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In this work, we study the deterministic Cucker-Smale model with topological interaction. Focusing on the solutions of the corresponding Liouville equation, we show that propagation of chaos holds. Moreover, considering monokinetic solutions, we also obtain a rigorous derivation of the hydrodynamic description given by a pressureless Euler-type system.

Introduction

In recent decades, physics of complex systems has increasingly dealt with the description of groups of animals exhibiting collective behavior, such as flocks of birds, fish schools, locust swarms, and migrating cells ( [START_REF] Emlen | Flocking behaviour in birds[END_REF], [START_REF] Cucker | Emergent behavior in flocks[END_REF], [START_REF] Lopez | Theraulaz From behavioural analyses to models of collective motion in fish schools Interface focus[END_REF], [START_REF] Bazazi | Collective motion and cannibalism in locust migratory bands[END_REF], [START_REF] Giniūnaitė | Modelling collective cell migration: neural crest as a model paradigm[END_REF]).

From a modeling point of view, these systems offer new challenges and various models have been proposed to describe their interaction (see for example [START_REF] Vicsek | Shochet Novel type of phase transition in a system of self-driven particles[END_REF], [START_REF] Bertin | Grégoire Boltzmann and hydrodynamic description for selfpropelled particles[END_REF], [START_REF] Vicsek | Zafeiris Collective motion[END_REF]). Among the first to be introduced, the Cucker-Smale model ( [START_REF] Cucker | On the mathematics of emergence Japanese[END_REF]) describes a bird as a self-propelling particle interacting with its neighbors. In this case, the interaction is such that neighboring birds tend to align their velocities and the strength of the interaction is described through weights which depend on the metric distance between the agents.

Around 2008, a new type of interaction between agents called "topological interaction" was introduced. In [START_REF] Ballerini | Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study[END_REF][START_REF] Cavagna | Tavarone From empirical data to inter-individual interactions: unveiling the rules of collective animal behavior Math[END_REF], the CoBBS group in Rome, after collecting 3D observational data for flocks of starlings, observed that regardless of the density of the flock, each agent interacts on average with its first 6-7 neighbors. This suggests that the strength of the interaction between agents does not depend on the metric distance between them, but rather on the "topological" distance that takes into account the proximity rank of the latter with respect to the former (see also [START_REF] Bode | Wood Limited interactions in flocks: relating model simulations to empirical data[END_REF][START_REF] Camperi | Spatially balanced topological interaction grants optimal cohesion in flocking models[END_REF][START_REF] Ginelli | Chaté Relevance of metric-free interactions in flocking phenomena[END_REF][START_REF] Niizato | Emergence of the scale-invariant proportion in a flock from the metric-topological interaction[END_REF][START_REF] Shang | Bouffanais Consensus reaching in swarms ruled by a hybrid metrictopological distance[END_REF][START_REF] Martin | Multi-agent flocking under topological interactions[END_REF][START_REF] Shang | Bouffanais Influence of the number of topologically interacting neighbors on swarm dynamics[END_REF][START_REF] Wang | Chen Synchronization of multi-agent systems with metric-topological interactions[END_REF]).

In the following years, deterministic and stochastic models with topological interactions were introduced in the mathematical physics literature. In [START_REF] Blanchet | Degond Topological interactions in a Boltzmann-type framework[END_REF][START_REF] Blanchet | Degond Kinetic models for topological nearest-neighbor interactions[END_REF][START_REF] Degond | Propagation of chaos for topological interactions[END_REF][START_REF] Degond | Propagation of chaos for topological interactions by a coupling technique Atti Accad[END_REF] kinetic models of Boltzmann type are derived for topological interaction models based on jump processes. As far as deterministic models are concerned, in [START_REF]Haskovec Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions[END_REF] a Cucker-Smale model is introduced where the interaction, instead of being metric as usual, is topological. In [START_REF]Haskovec Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions[END_REF], the kinetic mean-field and hydrodynamic equations of Euler type are also written and derived in the case of a smoothed version of the model. Indeed, from a mathematical point of view, topological interactions fall outside the case of two-body interaction and present various problems in the derivation of mean-field and hydrodynamic equations. Specifically, the continuity estimate à la Dobrushin (see [START_REF] Dobrušin | Vlasov equations Funktsional[END_REF]), valid in the metrical case of regular two-body interactions, does not work here since the solutions are not weakly continuous with respect to the initial data, as shown in [START_REF] Benedetto | Mean-field limit for particle systems with topological interactions Math[END_REF]. In [START_REF] Benedetto | Mean-field limit for particle systems with topological interactions Math[END_REF] the existence of the dynamics and the mean-field limit have been rigorously proved for this same model, considering solutions of the limit equation with bounded density and proving that, for positive times t, the Wasserstein distance between the limit solution and the empirical measure at time t tends to zero as the number of particles increases, if this holds at the initial time.

In the present work, we focus on the problems of propagation of chaos and derivation of the hydrodynamic equations for this model. The starting point is the Liouville equation verified by the N -particle system and the aim is to show that the marginals of the N -body distribution function converge to tensorial powers of solutions of a suitable kinetic equation of Vlasov type. With the same approach, we show the validity of the hydrodynamic equations which describe the evolution of monokinetic initial data. The analysis will follow the approach in [START_REF] Golse | On the Mean Field and Classical Limits of Quantum Mechanics[END_REF] (see also [START_REF] Natalini | On the mean field limit for Cucker-Smale models Discrete Contin[END_REF], [START_REF] Natalini | The Mean-Field Limit for Hybrid Models of Collective Motions with Chemotaxis[END_REF], [START_REF] Menci | Microscopic, kinetic and hydrodynamic hybrid models of collective motions with chemotaxis: a numerical study Math[END_REF] for numerical considerations and [START_REF] Paul | Trélat From microscopic to macroscopic scale equations: mean field, hydrodynamic and graph limits[END_REF] for the case of agent systems).

Due to the aforementioned difficulties, the topological nature of the problem requires different techniques for the proof of these two results. Regarding propagation of chaos, the analysis makes use of another distance between probability measures, called discrepancy distance, in addition to the Wasserstein one. Furthermore, being the dynamics well-defined only for almost all initial data, we need to consider a regularization of the monokinetic initial datum in the proof of the hydrodynamic derivation, obtaining the result for any limiting point with respect to the regularization.

The outline of the paper is as follows: in Section 2 we recall the topological Cucker-Smale model and introduce the associated Liouville equation, as well as recalling the results obtained in [START_REF] Benedetto | Mean-field limit for particle systems with topological interactions Math[END_REF] which will be useful later on. In Section 3 we provide a proof of the propagation of chaos, which will be a direct consequence of the validity of the law of large numbers. In Section 4 we focus on the derivation of the hydrodynamic description given by Euler-type equations studying the so-called monokinetic solutions.

Model and general framework

A Cucker-Smale type model for the motion of N agents, in the mean-field scaling, is the system

$ ' & ' % 9 x i ptq " v i ptq 9 v i ptq " 1 N N ÿ j"1 p ij pv j ptq ´vi ptqq, i " 1, . . . , N (2.1) 
where px i , v i q P R d ˆRd (d " 1, 2, 3, . . . ) and the "communication weights" tp ij u N i,j"1 are positive functions that take into account the interactions between agents. In classical models, p ij depends only on the euclidean distance |x i ´xj | between the agents. In topological models the weights depend on the positions of the agents through their rank:

p ij -K `M px i , |x i ´xj |q ˘, (2.2) 
where K : r0, 1s Ñ R `is a positive Lipschitz continuous non-increasing function, and, for r ą 0, the rank function

M px i , rq - 1 N N ÿ k"1 X t|x k ´xi | ď ru (2.3)
counts the number of agents at a distance less than or equal to r from x i , normalized with N . Note that in this case p ij is a piecewise-constant function of the positions of all the agents.

We indicate by PpR k q the space of probability measures on R k . In the mean-field limit N Ñ `8, the one-agent distribution function f t " f pt, x, vq P PpR 2d q is expected to verify the equation

B t f pt, x, vq `v ¨∇x f pt, x, vq `∇v ¨pW rSf t , f t spx, vqf pt, x, vqq " 0, (2.4) 
where Sf t pxq -ş f t px, vq dv P PpR d q denotes the spatial distribution and, given a probability measure f P PpR d ˆRd q and a probability measure ρ P PpR d q, W rρ, f s is the mean-field interaction given by (2.8)

W rρ, f spx, vq - ż R d ˆRd K pM rρspx,
In other words, f t is the push-forward of f 0 along the flow generated by the one-particle system (2.8), where the force W depends on f t itself.

Given Z N " px 1 , . . . , x N , v 1 , . . . , v N q P R dN ˆRdN , we define the empirical measure on R d ˆRd as 

µ Z N - 1 N N ÿ i"1 δ x i b δ v i . ( 2 
9 v i ptq " W rSµ Z N ptq , µ Z N ptq spx i ptq, v i ptqq, i " 1, . . . , N. (2.10) 
We indicate by Z N pt, Z N q " pX N pt, Z N q, V N pt, Z N qq the solution of this system with initial datum Z N P R dN ˆRdN .

In [START_REF] Benedetto | Mean-field limit for particle systems with topological interactions Math[END_REF], in the framework of the mean-field theory, the rigorous derivation of (2.4) starting from (2.10) is obtained. More precisely, the following theorem is proved.

Theorem 0. [3, Theorems 3.4, 4.3 and 5.2] Let K : r0, 1s Ñ R `in (2.5) be a positive Lipschitz continuous non-increasing function. It holds that: i) except for a set of initial data Z N P R dN ˆRdN with Lebesgue measure zero, there exists a unique global in-time solution

pX N pt, Z N q, V N pt, Z N qq P C 1 pR `, R 2dN q ˆCpR `, R 2dN q of (2.10). Moreover, if |x i | ď R x and |v i | ď R v for any i P t1, . . . N u, we have that |x i ptq| ď R x `tR v , |v i ptq| ď R v , i P t1, . . . , N u. (2.11)
ii) Let f 0 px, vq P L 8 pR d ˆRd q be a probability density such that supppf 0 q Ă BRx ˆB Rv . Given T ą 0, there exists a unique solution, in the weak sense defined by (2.7) and (2.8), of the kinetic equation (2.4) with initial datum f 0 , such that f P C w `r0, T s; L 8 pR d ˆRd q ˘, i.e. f t is a probability measure with bounded density for any t ě 0, weakly continuous in t.

Moreover, for any t ě 0, supppf t q Ă BRx`tRv ˆB Rv and }f t } 8 ď }f 0 } 8 e dγt , (2.12)

where γ " ş 1 0 Kpzq dz. iii) If f 0 is as in item ii), for any t ą 0 the empirical measure µ Z N ptq associated to the system (2.10) weakly converges to f t in the limit N Ñ `8, provided this is true at time zero and the initial data Z N are chosen such that the dynamics exists, as in item i).

In the present work, we focus on the statistical description of the dynamical system (2.10), considering, at time 0, N independently and identically distributed particles with law F N p0, Z N q " f bN 0 . At time t the particles are distributed with the law F N pt, Z N q, weak solution of the N -body Liouville equation

B t F N pt, Z N q `N ÿ i"1 v i ¨∇x i F N pt, Z N q `N ÿ i"1 ∇ v i ¨´1 N N ÿ j"1 K ´M rSµ Z N spx i , |x i ´xj |q ¯pv j ´vi qF N pt, Z N q ¯" 0,
(2.13) in the sense that F N pt, Z N q is the push-forward of F N p0, Z N q along the flow Z N pt, Z N q. Note that F N pt, Z N q, for t ą 0, is symmetric in the exchange of particles.

In the next section we show that, in the limit N Ñ `8, for any s ě 1 the s-particles marginals of F N pt, Z N q factorize, and the limit is described by the solution of the mean-field equation f t with initial datum f 0 . To quantify the convergence, we use the Wasserstein distance W 1 defined as follows. Let µ, ν P PpR k q be two probability measures with finite first moments,

W 1 pµ, νq :" inf πPCpµ,νq ż R k ˆRk |x ´y| dπpx, yq, (2.14) 
where Cpµ, νq is the set of all couplings of µ and ν, i.e. probability measures on the product space with marginals µ and ν in the first and second variable, respectively.

Convergence of the marginals

In this section we prove the propagation of chaos for solutions of the N -body Liouville equation (2.13). We briefly explain the meaning of this expression and we refer to [START_REF] Chaintron | Diez Propagation of chaos: A review of models, methods and applications. I. Models and methods[END_REF][START_REF] Chaintron | Diez Propagation of chaos: A review of models, methods and applications[END_REF] for a review, and to [START_REF] Nguyen | Shvydkoy Propagation of chaos for the Cucker-Smale systems under heavy tail communication[END_REF] for a propagation of chaos result in the case of non-topological Cucker-Smale models. We introduce the s-particles marginals as follows, with an abuse of notation regarding the order of the space and velocity variables in F N pZ N q:

F N :s pZ s q " ż F N pZ s , z s`1 , . . . , z N qdz s`1 . . . dz N , s " 1, 2, . . . , N,
where z i " px i , v i q P R 2d . We expect that, if N is large, the details of the individual mutual interactions are negligible, and the description given by F N :s pt, Z s q is similar to the one given by f bs t , where f t weakly solves (2.4).

Note that f bs t pZ s q weakly solves

B t f bs t pZ s q `s ÿ i"1 v i ¨∇x i f bs t pZ s q `s ÿ i"1 ∇ v i ¨´W rSf t , f t spx i , v i qf bs t pZ s q ¯" 0.
This last equation describes the law of the system when each particle evolves independently from the others, with the interaction given by the mean-field force defined in (2.5). Then propagation of chaos holds if F N :s pt, Z s q converges to f bs t pZ s q for any s ě 1.

We will prove the following result.

Theorem 1 (Propagation of chaos for the topological CS model). Assume that the interaction function K is as in Theorem 0, namely a positive Lipschitz continuous non-increasing function. Let f P C w pr0, T s; L 8 pR 2d qq be a weak solution of the kinetic equation (2.4) with initial datum f 0 px, vq P L 8 pR d ˆRd q such that supppf 0 q Ă BRx ˆB Rv . Consider F N ptq weak solution of (2.13) such that F N p0q " f bN 0 . For any integer s P t1, . . . , N u, it holds that sup tPr0,T s W 1 pF N :s ptq, f bs ptqq ď se λpT qKp1`}f 0 }8e dγT q a C d pN q, where γ :" ş 1 0 Kpzq dz, λpT q is a constant depending on d, R x , R v and T , and K :" maxp1, LippKq, }K} 8 q, where LippKq is the Lipschitz constant of K, while

C d pN q :" $ ' & ' % N ´1{2 if d " 1 N ´1{2 logpN q if d " 2 N ´1{d if d ą 2.
(3.1)

Remark 1. In the proof we will need a quantitative version of the law of large numbers, i.e. an estimate of ErW 1 pρ, µ X N qs when X N " px 1 , . . . , x N q are N independently and identically distributed R d -valued random variables with law ρ P L 8 pR d q. This is a widely studied problem in probability, in connection with topics of optimal transport, random matching and combinatorial optimization (see, for instance, the bibliographical notes to Chapter 6 of [START_REF] Villani | Optimal transport: old and new Grundlehren der mathematischen Wissenschaften 338[END_REF]). Here we use the explicit bounds reported by Fournier and Guillin in [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure Probab[END_REF], which imply that ErW 1 pρ, µ X N qs ď cC d pN q, where C d pN q is defined in (3.1) and c is a constant depending polynomially on the diameter of supppρq and on d.

Remark 2. The time dependence of the constant λpT q in Theorem 1 comes from the growth of the support of the distribution, and therefore grows polynomially in time. In particular, it is also possible to prove the validity of the theorem for times T slowly growing with N .

In the proof of Theorem 1 we will employ as a technical tool the discrepancy distance, defined as follows:

Dpµ, νq :" sup 

where c is a constant that depends on the dimension d. ii) Given X N " px 1 , . . . , x N q, Y N " py 1 , . . . y N q, with |x i ´yi | ď δ for some δ and any i " 1, . . . N , consider the two empirical measures µ X N and µ Y N . Then, for any probability measure ρ P L 8 pR d q supported on a ball BR ,

Dpµ X N , µ Y N q ď cR d´1 }ρ} 8 δ `cDpµ Y N , ρq. (3.4) 
In the following lemma, we summarize the technical details of the proofs concerning the Lipschitz estimates of the interaction function W defined in (2.5).

Lemma 1. Given r x , r v ą 0, let f 1 , f 2 P PpR d ˆRd q be two probability measures supported in Brx ˆB rv and ρ 1 , ρ 2 P PpR d q two probability measures supported in Brx and such that }ρ 2 } 8 ă `8. For any ξ 1 , ξ 2 P Brx and η 1 , η 2 P Brv it holds:

|W rρ 1 , f 1 spξ 1 , η 1 q ´W rρ 2 , f 2 spξ 2 , η 2 q| ď 2r v LippKqDpρ 1 , ρ 2 qp cLippKq}ρ 2 } 8 r d´1 x r v `}K} 8 q pW 1 pf 1 , f 2 q `|ξ 1 ´ξ2 | `|η 1 ´η2
|q , where c is a constant that depends only on d.

Proof of Lemma 1. By the triangle inequality, |W rρ 1 , f 1 spξ 1 , η 1 q´W rρ 2 , f 2 spξ 2 , η 2 q| can be bounded by the sum of

A 1 :" |W rρ 1 , f 1 spξ 1 , η 1 q ´W rρ 2 , f 1 spξ 1 , η 1 q|, A 2 :" |W rρ 2 , f 1 spξ 1 , η 1 q ´W rρ 2 , f 2 spξ 1 , η 1 q|, A 3 :" |W rρ 2 , f 2 spξ 1 , η 1 q ´W rρ 2 , f 2 spξ 2 , η 2 q|.
Estimate of A 1 : by the definition of M in (2.6) and the definition of discrepancy distance in (3.2), we have for any r ě 0

|M rρ 1 spξ 1 , rq ´M rρ 2 spξ 1 , rq| ď Dpρ 1 , ρ 2 q.
By the definition of W in (2.5) and the hypothesis on the supports, we get that A 1 is bounded by

A 1 ď 2LippKqr v Dpρ 1 , ρ 2 q.
Estimates of A 2 and A 3 : it is easy to prove that, given x P R d and r 1 , r 2 ą 0, |M rρ 2 spx, r 1 q ´M rρ 2 spx, r 2 q| ď c}ρ 2 } 8 ˇˇr d 

A 2 ď pcLippKq}ρ 2 } 8 r d´1 x r v `}K} 8 qW 1 pf 1 , f 2 q, and A 3 ď pcLippKq}ρ 2 } 8 r d´1 x r v `}K} 8 qp|ξ 1 ´ξ2 | `|η 1 ´η2 |q.
Proof of Theorem 1. For any Σ N " py 1 , . . . , y N , w 1 , . . . , w N q P R dN ˆRdN , we consider Σ N pt, Σ N q " py 1 ptq, . . . , y N ptq, w 1 ptq, . . . , w N ptqq P R dN ˆRdN ,

where, for i P t1, . . . , N u, py i ptq, w i ptqq has initial datum py i , w i q and evolves independently with the mean-field interaction: " 9 y i ptq " w i ptq 9 w i ptq " W rSf t , f t spy i ptq, w i ptqq, i " 1, . . . , N.

We associate to such Σ N pt, Σ N q the empirical measure µ Σ N ptq as in (2.9).

We define a coupling π N t between F N ptq and f bN t in the following way: at time t " 0, it is given by π N 0 pZ N , Σ N q :" f bN 0 pZ N qδpZ N ´ΣN q. For positive times, π N t is given by the push-forward of π N 0 along the product of the flows given by (2.10) and (3.7), i.e. for any ϕ P C b pR 2dN ˆR2dN q ż ϕpZ N , Σ N q dπ N t pZ N , Σ N q " ż ϕpZ N pt, Z N q, Σ N pt, Z N qq f bN 0 pZ N q dZ N .

Next, given i P t1, . . . , N u, we introduce the quantity D N ptq :"

ż ´|x i ´yi | `|v i ´wi | ¯dπ N t pZ N , Σ N q,
which does not depend on i, thanks to the symmetry of the law. We prove the weak convergence of the s-marginals F N :s to f bs by showing that D N ptq Ñ 0: namely, using the symmetry of π N t ,

W 1 pF N :s ptq, f bs t q ď s ÿ i"1 ż ´|x i ´yi | `|v i ´wi | ¯dπ N t pZ N , Σ N q ď sD N ptq,
where we used that |Z s ´Σs | ď

ř s i"1 p|x i ´yi | d `|v i ´wi | d q.
From the definition of π t , we have, for any i P t1, . . . , N u,

D N ptq " ż ´|x i ptq ´yi ptq| `|v i ptq ´wi ptq| ¯df bN 0 pZ N q,
where px i ptq, v i ptqq for i " 1, . . . N solves (2.10) with initial datum Z N , and py i ptq, w i ptqq for i " 1, . . . N solves the decoupled system (3.7) with the same initial datum Z N . It follows that

D N ptq ď ż δpt, Z N q df bN 0 pZ N q, (3.8) 
with δpt, Z N q :" max i"1,...,N p|x i ptq ´yi ptq| `|v i ptq ´wi ptq|q.

Since px i ptq, v i ptqq and py i ptq, w i ptqq have the same initial conditions, it holds that |x i ptq ´yi ptq| `|v i ptq ´wi ptq| ď ż t 0 |v i pτ q ´wi pτ q| dτ `ż t 0 ˇˇW rSµ Z N pτ q , µ Z N pτ q spx i pτ q, v i pτ qq ´W rSf τ , f τ spy i pτ q, w i pτ qq ˇˇdτ.

By Lemma 1 with r v " R v , r x " R x `τ R x , we bound the last integrand by

2R v LippKqDpSµ Z N pτ q , Sf τ qp cLippKq}Sf τ } 8 pR x `τ R v q d´1 R v `}K} 8 q `W1 pµ Z N pτ q , f τ q `δpτ, Z N q ˘.
By choosing the coupling π " 1 N ř N i"1 δ x i pτ q δ v i pτ q δ y i pτ q δ w i pτ q in definition (2.14), we can estimate the Wasserstein distance between the two empirical measures µ Z N pτ q and µ Σ N pτ q by δpτ, Z N q, so that W 1 pµ Z N pτ q , f τ q ď δpτ, Z N q `W1 pµ Σ N pτ q , f τ q.

By the triangle inequality

DpSµ Z N pτ q , Sf τ q ď DpSµ Z N pτ q , Sµ Σ N pτ q q `DpSµ Σ N pτ q , Sf τ q, and, by (3.4) with ρ " Sf τ , DpSµ Σ N pτ q , Sµ Z N pτ q q ď cpR x `τ R v q d´1 }Sf τ } 8 δpτ, Z N q `cDpSf τ , Sµ Σ N pτ q q, where, by (3.3),

DpSf τ , Sµ Σ N pτ q q ď c b pR x `τ R v q d´1 }Sf τ } 8 W 1 pSf τ , Sµ Σ N pτ q q.
In the sequel we indicate by λpτ q any positive, increasing polynomial function of τ , that depends on d, R v , R v , i.e. on the support of f τ and Sf τ , and with c any constant that depends at most on the dimension d.

Collecting the previous estimates, and using that x 1{2 ď p1 `xq{2 for x ě 0, we get, for a suitable λpτ q, δpt, Z N q ď ż t 0 Kλpτ qp1 `}Sf τ } 8 q ´δpτ, Z N q `W1 pµ Σ N pτ q , f τ q `bW 1 pSµ Σ N pτ q , Sf τ q ¯dτ, where we used that K " maxp1, LippKq, }K} 8 q. Note that }Sf τ } 8 ď cR d v }f τ } 8 and, by Theorem 0, }f τ } 8 ď e dγτ }f 0 } 8 . By the Grönwall's lemma and the fact that x ă e x , δpt, Z N q ď e KλpT qp1`}f 0 }8e dγT q ż t 0 ´W1 pµ Σ N pτ q , f τ q `bW 1 pSµ Σ N pτ q , Sf τ q ¯dτ.

(3.9) To estimate (3.8), we have to evaluate the expected value of the integrand in (3.9) w.r.t. the probability measure df bN 0 pZ N q. Since the empirical measure µ Σ N pτ q is supported in Σ N pt, Z N q, then by (2.7),

ż W 1 pµ Σ N pτ q , f τ q df bN 0 pZ N q " ż W 1 pµ Z N , f τ q df bN τ pZ N q ď λpτ qC 2d pN q,
where the rate C d pN q, as defined in (3.1), is obtained by using the Fournier and Guillin bound in [START_REF] Fournier | On the rate of convergence in Wasserstein distance of the empirical measure Probab[END_REF], and λpτ q grows polynomially in τ . By concavity we also obtain

ż b W 1 pSµ Σ N pτ q , Sf τ q df bN 0 pZ N q " ż a W 1 pSµ Z N , Sf τ q df bN τ pZ N q ď λpτ q a C d pN q.
We finally arrive at D N ptq ď e KλpT qp1`}f 0 }8e dγT q ´aC d pN q `C2d pN q ¯, from which the thesis follows.

Euler systems associated to monokinetic initial data

In this section we study the hydrodynamic description of the topological Cucker-Smale model, by considering the following pressureless Euler-type system for pρpt, xq, upt, xqq : r0, T s ˆRd Ñ R ˆRd :

$ ' ' ' ' ' & ' ' ' ' ' % B t ρpt, xq `∇x ¨pρpt, xqupt, xqq " 0 B t upt, xq `pupt, xq ¨∇x qupt, xq " ż R d K ´M rρptqspx, |x ´y|q ¯pupt, yq ´upt, xqqρpt, yq dy pρp0, xq, up0, xqq " pρ 0 pxq, u 0 pxqq, (4.1) 
where KpM rρsq is defined as in (2.5) and (2.6), and pρ 0 pxq, u 0 pxqq is a regular compactly supported initial datum.

In the following, given T ą 0, we assume that (4.1) admits a unique solution pρpt, xq, upt, xqq which is regular and compactly supported for t P r0, T s. We leave this fact as a hypothesis, however see [START_REF] Ha | Kwon A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid Math[END_REF] for a proof in the case of the non-topological Cucker Smale model (see also [START_REF] Karper | Trivisa Hydrodynamic limit of the kinetic Cucker-Smale flocking model Math[END_REF][START_REF] Tadmor | Swarming: hydrodynamic alignment with pressure Bull[END_REF][START_REF] Lu | Tadmor Hydrodynamic alignment with pressure II. Multi-species Quart[END_REF]).

It is not difficult to show that, if pρpt, xq, upt, xqq is a regular solution of (4.1), then f pt, x, vq :" ρpt, xqδpv ´upt, xqq

is a weak solution of the topological Vlasov equation in the sense of (2.7), (2.8) with measure-valued initial datum f p0, x, vq " ρ 0 pxqδpv ´u0 pxqq: these are called monokinetic solutions. Note that in this case the field W rSf t , f t spx, vq is regular, so the flow in (2.8) is well-defined.

We will show how to obtain solutions of the Euler system (4.1) starting from solutions of the topological Liouville equation (2.13). The main obstacle is that, as stated in Theorem 0, the flow for the particle system is not defined for every initial datum, so in general it is not possible to consider a measurevalued solution of the Liouville equation (2.13). To overcome this problem we consider a regularization of the monokinetic initial datum:

f ε 0 px, vq " pρ 0 pxqδpv ´u0 pxqqq ˚x,v η ε px, vq, (4.3) 
where η is a C 8 pR 2d q compactly supported mollifier and η ε pzq " ηpz{εq{ε 2d .

Our next result shows that after relaxing the regularity of the initial monokinetic measure as in (4.3), in the limit N Ñ `8, uniformly in ε, the marginals of solutions of the Liouville equation tend, in weak sense, to the tensorial powers of a monokinetic measure (4.2), built up out of the solution of the associated Euler system.

Theorem 2 (From particles to Euler). Let us consider a regular solution pρpt, xq, upt, xqq, t P r0, T s, of the Euler system (4.1) with regular compactly supported initial data pρ 0 px, vq, u 0 px, vqq. We suppose moreover that, for any t P r0, T s the supports of ρpt, xq and upt, xq are contained in BRx`tRv and that }upt,

xq} 8 ď R v , for some R x , R v ą 0. Let F ε
N ptq be a weak solution of the Liouville equation (2.13) with initial datum F ε N p0q :" pf ε 0 q bN , with f ε 0 as in (4.3).

Then, for any t P r0, T s and any s P t1, . . . , N u, setting V s " pv 1 , . . . , v s q, we have

W 1 ˆżR ds F ε N :s ptq dV s , ρptq bs ˙ď se KλpT q ş T 0 p1`}ρτ }8q dτ ´aC d pN q `4 ? ε ¯,
and, for any Lipschitz function Φ : R sd ˆRsd Ñ R, setting X s " px 1 , . . . , x s q, ˇˇˇˇż dX

s dV s ΦpX s , V s qF ε N :s pt, X s , V s q ´ż dX s s ź i"1 ρpt, x i qΦpX s , u 1 pt, x 1 q . . . u s pt, x s qq ˇˇˇď LippΦqse KλpT q ş T 0 p1`}ρτ }8q dτ ´aC d pN q `4 ? ε ¯,
where λpT q is a constant depending on d, R x , R v , T and C d pN q is defined in (3.1).

Remark 3. Note that the statement doesn't involve the Vlasov equation and that ε and N are independent, so the convergence holds also for N Ñ 8 and any sequence of limiting points as ε Ñ 0 of the distributions tF ε N ptqu N PN . In particular the rate of convergence is Op a C d pN qq along any sequence with ε " ε N " OpC d pN qq 2 . Note the algebraic behavior in N , in contrast with the logarithmic one, when the dynamics is mollified as, e.g., in [START_REF] Paul | Trélat From microscopic to macroscopic scale equations: mean field, hydrodynamic and graph limits[END_REF][START_REF] Bodineau | Saint-Raymond The Brownian motion as the limit of a deterministic system of hard-spheres Invent[END_REF].

Remark 4. Along the same lines, we can also generalize the content of Theorem 2, proving a convergence result for marginals F ε N :s of the Liouville equation with general initial conditions pg ε 0 q bN such that W 1 pg ε 0 , ρ 0 pxqδpv ´u0 pxqqq Ñ 0 as ε Ñ 0.

To prove Theorem 2, we need the following stability result for solutions of the Vlasov system. Proposition 1. Given T ą 0, for i P t1, 2u, let f i P C w pr0, T s, PpR d ˆRd qq be two weak solutions of the topological Vlasov equation (2.4) with initial data f i 0 P PpR d ˆRd q such that Sf i t are well-defined and belong to L 8 pR d q. Assume moreover that supppf i t q Ă BRx`Rvt ˆB Rv for t ą 0 and R x , R v ą 0. Then, for t P r0, T s,

W 1 `f 1 t , f 2 t ˘ď e KλpT q min i"1,2 ş T 0 p1`}Sf i τ }8q dτ max " W 1 pf 1 0 , f 2 0 q, b W 1 pf 1 0 , f 2 0 q * , (4.4) 
where K :" maxp1, LippKq, }K} 8 q and λpT q is a constant depending on d, R x , R v and T .

The proof, which requires a nontrivial extension of inequality (3.4), is given in the Appendix.

Proof of Theorem 2. To prove the thesis, it is sufficient to establish the following estimate for t P r0, T s:

W 1 pF ε N :s ptq, f bs t q ď se KλpT q ş T 0 p1`}ρpτ q}8q dτ ´aC d pN q `4 ? ε ¯, (4.5) 
where f is the monokinetic solution (4.2) of the Vlasov equation associated to the solution pρptq, uptqq of the Euler system (4.1) and λpT q is a constant that depends on

d, R v , R x `T R v .
Let f ε ptq be the solution of the topological Vlasov equation (2.4) with initial datum f ε 0 . By the triangle inequality, we have

W 1 ´F ε N :s ptq, f bs t ¯ď W 1 ´F ε N :s ptq, pf ε t q bs ¯`sW 1 ´f ε t , f t ¯,
where we are using that W 1 ppf ε t q bs , f bs t q ď sW 1 pf ε t , f t q. The second term is managed by the stability estimate (4.4) in Proposition 1, which gives

W 1 ´f ε t , f t ¯ď e KλpT q ş T 0 p1`}ρpτ q}8q dτ max ! W 1 pf ε 0 , f 0 q, a W 1 pf ε 0 , f 0 q ) . (4.6) 
By choosing πpdz, dz 1 q " ε ´2d ηppz ´z1 q{εqf 0 pzq dz dz 1 in the definition (2.14) of the Wasserstein distance, we can estimate W 1 pf ε 0 , f 0 q with ε ş |z|ηpzq dz. Then for ε ă 1, we estimate the maximum in (4.6) by c ? ε, where c depends only on η.

The estimate of the first term is similar to the one given in the proof of Theorem 1. In this case we have

W 1 ´F ε N :s ptq, pf ε t q bs ¯ď s ż R 2dN δ ε pt, Z N q dpf ε 0 q bN pZ N q,
where δ ε pt, Z N q :" max i"1,...,N p|x i ptq ´yε i ptq| `|v i ptq ´wε i ptq|q, with the independent flow Σ ε ptq :" py ε i ptq, w ε i ptqq " py ε i pt, Z N q, w ε i pt, Z N qq solving " 9 ˇˇW rSµ Z N pτ q , µ Z N pτ q spx i pτ q, v i pτ qq ´W rSf ε τ , f ε τ spy ε i pτ q, w ε i pτ qq ˇˇdτ.

y ε i ptq " w ε i ptq 9 w ε i ptq " W rSf ε t , f ε t spy ε i ptq, w ε i ptqq, i " 1, . . . ,
In order to avoid terms in }Sf ε τ } 8 , which could diverge for ε Ñ 0, we use carefully the triangle inequality in the last integrand, which we bound by |W rSµ Z N pτ q , µ Z N pτ q spx i pτ q, v i pτ qq ´W rρ τ , µ Σ ε N pτ q spx i pτ q, v i pτ qq|| W rρ τ , µ Σ ε N pτ q spx i pτ q, v i pτ qq ´W rSf ε τ , f ε τ spy ε i pτ q, w ε i pτ qq|.

By using that W 1 pµ Z N pτ q , µ Σ ε N pτ q q ď δ ε pτ, Z N q and K " maxt1, LippKq, }K} 8 u, by Lemma 1, we estimate the first term with 2R v KDpSµ Z N pτ q , ρ τ q `Kλpτ qδ ε pτ, Z N q, and the second one with

2R v Dpρ τ , Sf ε τ q `Kλpτ q `W1 pµ Σ ε N pτ q , f ε τ q `δε pτ, Z N q ˘. (4.7) 
We now estimate the discrepancies in the previous two equations. By the triangle inequality DpSµ Z N pτ q , ρ τ q ď DpSµ Z N pτ q , Sµ Σ ε N pτ q q `DpSµ Σ ε N pτ q , ρ τ q, in which, by inequality (3.4), DpSµ Z N pτ q , Sµ Σ ε N pτ q q ď λpτ q}ρ τ } 8 δ ε pτ, Z N q `cDpSµ Σ ε N pτ q , ρ τ q. We bound the last term by using inequality (3.3):

DpSµ Σ ε N pτ q , ρ τ q ď λpτ qp1 `}ρ τ } 8 q `bW 1 pSµ Σ ε N pτ q , Sf ε τ q `aW 1 pSf ε τ , ρ τ q ¯.
Again by inequality (3.3), we estimate the discrepancy in (4.7) with Dpρ τ , Sf ε τ q ď λpτ qp1 `}ρ τ } 8 q a W 1 pSf ε τ , ρ τ q. Note that, by (4.6), W 1 pSf ε τ , ρ τ q is of order ? ε.

Collecting these estimates together, and using Grönwall's lemma, we arrive at

δ ε pt, Z N q ď e KλpT q ş T 0 p1`}ρτ }8q dτ ˆ´4 ? ε `ż T 0 dτ ż ´bW 1 pSf ε τ , Sµ Σ ε N pτ q q `W1 pµ Σ ε N pτ q , f ε τ q ¯df bN 0 pZ N q ¯.
Using again the Fournier and Guillin bound in (3.1) we get the estimate (4.5), from which the thesis follows.

Appendix: proof of Proposition 1

We consider, for t P r0, T s, two weak solutions f 1 t and f 2 t of (2.4) in the weak sense specified by (2.7) and (2.8), with support on BRx`tRv ˆB Rv . We indicate by Z i pt, zq, i " 1, 2, the corresponding flows and we assume that min i"1,2 ş T 0 }Sf i τ } 8 dτ is attained for i " 1. We define the intermediate dynamics p f pt, zq, Zpt, zqq, where f ptq is the push-forward of f 2 0 by the flow Zpt, zq " pxpt, x, vq, ỹpt, x, vqq which solves

$ ' & ' % 9 xpt, x, vq " ṽpt, x, vq 9 ṽpt, x, vq " W rSf 1 t , ft spxpt, x, vq, ṽpt, x, vqq xp0, x, vq " x, ṽp0, x, vq " v.
From the hypothesis, for i " 1, 2, the spatial density Sf i t is bounded, and then, by (3.5) and (3.6), the field K pM rSf i ptqspx, |x ´y|qq is locally Lipschitz in x and y. Hence pZ i pt, zqq, i " 1, 2, exists for any t P r0, T s, and also the couple p f pt, zq, Zpt, zqq is well-defined.

As in previous sections, we indicate by λpτ q any constant that depends on Concerning the second term in the inequality (4.8), we have

d, R v , R x `τ R v . We have W 1 `f 1 t , f 2 t ˘ď W 1 ´f 1 t , ft ¯`W 1 ´f t , f 2 t ¯. ( 4 
W 1 p ft , f 2 t q ď ż R 2d
|Z 2 pt, zq´Zpt, zq| df 2 0 pzq ď δptqsup

zPsupppf 2 0 q
|Z 2 pt, zq´Zpt, zq|.

To estimate δptq, we note that |Z 2 pt, zq´Zpt, zq| ď ż t 0 ´δpτ q`ˇˇW rSf 2 τ , f 2 τ spZ 2 pτ, zqq ´W rSf 1 τ , fτ sp Zpτ, zqq ˇˇ¯dτ.

Using Lemma 1, we estimate the last term in the integrand by 2R v KDpSf 2 τ , Sf 1 τ q `Kλpτ qp1 `}Sf 1 τ } 8 qpW 1 pf 2 τ , fτ q `δpτ qq. (4.10)

Hence we need only to estimate DpSf 2 τ , Sf 1 τ q. By the triangle inequality DpSf 2 τ , Sf 1 τ q ď DpSf 2 τ , S fτ q `DpS fτ , Sf 1 τ q. The second term can be bounded by using inequality (3.3), obtaining that DpS fτ , Sf 1 τ q ď c b }Sf 1 τ } 8 pR x `τ R v q d´1 W 1 pS fτ , Sf 1 τ q. (4.11)

We now establish an estimate for DpSf 2 τ , S fτ q of the type of inequality (3.4). For any z 0 , z P R 2d , by definition of δptq, |z 0 ´Z2 pt, zq| ´δptq ď |z 0 ´Zpt, zq| ď |z 0 ´Z2 pt, zq| `δptq.

Let X be the set of functions φ P Cpr0, `8q, Rq, with first derivative continuous up to a finite number of jumps. Given φ P X and δ ą 0, let φ δ prqφ `pr `δq ´φ´p r ´δq, where, denoting by φ the function φprqş r 0 |φ 1 psq| ds, we have defined Since Φ δ ´Φ P X, the first term is bounded by cDpS fτ , Sf 1 τ q, while the second can be easily bounded by cpR x `τ R v q d´1 δpτ q}Sf 1 τ } 8 . We conclude that DpSf 2 τ , S fτ q ď λpτ qδpτ q}Sf 1 τ } 8 `cDpS fτ , Sf 1 τ q. (4.12)

φ ˘prq - $ ' & ' % 1 2 p φprq ˘φprqq, if r ě 0, ˘1 2 
Collecting estimates (4.10), (4.11) and (4.12), we arrive at δptq ď ż t 0 λpτ qKp1 `}Sf 1 τ } 8 q ´δpτ q `bW 1 pSf 1 τ , S fτ q ¯dτ.

Using the Grönwall's lemma and that x ď e x , for t P r0, T s, The thesis follows from the last inequality, together with (4.8) and (4.9).

1 ´rd 2

 12 ˇˇ(3.5) and, given x 1 , x 2 P R d and r ą 0,|M rρ 2 spx 1 , rq ´M rρ 2 spx 2 , rq| ď cd}ρ 2 } 8 r d´1 |x 1 ´x2 |. (3.6) By (3.5) and (3.6), the Lipschitz constants of the function K ´M rρ 2 spx, |x ´ξ|q ¯pv ´ηq in the variables x, ξ P Brx and v, η P Brv are bounded by cLippKq}ρ 2 } 8 r d´1 x r v and }K} 8 , respectively. Then, by the definition (2.14) of Wasserstein distance,

W 1 0 b W 1

 101 ´f t , f 2 t ¯ď δptq ď e λpT qK ş T 0 p1`}Sf 1 τ }8q dτ ˆż T pSf 1 τ , S fτ q dτ.

  Br pxq denotes the closed ball in R d of center x and radius r. We also indicate by BR the closed ball BR p0q. Note that M rρspx, rq ď 1 for any x P R d and r ě 0.

	for any α P C b pR d ˆRd q, where f 0 is the initial probability measure and
	pxpt, x, vq, vpt, x, vqq is the solution of the following Cauchy problem
	$ '	9 xpt, x, vq " vpt, x, vq
	&		
		9 vpt, x, vq " W rSf t , f t spxpt, x, vq, vpt, x, vqq
	' %	xp0, x, vq " x, vp0, x, vq " v.
			|x ´y|qq pw ´vqf py, wq dy dw, (2.5)
	with		ż
		M rρspx, rq -	dρ.	(2.6)
			Brpxq
	Here and after, A weak formulation of equation (2.4) is given requiring that the solution f t
	fulfills the identity		
	ż	ż	
	αpx, vq df t px, vq "	α pxpt, x, vq, vpt, x, vqq df 0 px, vq	(2.7)

  .9)It is easy to verify that if Z N ptq " px 1 ptq, . . . , x N ptq, v 1 ptq, . . . , v

		N ptqq solves
	(2.1), (2.2), (2.3), then µ Z N ptq is a weak solution of (2.4). Namely, M rSµ Z N spx, rq
	is exactly M px, rq defined in equation (2.3) above. Thus we can rewrite the
	agent evolution for the Cucker-Smale model (2.1) with topological interactions
	(2.2), (2.3) as
	"	9 x i ptq " v i ptq

  Proposition 0. [3, Propositions 2.4 and 2.5] i) Let ρ and ν be two probability measures on R d with support in a ball BR and such that ρ P L 8 pR d q. Then Dpν, ρq ď c a R d´1 }ρ} 8 W 1 pν, ρq,

	x,rą0	ˇˇż	Brpxq	dµ	´ż Brpxq	dν ˇˇ,	(3.2)

for µ, ν two probability measures on R d . We will need the following results concerning it.

  vq ´W rSf 1 τ , fτ spx, vq| ď Kλpτ qp1 `}Sf 1 τ } 8 qW 1 pf 1 τ , fτ q, from which |Z 1 pt, zq ´Zpt, zq| ď |z ´z|ż Kλpτ qp1 `}Sf 1 τ } 8 q `W1 pf 1 τ , fτ q `|Z 1 pτ, zq ´Zpτ, zq| ˘dτ,

					.8)
	The first term is under control since the continuity estimate à la Dobrushin
	holds. Namely, from Lemma 1,		
	|W rSf 1 τ , f 1 τ spx, t			
		0			
	which allows us to obtain			
	W 1	´f 1 t , ft ¯ď e λpT qK	ş t 0 p1`}Sf 1 τ }8q dτ W 1	`f 1 0 , f 2 0 ˘, t P r0, T s.	(4.9)

  It can be proved (see[3, Lemma 2.2]) that Dpρ 1 , ρ 2 q " sup φPX: }φ} X ď1 sup x ż φ `|x ´y| ˘`dρ 1 pyq ´dρ 2 pyq ˘, Fixed x 0 P R d , we define Φpxq " φp|x ´x0 |q and Φ δ in the same way. Then, it is not difficult to see that (see [3, Lemma 2.3]) Φ `X2 pt, zq ˘ď Φ δ ´Xpt, zq ¯. Xpτ, zqq ´Φp Xpτ, zqq ¯df 2 0 pzq " ż pΦ δ pxq ´Φpxqq dS fτ pxq " ż pΦ δ ´Φq ´dS fτ ´dSf 1

	where }φ} X -	ş `8 0	|φ 1 prq| dr.
	Hence			
	ż	Φ ´dSf 2 τ ´dS fτ	¯" ż	Φpxq ´df 2 pzq ´d f pzq "
		ż	´ΦpX 2 pτ, zqq ´Φp Xpτ, zqq ¯df 2 0 pzq
	ď	ż	´Φδ p	

φp0q, if r ă 0. τ ¯`ż pΦ δ ´Φq dSf 1 τ .