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Abstract—Microgrids (MG) optimal sizing considering the
minimization of life cycle emissions (LCE) of all MG components
as well as their investment and operation costs was a main
contribution of our recent studies [1], [2]. However, the design
of the energy management system (EMS) in the MG is not the
same in these studies. The MILP algorithm defining an EMS
with minimal LCE generates power flow distribution on real-
time basis in [1] while in [2] the energy management depends on
future load power profile and available solar power in order to
make the decision. A Genetic Algorithm (GA) is used to minimize
in parallel two objectives: LCE and MG costs. The battery usage
cost is considered just in the study with non real-time EMS
to make sizing more accurate while compromising computation
time. The goal of this paper is to compare the optimal sizing
of the MG components obtained for a real-time EMS and non
real-time EMS in order to evaluate the sizing robustness and
accuracy. A new modelling approach was used to allocate LCE
and costs on an hourly basis, which allows to avoid specifying
when MG elements replacement occurs.

Index Terms—Microgrid optimal sizing, life cycle emissions,
MILP, Genetic algorithm, real-time EMS, non real-time EMS,
multiobjective optimisation, hourly modelling approach

I. INTRODUCTION

Islanded microgrids (IMG) gained a lot of interest by
the end of the 20th century [3] since they have multiple
advantages. In fact, when compared to centralized grids,
IMG increase energy security to face natural catastrophes and
cyberattacks. They also present economic strength and allow
easy penetration of renewable sources by installing storage
devices [3]. Many previous articles studied the optimal sizing
of islanded microgrids taking into consideration only the min-
imization of Diesel combustion emissions and MG investment
and operation costs [4] [5] [6] [7] [8]. The main contribution
of [1] and [2] is that they take into consideration the life
cycle emissions of all microgrid elements (including PV and
batteries) and their related Capital Expenditure (CAPEX) and
Operational Expenditure (OPEX) in the optimization of MG
sizing and EMS. In [1], a real-time EMS is done using a
MILP algorithm that minimizes LCE at each step time without
considering future load power values. In [2], the EMS is
generated also by a MILP. However it is not real-time since the
power flow depends on future load power values and the MILP
algorithm also minimizes future battery usage costs. Both [1]
and [2] use a Genetic Algorithm to find the minimal MG life

cycle emission for a specified CAPEX and OPEX budget by
generating a Pareto Front that shows a set of optimal MG
elements sizing. A new modelling approach was used in [1]
and [2] where LCE and costs were allocated on hourly basis.
This model is most suitable for MG with very high lifetime
so that there is no need to specify when replacements are
occuring in the future.
In this paper, we are going to compare the set of optimal
sizing obtained in [1] and [2] in order to study the impact
of implementing whether a real-time or non real-time EMS
on the optimal sizing solutions. This comparison allows us
to validate the accuracy and the robustness of the MG sizing
obtained in both studies. In case the optimal sizing found while
using both EMS strategies does not differ very much, then we
can use the real-time EMS which generates power flow faster
than non-real time EMS.
This paper is organized as follows: the microgrid structure
and an overview on the new modelling approach of LCE and
costs are presented in section II. The optimization model used
in both studies are shown in section III. A comparison of the
optimal sizing solutions is simulated and analysed in section
IV. The section V concludes this paper.

II. MICROGRID MODELLING

A. The microgrid structure
The microgrid studied is composed of 114 residential units

(Pdem), PV pannels (PRE), battery packs (charging power
Pbat−c and discharging power Pbat−d) and a Diesel Generator
(PDE). Figure 1 presents an overview of the power flow
of the microgrid. The load power profile is taken from [9].
The available solar irradiation in Victoria State Australia is
gathered from [10]. Representative days of the four seasons
of a year are chosen in order to generate the MG optimal
sizing.
In both studies, service reliability is not an objective function.
The load should be always met without any interruption so
that Loss of Power Supply Probability (LPSP) is equal to 0.

In the following paragraphs of this section, we will present
the new modelling approach that was used in [1] and [2] in
order to model life cycle emissions and costs of the different
microgrid components. This study explains more explicitly the
aim of this new modelling approach.



Fig. 1. Microgrid overview

B. Batteries Modelling
The model of batteries defines their state of charge SoC,

hourly allocated life cycle emissions as well as hourly invest-
ment and operation costs.

1) Batteries state of charge SoC: The batteries SoC is given
by Equations (1) and (2) detailed in [1] and [2].

SoC (tk) = SoC (tk−1) +

∆t

Cbatref

(
ηbat−c.Pbat−c (tk−1)−

Pbat−d (tk−1)

ηbat−d

)
(1)

SoCmin ≤ SoC (tk) ≤ SoCmax (2)

Where Cbatref is the batteries capacity [Wh], Pbat−c the power
of batteries during their charge [W ], Pbat−d the batteries
power during discharge in [W ], ∆t the time step [h], ηbat−c

the batteries efficiency in charging mode and ηbat−d the
batteries efficiency in discharging mode.

2) Batteries emissions: [1] and [2] proposed a new mod-
elling approach for batteries emissions. The aim of this new
model is to allocate the batteries LCE to an hour of operation.
To better understand this model, if we take for example that
the LCE of a battery is 3000 kg of CO2 and it could perform
3000 cycles, this means that the battery LCE is 1 kg of CO2
per cycle. Therefore, we should know the number of battery
cycles done in a step time to allocate accordingly the LCE.
Equation (3) shows batteries emissions computed through
multiplying the number of cycles done in a step time by the
emission allocated for one cycle.

Bat emissions =
1

2
∆t

K∑
k=1

(
ηbat−c.Pbat−c(tk)

Cbatref

+
Pbat−d(tk)

ηbat−d.Cbatref

)
.
Batfp

Ncycles

(3)

where Ncycles is the life time of the batteries [Cycles], Batfp
is the total LCE of the batteries [kg of CO2].
In order to avoid charging and discharging batteries in the
same time, a linear constraint is added in [1] and [2] by using a
binary variable b(tk) that equals 0 during batteries discharging
mode and 1 in charging mode. The linear constraints of the
batteries are represented in the following equations.

0 ≤ Pbat−c(tk) ≤ b(tk)Pbat−cmax (4)
0 ≤ Pbat−d(tk) ≤ (1− b(tk))Pbat−dmax (5)
0 ≤ b (tk) ≤ 1 ∈ N (6)

3) Batteries CAPEX: Batteries CAPEX allocated to a step
time is obtained through multiplying the number of cycles
done in a step time by the price of a cycle. Equation (7) shows
the CAPEX of batteries where cinv,bat is the batteries cost
(with inverters cost) in USD per Wh of battery capacity.

CAPEX bat = ∆t.
1

2

(
ηbat−c.Pbat−c(tk)

Cbatref

+
Pbat−d(tk)

ηbat−d.Cbatref

)
cinv,bat(USD/Wh).cbatref (Wh)

Ncycles

(7)

4) Batteries OPEX: Batteries OPEX is allocated per hour
through dividing the total operation and maintenance costs in
a year by the number of hours in one year as detailed in
Equation (8).

OPEX Bat = ∆t.
cO&M,bat(USD/kWh/year).Cbatref (kWh)

365× 24
(8)

where CO&M,bat is the operational cost of batteries in USD
per year per kWh of battery capacity.

C. Diesel generator Modelling
The new modelling approach presented in [1] and [2]

allocates DG emissions and costs to one hour. To better
understand this model, if for example the price of the DG
is 50,000 USD and its lifetime is 50,000 hours, an investment
cost (CAPEX) of 1 USD is allocated to one operational hour.
A binary variable d(tk) is used to determine when the DG
is ON or OFF. The same method is used to allocate DG
emissions per hour. [1] and [2] elaborate equations that model
DG emissions and costs in details as well as constraints related
to DG operation. In this study, we will just pick some of these
equations.
Equation (9) shows DG life cycle emissions (in kg of CO2)
where DEem is the emission of CO2 in kg per kWh of DG
energy consumption.

DGEmissions = ∆t

K∑
k=1

(PDE(tk).DEem) (9)

Equation (10) defines power constraints of DG.
0.3 d (tk)PnDE ≤ PDE (tk) ≤ d (tk)PnDE
0 ≤ d (tk) ≤ 1 ∈ N (10)

Equation (11) models DG CAPEX allocated for a step time
where TDE is DG lifetime in hours.

CAPEX DG = ∆t.d (tk) .
cinv,DE(USD/kW ).PnDE(kW )

TDE(hr)
(11)

D. PV Modelling
PV panels do not emit CO2 during operation. However,

extracting their raw materials, production, transport and in-
stallation do have emissions. The equivalent of these indirect
emissions PVem is attributed to the amount of electrical energy
produced by these PV panels and presented in Equation (12).

PV Emissions(tk)

(kg of CO2) = ∆t.PVem(kg CO2/kWhproduced).PRE(tk) (12)

[1] and [2] also model PV CAPEX and OPEX allocated
hourly as we can see in Equations (13) and (14).

CAPEX PV (USD) = ∆t.
Cinv,PV (USD/kWp).PnPV (kWp)

NPV × 365× 24 (hr)
(13)

OPEX PV = ∆t.
cO&M,PV (USD/kWp/year)× PnPV (kWp)

365× 24
(14)

Where Cinv,PV is the investment price of a PV panel ex-
pressed in USD per kWp of PV capacity, NPV is the PV
lifetime in Years and CO&M,PV is the operation and mainte-
nance cost of PV.
In section III, a comparison of the multiobjective optimization
model used in [1] and [2] is studied in order to better
understand the impact of each model on the sizing solutions.
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Fig. 2. Double loop multi-objective optimization

III. MODEL COMPARISON OF THE MULTI-OBJECTIVE
OPTIMISATION

A. Overview of the Double loop multi-objective optimization
Both studies [1] and [2] use a double loop multi-objective

function to optimize the microgrid sizing as shown in Figure
2. A Genetic Algorithm (outer loop) generates a sizing vector
of PV pannels, battery packs and the Diesel Generator. The
sizing vector then is used in the inner loop composed of two
functions:

• A MILP function that minimizes life cycle emissions of
the microgrid components

• An economic function that computes the MG CAPEX
and OPEX costs

The GA used in the outerloop finds a set of sizing solutions
through a Pareto Front that gives the minimal possible LCE
for a defined budget.

B. Comparison of the MILP functions
Although the double loop optimization structure is the same

in both studies, there are some differences in the model of the
functions. The main differences of the MILP function are the
following:

• In [1], the MILP function provides a real-time Energy
Management System for the microgrid while the EMS in
[2] depends from future MG power values, load demand
and battery usage cost. This makes the EMS in [2] not
real-time.

• In [2], the MILP is designed to return back to initial
conditions at the beginning of each representative day,
mainly for batteries SoC. While in [1], representative days
are considered as if they were consecutive days without
considering returning back to initial conditions.

• Sizing in [2] is more accurate than [1], but EMS calcu-
lation time of [1] is faster.

1) Comparison of MILP decision variables: In [1], at each
point of time tk there are 6 decision variables for a total of:
K = 24(hours) × NRD(days) sample times, where NRD
is the number of representative days. The decision variable
vector Xk is:
Xk = (PDE(tk), Pbat−c(tk), Pbat−d(tk), Pdp(tk), b(tk), d(tk))
knowing that PDE(tk), Pbat−c(tk), Pbat−d(tk), Pdp(tk) are
Real and b(tk), d(tk) are binary variables. The size of the
decision variables vector is 6.

In [2], there are 7 MILP decision variables at each sample
time. SoC(tk) is added to the sizing vector in order to make
possible for the MILP to return back to initial conditions.
The size of the decision variables vector in [2] is:
K = 24(hours)×NRD(days)× 7(V ariables)

2) Comparison of MILP objective function: In [1], the
variables decision vector is computed in order to minimize
microgrid LCE at each sample time tk. LCE of Diesel Gen-
erator and Batteries are minimized on real-time basis. The
minimization strategy used is represented in Equation (15).

min
K∑

k=1
emissions of (Diesel+Battery)(tk) =

K∑
k=1

min emissions of (Diesel+Battery)(tk) (15)

In [2], emission factors at a sample time tk are not considered
as constant because returning back to system initial conditions
and battery future usage costs are considered. The MILP
optimization strategy used in [2] is represented in Equation
(16).

f = min

K∑
k=1

emissions(tk) of (Diesel+Batteries) (16)

The power equilibrium should be met at each sample time tk
so that available source equals load demand. This balance is
represented in Equation (17).

PRE(tk) + PDE(tk) + Pbat−d(tk)

= Pbat−c(tk) + Pdp(tk) + Pdem(tk) (17)

C. MILP function Solver
Both studies use intlinprog function in Matlab to compute

decision variables knowing that the system model is linear. In
[1], intlinprog computes 6 variables at each step time while in
[2] all present and future variables are calculated in one step
(a total of K = 24(hours) × NRD(days) × 7(V ariables)
values).
The new modelling approach is used to allocate emissions and
costs on hourly basis, making the algorithm computation time
faster.
D. Comparison of the Economic function

[1] and [2] use the same economic function to compute
microgrid hourly CAPEX and OPEX represented in Equation
(18).

Total hourly cos t = CAPEX(Batteries+DG+ PV ) +

OPEX(Batteries+DGV ariable+DGfix+ PV ) (18)



However, even though the same formula is used in both
studies, the power vector generated by the MILP function is
different as seen in the previous comparison, which impacts
the overall microgrid costs.

E. Comparison of the sizing optimization
A Genetic Algorithm is used to generate the microgrid

sizing vector which defines PV nominal peak power PnPV ,
the batteries capacity Cbatref and the Diesel generator nominal
power PnDE . The GA minimizes 2 objectives:

• The LCE of all microgrid components computed using
the new hourly modelling approach.

• The total microgrid costs.
The fact that MILP could generate or not a real-time EMS
and that future batteries usage cost could be taken or not
into consideration impact directly the set of sizing vectors
solutions generated by the GA.
In the following section, we will compare the power profile
generated for one day in the two studies. We will also check
to which extent the sizing vectors solutions proposed by
the GA differ in order to validate the robustness of optimal
solutions found in both studies.

IV. COMPARISON OF SIMULATION RESULTS

Technical, cost and emission parameters used in both studies
are represented in Table 1. The Genetic Algorithm is im-
plemented on Matlab through gamultiobj function. A Pareto
Front shows the minimal LCE of the microgrid components
that could be obtained for a defined budget. The simulation
results will be compared in this section in order to validate
the accuracy of the set of sizing solutions.

A. Comparison of cumulative cost and emission results
Figure 3 shows the set of optimal sizing solutions repre-

sented in a Pareto Front for both real-time and non-real time
EMS. As seen in Figure 3, Table 2 and 3, the cumulative
MG costs using non-real time EMS is slightly higher than
costs for a real-time EMS (a difference of 4.7 percent in
cumulative minimum costs and 1.5 percent for the maximum
costs). In order to better understand the increase of cost, we
will analyze the MILP and the Genetic Algorithm. As seen
before, when using the non-real time EMS, the MILP should
ensure returning back to initial conditions (mainly batteries
SOC) at the beginning of each representative day. We can see
in Figure 6 that in order to meet this condition, batteries are
even charged by the Diesel generator and by excess of PV
power at the end of each day or discharge is stopped while
DG supplies the load. When using real time EMS, Figure
6 shows that batteries SOC does not come back to initial
value at the end of the day, which implies that batteries are
charged by excess of PV power or when DG is supplying a
load lower than 30 percent of its nominal capacity. Moreover,
the Genetic Algorithm takes into account reducing battery
usage cost on the long term in non-real time (NRT) EMS.
This implies additional Diesel usage cost to satisfy the load
and to compensate the decrease in battery usage. This is the
reason behind the increase of MG cumulative costs. We can
see clearly the consequence of this fact on the EMS shown
in Figure 6 where the power flow distribution of the MG is
very similar for both EMS strategies until the 16 th hour of
the day. After this instant, the NRT EMS starts to take into
consideration returning back to initial conditions.
The increase in Diesel Generator usage impacts directly the
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Fig. 3. Pareto Front Comparison

LCE of the microgrid. We can see in Table 3 that minimum
emissions obtained in the Pareto Front are 52 Percent higher
when using NRT EMS while maximum emissions are 41
percent higher in a NRT EMS. This is a direct consequence of
relying more on the Diesel Generator to feed the load. Table
2 shows that for a specified sizing vector, cumulative cost
(in USD per kWh) slightly varies when using different EMS
strategies (2.6 and 3.1 percent) while emissions (in kg of CO2
per kWh) are significantly different (55 percent increase for
NRT EMS).

B. Validation of sizing robustness
In order to validate the robustness of the sizing solution sets

obtained in the Pareto Front, we will compare batteries sizing
capacity and PV nominal sizing power that were computed
using real-time and non-real time EMS.
The first insight is that sizing is not much impacted by how
EMS is done. This means that the optimal sizing solutions are
reliable and are in the same range regardless of the method
used to determine the EMS, which is a good indicator for the
sizing robustness.
If we consider battery sizing, the lowest optimal value of
battery capacity with NRT EMS is 27 percent lower than
minimal battery capacity with real-time EMS (Table 3). This
could be explained by the fact that NRT EMS relies less
on batteries since Diesel Generators take over the role of
meeting the load demand to decrease battery usage cost and
return back to initial batteries SOC. The maximum value of
batteries capacity with NRT EMS is just 0.6 percent lower
than maximum capacity with RT EMS. The overall look on
batteries sizing confirms the robustness of the sizing decision.
Concerning PV sizing, it is expected that PV nominal power
with a NRT EMS should be a little bit lower than nominal
power with RT EMS. In fact, DG is supposed to charge the
batteries, so less PV capacity is needed. However, this decrease
in sizing capacity is very minimal (7.8 percent as per Table
3), which means that sizing decision in both EMS methods is
accurate and robust.

V. CONCLUSION

This article validates the microgrid sizing robustness con-
ducted in our two previous studies. Their main contributions
were to find optimal MG sizing while considering life cycle
emissions of all MG components and their costs. The Energy



TABLE I
TECHNICAL, COST AND EMISSION PARAMETERS

Microgrid component Parameters Values Units

Batteries

ηbat−c 0.96 pu
ηbat−d 0.96 pu
Batfp 80 kg of CO2 per kWh
Ncycles 3000 Cycle
cinv,bat 667 USD per kWh

CO&M,bat 0.0005 USD per kWh per hour

PV
PVem 0.044 kg of CO2 per kWh

Cinv,PV 1000 USD per kWp
CO&M,PV 0.0007 USD per kWp per hour

Diesel Generator
DEem 0.8 kg of CO2 per kWh

cinv,DE 100 USD per kW
cOperation,DE 0.3 USD per kWh

TDE 50000 Hour

TABLE II
COST AND EMISSIONS COMPARISON FOR A DEFINED PV AN BATTERIES SIZING

PV nominal
power (kWp)

Batteries
capacity (kWh)

Cost RT
(USD/kWh)

Cost NRT
(USD per kWh)

Emissions RT
(kg of CO2
per kWh)

Emissions NRT
(kg of CO2
per kWh)

Cost variation
percentage

NRT vs RT EMS

Emissions variation
percentage

NRT vs RT EMS
Sizing 1 1600 1700 0.188 0.193 0.113 0.254 2.6 Percent 55 Percent
Sizing 2 1500 4150 0.186 0.192 0.120 0.271 3.1 Percent 55 Percent
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Fig. 4. PV and Batteries Sizing Comparison Considering Cost
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Fig. 5. PV and Batteries Sizing Comparison Considering Emissions
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Fig. 6. EMS comparison considering RT and NRT strategies

TABLE III
COST, EMISSIONS AND SIZING PERCENTAGE VARIATION

Percentage of Variation
Cumulative cost Minimums 4.7 Percent
Cumulative cost Maximums 1.5 Percent

Cumulative emissions minimum 52 Percent
Cumulative emissions maximum 41 Percent

Battery Size Minimum 27 Percent
Battery Size Maximum 0.6 Percent

PV Size Minimum 5 Percent
PV Size Maximum 7.8 Percent

Management System is real-time in a study and non-real
time in the other. This article shows that the impact of the
EMS method is very minimal on the microgrid sizing. The
advantage of this result is to be able to generate a real-time
EMS without having to sacrifice the accuracy of the sizing
decision. This implies that no need to compromise between
the precision of EMS and the computation time of the power
flow management.
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