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Abstract
One of the most fundamental issues in many socio-environmental studies is the identification of causal effects
and influential variables related to phenomena of interest. In the context of regression analysis, importance
measures are effective tools for feature selection and model interpretation, allowing for the ranking of the most
influential regressors. In particular, variance-based importance measures (VIMs) are a prominent topic in the
field of statistics, as well as in the emerging field of global sensitivity analysis. This is due to their accessible
interpretation as variance shares of the explained variable. This work focuses on the linear regression model
and aims to provide an updated overview of the most well-founded methods, mainly from comparative analyses
and numerical tests on various toy cases. The paper also addresses some of the practical challenges that arise,
including the case of dependent inputs and high input dimensionality. The practical relevance of these tools
is demonstrated through empirical studies on simulated data and public datasets. The Supplementary Material
also presents the use of VIMs in a classification context, specifically via the logistic linear regression model.
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1 Introduction
Identifying causal effects and influential variables related to various phenomena is a fundamental concern in
many socio-environmental studies (Razavi et al., 2020). In the context of regression analysis, importance mea-
sures are valuable tools for insightful feature selection and model interpretation, as they enable the ranking of
explanatory variables (also known as "inputs" or "regressors”) based on their influence (Kruskal, 1987; Grömp-
ing, 2015). Numerous methods exist to quantify the relative importance of inputs in models predicting a specific
explained variable of interest (also known as the "output"). Among these methods, variance-based importance
measures (VIMs) are particularly popular due to their clear interpretation as shares of the output’s variance
(Genizi, 1993; Budescu, 1993; Johnson & LeBreton, 2004; Bi, 2012; Iooss et al., 2022). Practically, VIMs are
essential for data analysis and the post-hoc interpretation of learned models (Darlington & Hayes, 2017; Mol-
nar et al., 2020; Lepore et al., 2022). Furthermore, their properties have spurred their adoption in the emerging
field of global sensitivity analysis (GSA) of model outputs, where their versatility and ease of estimation offer
significant practical advantages (Saltelli et al., 2000; Da Veiga et al., 2021; Antoniadis et al., 2021).

In GSA, VIMs derived from linear regression analysis often form the foundational elements of any preliminary
study, as highlighted in various methodological reviews (e.g., Helton et al. (2006); Iooss & Lemaître (2015);
Wei et al. (2015); Borgonovo & Plischke (2016)). However, a lack of awareness or poor understanding of
GSA among practitioners can lead to significant flaws in data or model interpretation (Saltelli et al., 2020).
For instance, the controversial findings of Sovacool et al. (2020), which suggested that higher nuclear energy
adoption in a country does not correlate with lower carbon emissions unlike renewable energy, exemplify such
issues. Their conclusions, drawn from multiple regression analyses of datasets encompassing 123 countries
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(encompassing carbon emissions, renewable electricity production fraction, and nuclear electricity production
fraction), have faced criticism for numerous statistical biases and errors (Wagner, 2021; Perez, 2022). Further-
more, a substantial portion of the GSA literature focused on VIMs in linear models seems to overlook crucial
aspects that emerged during the historical development of these measures within the statistical research com-
munity. For example, many studies neglect to address the desirable criteria that an importance measure should
satisfy to be considered well-defined (e.g., Johnson & LeBreton (2004); Grömping (2015)).

This work aims to revisit some well-established VIMs for linear regression from the statistical literature. De-
spite being developed some time ago, some of these measures remain relatively unknown and underutilized in
practice. A particular focus is put on their properties, conditions of use, and subsequent interpretation. Ad-
ditionally, the discussion emphasizes the importance of a clear definition of relative importance (also known
as "relative weight" in the literature: Johnson (2000); Tonidandel & LeBreton (2015); Nathans et al. (2012))
from the user’s perspective. Specifically, VIMs are associated with the concept of dispersion importance, intro-
duced by Achen (1982), which relates to the influence of inputs on the output variance. In the context of linear
regression models, the coefficient of determination (𝑅2), which quantifies the percentage of output variability
explained by the model and thus, provides a validation metric of the linear regression, is also a key metric for
constructing VIMs. According to Johnson & LeBreton (2004), a VIM associated with a specific regressor is
defined as: “the proportionate contribution each variable makes to 𝑅2 (the ratio of explained variance to total
response variance), considering both its direct effect (i.e., its correlation with the response) and its effect when
combined with other variables in the model”. In line with this definition, we reintroduce the approach of general
dominance analysis, which involves defining an 𝑅2 decomposition by establishing a hierarchy among regressors
based on certain dominance criteria (Budescu, 1993).

In this context, a primary challenge arises: how to meaningfully allocate shares of 𝑅2 among statistically depen-
dent inputs? Understanding multicollinearity is crucial in addressing this question, as it pertains to the situation
where two or more inputs exhibit significant linear relationships. This concept extends from simple collinear-
ity to encompass cases where multiple variables are highly correlated, complicating the interpretation of their
individual contributions to the explained variance of the model. To illustrate this challenge, we first present an
intuitive representation of multicollinearity using Venn diagrams, inspired by previous work (see, e.g., Clouvel
(2019); Il Idrissi et al. (2021)), focusing initially on the case of a two-input regression model. Furthermore,
after discussing classic metrics that address multicollinearity but do not directly enable 𝑅2 decomposition, we
justify the introduction of more sophisticated VIMs. These measures aim to isolate and quantify the individual
effects of each variable on the output, offering a more nuanced understanding. Among the various methods for
partitioning 𝑅2, the LMG indices (Lindeman et al., 1980) and PMVD indices (Feldman, 2005) are highlighted
as prominent VIMs. However, differentiating these methods and establishing their appropriate conditions of
use requires defining basic desirability criteria. Moreover, in high-dimensional settings, the exponential com-
putational complexity of LMG and PMVD indices poses a significant challenge. Addressing this issue, we
emphasize the Johnson indices (Johnson, 2000) (also refer Genizi (1993)), which utilize relative weight analy-
sis to effectively mitigate computational complexities.

While this work is not intended as an exhaustive review (for that, see Grömping (2015)), it offers several novel
contributions. First, we emphasize the connections between VIMs in the statistical literature and the field of
GSA. Second, we highlight recent advancements in VIMs that facilitate more meaningful and theoretically
sound interpretations of linear models, particularly in the context of highly correlated inputs. Without being
exaustive, we decided to focus only on a subset of sound and robust importance measures, while excluding
from this work a panel of ill-defined or non-robust ones according to previous recommendations from the liter-
ature (e.g., first/last methods, Pratt, CAR scores, Wefila, as studied in Grömping (2015); Wallard (2015, 2019);
Blanchard (2023)). Finally, we examine the implementation of these VIMs in several R packages, especially the
’sensitivity’ package (Iooss et al., 2023), and demonstrate their numerical behavior on both simulated
and public datasets. From these empirical studies, we derive practical recommendations. All R scripts used in
this study are also made available for reproducibility purposes (see Section 7.1).

The structure of the paper is as follows. Section 2 reminds some basics about the multivariate linear regression
model. Section 3 develops standard VIMs based on variance decomposition obtained with independent inputs.
Section 4 introduces the effects and issues that multicollinearity can bear on variance decomposition. Then,
Section 5 develops several VIMs adapted to correlated inputs, obtained from allocation rules, while Section 6
presents the Johnson indices. Section 7 applies all the studied metrics on several simulated or public datasets.
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Finally, Sections 8 and 9 provides a methodological synthesis, gives some conclusions and draws some prospects
regarding the current remaining challenges. Generalizations of these VIMs for classification tasks (i.e., logistic
regression) are provided in a Supplementary Material.

Table 1 (resp. Table 2) provides a table of acronyms (resp. notations) used all along the paper.

Table 1: Main acronyms.

CC Correlation Coefficient (or Pearson coefficient)
CC2 Squared Correlation Coefficient
CI Confidence Interval
GSA Global Sensitivity Analysis
LMG Lindeman-Merenda-Gold indices (or Shapley effects for linear models)
PCC Partial Correlation Coefficient
PCC2 Squared Partial Correlation Coefficient
PMVD Proportional Marginal Variance Decomposition
SPCC Semi-Partial Correlation Coefficient
SPCC2 Squared Semi-Partial Correlation Coefficient
SRC Standardized Regression Coefficient
SRC2 Squared Standardized Regression Coefficient
SVD Singular Value Decomposition
VIF Variance Inflation Factor
VIM Variance-based Importance Measure

Table 2: Main notations.

𝑥 𝑗 𝑗-th deterministic variable
𝑋 𝑗 𝑗-th random variable
x := (𝑥1, · · · , 𝑥𝑑) Vector of deterministic variables
X := (𝑋1, · · · , 𝑋𝑑) Random vector
x(𝑖)
𝑗

𝑖-th observation of the variable 𝑥 𝑗

x(𝑖) 𝑖-th observation of the vector x
X𝑛 :=

(
x(𝑖)

1 , . . . , x(𝑖)
𝑑

)
𝑖=1,...,𝑛

𝑛-observation design matrix

𝛽 Estimator of the parameter 𝛽
E[·] Expectation operator
VAR(·) Variance operator
COV(·, ·) Covariance operator

2 Basics of multivariate linear regression
In this section, the multivariate linear regression framework is recalled. Consider an experimental design with 𝑛

observations of an explained real-valued output random variable 𝑌 and of 𝑑 explanatory input random variables
X = (𝑋1, . . . , 𝑋𝑑), denoted by:

(X𝑛, y𝑛) =
(
x(𝑖)

1 , . . . , x(𝑖)
𝑑
, 𝑦 (𝑖)

)
𝑖=1,...,𝑛

. (1)

For simplicity and without any loss of generality, we use the following usual assumption.

Assumption 1 (Centering). Both inputs and output are centered such that:

E[𝑋 𝑗 ] = 0 for 𝑗 = 1, . . . , 𝑑, and E[𝑌 ] = 0.

The relationship between the random inputs X and the random output 𝑌 is modeled as being linear such that:

𝑌 = Xβ + 𝜀, (2)
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where β = (𝛽1, . . . , 𝛽𝑑)⊤ ∈ R𝑑 is an unknown vector of coefficients, and 𝜀 is a random error assumed to be
Gaussian and centered, i.e., 𝜀 ∼ N(0, 𝜎2

𝜀), and such that E [𝜀 |X] = 0. Specifically, for each observation x(𝑖) of
X and 𝑦 (𝑖) of 𝑌 , the previous relationship can be written as 𝑦 (𝑖) = x(𝑖)β + 𝜀 (𝑖) , where for all 𝑖 = 1, . . . , 𝑛, the
𝜀 (𝑖)s are independent and identically distributed (i.i.d.) according to the same centered Gaussian distribution
with variance 𝜎2

𝜀 . We thus deduce that:

E
[
𝑌 |X =

(
x(𝑖)

1 , . . . , x(𝑖)
𝑑

)]
= x(𝑖)β, for 𝑖 = 1, . . . , 𝑛.

If the sample size is large enough (i.e., 𝑛 ≫ 𝑑), and (X𝑛)⊤X𝑛 is a positive-definite matrix, the ordinary least-
squares method (see, e.g., Christensen (1990)) can be used to estimate the vector of parameters β by using the
unbiased maximum likelihood estimator given by:

β̂ = ((X𝑛)⊤X𝑛)−1 (X𝑛)⊤y𝑛. (3)

Statistical techniques then allow for checking whether the use of a linear model is licit or not. An important
goodness-of-fit metric is the coefficient of determination 𝑅2 which quantifies the percentage of output variability
captured by the linear regression model. Its theoretical value is given by:

𝑅2 = 𝑅2
𝑌 (X ) := 1 − E [VAR(𝑌 |X))]

VAR(𝑌 ) =
VAR(E[𝑌 |X])

VAR(𝑌 ) , (4)

where the 𝑌 (X) in 𝑅2
𝑌 (X ) is a standard notation to explicitly mention that this quantity is obtained from the full

regression of 𝑌 with respect to X . Such a notation is particularly handy in the case of partial correlations and
is thus introduced here for the sake of clarity. Provided a consistent estimator β̂ of β, one can build a plug-in
consistent estimator of 𝑅2 based on the design matrix described by Eq. (1), leading to the following formula:

𝑅2 =

∑𝑛
𝑖=1

(
�̂� (𝑖) − 𝑦

)2

∑𝑛
𝑖=1

(
𝑦 (𝑖) − 𝑦

)2 , where 𝑦 =
1
𝑛

𝑛∑︁
𝑖=1

𝑦 (𝑖) and �̂� (𝑖) = x(𝑖) β̂.

Remark 1. If the sample size is close to the number of inputs, there is a risk of overfitting. In that sense, an

adjusted coefficient, such as 𝑅2
adj = 1 −

��1 − 𝑅2
�� ���� 𝑛 − 1
𝑛 − (1 + 𝑑)

���� (see Karch (2020) for an overview of the various

formulations of adjusted coefficients) can be used in order to penalize this dimension drawback. Moreover,
cross-validation techniques can also be used to validate the regression model so as to avoid overfitting. It
mainly consists in computing a predictivity coefficient 𝑄2 based on a validation sample extracted from the
learning sample using dedicated techniques (Marrel et al., 2008; Fekhari et al., 2023).

3 Variance-based importance measures
Importance measures in regression models (Darlington & Hayes, 2017) broadly consist in quantifying the rel-
ative importance of the inputs to the output. In the field of GSA, importance measures are usually called
sensitivity indices, and many different metrics (e.g., the variance, the entropy, a dependence measure or a dis-
similarity measure between an input and the output) have been proposed to define them mathematically (Saltelli
et al., 2000; Da Veiga et al., 2021). A first approach consists in quantifying the amount of input uncertainty
that creates dispersion in the output, the “dispersion” being traditionally quantified by the variance. Hence, the
importance of an input can be naturally understood as the amount of uncertainty (i.e., in terms of variance) it
brings to the system.

Besides GSA, and more generally in statistics, variance decomposition plays a central role in practical studies
(e.g., in uncertainty analysis as illustrated in Kurowicka & Cooke (2006)), where it has been deemed to be an
appropriate measure of information for a long time. In a nutshell, a VIM aims at quantifying the contribution of
each input 𝑋𝑖 to the variance of the output 𝑌 , denoted by VAR(𝑌 ).
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3.1 The variance decomposition
In the context of a multivariate linear regression model, the VIMs are based on the variance decomposition
given by the law of total variance:

VAR(𝑌 ) = VAR(E[𝑌 |X])︸           ︷︷           ︸
explained variance

+ E[VAR(𝑌 |X)]︸           ︷︷           ︸
residual variance

, (5)

which is valid for any real-valued random variable 𝑌 . The first term is usually called the explained variance,
while the second term is usually interpreted as the residual variance which can be due to unaccounted inputs in
the modelling, or to measurement errors. In particular, with Eq. (2), this decomposition gives:

VAR(E[𝑌 |X]) = β⊤𝚺𝑿,𝑿β, E[VAR(𝑌 |X)] = 𝜎2
𝜀 , (6)

where 𝚺𝑿,𝑿 =
(
COV(𝑋𝑖 , 𝑋 𝑗 )

)
1≤𝑖, 𝑗≤𝑑 is the variance-covariance matrix of the inputs. Finally, one can notice the

direct link between the explained variance and the theoretical definition of the 𝑅2 coefficient in Eq. (4), which
is nothing more than a percentage of the total variance explained by the inputs.

3.2 Criteria for 𝑅2 decomposition
As seen above, the 𝑅2 is directly linked to the notion of explained variance and to the variance decomposition
(Eqs. (4) and (5)). Thus, historical developments of IMs in the literature of linear regression analysis naturally
focused on partitioning the 𝑅2 among the 𝑑 inputs (Johnson & LeBreton, 2004; Grömping, 2007). Many
decomposition types have been proposed, leading to various 𝑅2 partitioning strategies (and thus, to various
meanings). To sum up, several authors defined some desirability criteria (i.e., properties) of what a “relevant
decomposition” should be. For instance, according to Grömping (2007), four basic desirability criteria can be
sought after for a VIM resulting from an 𝑅2 decomposition:

• (C1) Proper decomposition: the sum of all shares should be equal to the total variance (or to the 𝑅2 itself
in the case of normalized shares);

• (C2) Nonnegativity: all shares should be nonnegative;

• (C3) Exclusion: if 𝛽 𝑗 = 0, then the share of 𝑋 𝑗 should be zero;

• (C4) Inclusion: if 𝛽 𝑗 ≠ 0, then the share of 𝑋 𝑗 should be nonzero.

Criteria (C1) and (C2) constitute the fundamental properties that VIMs should verify as they allow for a proper
interpretation as a percentage of 𝑅2. The criterion (C3) is strongly relevant if the goal is to identify variables
that are not influential or spurious and which should not appear in the model. The criterion (C4) seems also
fundamental to highlight inputs with direct influence in the model.

For the sake of completeness, one can mention an additional criterion that is sometimes mentioned in the
literature, but more related to regularization-based techniques (Zou & Hastie, 2005; Wallard, 2019):

• (C5) Grouping: all shares should tend to equate for highly correlated inputs.

However, as it will be shown in Sections 5 and 7, for the VIMs that are considered in this paper, the grouping
property (C5) can be contradictory to the exclusion property (C3). Thus, the choice of a specific VIM should
depend on the case of study and on the desired criteria. If the interpretation is focused on the direct influence
of the inputs on the model output, then the exclusion property (C3) seems to be appropriate; if the correlations
among data can carry necessary information for the interpretation (as sometimes in GSA), it can be useful to
consider the (C5) property instead.

3.3 Regression coefficients and Pearson correlation for independent inputs
Provided that the inputs are mutually independent, the law of total variance in Eq. (5) becomes:

VAR(𝑌 ) =
𝑑∑︁
𝑗=1

𝛽2
𝑗𝜎

2
𝑗 + 𝜎2

𝜀 ,

5



and naturally allows to partition the output variance with respect to any input 𝑋 𝑗 , with 𝑗 = 1, . . . , 𝑑, by means
of a standardized regression coefficient (SRC) 𝛽∗

𝑗
defined as:

𝛽∗𝑗 = 𝛽 𝑗

𝜎𝑗

𝜎𝑌
,

where 𝜎𝑌 and 𝜎𝑗 are the standard deviations associated with 𝑌 and the input 𝑋 𝑗 , resp. Hence, the squared
SRC (SRC2), denoted by 𝛽∗

𝑗
2, can then be used as a VIM (Grömping, 2006; Antoniadis et al., 2021). It can be

understood as the share of variance explained by each input 𝑋 𝑗 , since:

𝑅2 =

𝑑∑︁
𝑗=1

𝛽∗𝑗
2
.

One can see that the SRC2 respects the four desirability criteria (C1), (C2), (C3) and (C4) mentioned previously.
Moreover, one can notice that the SRC is strongly connected to the input-output Pearson correlation coefficient
(CC), denoted by 𝑟𝑌,𝑋 𝑗

, which allows to measure the linear correlation between an input 𝑋 𝑗 and the output 𝑌 :

𝑟𝑌,𝑋 𝑗
=
COV(𝑌, 𝑋 𝑗 )

𝜎𝑌𝜎𝑗

.

In fact, for independent inputs, both quantities are equal, i.e., 𝑟𝑌,𝑋 𝑗
= 𝛽∗

𝑗
and thus, one obtains:

𝑅2 =

𝑑∑︁
𝑗=1

𝑟2
𝑌,𝑋 𝑗

. (7)

Remark 2. As a reminder, if the input 𝑋 𝑗 admits a perfect linear relationship with the output 𝑌 , 𝑟𝑌,𝑋 𝑗
is equal

to 1 or −1. If 𝑋 𝑗 and 𝑌 are independent, 𝑟𝑌,𝑋 𝑗
is equal to 0. However, a 𝑟𝑌,𝑋 𝑗

equals to 0 does not imply that
𝑋 𝑗 and 𝑌 are independent as the dependency between 𝑋 𝑗 and 𝑌 might be nonlinear.

As soon as inputs are not independent anymore, the SRC2 is no longer an admissible VIM, since it does not take
the contribution due to the covariance between the inputs of Eq. (6) into account. Thus, the VIM desirability
criterion (C1) is not respected anymore. The following sections are dedicated to study alternatives which can be
used when the independence is no more ensured.

4 Dealing with multicollinearity
In a regression setting, multicollinearity occurs whenever two or more inputs exhibit a statistically significant
linear dependence. It generalizes the notion of collinearity (Belsley et al., 1980) to encompass a linear link
between more than two variables. Two variables 𝑋1 and 𝑋2 are said to be perfectly collinear if and only if the
CC 𝑟𝑋1 ,𝑋2 is equal to 1 or -1 (see Remark 2). Similarly, there is a perfect multicollinearity when there are two
or more inputs perfectly collinear. In practice, we speak of multicollinearity when there are several (possibly
highly) correlated variables with each other.

Several drawbacks can arise due to a high degree of multicollinearity. For instance, the least-square estimates of
the linear coefficients can be impacted (this consequence is sometimes known as the “aliasing effect”, see, e.g.,
McCullagh & Nelder (1989)). Even if the matrix (X𝑛)⊤X𝑛 appearing in Eq. (3) is theoretically invertible, a
computer algorithm may be unsuccessful or inaccurate enough to obtain a precise approximation of the inverse
matrix due to ill-conditioning. Several methods exist to circumvent this phenomenon, such as regularization
techniques (see, e.g., Deng et al. (2015)).

Another issue can occur during the estimation of the impact of an input variable on the output 𝑌 . The greater
the multicollinearity effect, the more difficult it is to separate the individual effects of each variable on the
output variable. This section focuses on this difficulty by investigating several classic metrics proposed in the
literature to deal with multicollinear inputs. However, as it will be shown, these metrics do not rely on the 𝑅2

decomposition and are, consequently, not able to separate the individual effects of each input variable on the
output variable. In the following sections, these metrics are to be distinguished from the VIMs, which are based
on a variance decomposition.
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4.1 An illustrative example: a two-input regression model
This subsection aims at providing a first simple example which will be used throughout the paper for illustration
purposes of several metrics (and the corresponding properties).

Example: two-input regression model. Consider the linear regression model of the Eq. (2) (with 𝑑 = 2) of the
output 𝑌 modeled by two inputs 𝑋1 and 𝑋2. For the sake of simplicity, let us introduce the following notations:

𝑏1 := 𝛽1𝜎1, 𝑏2 := 𝛽2𝜎2, and 𝑟 := 𝑟𝑋1 ,𝑋2 .

From Eqs. (2) and (4), recalling that COV(𝑋1, 𝑋2) = 𝑟𝜎1𝜎2, one has:

𝑅2 =
𝑏2

1 + 2𝑏1𝑏2𝑟 + 𝑏2
2

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

. (8)

Similarly, we can easily determine the squared CC (CC2):

𝑟2
𝑌,𝑋1

=
(𝑏1 + 𝑟𝑏2)2

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

and 𝑟2
𝑌,𝑋2

=
(𝑏2 + 𝑟𝑏1)2

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

. (9)

Both Eqs. (8) and (9) highlight the fact that, when the inputs are correlated (i.e., 𝑟 ≠ 0), the CC2 do not satisfy
the 𝑅2 decomposition as in the case of independent inputs given by Eq. (7). Therefore, CC2 do not satisfy the
criterion (C1). Moreover, assuming that 𝑟 = 1, both CC2 will be the same, even if either 𝑏1 or 𝑏2 are set to zero,
which makes the criterion (C3) not fulfilled.

4.2 The variance inflation factor
A standard and well-known metric of multicollinearity is the variance inflation factor (VIF) (Chatterjee & Price,
1977; Fox & Monette, 1992; Johnson & LeBreton, 2004) defined as:

VIF 𝑗 =
1

1 − 𝑅2
𝑋 𝑗 (X− 𝑗 )

, (10)

where X− 𝑗 is the vector of all the inputs except 𝑋 𝑗 , and where 𝑅2
𝑋 𝑗 (X− 𝑗 ) represents the 𝑅2 from the linear

regression where 𝑋 𝑗 is considered as the output, and by taking X− 𝑗 as inputs. The smallest value of VIF is 1
and corresponds to the absence of collinearity. A standard rule of thumb is that a VIF value exceeding 5 or 10
indicates a substantial amount of collinearity (James et al., 2014).

Example: two-input regression model (Section 4.1, continued).

From Eq. (10), one simply has VIF1 = VIF2 =
1

1 − 𝑟2 with 𝑟 ≠ ±1.

Remark 3. The generalized variance inflation factor (GVIF) has been proposed by Fox & Monette (1992) in
order to provide a similar metric of multicollinearity as the VIF in the case of categorical inputs. The GVIF
also works if one desires to group polynomial terms related to the same input.

4.3 The partial correlation coefficient
It can also be interesting to quantify the degree of association between the output𝑌 and an input 𝑋 𝑗 by cancelling
the effect of other inputs, gathered in X− 𝑗 . It is in that spirit that the partial correlation coefficient (PCC) has
been introduced and used in the GSA community (see, e.g., Helton (1993); Saltelli et al. (2000); Helton et al.
(2006)). It is defined as:

𝑟 (𝑌,𝑋 𝑗 ) |X− 𝑗
= 𝑟𝜀𝑌 |X− 𝑗

, 𝜀𝑋𝑗 |X− 𝑗
, (11)

where 𝜀𝑌 |X− 𝑗
(resp. 𝜀𝑋 𝑗 |X− 𝑗

) represents the random error in the linear regression model of 𝑌 (resp. 𝑋 𝑗 ) with
respect to X− 𝑗 . In other words, the PCC measures the residual information of 𝑋 𝑗 on 𝑌 which is not explained
by the variables X− 𝑗 .
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Example: two-input regression model (Section 4.1, continued).
Eq. (11) can be written as a function of the coefficient of determination and the CC such as:

𝑟2
(𝑌,𝑋1 ) |𝑋2

=
𝑅2
𝑌 (𝑋1 ,𝑋2 ) − 𝑟2

𝑌,𝑋2

1 − 𝑟2
𝑌,𝑋2

.

Using Eqs. (8) and (9), we have

𝑟2
(𝑌,𝑋1 ) |𝑋2

=
𝑏2

1 (1 − 𝑟2)
𝑏2

1 (1 − 𝑟2) + 𝜎2
𝜀

and 𝑟2
(𝑌,𝑋2 ) |𝑋1

=
𝑏2

2 (1 − 𝑟2)
𝑏2

2 (1 − 𝑟2) + 𝜎2
𝜀

.

Note that the squared PCC (PCC2) is equal to 1 if the model is perfectly linear (i.e., if 𝜎2
𝜀 = 0 with 𝑏 𝑗 ≠ 0)

and equal to zero if 𝑋1 and 𝑋2 are perfectly correlated. Thus, even if it respects the exclusion criterion (C3),
it does not respect the inclusion criterion (C4). Finally, even if in the GSA literature (Saltelli et al., 2000;
Helton et al., 2006; Iooss & Lemaître, 2015), the PCC2 has been proposed as a substitute for the SRC2 in
the case of dependent inputs, it does not respect the fundamental desirability criterion (C1), i.e., the proper 𝑅2

decomposition, and thus should not be used as an admissible VIM.

4.4 The semi-partial correlation coefficient
Instead of controlling the potential linear effects of X− 𝑗 with 𝑋 𝑗 , as done with the PCC, the semi-partial
correlation coefficient (SPCC) quantifies the additional explanatory power of a variable 𝑋 𝑗 on the variance of
𝑌 (Johnson & LeBreton, 2004). The SPCC is defined as the proportion of the output variance explained by 𝑋 𝑗

after removing the “information brought” by X− 𝑗 (as a difference of explained variance). It is formally given
by the CC (noted 𝑟𝑌, (𝑋 𝑗 |X− 𝑗 ) ) between 𝑌 and the residuals of the regression of 𝑋 𝑗 on X− 𝑗 . The squared SPCC
(SPCC2) is intrinsically linked to the 𝑅2 since it can be written as:

𝑟2
𝑌, (𝑋 𝑗 |X− 𝑗 ) = 𝑅2

𝑌 (X ) − 𝑅2
𝑌 (X− 𝑗 ) . (12)

In the case of independent inputs, the SPCC is equal to the usual CC.

Example: two-input regression model (Section 4.1, continued).
Eq. (12) can be written as a function of the coefficient of determination and the CC such as:

𝑟2
𝑌, (𝑋1 |𝑋2 ) = 𝑅2

𝑌 (𝑋1 ,𝑋2 ) − 𝑟2
𝑌,𝑋2

,

and using Eqs. (8) and (9), one has:

𝑟2
𝑌, (𝑋1 |𝑋2 ) =

𝑏2
1 (1 − 𝑟2)

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

and 𝑟2
𝑌, (𝑋2 |𝑋1 ) =

𝑏2
2 (1 − 𝑟2)

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

. (13)

On the one hand, notice that in Genizi (1993), the SPCC2 is called the marginal reduction due to 𝑋 𝑗 . This
comes from the fact that it quantifies the loss of 𝑅2 induced by removing 𝑋 𝑗 from the linear model. On the
other hand, as illustrated in the above example, the SPCC can become artificially small in situations of highly
correlated inputs. It subsequently renders any importance ranking task quite difficult. Moreover, one can see
that the SPCC2 is not an admissible VIM, since it does not respect the fundamental criterion (C1).

4.5 Illustration with Venn diagrams
In order to provide an intuitive understanding of the multicollinearity phenomenon and how it impacts the
various metrics already introduced, we propose to use Venn diagrams in the case of a standard linear regression
with two inputs (Clouvel, 2019; Il Idrissi et al., 2021).

Figure 1 is to be understood as follows: in both sub-figures, the total variance of 𝑌 is represented as the green
area by 𝑎 + 𝑏 + 𝑐 + 𝜎2

𝜀 with 𝜎2
𝜀 the unexplained share of variance (i.e., the model error). The hatched orange

area represents the variance of 𝑋1, while the star-filled blue area represents the variance of 𝑋2. The area 𝑎 (resp.

8



𝑐

𝑎
𝜎2
𝜀

𝑋2

𝑋1 𝑌

(a) 𝑟 = 0, 𝑏 = 0

𝑐

𝑎

𝑏

𝜎2
𝜀

𝑋2

𝑋1
𝑌

(b) 𝑟 ≠ 0, 𝑏 ≠ 0

Figure 1: Illustration of the multicollinearity effects with an output 𝑌 and two inputs 𝑋1 and 𝑋2.

𝑐) represents the additional explanatory power of the variable 𝑋1 (resp. 𝑋2) on the regression model 𝑌 (X)
(defined by Eq. (2)) given by the nominator of the SPCC2 (Eq. (13)). We thus can write that:

𝑎 = 𝑏2
1 (1 − 𝑟2),

𝑐 = 𝑏2
2 (1 − 𝑟2),

𝑏 = 𝑏2
1𝑟

2 + 2𝑏1𝑏2𝑟 + 𝑏2
2𝑟

2.

(14)

Independent case. In Figure 1a, the variables 𝑋1 and 𝑋2 are independent. The hatched orange and the star-
filled blue areas do not overlap (𝑟 = 0, 𝑏 = 0). In this case, the CC2 (Eq. (9)) and the SPCC2 (Eq. (13)) are
equal:

𝑟2
𝑌, (𝑋1 |𝑋2 ) = 𝑟2

𝑌,𝑋1
=

𝑎

𝑎 + 𝑐 + 𝜎2
𝜀

and 𝑟2
𝑌, (𝑋2 |𝑋1 ) = 𝑟2

𝑌,𝑋2
=

𝑐

𝑎 + 𝑐 + 𝜎2
𝜀

.

The hatched orange area 𝑎 and the star-filled blue area 𝑐 finally represent the proportion of the variance in 𝑌

resp. explained by 𝑋1 and 𝑋2, and allow sharing the determination coefficient 𝑅2:

𝑅2 =
𝑎 + 𝑐

𝑎 + 𝑐 + 𝜎2
𝜀

.

Correlated case. In Figure 1b, the variables 𝑋1 and 𝑋2 are correlated. The hatched orange and the star-filled
blue areas do overlap (𝑟 ≠ 0, 𝑏 ≠ 0). The proportion of the variance in 𝑌 explained by 𝑋1 (resp. 𝑋2) is now
equal to 𝑎 + 𝑏 (resp. 𝑐 + 𝑏). The CC2 (Eq. (9)) are thus equal to:

𝑟2
𝑌,𝑋1

=
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

and 𝑟2
𝑌,𝑋2

=
𝑐 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

,

and the SPCC2 (Eq. (13)) are equal to:

𝑟2
𝑌, (𝑋1 |𝑋2 ) =

𝑎

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

and 𝑟2
𝑌, (𝑋2 |𝑋1 ) =

𝑐

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

.

We can notice that neither the sum of the CC2 nor the sum of the SPCC2 is equal to the determination coefficient
𝑅2:

𝑅2 =
𝑎 + 𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

.

Therefore, neither the CC2 nor the SPCC2 cannot be used as VIMs knowing that they do not meet the criterion
(C1) for the 𝑅2 decomposition.

Finally, the notion of multicollinearity can be appreciated in this example as follows: the higher the absolute
value of 𝑟 , the larger the overlap area 𝑏. Similarly, the areas 𝑎 and 𝑐 are getting smaller (see Eq. (14)) and
both the CC2 and the SPCC2 are far from meeting the criterion (C1). This explains why the presence of
multicollinearity makes the 𝑅2 decomposition difficult, and why it is necessary to use more complex VIMs
(than the previously presented metrics) to separate the individual effects of each input on the output variable.
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5 Importance measures from allocation rules
As shown in the previous section, building relevant and meaningful VIMs that handle correlated predictors is
a challenge. In the literature, such a topic has already been widely addressed by several authors from various
communities such as, e.g., Lindeman et al. (1980) in the statistical learning community, or Budescu (1993) (with
the proposition of general dominance analysis following proper dominance criteria) in quantitative psychology.
However, it appears that all these techniques are very similar and can be gathered into a more generic framework
of cooperative game theory, while reducing to the definition of specific allocation rules among the regressors.
In this section, the links and connections between these old VIMs are exhibited and some relevant extensions
are discussed in order to tackle some specific desirability criteria.

5.1 Lindeman-Merenda-Gold indices
A particular VIM tackling the problem of correlated inputs is the so-called “Lindeman-Merenda-Gold” (LMG)
index, named after the initials of the authors’ names in Lindeman et al. (1980). This VIM has been studied
extensively by several authors (see, e.g., Budescu (1993); Johnson & LeBreton (2004); Grömping (2006)) and
relies on the averaging sequential sums of squares over all orderings of inputs.

Formally, let u denote a subset of indices in the set of all subsets of {1, . . . , 𝑑} and Xu = (𝑋 𝑗 : 𝑗 ∈ u)
represents a subset of inputs. From Budescu (1993), one can interpret this index from the concept of “dominance
analysis”. It is based on the measure of the elementary contribution of any given variable 𝑋 𝑗 ( 𝑗 ∈ {1, . . . , 𝑑})
to a given subset model 𝑌 (Xu) by the increase in 𝑅2 that results from adding that predictive variable to the
regression model. Formally, the LMG 𝑗 index associated to 𝑋 𝑗 can be defined as follows:

LMG 𝑗 =
1
𝑑!

∑︁
𝜋∈permutations

of {1,...,𝑑}

𝑟2
𝑌, (𝑋 𝑗 |X𝜋 ) (15)

where the SPCC2 𝑟2
𝑌, (𝑋 𝑗 |X𝜋 ) = 𝑅2

𝑌 (Xv∪{ 𝑗} ) − 𝑅2
𝑌 (Xv ) is to be understood with v being the indices preceding 𝑗

in the order 𝜋. An equivalent formula is given by:

LMG 𝑗 =
1
𝑑

𝑑−1∑︁
𝑖=0

∑︁
u⊆−{ 𝑗 }
|u |=𝑖

(
𝑑 − 1
𝑖

)−1
𝑟2
𝑌, (𝑋 𝑗 |Xu ) =

1
𝑑

∑︁
u⊆−{ 𝑗 }

(
𝑑 − 1
|u|

)−1
𝑟2
𝑌, (𝑋 𝑗 |Xu ) (16)

with
(
𝑛

𝑘

)
=

𝑛!
(𝑛 − 𝑘)! 𝑘!

and 𝑟2
𝑌, (𝑋 𝑗 |Xu ) = 𝑅2

𝑌 (Xu∪{ 𝑗} ) − 𝑅2
𝑌 (Xu ) .

In Eq. (16) (resp. Eq. (15)), this averaging process over all combinations (resp. permutations) is carried out
in the absence of order between the inputs. This VIM has been extensively studied in the literature (see, e.g.,
Kruskal (1987); Genizi (1993)). The main drawback in regards to its broad utilization in practice is its expo-
nential complexity (i.e., one needs to perform 2𝑑 − 1 different linear regressions to compute the summands in
Eq. (16)), which can be challenging even for moderate size 𝑑.

Example: two-input regression model (Section 4.1, continued).
From Eq. (15), one gets:

LMG1 =
1
2

(
𝑅2
𝑌 (𝑋1 ,𝑋2 ) − 𝑅2

𝑌 (𝑋2 ) + 𝑅2
𝑌 (𝑋1 )

)
, LMG2 =

1
2

(
𝑅2
𝑌 (𝑋1 ,𝑋2 ) − 𝑅2

𝑌 (𝑋1 ) + 𝑅2
𝑌 (𝑋2 )

)
,

and using Eqs. (8) and (9):

LMG1 =

𝑏2
1 + 𝑏1𝑏2𝑟 +

𝑟2

2
(
𝑏2

2 − 𝑏2
1
)

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

, LMG2 =

𝑏2
2 + 𝑏1𝑏2𝑟 +

𝑟2

2
(
𝑏2

1 − 𝑏2
2
)

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

. (17)

This result is already given in Grömping (2007).
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Going back to the Venn diagram illustration (see Fig. 1 and in Il Idrissi et al. (2021)), one obtains:

LMG1 = (𝑎 + 𝑏/2)/(𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀),

LMG2 = (𝑐 + 𝑏/2)/(𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀).

Focusing on the numerators, one can notice that the LMG redistributes 𝑏 equally between 𝑋1 and 𝑋2 (each
variable gets half of the variance due to their correlation).

Note also what happens in the two following particular cases:

• If |𝑟 | tends to 1 (i.e., the inputs are collinear), LMG1 and LMG2 tends to be both equal to 0.5. The
grouping property (C5) in Section 3.2 is respected;

• If one input is not in the model, e.g., 𝑋2 (then 𝛽2 = 0 and 𝑏2 = 𝑐 = 0), then LMG2 cannot be zero as long
as 𝑋2 is correlated with 𝑋1. The exclusion property (C3) in Section 3.2 is not respected in this case.

In conclusion, the LMG index respects most of the fundamental VIM desirability criteria such as 𝑅2 decompo-
sition (C1), nonnegativity (C2), but also, as stated in Feldman (2005) and Grömping (2007), inclusion (C4) and
grouping (C5). However, it does not respect the exclusion criterion (C3).

5.2 The proportional marginal variance decomposition
By analogy with the LMG indices, Feldman (2005) proposed the so-called proportional marginal variance
decomposition (PMVD). This index also makes use of sequential sum of squares, but differ from the LMG
index on the averaging process over the different orderings of inputs. These indices have been extensively
studied in Grömping (2007, 2015) and used in a logistic regression context in Il Idrissi et al. (2021). The
PMVD indices are defined as follows:

PMVD 𝑗 =
∑︁

𝜋∈permutations
of {1,...,𝑑}

𝐿 (𝜋)∑
𝜋′ 𝐿 (𝜋′) 𝑟

2
𝑌, (𝑋 𝑗 |X𝜋 ) , (18)

where the two sums are performed over all possible permutations of {1, . . . , 𝑑} and

𝐿 (𝜋) =
𝑑−1∏
𝑖=1

[
𝑟2
𝑌, (X𝜋𝑖+1 ,..., 𝜋𝑑 |X𝜋1 ,..., 𝜋𝑖 )

]−1
.

Example: two-input regression model (Section 4.1, continued).
Eq. (18) becomes (Grömping, 2007):

PMVD1 =
𝑏2

1 +
[
𝑏2

1/(𝑏
2
1 + 𝑏2

2)
]

2𝑏1𝑏2𝑟

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

, PMVD2 =
𝑏2

2 +
[
𝑏2

2/(𝑏
2
1 + 𝑏2

2)
]

2𝑏1𝑏2𝑟

𝑏2
1 + 2𝑏1𝑏2𝑟 + 𝑏2

2 + 𝜎2
𝜀

.

Moreover, one can notice that:

• If we let |𝑟 | → 1, we obtain, for the quantities derived above, that:

PMVD1 → 𝑏2
1

(𝑏1 + 𝑏2)2

(𝑏2
1 + 𝑏2

2) (𝑏
2
1 + 2𝑏1𝑏2 + 𝑏2

2 + 𝜎2
𝜖 )

, PMVD2 → 𝑏2
2

(𝑏1 + 𝑏2)2

(𝑏2
1 + 𝑏2

2) (𝑏
2
1 + 2𝑏1𝑏2 + 𝑏2

2 + 𝜎2
𝜖 )

.

These two values can be strongly different in cases of large differences between 𝑏1 and 𝑏2. This shows that the
grouping criterion (C5) of Section 3.2 is not respected. Note that the pathological case |𝑟 | = 1 corresponds
to the perfect collinearity case. From a statistical perspective, the regression coefficients 𝛽1 and 𝛽2 in 𝑏1 and
𝑏2 are aliased, making them difficult to identify (i.e., their value is nonunique). As a result, these two indices
become difficult to interpret in practice;

• If one input is not in the model, for example, 𝑋2, then 𝛽2 = 0 and 𝑏2 = 𝑐 = 0, and subsequently, PMVD2 = 0.
Therefore, the exclusion property (C3) is respected;

11



• If 𝜎2
𝜀 = 0, the equations simplify to:

PMVD1 =
𝑏2

1

𝑏2
1 + 𝑏2

2
, PMVD2 =

𝑏2
2

𝑏2
1 + 𝑏2

2
.

Going back to the Venn diagram analogy (see Fig. 1), one has:

PMVD1 = 𝑎[1 + 𝑏/(𝑎 + 𝑐)]/(𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀),

PMVD2 = 𝑐[1 + 𝑏/(𝑎 + 𝑐)]/(𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀).

In this case, the share 𝑏 due to the correlation between inputs is not equally shared (as already illustrated, e.g.,
in Hérin et al. (2022)), as for the LMG indices, but rather “proportionally” shared with respect to the magnitude
of the shares 𝑎 and 𝑐. In the particular case where 𝜎2

𝜀 = 0, the above equations simplify to:

PMVD1 = 𝑎/(𝑎 + 𝑐) , PMVD2 = 𝑐/(𝑎 + 𝑐) .

and one can notice that the PMVD does not depend on 𝑏 anymore. While this behavior is known when dealing
with two inputs, Grömping (2007) shows that it does not generalize to situations with more inputs.

In conclusion, the PMVD respects almost all the fundamental VIM desirability criteria: 𝑅2 decomposition
(C1) and nonnegativity (C2), but also, as stated by Feldman (2005) and Grömping (2007), exclusion (C3) and
inclusion (C4).

5.3 Synthesis and discussion
5.3.1 Synthesis about the two-input regression model

Table 3 synthesizes the analytical expressions of the discussed VIMs based on the illustration of Figure 1. The
equations for CC2, PCC2 and SPCC2 are displayed as functions of 𝑎, 𝑏, 𝑐 (using Eqs. (14)). As seen in this
case, CC2, PCC2 and SPCC2 are not admissible VIMs because they do not sum to 𝑅2. Contrarily, LMG and
PMVD are admissible. Moreover, LMG does not respect the exclusion property but respects the inclusion
property, while the PMVD respects both. The behavior of these indices is illustrated and studied on more
general examples and on real datasets in Section 7.

Input CC2 PCC2 SPCC2 LMG PMVD

𝑋1
𝑎 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

𝑎

𝑎 + 𝜎2
𝜀

𝑎

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

𝑎 + 1
2𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

𝑎 + 𝑎
𝑎+𝑐 𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

𝑋2
𝑐 + 𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

𝑐

𝑐 + 𝜎2
𝜀

𝑐

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

𝑐 + 1
2𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

𝑐 + 𝑐
𝑎+𝑐 𝑏

𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀

Table 3: Metrics and VIMs associated with the decomposition of 𝑅2 = (𝑎 + 𝑏 + 𝑐)/(𝑎 + 𝑏 + 𝑐 + 𝜎2
𝜀).

Remark 4. In Il Idrissi et al. (2021), estimation schemes for LMG and PMVD indices have been proposed for
both linear and logistic models and applied to regression and classification tasks, resp. In the Supplementary
Material, some results for logistic regression are provided as a complementary content to the regression part
presented in the core paper.

5.3.2 Discussion about the links between the studied VIMs, GSA and game theory

The two above-presented VIMs (LMG and PMVD) are inherently linked with cooperative game theory. The
sequential approach (i.e., the formulations using permutations) is related to the notion of random order allo-
cation introduced by Weber (1988) and Feldman (2005). These allocations (also called “solution concepts” in
the game theory literature) allow decomposing a quantity (in this case, the 𝑅2) by means of quantifying the
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“value” of each player using a value function (here, the SPCC2). Through this lens, the LMG indices are none
other than the so-called Shapley values of the cooperative game (Shapley, 1953). This value is “egalitarian” in
its redistribution, i.e., the behavior of splitting 𝑏 in half in the Venn diagram analogy actually holds in higher
dimensions. On the other side, the PMVD is analogous to the proportional values (Feldman, 2000), allowing
for a proportional redistribution.

In GSA, when dealing with a linear numerical model, the only difference with the present study is the fact
that 𝜎2

𝜀 is equal to 0 (Saltelli et al., 2000; Helton et al., 2006). GSA actually encompasses the definition of
VIMs of more general models (i.e., not necessarily linear). For instance, whenever the inputs are assumed to be
independent, the SRC2 is actually equal to the first-order Sobol’ index, which is defined outside of the realm of
linear models (Sobol’, 1993). Additionally, provided that the error is null, the 𝑅2 can be directly comparable to
the closed Sobol’ indices (see, e.g., Il Idrissi et al. (2021); Da Veiga et al. (2021)), which need not be restricted
to linear models to be defined.

As for the use of Shapley values to define sensitivity indices, this idea has been introduced by Owen (2014)
in the context of variance-based GSA. In this work, the value function is the closed Sobol’ index of a subset
of players, leading to the so-called Shapley effects. Several authors (Song et al., 2016; Benoumechiara &
Elie-Dit-Cosaque, 2019; Iooss & Prieur, 2019; Plischke et al., 2021) proposed and studied numerous dedicated
estimation algorithms for nonlinear models. Analytical formulas have also been exhibited for linear models
with Gaussian inputs (Owen & Prieur, 2017), and can be efficiently computed by finely tuned algorithms (Broto
et al., 2019). However, these techniques require the knowledge and the ability to draw samples from the joint
density of the inputs. Especially, one needs to know how to model the dependence structure (i.e., the copula)
between the inputs. Typically, such a condition is not met in common statistical learning (or machine learning)
practice when only scarce data is available. Therefore, the estimation of such VIMs often appears to be difficult
(either because of the inherent cost, especially with respect to the input dimension, or since only a few data is
available). Recently, given-data strategies have been proposed to leverage this issue (Broto et al., 2020; Bénard
et al., 2022).

It has also been noticed that, theoretically, the Shapley effects can grant exogenous inputs (i.e., which are not
explicitly included in the structural equations of the model) some importance, especially when these inputs are
correlated to endogenous inputs (i.e., effectively present in the model). Inspired by the PMVD index, Hérin
et al. (2022, 2024) proposed to use the Proportional values instead of the Shapley values as a baseline. As a
result, a set of novel GSA indices, called the proportional marginal effects (PME) have been defined Hérin et al.
(2022, 2024). These indices allow the detection of exogenous inputs, despite the correlation, in a nonlinear
setting (which is analogous to the exclusion criterion (C3)).

6 Dealing with high-dimensional inputs via the relative weight analysis
When 𝑑 becomes “large” (e.g., several tens), the previous VIMs (i.e., LMG and PMVD) may suffer from their
estimation cost (due to the cardinality of the permutations). In order to circumvent these issues, Johnson (2000)
proposed the so-called relative weight measures (later called Johnson’s relative weights or simply Johnson
indices in the rest of the paper). To put it briefly, the basic idea is to transform the correlated inputs into
uncorrelated variables using a singular value decomposition (SVD) method, and then to use an appropriate
reweighting process in order to get the indices. Note that this approach has been proposed earlier by several
authors (see associated references, e.g., in Nimon & Oswald (2013) and Grömping (2015)). As an example,
one can mention the work of Genizi (1993) which led to the so-called Genizi’s approach. All in all, these
VIMs based on a preliminary transformation of inputs are known to be adapted to large input dimension as
well as providing similar results to those obtained via LMG indices (Johnson & LeBreton, 2004; Clouvel, 2019;
Clouvel et al., 2019), at a highly reduced computational cost. Thus, the goal of this section is to explain how to
build and estimate the Johnson indices.
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6.1 Johnson indices
The Johnson indices (Johnson, 1966, 2000)1 are part of a wider set of methods called Relative Weights Analysis.
In the case of the Johnson indices Johnson (2000), the matrix X𝑛 ∈ R𝑛×𝑑 of the design of experiments is
transformed into an orthogonal matrix Z𝑛 ∈ R𝑛×𝑑 in the least squares sense. Figure 2 summarizes the global
approach of the Johnson indices. For Johnson (1966), it consists in finding Z𝑛 and W ∈ R𝑑×𝑑 such that:

X𝑛 = Z𝑛W
(Z𝑛)⊤Z𝑛 = I

Z𝑛 = arg min
𝚷𝑛

Tr {(X𝑛 −𝚷𝑛)⊤ (X𝑛 −𝚷𝑛)}
(19)

where I ∈ R𝑑×𝑑 is the identity matrix and Tr{·} the trace operator. Johnson shows that the solution matrices of
Eq. (19) are given by:

Z𝑛 = P𝑛Q⊤ and W = Q𝚫Q⊤ , (20)

where P𝑛 ∈ R𝑛×𝑑 and Q ∈ R𝑑×𝑑 are two matrices defined by the following SVD:

X𝑛 = P𝑛𝚫Q⊤ . (21)

Thus, P𝑛 and Q contain, resp., the eigenvectors of X𝑛X𝑛⊤ and X𝑛⊤X𝑛. As for 𝚫 ∈ R𝑑×𝑑 , it is a diagonal matrix
which, itself, contains the singular values 𝛿1 ≥ ... ≥ 𝛿𝑑 > 0 of X𝑛. In that sense, the new set of uncorrelated
variables 𝑧1, . . . , 𝑧𝑑 is maximally correlated with the original set of correlated variables 𝑥1, . . . , 𝑥𝑑 (i.e., the
columns of X𝑛).

Remark 5. Note also that Eq. (20) gives:
𝚺𝑿,𝑿 = W2. (22)

Figure 2: Representation of the Johnson (Johnson, 2000) relative weight calculation associated with the input
𝑋1.

A first least squares regression of y𝑛 (𝑛-size sample of the variable 𝑌 ∈ R) on Z𝑛 allows determining the vector
α ∈ R𝑑 for which a consistent estimator α̂ = (�̂� 𝑗 )1≤ 𝑗≤𝑑 is given by:

α̂ = ((Z𝑛)⊤Z𝑛)−1 (Z𝑛)⊤y𝑛 = (Z𝑛)⊤y𝑛 .

Since the new transformed predictors 𝑧 𝑗 are uncorrelated to one another, the predictable variance of 𝑌 can be
decomposed such as:

VAR(E[𝑌 |Z]) =
𝑑∑︁
𝑗=1

𝛼2
𝑗 . (23)

The 𝛼2
𝑗
’s are considered to be close approximations to the relative weights of the original set of correlated

variables 𝑥1, . . . 𝑥𝑑 , but they do not give close representations, particularly if some original variables are highly
correlated. To take into account the correlation effects, Johnson (2000) thus suggests to compute the regression
coefficients of X𝑛 on Z𝑛.

1Note, that there are two different authors with the same name. Johnson (2000) suggested determining the matrix W as the weights of
the regression of X𝑛 on Z𝑛 contrary to Johnson (1966) which regressed Z𝑛 on X𝑛.
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Remark 6. Using Eqs. (3), (19) and (22), one can prove that:

α̂ = Wβ̂. (24)

The 𝑑 linear combinations between X𝑛 and Z𝑛 therefore allows determining the matrix of the weights W for
which a consistent estimator Ŵ = (𝑤𝑖 𝑗 )1≤𝑖, 𝑗≤𝑑 is given by:

Ŵ = (Z𝑛)⊤X𝑛 .

Using Eq. (20), it can be shown that the standardized matrix W∗ is composed of the CCs 𝑟𝑍𝑖 ,𝑋 𝑗
such that:

𝑤∗
𝑖 𝑗 =

𝑤𝑖 𝑗√︃∑
𝑘 𝑤

2
𝑘 𝑗

= 𝑟𝑍𝑖 ,𝑋 𝑗
, (25)

and thus, for all 𝑗 , one has:
𝑑∑︁
𝑖=1

(𝑤∗
𝑖 𝑗 )2 = 1 . (26)

Thus, 𝑤∗
𝑖 𝑗

represents the proportion of variance in 𝑍𝑖 accounted by 𝑋 𝑗 .

Finally, the proportionate contribution of 𝑋 𝑗 to 𝑌 can then be estimated by multiplying the proportion �̂�2
𝑖

of
variance in 𝑌 accounted for by 𝑍𝑖 by the proportion (𝑤∗

𝑖 𝑗
)2 of each 𝑍𝑖 accounted for by 𝑋 𝑗 . The Johnson index

associated with the input 𝑋 𝑗 can thus be expressed as:

𝐽 𝑗 = 𝜎−2
𝑌

𝑑∑︁
𝑖=1

𝛼2
𝑖 𝑤

∗2

𝑖 𝑗 , (27)

for which a natural plug-in estimator can be easily obtained via

𝐽 𝑗 = �̂�−2
𝑌

𝑑∑︁
𝑖=1

�̂�2
𝑖 𝑤

∗2

𝑖 𝑗 with 𝑤∗
𝑖 𝑗 =

𝑤𝑖 𝑗√︃∑
𝑘 𝑤

2
𝑘 𝑗

.

6.2 Standardized Johnson indices for the variance decomposition
As discussed in the previous Section 3.1, the 𝑅2 decomposition (C1), which is linked to the variance decompo-
sition, is a fundamental property that VIM should fulfill. Moreover, as presented in Section 2, the 𝑅2 can be
decomposed and estimated thanks to the covariance matrices 𝚺𝑌,X and 𝚺X ,X (Grömping, 2006):

𝑅 2 = �̂�−2
𝑌 𝚺𝑌,X𝚺

−1
X ,X𝚺X ,𝑌 ,

and using 𝚺X ,𝑌 = 𝚺X ,X β̂, the latter equation gives:

𝑅 2 = �̂�−2
𝑌 β̂⊤𝚺X ,X β̂ . (28)

Using Eqs.(22) and (24), Eq. (28) thus gives the decomposition2:

𝑅 2 = �̂�−2
𝑌 α̂⊤α̂ . (29)

In the paper of Johnson (2000), it is quickly said that the input samples are “expressed in standard score form”.
Using Eqs. (25) and (22), the standardization of the predictors imply that 𝑤∗

𝑖 𝑗
= 𝑤𝑖 𝑗 and, by the symmetry

of W, that
∑𝑑

𝑖=1 𝑤
∗2

𝑖 𝑗
=
∑𝑑

𝑗=1 𝑤
∗2

𝑖 𝑗
= 1. The sum of the 𝑑 relative weights

∑𝑑
𝑖=1 𝛼

2
𝑖
𝑤∗2

𝑖 𝑗
thus forms the variance

decomposition of Eq. (23) and finally:
𝑑∑︁
𝑗=1

𝐽 𝑗 = 𝜎−2
𝑌 α⊤α .

2Note that, by construction, the vector α and β are associated with the same quadratic minimization problem of the function
𝑆 (β) = ∥y𝑛 − X𝑛β∥2 =

y𝑛 − P𝑛Q⊤Q𝚫Q⊤β
2

= ∥y𝑛 − Z𝑛Wβ∥2 = ∥y𝑛 − Z𝑛α∥2 = 𝑆 (α) .
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With Eq. (29), the standardization of the inputs thus gives:

𝑅 2 =

𝑑∑︁
𝑗=1

𝐽 𝑗 . (30)

Finally, it is important to note that the standardization of the inputs is equivalent to directly calculate the matrix
W∗ and α∗ thanks to the multivariate correlation matrices RX ,X and RX ,𝑌 , as in the initial paper of Johnson
(1966). The eigendecomposition of the correlation matrix RX ,X gives:

RX ,X = Q∗𝚫∗2
Q∗⊤ .

The matrix W∗ is then given (similarly to the Eq. (20)) by3:

W∗ = Q∗𝚫∗Q∗⊤ ,

and the vector 𝛼∗ is determined thanks to the relation:

α∗ = W∗−1
RX ,𝑌 .

Remark 7. As previously with Eq. (24), we can also write:

α∗ = W∗β∗ , (31)

with β∗ the vector of standardized coefficients presented in Section 3.3.

Finally, the standardized Johnson index associated with the input 𝑋 𝑗 is directly given by:

𝐽∗𝑗 =
𝑑∑︁
𝑖=1

𝛼∗2

𝑖 𝑤∗2

𝑖 𝑗 . (32)

Similarly to the previous case, a natural plug-in estimator can be easily derived for this standardized index.

The index in Eq. (32) respects the fundamental VIM desirability criteria such as positivity (C2) and 𝑅2 decom-
position (C1). Moreover, as for the LMG index, it respects both the inclusion (C4) and the grouping (C5) criteria,
but not the exclusion (C3) one. Indeed, Eq. (27) intuitively shows that the correlation structure of the inputs car-
ried by W∗ is distributed over the Johnson indices. The similar behavior between the LMG and Johnson indices
has been confirmed in Thomas et al. (2014) who show their strict equality in the two-dimensional case (also
refer the proof in Appendix A).

7 Applications on toy functions and public datasets
In this section, various metrics (VIF, PCC2, SPCC2) and VIMs (SRC2, LMG, PMVD, Johnson) are computed
and compared across multiple datasets. It is important to recall that, if the inputs are not independent, only LMG,
PMVD, and Johnson indices are relevant since they adhere to the 𝑅2 decomposition property. All estimations
include associated confidence intervals (CI) to capture uncertainties in the estimates arising from finite sample
sizes. The standard bootstrap technique is employed to derive these CIs at a 95% level, typically utilizing 100
replicates.

Table 4 summarizes the datasets used in this section, including their characteristics: dataset name and corre-
sponding subsection, input dimension 𝑑, number of observations 𝑛, indication of quantitative vs. qualitative
inputs (qt/ql), and dataset source. The first three rows pertain to simulated toy cases, while the remaining
rows correspond to public datasets. Note that the "+1" mentioned in the input dimension column indicates the
inclusion of a dummy correlated variable (though not explicitly part of the model).

The first three application cases are based on scenarios defined directly from linear models. The independent
case includes, as its name suggests, independent inputs, illustrating a scenario without any collinearity. In the

3As a reminder, in Johnson (1966), one has W∗ = Q∗𝚫∗−1 Q∗⊤ because Z𝑛 is regressed on X𝑛.
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Name § 𝑑 𝑛 qt/ql Source
Independent 7.2.1 3 100 qt −
Collinear 7.2.2 4 100 qt −
Dummy correlated 7.2.3 1 + 1 100 qt −
Air quality 7.3 5 111 qt/ql airquality dataframe

(built-in R)
Car prices 7.4 15 804 qt/ql cars dataframe

(caret package)
Ames housing 7.5 79 2930 qt/ql AmesHousing dataframe

(AmesHousing package)

Table 4: Summary of the toy and public use cases.

collinear case, a strong correlation is introduced between two variables. The third model involves a dummy
correlated input, i.e., an input not included in the model but correlated with another model input.

The three other applications illustrate the relevance of each VIM using real datasets. The analysis of the car
prices dataset (here, in the context of regression, but classification is also studied in the Supplementary Material)
highlights the ability of the various VIMs to discern variable influence in the context of significant dimensional-
ity and high multicollinearity between predictors. In this case, the approximation by a linear model is relatively
validated compared to the air quality dataset. Lastly, the Ames housing dataset illustrates cases in high dimen-
sions where it is impossible to directly determine LMG and PMVD indices, requiring the use of approximate
methods such as Johnson indices.

In addition to the results presented below, Appendix B provides data matrix plots, also known as pairs plots.
These plots display the CC for each pair of variables, kernel density estimates (or histograms) for marginal
distributions, and scatter plots with fitted local polynomial regressions, for each pair of variables. Additionally,
the appendix includes tables containing the numerical values of the metrics and VIMs computed for each use
case, which are visually represented as graphs in this section.

7.1 Computational details for reproducibility
The results in this paper (as well as in the Supplementary Material) are obtained using R . Both codes and
datasets are available at:

https://gitlab.com/LauraClouvel/toydata/.

Several R packages are used and are briefly described below.

The sensitivity package (Iooss et al., 2023). This package4 contains a collection of functions for GSA,
from factor screening, ranking to robustness analysis. Most of the functions have to be applied on a model with
scalar output, but several functions support multidimensional outputs. Single-analysis metrics (see Section 4)
and multiple-analysis ones (see Section 5) are provided by this package, via the functions: src() (for SRC2),
pcc() (for PCC2 and SPCC2), lmg() (for LMG), pmvd() (for PMVD) and johnson() (for Johnson
indices). The correlation ratio (see the Supplementary Material) is computed using the correlRatio()
function.

The car package. This package provides the VIF and GVIF metrics (vif() function) for multicollinearity
detection (see Section 4.2).

Other standard R packages. The package boot is used for computing bootstrap confidence intervals for
several metrics while the package ggplot2 is used for visualization and displaying graphics.

4The sensitivity package (information: https://cran.r-project.org/web/packages/sensitivity, sources:
https://github.com/cran/sensitivity) is maintained by EDF R&D (with B. Iooss as the maintainer) under a GPL-2 license.
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7.2 Simulation data from linear models
7.2.1 Independent inputs’ case (without noise)

We simulate a 100-size sample of 𝑋 = (𝑋1, 𝑋2, 𝑋3) with 𝑋1 ∼ U([0.5, 1.5]), 𝑋2 ∼ U([1.5, 4.5]) and
𝑋3 ∼ U([4.5, 13.5]). We study the model:

𝑌 = 𝑋2
1 + 𝑋2 + 𝑋3 .

The linear regression between the output and the inputs gives 𝑅2 = 0.999 and 𝑄2 = 0.999.

In this initial example, given the additive model structure, 𝑋3 is expected to exert significant influence on output
variability. As depicted in Figure 10 in Appendix B, both scatter plots and CC illustrate this straightforward
linear impact. From Table 5, it is evident that all VIF values are unity, indicating the absence of collinearity, as
anticipated.

Input 𝑋1 𝑋2 𝑋3
VIF 1.02 1.06 1.07

Table 5: VIFs for the independent inputs’ case.

Figure 3 (also refer Table 12 in Appendix B) presents both mean estimates and bootstrap-based CIs for the
metrics and VIMs. SRC2, SPCC2, LMG, Johnson, and PMVD successfully capture the substantial influence
of 𝑋3, while PCC2 primarily assesses the linearity of inputs with respect to the output. In this scenario with
negligible multicollinearity and a linear relationship between inputs and output (𝑅2 = 0.999), the outcomes
from LMG and Johnson indices are identical.

Figure 3: Estimates (with bootstrap) of the metrics (PCC2, SPCC2) and the VIMs (SRC2, LMG, PMVD,
Johnson) in the independent linear regression case.
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7.2.2 Collinear case (without noise)

We simulate a 100-size sample of 𝑋 = (𝑋1, 𝑋2, 𝑋3, 𝑋4) with 𝑋1 ∼ U([0.5, 1.5]), 𝑋2 ∼ U([1.5, 4.5]),
𝑋3 ∼ U([4.5, 13.5]), 𝑋4 = 𝑋3 + 𝜂, 𝜂 ∼ N(0, 1). We study the model:

𝑌 = 𝑋2
1 + 𝑋2 + 𝑋3 + 𝑋4 .

The linear regression between the output and the inputs gives 𝑅2 = 1.000 and 𝑄2 = 1.000.

In this example, collinearity is introduced within the model between 𝑋3 and 𝑋4. From Table 6, one can notice
that VIF values associated with 𝑋3 and 𝑋4 are above 10, which clearly indicates the collinearity between these
two regressors. Figure 11 in Appendix B presents the data matrix plot, where the CC clearly indicates a strong
correlation between 𝑋3 and 𝑋4. Additionally, scatter plots reveal the linear influence of these two inputs on the
model output.

Input 𝑋1 𝑋2 𝑋3 𝑋4
VIF 1.03 1.06 9.51 9.46

Table 6: VIFs for the collinear case.

Figure 4 (also refer Table 13 in Appendix B) displays both mean estimates and bootstrap-based CIs for the
metrics and VIMs. SRC2 confirms the earlier findings and help identify the collinearity (as their sums are far
from 𝑅2). PCC2 primarily highlights the linear relationships between inputs and output, while SPCC2 does
not effectively capture either collinearity or relative importance. Here, SRC2, LMG, Johnson and PMVD are
able to capture that 𝑋3 and 𝑋4 have a similar influence, as anticipated by the strong collinearity between these
two inputs. One can also observe the consistency between LMG and Johnson indices, which produce identical
rankings. In this case, PMVD, LMG, and Johnson indices yield comparable results.

Figure 4: Estimates (with bootstrap) of the metrics (PCC2, SPCC2) and the VIMs (SRC2, LMG, PMVD,
Johnson) in the collinear case.
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7.2.3 Model with a dummy (not included in the model) correlated input

We simulate a 100-size sample of 𝑋 = (𝑋1, 𝑋2) with 𝑋 ∼ N2

((
0
0

)
,

(
1 0.9

0.9 1

))
. We study the model:

𝑌 = 𝑋1 + 𝜂 , with 𝜂 ∼ N(0, 0.01).

The linear regression between the output and the inputs gives 𝑅2 = 0.992 and 𝑄2 = 0.992.

This case introduces collinearity by means of the variable 𝑋2 which is not directly included in the regression
model, while being strongly correlated to 𝑋1. Table 7 provides the VIFs associated with each input.

Input 𝑋1 𝑋2
VIF 6.05 6.05

Table 7: VIFs for the non-included correlated input model toy data.

Figure 5 (also refer Table 14 in Appendix B) gives both mean estimates together with bootstrap estimates of the
CIs for the metrics and the VIMs. One can see that VIF manages to catch a strong collinearity between the two
inputs, while SRC2, PCC2, SPCC2 and PMVD only measure the effect of 𝑋1 (seen as a pure linear relationship
with 𝑌 ). Finally, the VIMs LMG, Johnson and PMVD emphasize two different interesting behaviors. LMG
and Johnson allocate a part of contribution to both 𝑋1 and 𝑋2 while PMVD only assigns the full contribution
to 𝑋1. This highlights a fundamental difference between PMVD and LMG (recalled in Section 5): the PMVD
formulation forces to get a null index for a non-included correlated input.

Figure 5: Estimates (with bootstrap) of the metrics and the VIMs in the dummy-correlated-variable regression
case.

This test case mostly illustrates that LMG, as already pointed out for the Shapley effects (Iooss & Prieur, 2019;
Hérin et al., 2022, 2024), attributes a weight to a dummy variable as soon as it is somehow correlated to another
input. This behavior is also found using the Johnson indices. Such a fact is at odds with the exclusion criterion
(C3) recalled in Section 3.2.
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7.3 Public dataset on air quality
We use the R dataframe “airquality”, which contains some measures of the air quality of New-York in 1973.
There are 153 observations but only 𝑛 = 111 without missing data. In our analysis, we have only considered
lines with non-missing data. The output is Ozone and the 𝑑 = 5 inputs are Solar.R, Wind, Temp, Month and
Day. Table 8 provides the VIFs associated with each input and no strong collinearity is detected.

Input Solar.R Wind Temp Month Day
VIF 1.15 1.33 1.72 1.26 1.01

Table 8: VIFs for the the air quality data.

The linear regression between the output and the inputs gives 𝑅2 = 0.625 and 𝑄2 = 0.582 (see Fig. 14 in
Appendix B.3). Figure 6 provides the VIMs and metric results (also refer Table 15 in Appendix B.3). The
matrix plot, given in Figure 13 of Appendix B.3, clearly indicates that two inputs, Wind and Temp, are highly
linearly correlated to the output (Temp has a positive influence and Wind a negative one). However, analyzing
the relative influence and inferring collinearity with this matrix plot become more difficult as the dimension
increases (𝑑 = 5) and the patterns of the scatter plots become rather complex.

Figure 6: Estimates (with bootstrap) of the metrics (PCC2, SPCC2) and the VIMs (SRC2, LMG, PMVD,
Johnson) for the air quality dataset. Inputs are numbering by the following: Solar.R (1), Wind (2), Temp (3),
Month (4), Day (5).

Even if no strong collinearity has been detected with VIF, a rough analysis of the matrix plot led one to believe
that the correlation of −0.5 between Wind and Temp, together with the correlation of 0.4 between Temp and
Month, are potential sources of collinearity. In this sense, slight differences in values can be observed, but a
similar hierarchy is maintained between the PMVD and LMG/Johnson indices: the PMVD indices highlight
the influence of the temperature, decreasing those of the wind and the solar irradiation. This illustrates the more
discriminatory power of PMVD compared to other VIM. It is worth noting the equivalence between LMG and
Johnson.
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7.4 Public dataset on cars prices data
We use the cars dataset of the R package caret which comes from Kelly Blue Book resale data (2005 model
year). It contains suggested retail price (column Price) and various characteristics of each car. There are
𝑛 = 804 observations, one output (Price in $) and 18 inputs. For our analysis, we keep 𝑑 = 15 inputs (numerical
problems in linear regression with the others). One input (Mileage) is quantitative and the others are qualitative:
one (Cylinder) has three modes and the 13 other inputs are binary (two modes). Large multicollinearity issues
are present in these data (large VIF values observed in Table 9).

Input Mileage Cylinder Doors Cruise Sound Leather Buick
VIF 1.01 2.35 4.61 1.55 1.14 1.19 2.60

Input Cadillac Chevy Pontiac Saab Convertible Hatchback Sedan
VIF 3.33 4.41 3.42 3.56 1.63 2.45 4.51

Table 9: VIFs for the cars data.

The linear regression between the output and the inputs gives 𝑅2 = 0.915 and 𝑄2 = 0.911 (see Fig. 15 in
Appendix B.4). Metrics and VIMs are given in Figure 7 (also refer Table 16 in Appendix B.4 where the
information on the sign of the CC between the price and each input are provided in order to know the sense of
variation). Table 16 provides results for all the inputs while the Figure 7 is restricted to the eight most influential
(in the SRC2 sense) for readability purpose. As in the previous examples, LMG and Johnson are very close to
each other, and PMVD allows for a better inputs’ influence discrimination.

Figure 7: Estimates (with bootstrap) of the metrics and the VIMs for cars prices dataset in the regression
context. Inputs are numbering by the following: Mileage (1), Cylinder (2), Cruise (3), Cadillac (4), Chevy (5),
Pontiac (6), Saab (7), Convertible (8).
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7.5 Public dataset: The Ames housing
We use the Ames housing dataset of the R package AmesHousing. It is a well-known dataset in the field
of machine learning and data analysis. It contains 𝑑 = 79 distinct features or variables that describe various
aspects of residential homes in Ames, Iowa, USA. It consists of 𝑛 = 2930 observations. The output variable in
the dataset is "SalePrice" representing the sale price of the houses. Large multicollinearity issues are present in
these data (significant VIF values are observed in Table 10).

Input SecondFlrSF FirstFlrF TotalBsmtSF YearBuilt YearRemodAdd
VIF 3.04 4.32 3.11 2.06 1.76

Input BedroomAbvGr KitchenAbvGr MasVnrArea TotRmsAbvGrd GarageCars
VIF 2.05 1.21 1.35 4.14 1.82

Table 10: VIFs for the Ames housing data.

The computational cost of the LMG and PMVD indices is exponential with the number of input variables.
It appears impossible to calculate them for the entire set of input variables. This example shows that there
are cases where it is impossible to determine the LMG and PMVD indices, and where it is necessary to use
approximate methods, such as Johnson indices, to conduct sensitivity analyses. In this case, we calculated the
PCC2, SPCC2, SRC2, and Johnson indices for the set of 34 quantitative variables. We then determined the 10
most influential variables with respect to the SRC2 indices. Finally, we determined all the VIMs and metrics for
these 10 variables.

Remark 8. Note that these two choices (of 34 and 10 variables) are arbitrary. Their purpose is simply to
demonstrate the utility of Johnson indices on a large number of variables compared to LMG indices and to
illustrate the interpretative differences brought by PMVD in relation to LMG/Johnson indices on such a dataset.
Thus, analyzing such a dataset would actually require more careful consideration of the relevant variables to
select in order to best interpret the results.

The linear regression between the output and the 34 inputs gives 𝑅2 = 0.799 and 𝑄2 = 0.770 (see Fig. 17 in
Appendix B.5). The linear regression between the output and the 10 inputs gives 𝑅2 = 0.777 and 𝑄2 = 0.769.
Metrics and VIMs are given in Figure 8 for the 10 variables (also refer Table 17 and 18 resp. for the 10 and
34 variables in Appendix B.5). The matrix plot is given for the 10 first variables in Figure 16 of Appendix
B.5. It shows that strong dependencies exist between inputs and that quite a complex relation links the output
with the inputs. The table 10 also show the multicollinearity present in these data with larger VIF for some
inputs. Therefore, large differences between SRC2 and LMG/Johnson appear. Moreover, the interest of PMVD
compared to LMG/Johnson is exemplified: the PMVD indices provide a hierarchy that is generally similar to
those of the LMG/Johnson indices, but with higher values for the variables SecondFlrSF and FirstFlrSF (which
are the variables with a higher SRC² index) and lower values for the variables TotRmsAbvGrd and MasVnrArea
(which are variables with a low SRC² index). Finally, the proximity between LMG and Johnson values is again
highlighted, even with a moderate quality of the linear regression model.

8 Discussion
In this work, the relative importance has been considered as the contribution each input makes to the coefficient
of determination 𝑅2, considering both its direct effect (i.e., correlation with the output) and its indirect effect
(i.e., correlation with other inputs). A distinction was made between the VIM (SRC2) and metrics (CC2, PCC2

and SPCC2) based on a single regression analysis and the VIMs requiring multiple regression analyses: the
LMG corresponding to Shapley effects, the PMVD and the Johnson indices corresponding to relative weight
analysis.

Figure 9 allows to distinguish VIMs regarding their respective positioning, conditions of use, intrinsic capabil-
ities, and interpretation. Before computing VIMs, the first step consists to perform the linear regression and to
look at the validation diagnostics (that has been recalled in Section 2). It allows to understand what portion of
the output variance will be explained by VIMs. Computing the VIFs will also help to choose the right VIM and
to provide a right explanation in case of strong multicollinearity.
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Figure 8: Estimates (with bootstrap) of the metrics (PCC2, SPCC2) and the VIMs (SRC2, LMG, PMVD,
Johnson) for the Ames housing data. Inputs are numbering by the following: SecondFlrSF (1). FirstFlrSF (2).
TotalBsmtSF (3). YearBuilt (4). YearRemodAdd (5). BedroomAbvGr (6). KitchenAbvGr (7). MasVnrArea (8)
TotRmsAbvGrd (9) GarageCars (10).

Given data
(Xn,yn)

Linear regression

Validation

VIMs

Independent Dependent

☞ SRC2 Low d High d
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(inclusion)
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• Diagnostics tools
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Figure 9: Summary of useful metrics and VIMs.

For independent inputs, SRC2 can be used. In cases of multicollinearity (where inputs exhibit significant de-
pendencies), LMG, PMVD and Johnson indices are recommended VIMs due to their ability to partition 𝑅2

among the inputs (a key criterion for 𝑅2 decomposition). The LMG and Johnson indices quantify the additional
contribution of each input to 𝑅2, classifying inputs based on their contributions while considering the weights
of inter-input correlations. This means an input can hold relative importance even without direct influence on
the model output. Therefore, using LMG and Johnson indices necessitates a thorough analysis of correlation
information (direct, indirect, incidental) among inputs. In contrast, PMVD indices ensure that an input with a
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zero estimated regression coefficient contributes zero to this measure of relative importance by design.

Table 11 (inspired from Grömping (2015)) synthesizes the desirability criteria (described in detail in Section
3.1) that these three VIMs satisfy.

VIM (C1) (C2) (C3) (C4) (C5)
LMG x x x x
PMVD x x x x
Johnson x x x x

Table 11: Adequation between the VIMs and their desirability criteria.

9 Conclusion
This work introduces various methods to assess the relative importance of predictors/inputs in linear regression
models (the Supplementary Material of this paper extends these methodologies to the classification context using
logistic linear regression). Interpretations and conditions of use for these importance measures are developed
based on output variance decomposition, with specific considerations for global sensitivity analysis (GSA).
Ultimately, this work aims to provide a practical user guide for practitioners (see, e.g., Iooss et al. (2022)),
highlighting the utility of such guides within the GSA community (Iooss & Lemaître, 2015).

Several datasets are employed to simulate and analyze the effects measured by these VIMs. The results confirm
theoretical properties and intuitions, such as the close relationship between LMG and Johnson indices. The
preference to use LMG/Johnson or PMVD thus depends on whether the user wants to consider causality effects
or not (Grömping, 2015; Zhao & Hastie, 2021).

A significant practical limitation of the LMG and the PMVD methods is the complexity of their calculation
which is proportional to 2𝑑 , the number of possible subsets in a set of 𝑑 inputs. It has been shown that the John-
son indices can give an excellent alternative to measure the multicollinearity effects when deriving importance
measures in a regression model containing a large number (several dozens) of inputs. In this case, the LMG and
the PMVD computation is practically impossible. The Johnson indices are in fact a good approximation of the
LMG indices in linear regression context. Our ongoing research endeavors to develop similar approximations
for PMVD.

Concerning the linear model restriction of all the metrics developed in this report, current works develop other
metrics valid in the general case of nonlinear models. For instance, Hérin et al. (2024) extended PMVD to
nonlinear models through novel sensitivity indices termed PME, inspired by cooperative game theory and based
on proportional value allocation rules. Extending Johnson indices to nonlinear models remains a significant
challenge, with initial attempts noted in Iooss & Clouvel (2023).

A Equivalence between the LMG measures and the standardized John-
son indices for the case of two variables

The equivalence between the LMG and the standardized Johnson indices in dimension two is proved with a
different demonstration from the one of Thomas et al. (2014) which relies on geometrical arguments.

Proposition 1. If 𝑑 = 2, the LMG and the standardized Johnson indices are equal:

𝐽∗2𝑗 = LMG 𝑗 for 𝑗 = 1, 2.

Proof. The correlation matrix RX ,X is given by:

RX ,X = W∗2 =
©«
𝑤∗2

11 + 𝑤∗2
12 = 1 𝑤∗2

12 (𝑤
∗2
11 + 𝑤∗2

22)

𝑤∗2
12 (𝑤

∗2
11 + 𝑤∗2

22) 𝑤∗2
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22 = 1
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The standardized Johnson index associated with the input 𝑋1 (resp. 𝑋2) is given according to the Eq. (32) by:

𝐽∗21 =
[
𝛼∗2

1 𝑤∗2
11 + 𝛼∗2

2 𝑤∗2
21
]
,

with 𝛼∗
𝑖
= 𝛽∗1𝑤

∗
𝑖1 + 𝛽∗2𝑤

∗
𝑖2 for 𝑖 ∈ {1, 2}. We then have:

𝐽∗21 =
[
(𝛽∗1𝑤

∗
11 + 𝛽∗2𝑤

∗
12)

2𝑤∗2
11 + (𝛽∗1𝑤

∗
21 + 𝛽2𝑤

∗
22)

2𝑤∗2
21
]
. (33)

Because the singular values involved in Eq. (21) are positive, the diagonal elements of W and W∗ are also

positive. Using Eq. (26), we thus have 𝑤∗
11 = 𝑤∗

22 =

√︃
1 − 𝑤∗

12
2 and after several simplifications, Eq. (33)

becomes:
𝐽1 =

[
𝛽∗21 + 2𝛽∗1𝛽

∗
2𝑤

∗
12𝑤

∗
11 + 2𝑤∗2

11𝑤
∗2
12 (𝛽

∗2
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]
.

Knowing that, with standardized variables:

𝑏1 = 𝛽1𝜎1 = 𝛽∗1𝜎𝑌 ,

𝑏2 = 𝛽2𝜎2 = 𝛽∗2𝜎𝑌 ,

𝑟 = 2𝑤∗
12𝑤

∗
11,

we find that:

𝐽∗1 = 𝜎−2
𝑌

[
𝑏2

1 + 𝑏1𝑏2𝑟 +
𝑟2

2
(𝑏2

2 − 𝑏2
1)
]
.

and finally with Eqs. (17):
𝐽∗1 = LMG1 (and similarly, 𝐽2 = LMG2).

□

B Pair plots and results tables on the public datasets
This appendix gives results tables and pair plots on the previous public datasets presented in Section 7. The pair
plots provide in the upper panel the CC of each variables’ pair, in the diagonal panel the kernel density estimation
(or the histogram) of each variable marginal and in the lower panel the scatter plots and fitted smoothers of each
variables’ pair.
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B.1 Independent inputs’ case
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Figure 10: Data pairs plot for the independent inputs’ case providing: the variable histograms (diagonal), and
for each variable pair, the CC (upper panel), as well as scatter plots and fitted smoothers (lower panel).

Input PCC2 SPCC2 SRC2 LMG Johnson PMVD
𝑋1 98.7 4.49 4.57 3.0 3.01 4.56
𝑋2 99.3 8.20 8.66 16.7 16.61 10.47
𝑋3 99.9 73.94 79.16 80.3 80.32 84.91

Sum 298.0 86.62 92.39 99.9 99.94 99.94

Table 12: Metrics and VIMs for the independent inputs’ case. All indices are in %.

27



B.2 Collinear case
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Figure 11: Data pairs plot providing: the variable histograms (diagonal), and for each variable pair, the CC
(upper panel), as well as scatter plots and fitted smoothers (lower panel).

Input PCC2 SPCC2 SRC2 LMG Johnson PMVD
𝑋1 98.8 1.16 1.19 0.81 0.62 1.19
𝑋2 99.3 2.12 2.24 5.81 6.28 2.63
𝑋3 99.3 2.09 19.85 46.52 46.16 45.92
𝑋4 99.5 3.00 28.39 46.85 46.92 50.24

Sum 396.9 8.36 51.67 99.99 99.99 99.99

Table 13: Metrics and VIMs for the collinear case data. All indices are in %.
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B.2.1 Model with a dummy (not included in the model) correlated input
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Figure 12: Data pairs plot providing: the variable histograms (diagonal), and for each variable pair, the CC
(upper panel), as well as scatter plots and fitted smoothers (lower panel).

Input PCC2 SPCC2 SRC2 LMG Johnson PMVD
𝑋1 95.67 17.01 102.86 58.1 58.1 99.19
𝑋2 0.84 0.01 0.04 41.1 41.1 0.04

Sum 96.50 17.01 102.90 99.2 99.2 99.2

Table 14: Metrics and VIMs for the non-included correlated input model toy data. All indices are in %.
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B.3 Public dataset on air quality
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Figure 13: Data pairs plot for the air quality dataset providing: the variable histograms (diagonal), and for
each variable pair, the CC (upper panel), as well as scatter plots and fitted smoothers (lower panel).
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Figure 14: Linear model prediction vs. observation data for the air quality data: 𝑅2 = 0.625 and 𝑄2 = 0.582

30



Input n◦ PCC2 SPCC2 SRC2 LMG Johnson PMVD
Solar.R 1 4.20 1.65 1.90 6.30 6.49 2.65
Wind 2 20.16 9.47 12.59 22.33 22.91 18.25
Temp 3 31.33 17.11 29.48 31.96 31.28 39.37
Month 4 3.70 1.44 1.81 1.65 1.60 1.75

Day 5 1.34 0.51 0.51 0.26 0.22 0.48
Sum 6.47 60.73 30.18 46.29 62.49 62.49 62.49

Table 15: Metrics and VIMs for the air quality data. All indices are in %.

B.4 Public dataset on cars prices data
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Figure 15: Linear model prediction vs. observation data for the cars data: 𝑅2 = 0.915 and 𝑄2 = 0.911.

Input n◦ PCC2 SPCC2 SRC2 LMG Johnson PMVD Cor.
sign

Mileage 1 21.42 2.31 2.33 2.25 2.24 2.15 -
Cylinder 2 56.92 11.22 26.39 21.20 21.96 25.65 +

Doors - 4.43 0.39 1.82 1.22 1.07 0.37 +
Cruise 3 0.17 0.01 0.02 6.10 5.54 0.03 +
Sound - 0.45 0.04 0.04 0.42 0.37 0.04
Leather - 1.26 0.11 0.13 1.35 1.41 0.11 +
Buick - 0.37 0.03 0.08 0.84 0.86 0.18 +

Cadillac 4 36.70 4.92 16.39 22.40 22.58 29.57 +
Chevy 5 0.20 0.02 0.07 6.97 5.68 0.04 -
Pontiac 6 1.04 0.09 0.30 2.51 2.39 0.12 +

Saab 7 38.32 5.28 18.80 10.32 11.23 19.68 +
Convertible 8 34.40 4.45 7.26 13.16 12.95 12.16 +
Hatchback - 12.10 1.17 2.86 1.70 1.93 0.76 -

Sedan - 11.19 1.07 4.83 1.08 1.30 0.65 -
Sum 218.95 31.12 81.34 91.51 91.51 91.51

Table 16: Metrics and VIMs for the cars data. All indices are in %. The last column gives the sense of variation
of inputs with significantly influence (LMG> 1).
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B.5 Ames housing dataset

0

2065
1 -0.25 -0.20 0.02 0.16 0.50 0.07 0.12 0.59 0.18 0.27

334

5095

2 0.80 0.31 0.24 0.11 0.08 0.39 0.39 0.44 0.62

0

6110

3 0.41 0.30 0.05 -0.04 0.39 0.28 0.44 0.63

1872

2010

4 0.61 -0.06 -0.14 0.31 0.11 0.54 0.56

1950

2010

5 -0.02 -0.14 0.19 0.20 0.42 0.53

0

8

6 0.24 0.08 0.67 0.09 0.14

0

3

7 -0.05 0.29 -0.04 -0.12

0

1600

8 0.28 0.36 0.50

2

15

9 0.36 0.50

0

5

10 0.65

0 2065
1

12789

755000

Sa
le

Pr
ice

334 5095
2

0 6110
3

1872 2010
4

1950 2010
5

0 8
6

0 3
7

0 1600
8

2 15
9

0 5
10 SalePrice

Figure 16: Data pairs plot for the Ames housing dataset providing: the variable histograms (diagonal), and for
each variable pair the CC (upper panel), as well as scatter plots and fitted smoothers (lower panel).
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(a) With 34 inputs: 𝑅2 = 0.799 and 𝑄2 = 0.770
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(b) With 10 inputs: 𝑅2 = 0.777 and 𝑄2 = 0.769

Figure 17: Linear model prediction vs. observation data for the Ames housing data

Input PCC2 SPCC2 SRC2 Johnson LMG PMVD
SecondFlrSF 16.58 4.43 13.46 6.84 6.31 11.54

FirstFlrSF 12.79 3.27 14.12 13.89 13.34 24.51
TotalBsmtSF 4.85 1.14 3.53 12.52 12.28 10.49

YearBuilt 4.12 0.96 1.97 8.56 8.60 8.38
YearRemodAdd 3.82 0.88 1.56 8.21 8.09 5.82
BedroomAbvGr 3.53 0.82 1.68 1.17 1.34 1.08
KitchenAbvGr 4.40 1.03 1.24 1.61 1.60 1.45
MasVnrArea 3.15 0.72 0.98 7.12 6.73 2.49

TotRmsAbvGrd 0.69 0.16 0.64 6.42 7.65 0.54
GarageCars 5.18 1.22 2.22 11.37 11.76 11.41

Sum 59.10 14.62 41.40 77.70 77.70 77.70

Table 17: Metrics and VIMs for the Ames housing data considering 10 variables. All indices are in %.
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Input PCC2 SPCC2 SRC2 Johnson
LotFrontage 0.59 0.12 0.13 0.96

LotArea 0.39 0.08 0.10 1.42
YearBuilt 3.22 0.66 2.12 5.31

YearRemodAdd 4.53 0.94 1.79 6.05
MasVnrArea 2.51 0.51 0.72 5.23
BsmtFinSF1 0.02 0.00 0.01 0.45
BsmtFinSF2 0.35 0.07 0.08 0.09
BsmtUnfSF 0.86 0.17 0.54 0.97
TotalBsmtSF 4.30 0.89 4.31 8.18

FirstFlrSF 8.06 1.74 9.73 8.67
SecondFlrSF 10.08 2.22 11.50 4.20

LowQualFinSF 0.06 0.01 0.01 0.06
BsmtFullBath 0.42 0.08 0.18 1.93
BsmtHalfBath 0.01 0.00 0.00 0.06

FullBath 0.03 0.01 0.02 4.50
HalfBath 0.11 0.02 0.05 1.71

BedroomAbvGr 2.54 0.52 1.15 0.85
KitchenAbvGr 2.89 0.59 0.81 1.25
TotRmsAbvGrd 0.73 0.15 0.64 4.27

Fireplaces 1.07 0.21 0.33 4.42
GarageCars 0.47 0.09 0.54 6.07
GarageArea 0.29 0.06 0.31 6.20

WoodDeckSF 0.61 0.12 0.15 1.95
OpenPorchSF 0.00 0.00 0.00 1.40
EnclosedPorch 0.23 0.05 0.06 0.29

Threeseasonporch 0.00 0.00 0.00 0.03
ScreenPorch 0.88 0.17 0.19 0.52

PoolArea 0.38 0.08 0.08 0.07
MiscVal 2.14 0.43 0.45 0.26
MoSold 0.00 0.00 0.00 0.02
YearSold 0.11 0.02 0.02 0.05
Longitude 0.01 0.00 0.00 1.00
Latitude 1.34 0.27 0.32 1.77

Sum 49.27 10.29 36.37 80.20

Table 18: Metrics and VIMs for the Ames housing data considering 34 variables. All indices are in %.
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Introduction
Several metrics and variance-based importance measures (VIMs) have been defined in the main paper in the
classical linear regression context where the response (output) one tries to fit is a quantitative (often continuous)
variable, while the predictors (inputs) can be either continuous quantitative variables or qualitative ones (but
still, numerically valued). However, many practical applications deal with classification data, where the output
is a categorical variable. In this supplementary material, by the way of the generalized linear model (GLM), we
give extensions of metrics and VIMs to the linear logistic regression model. We deal with the case of a binary
output, namely in the context of the linear logistic regression.

The structure of this supplementary material is as follows. Section 1 reminds some basics about logistic regres-
sion model. Section 2 develops the correlation ratio that is the correlation coefficient between an input and the
binary output. Then, Section 3 develops the Johnson indices in the logistic regression context. Finally, Section
4 applies all the studied metrics on several simulated or public datasets. In this paper, the same acronyms and
mathematical notations as those of the main paper are used.

1 The logistic regression model
In a classification problem, the output 𝑌 is no longer continuous (nor quantitative) but binary (e.g. 𝑌 ∈ {0, 1}).
The GLM (McCullagh & Nelder, 1989) allows considering a binomial distribution for 𝑌 and to perform a linear
regression on a transformed output (by a so-called link function). For example, if 𝑝 = 𝑝(𝑋) = P(𝑌 = 1|𝑋), the
logistic regression model writes:

𝑔(𝑝) = log
(

𝑝

1 − 𝑝

)
= Xβ. (1)

It is usually called the “regression model on the link scale” and the link function 𝑔(𝑝) is known as the “logit”
transform. Other transforms such as the “probit” one can be used (McCullagh & Nelder, 1989).

Via the “inverse logit” transform 𝑝 = [1 + exp(−𝑔(𝑝))]−1, the model in Eq. (1) returns probability values as
predictions. In practice, to predict a binary value for the output, a threshold 𝑠 ∈]0, 1] has to be defined and the
following predictor is used:

𝑌 (x∗) = 1{𝑝 (x∗ )≥𝑠} (x∗) (2a)

with 𝑝(x∗) =
[
1 + exp

(
x∗β̂

)]−1
. (2b)
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Remark 1. The logistic regression parameters (i.e. 𝛽𝑖 , 𝑖 = 0, . . . , 𝑑 in Eq. (1)) are intrinsically interpretable,
through an exponential transformation, as odds ratios. The quantity exp(𝛽𝑖) quantifies the marginal effect of
𝑋𝑖 on the modeled probability 𝑝. The set of odds ratios, while providing an interpretable tool to quantify input
importance in the sense of the marginal effect of a variable on the conditional probability, does not fall under
the definition of an importance measure (IM) for linear models, and are thus out of the scope of this report. In
the following, the focus is put on IM with respect to the linear link between the inputs and the quantity 𝑔(𝑝).
These IMs are not directly interpretable with respect to the output of interest. IM on non-linear links between
an output of interest and the inputs (see, e.g. Raguet & Marrel (2018); Marrel & Chabridon (2021)) are beyond
the scope this report and will be described in other works. Here, we limit ourselves to the interpretation of 𝑔(𝑝),
being aware that IMs are not directly linked to the classes of the output (but still highly correlated).

In order to validate the model in Eq. (1), 𝑅2 and 𝑄2 have to be computed. Considering GLM, several metrics can
be used (see, e.g., Zheng & Agresti (2000) for a review). A popular one is the following (Guisan & Zimmerman,
2000):

𝑅2 = 1 − 𝐷

𝐷0
, (3)

where 𝐷 and 𝐷0 are, respectively, the deviance and the null deviance. Deviance can be seen as a generalization
of the variance when the error distribution is non-Gaussian (as provided by the GLM). More precisely, the
deviance is twice the difference in log-likelihood between the current model and a saturated model (i.e. a
model that fits the data perfectly). As for the null deviance, it is a generalization of the total sum of squares
of the linear model. Figure 1 provides an illustrative summary of how these two quantities are connected.
Again, other coefficients of determination have been proposed for the logistic regression model (Tonidandel &
LeBreton, 2010) but their study is beyond the scope of this report.

Likelihood / model improvement

ℓ  𝛽0 ℓ  𝜷 ℓ𝑠

𝐷

𝐷0

Worst model Current model Perfect model

Figure 1: Illustration of deviance and null deviance for GLM validation (inspired from García-Portugués
(2021)).

The 𝑄2 estimation is usually computed from cross-validation residuals. As this formula also involves the vari-
ance of the observations on the link scale, we compute it by dividing the variance of the linear fits (on the link
scale) by 𝑅2.

In order to validate the model in Eq. (2a), several criteria are useful:

• If one considers that the important class to be predicted (e.g. typically the one which is critical regarding
safety purposes) is “TRUE” (𝑌 = 1) and the other class is “FALSE” (𝑌 = 0), the confusion matrix
distinguishes:

– the number of true positive (TP): 𝑌 = 1 and 𝑌 = 1;

– the number of true negative (TN): 𝑌 = 0 and 𝑌 = 0;

– the number of false positive (FP): 𝑌 = 0 and 𝑌 = 1;

– the number of false negative (FN): 𝑌 = 1 and 𝑌 = 0.

2



• The error rate is the number of errors (false positive and false negative) divided by the number of obser-
vations:

𝜀 =
FP + FN

𝑛
. (4)

• The sensitivity is related to the important class to be predicted. It is the number of good predictions in
this class divided by the number of observations in this class:

𝜏 =
TP

TP + FN
. (5)

2 Correlation coefficient with the binary output
In the classification context, 𝑌 is a binary variable which can be treated as a qualitative one. The analogue of
CC when dealing with a qualitative 𝑌 (of any modalities) and one quantitative 𝑋 𝑗 (instead of two quantitative)
variables is called the correlation ratio (CR). It writes (Saporta, 1990):

CR 𝑗 = 𝜂2
𝑋 𝑗 |𝑌 =

VAR(E[𝑋 𝑗 |𝑌 ])
VAR(𝑋 𝑗 )

, (6)

where one can recognize a first-order Sobol’ index (Sobol’, 1993) formula. CR is also equivalent to the coef-
ficient of determination (𝑅2) of the linear regression explaining the quantitative variable by the qualitative one
(Saporta, 1990).

Returning to the binary case for 𝑌 , from the sample (X𝑛,Y𝑛), it can be easily estimated by:

𝜂2
𝑋 𝑗 |𝑌 =

𝑛0𝑛1
𝑛

(
𝑋 𝑗 ,0 −𝑋 𝑗 ,1

)2

∑𝑛
𝑖=1

(
𝑋

(𝑖)
𝑗

−𝑋 𝑗

)2 , (7)

where 𝑛0 and 𝑋 𝑗 ,0 (resp. 𝑛1 and 𝑋 𝑗 ,1) are the sample size and the empirical mean of 𝑋 𝑗 ,0 (resp. 𝑋 𝑗 ,1) which is
the restriction of 𝑋 𝑗 to the case {𝑌 = 0} (resp. {𝑌 = 1}). Let us remark that CR can also be used in a regression
context (case of a quantitative variable 𝑌 ) when 𝑋 𝑗 is a qualitative variable (by exchanging the role of 𝑋 𝑗 and 𝑌

in Eqs. (6) and (7).

3 Johnson indices in the logistic regression context
Following the calculation methodology of the standardized logistic regression coefficient proposed by Menard
(2004), Tonidandel & LeBreton (2010) suggests extending the definition of the Johnson indices to the logistic
regression context. By considering the logistic regression model described by Eq. (1), the standardized logistic
regression coefficient associated with the variable 𝑋𝑖 is defined as

𝛽∗𝑖 =
𝜎𝑋𝑖

𝜎logit(𝑔 (𝑝) )
𝛽𝑖 . (8)

To define the standard deviation 𝜎logit(𝑔 (𝑝) ) , one can use the alternative definition of 𝑅 = (𝜎logit(�̂� ( �̂�) ) )/(𝜎logit(𝑔 (𝑝) ) )
and thus calculate the 𝛽𝑖 such as:

𝛽∗𝑖 =
𝜎𝑋𝑖

𝜎logit(�̂� ( �̂�) )
𝛽𝑖𝑅. (9)

The idea is then to apply this definition to the methodology previously defined for a classical linear regression.
The matrices Z𝑛 (associated to a 𝑛-sample) and W (see Section 6.1 of the main paper), as well the matrix
Alogit are estimated in function of the variables X𝑛 and g𝑛 (𝑝) (𝑛-sample of 𝑔(𝑝)) standardized beforehand. In
particular, we have

Âlogit = (Z𝑛⊤Z𝑛)−1Z𝑛⊤g𝑛 (𝑝) = Z𝑛⊤g𝑛 (𝑝) = (�̂�logit, 𝑗 )1≤ 𝑗≤𝑑 . (10)

The Johnson index associated with the variable 𝑋𝑖 in the logistic regression context is thus given by:

𝐽logit,𝑖 = 𝑅2
𝑑∑︁
𝑗=1

𝛼∗2
logit, 𝑗𝑤

∗2
𝑖 𝑗 . (11)

A natural plug-in estimator of the Johnson index can then be obtained.
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4 Application cases
Classification problems deal with binary 𝑌 and Section 1 has developed the linear logistic regression model
which allows modelling 𝑔(𝑝) = log 𝑝

1−𝑝
(with 𝑝 = P(𝑌 = 1)). Metrics of such models, fitted on the link scale,

are then associated to the quantity 𝑔(𝑝) and do not give a direct interpretation of the output on which we focus.

Table 1 provides a summary of the various datasets used in this section and their corresponding characteristics:
the name and corresponding subsection, the input dimension 𝑑, the number of observations 𝑛, information
about the presence of quantitative vs. qualitative inputs (qt/ql), and the source of the dataset. The first five rows
correspond to toy cases with simulated data while the remaining ones correspond to public datasets. Note that
the +1 sometimes mentioned in the input dimension column refers to the fact that a dummy correlated variable
is introduced (but without being explicitly part of the model).

Name § 𝑑 𝑛 qt/ql Source
Classif #1 4.1 3 100 qt −
Classif #2 (dummy) 4.1 2 + 1 100 qt −
Car prices (c) 4.2 15 804 qt/ql cars dataframe

(caret package)

Table 1: Summary of the toy and public use cases.

4.1 Illustration on simulation data from toy cases
We first study the three-dimensional (𝑑 = 3) linear classification model:

𝑌 = 1{∑𝑑
𝑖=1 𝑎𝑖𝑋𝑖≥𝑘} (12)

with 𝑘 ∈ R and 𝑋𝑖 ∼ N(0, 1) 𝑖 = 1, . . . , 𝑑. In our case, we take 𝑘 = 0, 𝑎 = (1, 2, 3) and we simulate a 100-size
sample of 𝑋 . The matrix plot is given in Figure 2 (left).
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Figure 2: Data pairs plot for the linear classification case (left) and the dummy-correlated-variable classification
case (right). The upper panel provides the CC of each variable pair; the diagonal panel gives the kernel density
estimation of the marginals; the lower panel gives scatter plots and fitted GLM with CI. As the output variable
is not continuous but binary, other representations are given in the right column and bottom line.

On the link scale, the linear regression between the output and the inputs gives 𝑅2 = 1.000 and 𝑄2 = 0.921.
By taking the threshold 𝑠 (see Eq. (2a)) at the mid-value and classical value 0.5 to distinguish the two classes,
the classification error rate (Eq. (4)) is 𝜀 = 0 and the classification sensitivity (Eq. (5)) is 𝜏 = 1, which
mean a perfect fit (as expected). The metrics and the VIMs, from the regression on the link scale, are given
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in Table 2 and Figure 3 (left). It shows that LMG, Johnson and PMVD provide similar results that SRC2

(which is only based on the regression coefficients that give a higher weight to 𝑋2 than to 𝑋1). The output
corresponds to a threshold exceedance that is mainly explained by 𝑋3. 𝑋1 and 𝑋2 compete 𝑋3 only via their
interaction effects (concomitant large values). Therefore, this interaction effect is shared between these inputs
in the LMG/Johnson/PMVD approach, and their effect is equalized.

Input VIF CR SRC2 PCC2 SPCC2 LMG Johnson PMVD
𝑋1 8.86 0.723 8.65 6.86 2.58 5.36 6.27 10.2
𝑋2 14.83 24.977 37.78 40.54 26.28 35.91 35.19 35.9
𝑋3 28.63 44.577 58.20 62.22 44.01 58.73 58.55 53.8

Sum 52.31 70.277 104.62 109.62 72.88 100.00 100.00 100.0

Table 2: Metrics and VIMs (in %) for the linear classification data.

We now study a model with 𝑑 = 2 correlated inputs with one dummy variable (i.e. non-included in the model):

𝑌 = 1{𝑋1+𝜂≥1} (13)

with 𝜂 ∼ N(0, 0.01) and 𝑋 ∼ N2

((
0
0

)
,

(
1 0.9

0.9 1

))
. We simulate a 100-size sample of 𝑋 . The matrix plot is

given in Figure 2 (right).

On the link scale, the linear regression between the output and the inputs gives 𝑅2 = 0.951 and 𝑄2 = 0.841. By
taking the threshold 𝑠 = 0.5, we have 𝜀 = 0.02 and 𝜏 = 0.93. The metrics and the VIMs, from the regression
on the link scale, are given in Table 3 and Figure 3 (right). PMVD allows drastically decreasing the importance
measure of 𝑋2 which is only due to its correlation with 𝑋1. One also observes the closeness between LMG and
the (logistic regression-based) Johnson indices.

Input VIF CR SRC2 PCC2 SPCC2 LMG Johnson PMVD
𝑋1 12.3 41.1 111.51 11.994 9.176 64.1 57.9 91.27
𝑋2 12.3 32.1 1.36 0.323 0.126 31.0 37.3 3.87

Sum 24.6 73.2 112.87 12.317 9.301 95.1 95.1 95.14

Table 3: Metrics and VIMs (in %) for the non-included-input classification model toy data.

Figure 3: Estimates (with bootstrap) of the metrics and VIMs in the linear classification case (left) and in the
dummy-correlated-variable classification case (right).
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4.2 Application to a public dataset: car prices data
We use the car data for a classification exercise (𝑌 is binary) by distinguishing the cars prices above and below
a given price ($40, 000). The important class to be predicted (𝑌 = 1) is for the high prices. On the link scale,
the linear logistic regression between the output and the inputs gives 𝑅2 = 0.757 and 𝑄2 = 0.601. By taking
the threshold 𝑠 = 0.2 to distinguish the two classes, the classification error rate (Eq. (4)) is 𝜀 = 0.037% and the
classification sensitivity (Eq. (5)) is 𝜏 = 1. The metrics and VIMs, from the regression on the link scale, are
given in Table 4. The difference with the regression case is that some variables (as Saab) have no more influence.
The influence of the three main influential inputs (Cylinder, Cadillac and convertible) are still present.

Input n◦ VIF CR SRC2 PCC2 SPCC2 LMG Johnson PMVD Cor.
sign

Mileage 1 1.01 1.40 0.79 2.26 1.03 4.67 1.42 5.13 -
Cylinder 2 2.35 18.85 1.94 1.09 1.61 21.68 14.20 27.9 +

Doors 3 4.61 0.56 1.49 0.00 0.59 1.45 0.81 0.00 +
Cruise 4 1.55 1.72 0.21 0.00 0.04 2.30 1.06 0.00 -
Sound 5 1.14 0.26 0.00 0.00 0.02 0.31 0.13 0.02
Leather 6 1.19 2.00 0.01 0.00 0.03 3.01 0.57 0.00 +
Buick 7 2.60 0.58 0.05 0.00 0.17 1.20 0.66 0.00 -

Cadillac 8 3.33 35.14 16.99 0.10 5.25 20.90 27.05 31.3 +
Chevy 9 4.41 1.63 0.32 0.00 0.03 3.11 1.91 0.00 -
Pontiac 10 3.42 1.20 0.44 0.00 0.30 3.34 1.15 0.00 -

Saab 11 3.56 0.87 18.91 0.00 0.42 3.10 15.44 0.15 -
convertible 12 1.63 8.78 13.47 1.69 5.10 8.90 10.56 11.2 +
hatchback 13 2.45 0.42 0.53 0.00 0.53 0.51 0.16 0.00

sedan 14 4.51 0.01 1.79 0.00 0.63 1.27 0.62 0.00 -
Sum 37.77 73.42 56.93 5.14 15.75 75.74 75.74 75.7

Table 4: Metrics and VIMs (in %) for the cars classification data. The last column gives the sense of variation
of inputs with significantly influence (LMG> 1).
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