;, then 3" € 99
therefore @r(x) = 0. Now, for any I € sub(Q)lj, we have 39 = s;(I) + r;(I)29 = 1,
and any I € sub(ﬁ)g,j, we have : yj = 2l; — l; = l;, notice that there is a bijection

10



from sub(£2); ; onto sub()s ; defined by : I — I’ such that I and I’ have the same
intervals except for the j one we have I; = (0,1;) and I} = (I;,2l;). For such I and
I" we have r;(I) = 1 and r;(I') = —1, then $;(2°) + @r/(2°) = 0. Finally, we get
Zfesub(ﬁ) 1(2°%) = 0.

At the end, (31) follows from the two points above.

Now, since wu, is the solution of (14) then (30) and (31) give

/N AV, - Vds — / fY G
@ @ I€Sub(Q)

By using an other variables change in the second member of the above equality we get
the first affirmation of the Lemma. Finally, as we have mentioned above, the function
A, is Lipschitz on © (thanks to (10)), then the H? interior elliptic regularity gives the
second affirmation of the Lemma. O

Now, we can prove Theorem 1.6. Let w CC  an open set. According to Corollary
2.3 of [9] we have, for any € € (0, 1]

62||Dg(1u5”[,2(w)q2 + 6||D§(1X2u€”L2(w)q(N7q) + HDgﬁvzuG”LQ(w)(N*‘Z)Q S C)\,f,A,w' (32)

Now, let us show the same estimation near the boundary of Q. Let w’ CC S~2, then by
using Corollary 2.3 of [9] thanks to Lemma 1.7, we get

62||D§(1a€”L2(w’)‘12 + EHD,%(1X2@:5HLQ(W,)‘Z<N_Q) + HDA%(QﬂGHLQ(w’)(N*Q)z S C)\yf,A,w/'
Therefore,
€2||D§(1u5||[12(u}/m9) + EH‘D§(1X2u5”L2(w,nQ) + ||‘D§(2u6HL2(w/mQ) S CYAyf)A,w/7 (33)

By compacity, we can cover ) by a finite cover of open subsets of w-type and w’NQ-type,
then we use (32)-(33), and the estimations of the Theorem 1.6 follows. B
For the convergences of Theorem 1.6, we use the same trick, in fact when A € C1(Q),

then A satisfies eq. (13) in [9)].

1.3. H? Regularity of the solution of the limit problem

In this subsection, we consider a general bounded domain 2 = wy X ws.

Theorem 1.8. Let {2 = w; X wy be an open bounded subset of RV, where w; and w, are
two bounded open subsets of R? and RY~9, with N > ¢ > 1. Let us assume that wy is
convex. Let f such that (4) is satisfied, and such that Vx, f € L*(Q)9, DX f € L2(Q)7.
Assume that Ay satisfies (12) and (13). Assume in addition (10) and let u be the unique
solution in Hg(Q;ws) of (19), then u € H?(Q2) and

lullireey < Cona (112 + V5, 2@y + 1% Fll oyt )-

We will proceed in several steps to prove Theorem 1.8. In the following lemma we
prove that D%, u is a function of L?(Q)N 4.

11



Lemma 1.9. Under assumptions of Theorem 1.8 we have
N2
D§(2u € LQ(Q)(N 9" and HDgguHLz(Q)m—q)? < v agpn 1122000
Proof. We proceed in several steps.

Step 1. Let us assume that f(z) = f1(X1) fo(X2) where f; € L?(wy) and fo € L?(ws).
Let uy, be the unique solution of

)

o, A22V x50, - Vixy02dXo = [, fopadXs, Voo € Hy(ws),
Uf2 € H&(wg)

According to assumption (10) it follows that Agy € WH™(wy), and since wy is convex
we obtain by the elliptic regularity in wy that the function us, belongs to H?(wq). We

multiply the previous identity by f1(X1)p1(X1) where p1 € H}(w;) and we integrate
over wy, then we use assumption (13) to obtain

/QAQQVXz(flUfz) - Vi, (prp2)de = /walwd% V(e1,2) € Hy(wr) x Hy(ws),
which gives by linearity
/QAggvxz(flu]cz) -Vx,pdr = /ﬂfcpdx, Yo e H&(wl) 029 H&(wg).
Using the fact that H}(w;) ® Hi(ws) is dense in HE(Q;ws) [8], we obtain

Jo A2V x, (frug,) - Vx,pde = [o fedr, Yo € Hy(Q;wa)
frug, € Hy(9;w).

Consequently we obtain that
u = fiuyg, a.e. in ).

Step 2. Let us assume that f = Y7, f1;f2; € L*(w1) ® L*(wq) where (f14, f2i) €
L%(w1) x L*(wy) for any i € {1,...,m}. By linearity we obtain that

m
u= Z fiiug,, a.e. in €.

i=1

Using this identity and the above step we obtain that D%, u € L2(Q)W ~9” in particular
one has, for a.e. X1 € wyq

U(Xl, ) (S H2(CU2),

Now, from (18) the elliptic regularity on w, shows that there exists C, gy > 0 Inde-
pendent of X7, such that for a.e. X1 € wy :

”Dg(gu(Xl7 ')||L2(w2)(N—q)2 < C)\,A22,w2 ||f(X17 ')HLZ(wQ)'
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We integrate this identity over w; and we obtain
ID%,ull 2 yv-02 < Congyon |1l 2200
Step 3. Let f € L?(£2). There exists a sequence (f,,)n>0 of functions of L?(wy) ® L?(ws)

converging to f in L2(Q) as n goes to infinity. Let u,, be the unique solution in H}(2; ws)
of

/ AoVt - Ve,pdr = / fnpdx, Yo e H&(Q;Wz). (34)
Q Q

Subtracting (34) from (19) and taking ¢ = w, — u, then by using (12) and (17) we
obtain that

U, — u in L*(Q) as n — oo strongly. (35)

From the previous step we obtain that D§(2un c LA(Q)W =9’ for any n > 0 and
||D§(2un||L2(Q)(N*q)2 < Ox szl fnll22(0), for any n > 0. (36)
Using the fact that the sequence (fy,)n>0 is bounded in L?(£2) we obtain that the se-
quence (D%, up)n>o is bounded in L*(Q)W ~9” Therefore, there exists a subsequence
still labelled (D%, u,) such that for any 4, j € [¢ + 1, N] there exists ufy € L*(Q2) such

that

8i2jun — ug; as n — oo, weakly in L*(Q). (37)

Now, for ¢ € D(Q2) and 7,5 € [q + 1, N] we have
/Q@Z-qunqbdx = /Qunafjd)dx
Passing to the limit in the above identity by using (35) and (37) to obtain
/Qufjoqﬁdx = /Qu@?jqbdx, for any i,j € [¢+ 1, N]

Therefore, we obtain that 81»2ju = ujy € L3(Q) for any 4,5 € [q+ 1, N]. Finally, passing
to the limit in (36) we get

HDA%(QUHL?(Q)(N*@Q < liminf ”D§(2un||L2(Q)(N7(I>2 < C>\7A22,w2 lim ||anL2(Q) = CA,Azz,wznf”LQ(Q)v
and the Lemma 1.9 follows. O

At the next step we prove in the following lemma that D%y, u € L?(Q)?N=9

Lemma 1.10. Let = w; X wy be an open bounded subset of RY, where w; and ws
are two bounded open subsets of R? and RY =4, with N > ¢ > 1. Assume that (9), and
(12) are satisfied. Suppose that f € L?(Q) such that Vx, f € L?(Q)4. Then:

Vx,u € LAH(Q)? and D% y,u € L*(Q)1N-9),
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with:
IVx,ull 2y < O, IV, fllzzye and [|D% x,ullp2pav-0 < Cre I Vx, Fll2(@ye,

and for a.e. X1 € wy : Vx,u(X1,-) € H(w2).

Proof. We use the difference quotient method of Nirenberg (see for instance [11]). Let
W) CCwy, and 0 < n < dist( wf,dwr). Let i € [1,¢]. For a.e X7 € w}, we obtain from
(18) the following identity

/ A (VXQU’(XI +n€i7') B VX2u(X17')
22

) -V, p2d Xo =
eta

( ei,") — f(X1,-)
/wQ(levL?? - J(Xy

) P2d X,
VQDQ € H(%(w2>7

where ¢; is the i-th element of the canonical basis of RY. Testing with w(X1 +ne;, ) —
u(Xy,-) € H}(ws) in the above equality and using (12), (17) we obtain
2 022

/m Xz = 75 /w

where we have used Poincaré’s inequality (17). Integrating over w} yields

/ /
wy X w2

f(Xl +7]6i7 ) - f(Xla ) 2
n

VX2U(X1 + neq, ) - VXQU(X17 )
n

dXs,

2
dz <

Vi, u(Xy +ne;, Xa) — Vx,u(X1, Xo)
n

F(X1 + nei, Xo) — f(X1, Xo) |2

02
w2 d
)\2 /wllwa 77 *
2,
Sz 1051172 -
(38)
and
w(X1 + neg, X2) — u(X1, Xa) | ci
| 2SR e < S8 0 g (39)
W] Xws

The inequalities (38) and (39) imply that D% x, u € L*(Q) and Vx,u € L*(Q)4, with

Cuy cz
a0 = IV fll 2y » and [|Vx,ul r2)e < N IVx: fll 2@ -

2
HDX1XQU

Finally, let us show that Vy,u(X1,-) € Hg(wy) for a.e. X1 € wy. Let i € [1,4], and let
w) CC wi, be open, and set 7,u(X1, X2) = w(X1 + ne;, Xo), for v € w) x wsy, and for
0 <n < dist(w],dwr). Let j € [¢+ 1, N], then one can check that :

O05Tyu — Oju
n

Tt — U

— afju, and — Ouas n — 0in D' (W] x wy) . (40)

14



Let (n,) be a sequence such that, for every n € N, 0 < 1, < dist( wi,dw1) and 1, — 0.

The sequences (T""n%“), (aj (7"7;’;“7“)> are bounded in L?(w] x wy) thanks to (39) and

(38), therefore it follows from (40) that

Th, U — U
— aZZJU and [ —
T Mn

w — Qsu in L*(w] x wy) weakly.

Finally, Mazur’s Lemma shows that there exists a sequence (U,,) of convex combination
of {“’”ﬁ%}n@\; such that 9;U,, — 9;(0ju) = d5u and U, — Gyu as n — oo strongly
in L2(w] X wy). Now, since (U,,) € H}(w] X wa;wy)N and the space H}(w] X wa;ws) is
complete with the norm ||VX2(-)||L2(win2) then we deduce that d;u € Hi (w] X wa;ws)
i.e. fora.e. X; € wi, d;u(Xy,-) € H}(ws). Notice that w; could be covered by a countable
family of w] CC wy, whence for a.e. X1 € wy, d;u(Xy,-) € H}(ws). and finally we obtain

that Vx,u(X1,-) € Hi(wq) for a.e. X € wy. O
We finish by the following lemma

Lemma 1.11. Let Q = w; X wy be an open bounded subset of RY, where w; and ws
are two bounded open subsets of R? and RV~9, with N > ¢ > 1. Assume that (9), and
(12) are satisfied. Let f € L*(2) such that Vy, f € L*(Q)?, and D%, f € L2(Q)7, then:

2
w2
L2(@)e* = A

D u€ L2(Q)7 and HDgﬁu

Dg(lf

L2(Q)¢?

Proof. Let p1 ® @y € H}(w1) ® H (ws). Let i € {1, ..., q}, testing with 0,12 in (19)
we obtain

/QAQQVXQU'VXQSOani(pldx:/g)faxi¢1(p2dx~

According to Lemma 1.10 we have dfu € L*(Q) for any j € [1 + ¢, N] then, by
integration by part we get

/QAQQ(XZ)VX282'U(XMX2) ~o1(X1) Vi, p(Xo)dr = /Q3if(X1,X2)<P1(X1)80(X2)d$~
and hence, for a.e. X; € w; we obtain

Ago(22)V x,05u(x1, 22) - Vx,p2dXo = / O f (X1, X2)p2dXa, Vo € Hy(ws).

w2 w2

Repeating the same method as in proof of Lemma 1.10. Then, for ¢/ € {1,...,¢} and
Wi CC wy, and for a.e.X; € w] and for 0 < n < dist( w}, dwy) we obtain that

I

(&u(Xl + ne;r, Xg) — 8iu(X1, XQ)
Vx, »

C2, /
)\2 wo

2
o

0:f (X1 + new, Xa) — 0, f (X1, Xo) |°
n

dXs.

15



By the above lemma we have for a.e.X; € w} : du(X1 + ney,-) — du(Xy,-) € H(ws).
We integrate over w} and we apply (17) to obtain

’
/(4;1 Xwg

2

Ozu(Xl + ne;r, XQ) — &u(Xl, XQ) dr <

n
4
Co, /
A2 w] Xwa

Whence, 02,u € L*() and H@f»,uHLQ(Q) < CT“%Q 02, f

)

Oi f(X1 + newr, Xa) — 0 f (x1, 2) |?
n

dzx.

’LQ(Q) :

In conclusion, Theorem 1.8 follows from Lemmas 1.9, 1.10, and 1.11.

2. The Analysis of the numerical scheme

2.1. Numerical scheme and the main result

In this section, we assume that N € {2,3} and that the computational domain is
Q=(0,1)N.

Let M; € N, M; > 2,4 € [1,N] and let {hy} > 0,k; = 1,..., M;}, for i € [1, N]. such
that

M;
> =1, forie [1,N],
ki=1

and let us define the step size h of the discretization by:

h= hit, ..., k).
Zg[lflj\(fﬂ( 19 M7)

Let (x, Jo<k,<a;, @ € [1, N] be the families of real numbers defined by
Tj, — ), = hyi, fori € [1, N], and k; = 1,.., M;,

with 2§ = 0 for i € [1, N]. We define a rectangular mesh R, = (Rkl’m’kN)lgﬁiS]\i[i on 2
i€[1,N
by letting
N . .
Rk’l ..... kn — H(‘rzi—hxzi)

i=1

We denote by S the set of the nodes of the mesh that is
S = {(ﬁii)lgigz\r,k‘i € {0,..., M;}}.

We denote Q;(K) the space of real polynomials in two variables of partial degree less
or equal to 1 over K C RY. We define the finite dimensional spaces Wj, ¢ H'(€2) by

Wi = {v € C(), vjp € Qu(R) for any R € Ry}

16



As usual at the continuous level or for variational discrete formulation (as in the finite
element context), the Dirichlet boundary conditions are incorporated in the definition
of the discrete space V;, C H}(Q2) defined by

Vi, ={v €W, and v =0 on 00} .
Mention that the discrete space V}, can be written as a tensor product that is

Vi =N, Vi, (41)

where, for i € [1, NJ:

Vi = {v € C([0,1]), Vi(un, 1) € Prl(zn-1,7%,)), Ki € {1, My}, 0(0) = v(1) = o} :

where Py (7) is the space of real polynomials in one variable of degree less or equal to 1
over I C R. Recall the Sobolev embedding

H*(Q) — C(Q)

which holds in dimension 2 and 3 for Lipschitz domains. We define the classical inter-
polation operator

I, : H*(Q) — W),

In(v)(z) = Y v(z)Ny(x)

seES

where (Nj)ses is the nodal basis. There exists C', > 0 such that for any v € H?(2)
[12]:

N 1/2
IV(0 = (@) |2@n < Cuh(D11820]1320)) (42)
i=1
and
N ) 1/2
o= L@)ll2@n < Coh(D 100laey) (43)
=1

The numerical scheme to approximate problem (14) is

(44)

Jo AVuey, - Vode = [o In(f)vde, Yv € Vy,
Ue,h € Vh. ’

Now, we are ready to give the main theorem of this section
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Theorem 2.1. Let Q = (0,1)", with N € {2,3}. Assume that A satisfies (8), (10),
(11), and (13). Let f such that (5) is satisfied, then there exists a positive constant
C independent of h and € such that

A f92,A

”sz (ue,h - ue)”Lz(Q)N*‘I < CA,f,Q,Ahg7 (45)

where u, 5, and u.) are the solutions of (44) and (14) respectively. Moreover, if we assume,
in addition, that f € H} () then we have

Wl

”sz (uG,h - u€)”L2(Q)N*‘I < CA,f,Q,Ah‘ . (46)

This theorem follows immediately from estimations of type (1) and (2). Each one of
these two estimations will be the subject of the next subsections.

2.2. The first estimation of type (1)

In this subsection we prove the following

Proposition 2.2. Suppose that N € {2,3}. Assume that A satisfies assumptions (8),

(10), and (11). Assume that f satisfies assumption (5), then there exists C, ., , >
independent of € and h such that
||VX2 (uﬁ,h - UE)HLQ(Q)N—‘I < CA,f,A,Q?‘
Proof. Let w, be the solution of the following
Jo AVwep, - Vodr = [, fodz, Yo € Vy,
’ , (A7)
We,p, € Vi.

By subtracting (47) from (44), and by testing by (uep — wep) to get

Cus
A

10 (f) = fllz2@)-

IV x, (Uep — wen) | L2@)n-0 <

Since f € H?(Q) (thanks to assumption (5)), then by applying (43) to the second
member of the above inequality, we obtain

||VX2 (uf,h - w€7h) ||L2(Q)N*q < C)\,WZ,th (48)
notice that h? < h since h € (0, 1].

Now, subtracting (14) from (47) and using the Galerkin orthogonality and (8), we obtain
for any v € Vj,

A / IV 5, (e — u)[2d + A / IV, (e — ue)2da < / AV (wep — ue) - V(e — v)d.
Q Q Q

Remark that by a direct application of classical Céa’s lemma we obtain an estimation of
order O(e%) We will improve that by using the anisotropic nature of the perturbation,
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so let us develop the right hand side of the above inequality to obtain for any v € V},
the following

)\62/9 |V x, (Wep — ue)|?dr + )\/Q |V x, (We p, — ue)|?dr <
62/ A Vx, (Wep —ue) - Vx, (ue —v)de + e/ AoV x, (Wep, — ue) - Vx, (ue — v)de+
Q Q

e/QAglvxl (Wep, — ue) - Vi, (ue —v)de + /Q AoV x, (wep — ue) - Vi, (ue —v)de.

By using boundedness of A (thanks to (9) or (10)), and Young’s inequality to each term
in the right hand side of the previous inequality, we obtain for any v € V},

e A
i/ |VX1(w€h—ue)]2d:c+—/ |vX2(w€h—u€)|2dxch/ IV (ue — v)|*de.
2 Ja ’ 2 Ja ' ~Ja

Now, we take v = I, (uc) (which belongs to H} N H?(Q)) in the previous inequality, then
we obtain

IV, (wen = ue)llL2@v-0 < C IV (In(ue) = ue)ll 2oy

Applying (42) to right hand side of the above inequality to obtain

N 1/2
||VX2(wE,h - UE)HLQ(Q)N*‘? < CA,Ah<Z ||azgu€||%2(ﬂ)) :
=1

Therefore, by applying Theorem 1.6 to the right hand side of the previous inequality
we obtain

h
IV X, (Weh — ue) || 22(@)v-a < CMA’Q?.

Finally, we combine the above inequality with (48) and we use the triangle equality to
obtain the expected result. O

2.3. The second estimation of type (2)

The proof of the estimation is based on the following theoretical result proved in our
previous work (see proof of Lemma 3.9 in [8]), that is the analogous discrete version of
the continuous version given in Theorem 1.1.

Lemma 2.3. [8] Suppose that assumptions of Theorem 1.1 hold. Let V = V; ® V;
where Vi C H{(wy) and Vo C H{(ws) are finite dimension spaces. Let g € V. Let ue v,
and uy,, be the solutions of

JoANVuc vy - Vodr = [ g ede, Vo e V
Ue,V,g € V.
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and

uy,g €V, / ApnVx,uygy - Vx,pdr = / g pdx, Yo € V.
Q Q
Then,

IV xtevg = Vauvgllzzays-s < Cyaa (IVx00l2@ps + lalli) x e

Remark 2.4. The space V}, has the same tensor structure of the space V of Lemma
2.3. In fact:

- When N = 2, identity (41) is V;, = V)l @ V2.

- When N = 3, identity (41) is V;, = V! @ (V2@ V) = (VI @V2)®@ V2, the first equality
corresponds to the case ¢ = 1, and the second equality corresponds to the case ¢ = 2.

Now, we are ready to prove the following:

Proposition 2.5. Let Q2 = (0,1)", with N € {2,3}. Assume that A satisfies (8), (10),
and (13). Let f such that (5) is satisfied, then there exist a positive constant C, , , , > 0
such that

Hsz (uﬁh - UG)HL?(Q)N*‘J < CA,f,A,Q (h1/4 + 61/2)'
In particular, if we assume in addition that f € H}(£2) then we have
||VX2 (uﬁh - u€)||L2(Q)N—‘1 < CA,f,A,Q (h + 6)'

We process by several steps.
Step 1. Let uy, be the solution of the following problem

Jo A22Vx,up - Vx,vde = [o In(f) vdx, Yv eV,
(49)
up € Vi
We have the following
Lemma 2.6. Suppose that assumptions of Proposition 2.5 hold then:
- For f € H} N H?(Q) we have
1V x, (ue,h - uh)”L2(Q)N—q < CA,f,A,Q X €. (50)
- For f € H?(2) we have
HVX2 (ue,h - uh)”[ﬂ(Q)N*q < Cf,A,n (6 + hl/g)' (51)

Proof. 1) Suppose that f € H}(Q)N H?(Q), then I,(f) € Vj. Therefore, according to
Lemma 2.3 and Remark 2.4 with g and V replaced by I, (f) and V}, respectively, we
have

IV x5 (te,n — Uh)HLz(Q)N—q < Ciaa (HVX1Ih(f)HL2(Q)q + H[h(f)HLZ(Q)) X €.
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Since I,(f) € H3(Q), then by using Poincaré’s inequality (22) we obtain
IV, (en = un)ll p2iyn—0 < Csaa X IV IR () 2(0)0 X € (52)
In the other hand (42) gives
IV (Pl 200 < 1l z2 @) + OBl lla20) < Onllf 2@, (53)
Therefore, from (52) and (53) yields
195 (e = 0)ll agyso < Co o (54)
2) Now, we suppose that f € H?(Q), from Lemma 1.5 we use the decomposition f =
f3 + f3, and let u!;, uj,, i = 1,2 be the solutions of (44) and (49) respectively with f
replaced by fi. The linearity of the equations and the operator I, gives
Uep, = Ui,h + uih and wy, = uj, + ui (55)

As in (52) we have

<C

1 1
Hsz(ue,h - uh)‘ L2(QN-a — \,Q,A

Vxlfh(fsl)‘

L2y X € (56)

According to (42) we obtain

[V 1)

1
< Hfa‘

+CNth§’

L2(Q)a 12(Q) H2(Q)’

and therefore, by applying Lemma 1.5 we get

|V 1u(sh)|

sy < Cra (1+h5=2/2),

Combining this with (56) to obtain

|V (uly = uh)|

s < o (1+h6732) xe (57)

In the other hand, testing by uf’h and u? is the corresponding formulations (44) and
(49), with f replaced by fZ, we obtain this basic estimation

< C o520 (58)

HVX2 i U%)‘ LR@N-a =

Now, applying Lemma 1.5 to the right hand side of (58) we obtain

HVX2 (uih - u%) C)\,f,Q X 51/2 (59)

<
L2(Q)N-1 —

The combination of (55), (57) and (59) gives, by the triangle inequality, the following
Hsz (ué,h - uh)HLZ(Q)N*q < CA,f,A,Q (6 + h(sig/QE + 51/2)' (60)
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Finally, since § is arbitrary in (0, 1), then by setting § = h?/3 in the previous inequality
we get

1V %, (e = un)l| paqyv-o < Cpas (€ + 517, (61)

Step 2. We denote wy, the solution to following the problem

{ fﬂ A22vx2wh . VX21)dSU = fQ f vdx, Yv €V

wp, € Vy. (62)

We have the following

Lemma 2.7. Assume that assumptions of Proposition 2.5 hold, then:
-If f € Hf N H?*(Q2), we have :

IV, (wn —u)|r20) < O, ;ah
- If f € H%(Q), we have:
IV x, (wn = u) 20y < C, ;oo™

Proof. 1) Suppose that f € H} N H?(Q):
By using the classical Céa’s Lemma we obtain from (19) and (62) the following

| A2al] 100
A

IV x, (wn = )| 2q)v—a < inf ||V, (v =)l 2 -

vEV)

Now, according to Theorem 1.8 and Theorem 1.1 we have u € H}(Q) N H?*(), then
In(u) € V. Therefore, from the above inequality we obtain

| A2z
A

IV x, (wn, — U)HLQ(Q)N*G < 1V, (In(u) — U)||L2(Q)

Finally, by applying (42) and Theorem 1.8 to the right hand side of the above inequality,
we get

IV x, (wn, — u)”L?(Q)N—q < O panh

2)Suppose that f € H?(Q):
We use the decomposition trick of Lemma 1.5, and let w?, u’, i = 1,2 be the solutions
of (62) and (19) with f replaced by fi respectively. As in the previous case we have

< A2l
LZ(Q)N*‘I - /\

I’

oot -0

|V, (I () = )

L2(Q)

and the application of (42) to the right hid side of the previous inequality gives

< HAZZHLOO Hu1’

HvXQ(w’ll - ul)‘ 2@ = A

’

H2(Q)
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and by Theorem 1.8 we get

?

oot -0

7|

<
r2(@v=0 = A 10 |2

whence by applying Lemma 1.5 to the right hand side of the previous inequality we
obtain

|V xa (w — )

L2(Q)N-a = Cx,fyA,ﬂ(s_‘g/Zh’

Testing with w3, u? in (62) and (19) (with f replaced by by f#) we get

HVX2 (wi - uQ)

L2(@)N-a < Cf,ﬂal/Q'

Combining these two last inequalities and using the triangle inequality to obtain
IV, (on = ) HLQ(Q)N*‘I < Ciraa (5_3/2h + 51/2).

Finally, we choose § = h'/? we obtain

HVXQ (wh - u)HLQ(Q)N—q < CA,f,A,Qh1/4'

Step 3. We have the following

Lemma 2.8. Assume that assumptions of Proposition 2.5 hold, then:
IV x, (wn — Uh)HL2(Q) < Coh.
Proof. Subtracting (62) from (49) and testing with wy, — uyp,, we get
IV (wn = wn) || 2 @yv-0 < Collf = In(f)llz20)-
By using (43) in the right hand side of the previous inequality we get

IV x (wh = un)ll p2@yv—o < Collfllmr (-

Step 4. Now, we are ready to conclude. By using the triangle inequality we get

IV X (Uen = ue) | p2qyn—a < Vo (e — un)l 2 qyv—a + [V X0 (un — wa) [l 25—

IV xa (wn = w)ll poyv—a + [V (u = ue)l 2 gyn—
Finally, from Lemmas 2.6, 2.7, 2.8 and Theorem 1.4 we get

||VX2 (ue,h - uﬁ)HL?(Q)N—q S C)\,f,A,Q (61/2 + h1/4)7 when f € HZ(Q)7
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and
||VX2 (u6,h - uE)HL?(Q)Nw < CA,f,A,Q (6 + h)7 when f € H& N H2<Q)>

and the proof of Proposition 2.5 is achieved.
In conclusion, we combine the estimations given in Proposition 2.2 and Proposition
2.5 to obtain

HVXQ (uf,h - uf)HLZ(Q) < C)\,f,A,th/57 when f € H2(Q)7
and
IV x, (e = o)l o0y < Cypanh/?, when f e Hyn H?(Q),

and the proof of Theorem 2.1 is finished.
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