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PROPAGATION OF CHAOS AND HYDRODYNAMIC
DESCRIPTION FOR TOPOLOGICAL MODELS

DARIO BENEDETTO, THIERRY PAUL, AND STEFANO ROSSI

Abstract. In this work, we study the deterministic Cucker-Smale model
with topological interaction. Focusing on the solutions of the corresponding
Liouville equation, we show that propagation of chaos holds. Moreover,
considering monokinetic solutions, we also obtain a rigorous derivation of
the hydrodynamic description given by a pressureless Euler-type system.
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1. Introduction

In recent decades, physics of complex systems has increasingly dealt with the
description of groups of animals exhibiting collective behavior, such as flocks
of birds, fish schools, locust swarms, and migrating cells ([18],[13],[26],[2],[21]).

From a modeling point of view, these systems offer new challenges and var-
ious models have been proposed to describe their interaction (see for example
[38],[4],[39]). Among the first to be introduced, the Cucker-Smale model ([14])
describes a bird as a self-propelling particle interacting with its neighbors. In
this case, the interaction is such that neighboring birds tend to align their ve-
locities and the strength of the interaction is described through weights which
depend on the metric distance between the agents.

Around 2008, a new type of interaction between agents called “topological
interaction” was introduced. In [1, 10], the CoBBS group in Rome, after
collecting 3D observational data for flocks of starlings, observed that regardless
of the density of the flock, each agent interacts on average with its first 6-7
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neighbors. This suggests that the strength of the interaction between agents
does not depend on the metric distance between them, but rather on the
“topological” distance that takes into account the proximity rank of the latter
with respect to the former (see also [7, 9, 20, 33, 35, 28, 36, 41]).

In the following years, deterministic and stochastic models with topological
interactions were introduced in the mathematical physics literature. In [5, 6,
15, 16] kinetic models of Boltzmann type are derived for topological interaction
models based on jump processes. As far as deterministic models are concerned,
in [24] a Cucker-Smale model is introduced where the interaction, instead
of being metric as usual, is topological. In [24], the kinetic mean-field and
hydrodynamic equations of Euler type are also written and derived in the case
of a smoothed version of the model. Indeed, from a mathematical point of
view, topological interactions fall outside the case of two-body interaction and
present various problems in the derivation of mean-field and hydrodynamic
equations. Specifically, the continuity estimate à la Dobrushin (see [17]), valid
in the metrical case of regular two-body interactions, does not work here since
the solutions are not weakly continuous with respect to the initial data, as
shown in [3]. In [3] the existence of the dynamics and the mean-field limit
have been rigorously proved for this same model, considering solutions of the
limit equation with bounded density and proving that, for positive times t, the
Wasserstein distance between the limit solution and the empirical measure at
time t tends to zero as the number of particles increases, if this holds at the
initial time.

In the present work, we focus on the problems of propagation of chaos and
derivation of the hydrodynamic equations for this model. The starting point is
the Liouville equation verified by the N -particle system and the aim is to show
that the marginals of the N -body distribution function converge to tensorial
powers of solutions of a suitable kinetic equation of Vlasov type. With the
same approach, we show the validity of the hydrodynamic equations which
describe the evolution of monokinetic initial data. The analysis will follow the
approach in [22] (see also [31], [30], [29] for numerical considerations and [34]
for the case of agent systems).

Due to the aforementioned difficulties, the topological nature of the prob-
lem requires different techniques for the proof of these two results. Regarding
propagation of chaos, the analysis makes use of another distance between prob-
ability measures, called discrepancy distance, in addition to the Wasserstein
one. Furthermore, being the dynamics well-defined only for almost all initial
data, we need to consider a regularization of the monokinetic initial datum in
the proof of the hydrodynamic derivation, obtaining the result for any limiting
point with respect to the regularization.

The outline of the paper is as follows: in Section 2 we recall the topological
Cucker-Smale model and introduce the associated Liouville equation, as well
as recalling the results obtained in [3] which will be useful later on. In Section
3 we provide a proof of the propagation of chaos, which will be a direct con-
sequence of the validity of the law of large numbers. In Section 4 we focus on
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the derivation of the hydrodynamic description given by Euler-type equations
studying the so-called monokinetic solutions.

2. Model and general framework

A Cucker-Smale type model for the motion of N agents, in the mean-field
scaling, is the system

$

’

&

’

%

9xiptq “ viptq

9viptq “
1

N

N
ÿ

j“1

pijpvjptq ´ viptqq, i “ 1, . . . , N
(2.1)

where pxi, viq P Rd ˆ Rd (d “ 1, 2, 3, . . . ) and the “communication weights”
tpiju

N
i,j“1 are positive functions that take into account the interactions between

agents. In classical models, pij depends only on the euclidean distance |xi´xj|
between the agents. In topological models the weights depend on the positions
of the agents through their rank:

pij – K
`

Mpxi, |xi ´ xj|q
˘

, (2.2)

where K : r0, 1s Ñ R` is a positive Lipschitz continuous non-increasing func-
tion, and, for r ą 0, the rank function

Mpxi, rq–
1

N

N
ÿ

k“1

X t|xk ´ xi| ď ru (2.3)

counts the number of agents at a distance less than or equal to r from xi,
normalized with N . Note that in this case pij is a piecewise-constant function
of the positions of all the agents.

We indicate by PpRkq the space of probability measures on Rk. In the
mean-field limit N Ñ `8, the one-agent distribution function ft “ fpt, x, vq P
PpR2dq is expected to verify the equation

Btfpt, x, vq ` v ¨∇xfpt, x, vq `∇v ¨ pW rSft, ftspx, vqfpt, x, vqq “ 0, (2.4)

where Sftpxq –
ş

ftpx, vq dv P PpRdq denotes the spatial distribution and,
given a probability measure f P PpRd ˆ Rdq and a probability measure ρ P
PpRdq, W rρ, f s is the mean-field interaction given by

W rρ, f spx, vq–

ż

RdˆRd
K pM rρspx, |x´ y|qq pw ´ vqfpy, wq dy dw, (2.5)

with
M rρspx, rq–

ż

B̄rpxq

dρ. (2.6)

Here and after, B̄rpxq denotes the closed ball in Rd of center x and radius r.
We also indicate by B̄R the closed ball B̄Rp0q. Note that M rρspx, rq ď 1 for
any x P Rd and r ě 0.

A weak formulation of equation (2.4) is given requiring that the solution ft
fulfills the identity

ż

αpx, vq dftpx, vq “

ż

α pxpt, x, vq, vpt, x, vqq df0px, vq (2.7)
3



for any α P CbpRd ˆ Rdq, where f0 is the initial probability measure and
pxpt, x, vq, vpt, x, vqq is the solution of the following Cauchy problem

$

’

&

’

%

9xpt, x, vq “ vpt, x, vq

9vpt, x, vq “ W rSft, ftspxpt, x, vq, vpt, x, vqq

xp0, x, vq “ x, vp0, x, vq “ v.

(2.8)

In other words, ft is the push-forward of f0 along the flow generated by the
one-particle system (2.8), where the force W depends on ft itself.

Given
ZN “ px1, . . . , xN , v1, . . . , vNq P RdN

ˆ RdN ,

we define the empirical measure on Rd ˆ Rd as

µZN –
1

N

N
ÿ

i“1

δxi b δvi . (2.9)

It is easy to verify that if ZNptq “ px1ptq, . . . , xNptq, v1ptq, . . . , vNptqq solves
(2.1), (2.2), (2.3), then µZN ptq is a weak solution of (2.4). Namely,M rSµZN spx, rq
is exactly Mpx, rq defined in equation (2.3) above. Thus we can rewrite the
agent evolution for the Cucker-Smale model (2.1) with topological interactions
(2.2), (2.3) as

"

9xiptq “ viptq

9viptq “ W rSµZN ptq, µZN ptqspxiptq, viptqq, i “ 1, . . . , N.
(2.10)

We indicate by ZNpt, ZNq “ pXNpt, ZNq, VNpt, ZNqq the solution of this system
with initial datum ZN P RdN ˆ RdN .

In [3], in the framework of the mean-field theory, the rigorous derivation of
(2.4) starting from (2.10) is obtained. More precisely, the following theorem is
proved.

Theorem 0. [3, Theorems 3.4, 4.3 and 5.2]

Let K : r0, 1s Ñ R` in (2.5) be a positive Lipschitz continuous non-increasing
function. It holds that:

i) except for a set of initial data ZN P RdN ˆ RdN with Lebesgue measure
zero, there exists a unique global in-time solution

pXNpt, ZNq, VNpt, ZNqq P C
1
pR`,R2dN

q ˆ CpR`,R2dN
q

of (2.10). Moreover, if |xi| ď Rx and |vi| ď Rv for any i P t1, . . . Nu, we
have that

|xiptq| ď Rx ` tRv, |viptq| ď Rv, i P t1, . . . , Nu. (2.11)

ii) Let f0px, vq P L
8pRd ˆ Rdq be a probability density such that supppf0q Ă

B̄Rxˆ B̄Rv . Given T ą 0, there exists a unique solution, in the weak sense
defined by (2.7) and (2.8), of the kinetic equation (2.4) with initial datum
f0, such that f P Cw

`

r0, T s;L8pRd ˆ Rdq
˘

, i.e. ft is a probability measure
with bounded density for any t ě 0, weakly continuous in t.

Moreover, for any t ě 0,

supppftq Ă B̄Rx`tRv ˆ B̄Rv and }ft}8 ď }f0}8edγt, (2.12)
4



where γ “
ş1

0
Kpzq dz.

iii) If f0 is as in item ii), for any t ą 0 the empirical measure µZN ptq associated
to the system (2.10) weakly converges to ft in the limit N Ñ `8, provided
this is true at time zero and the initial data ZN are chosen such that the
dynamics exists, as in item i).

In the present work, we focus on the statistical description of the dynam-
ical system (2.10), considering, at time 0, N independently and identically
distributed particles with law FNp0, ZNq “ fbN0 . At time t the particles are
distributed with the law FNpt, ZNq, weak solution of the N -body Liouville
equation

BtFNpt, ZNq `
N
ÿ

i“1

vi ¨∇xiFNpt, ZNq

`

N
ÿ

i“1

∇vi ¨

´ 1

N

N
ÿ

j“1

K
´

M rSµZN spxi, |xi ´ xj|q
¯

pvj ´ viqFNpt, ZNq
¯

“ 0,

(2.13)
in the sense that FNpt, ZNq is the push-forward of FNp0, ZNq along the flow
ZNpt, ZNq. Note that FNpt, ZNq, for t ą 0, is symmetric in the exchange of
particles.

In the next section we show that, in the limit N Ñ `8, for any s ě 1
the s-particles marginals of FNpt, ZNq factorize, and the limit is described by
the solution of the mean-field equation ft with initial datum f0. To quantify
the convergence, we use the Wasserstein distance W1 defined as follows. Let
µ, ν P PpRkq be two probability measures with finite first moments,

W1pµ, νq :“ inf
πPCpµ,νq

ż

RkˆRk
|x´ y| dπpx, yq, (2.14)

where Cpµ, νq is the set of all couplings of µ and ν, i.e. probability measures
on the product space with marginals µ and ν in the first and second variable,
respectively.

3. Convergence of the marginals

In this section we prove the propagation of chaos for solutions of the N -body
Liouville equation (2.13). We briefly explain the meaning of this expression
and we refer to [11, 12] for a review, and to [32] for a propagation of chaos
result in the case of non-topological Cucker-Smale models.

We introduce the s-particles marginals as follows, with an abuse of notation
regarding the order of the space and velocity variables in FNpZNq:

FN :spZsq “

ż

FNpZs, zs`1, . . . , zNqdzs`1 . . . dzN , s “ 1, 2, . . . , N,

where zi “ pxi, viq P R2d. We expect that, if N is large, the details of the
individual mutual interactions are negligible, and the description given by
FN :spt, Zsq is similar to the one given by fbst , where ft weakly solves (2.4).
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Note that fbst pZsq weakly solves

Btf
bs
t pZsq `

s
ÿ

i“1

vi ¨∇xif
bs
t pZsq `

s
ÿ

i“1

∇vi ¨

´

W rSft, ftspxi, viqf
bs
t pZsq

¯

“ 0.

This last equation describes the law of the system when each particle evolves
independently from the others, with the interaction given by the mean-field
force defined in (2.5). Then propagation of chaos holds if FN :spt, Zsq converges
to fbst pZsq for any s ě 1.

We will prove the following result.

Theorem 1 (Propagation of chaos for the topological CS model). Assume that
the interaction function K is as in Theorem 0, namely a positive Lipschitz
continuous non-increasing function. Let f P Cwpr0, T s;L

8pR2dqq be a weak
solution of the kinetic equation (2.4) with initial datum f0px, vq P L

8pRdˆRdq

such that supppf0q Ă B̄Rx ˆ B̄Rv . Consider FNptq weak solution of (2.13) such
that FNp0q “ fbN0 .

For any integer s P t1, . . . , Nu, it holds that

sup
tPr0,T s

W1pFN :sptq, f
bs
ptqq ď seλpT qKp1`}f0}8edγT q

a

CdpNq,

where γ :“
ş1

0
Kpzq dz, λpT q is a constant depending on d,Rx, Rv and T , and

K :“ maxp1,LippKq, }K}8q, where LippKq is the Lipschitz constant of K,
while

CdpNq :“

$

’

&

’

%

N´1{2 if d “ 1

N´1{2logpNq if d “ 2

N´1{d if d ą 2.

(3.1)

Remark 1. In the proof we will need a quantitative version of the law of large
numbers, i.e. an estimate of ErW1pρ, µXN qs when XN “ px1, . . . , xNq are N
independently and identically distributed Rd-valued random variables with law
ρ P L8pRdq. This is a widely studied problem in probability, in connection with
topics of optimal transport, random matching and combinatorial optimization
(see, for instance, the bibliographical notes to Chapter 6 of [40]). Here we use
the explicit bounds reported by Fournier and Guillin in [19], which imply that
ErW1pρ, µXN qs ď cCdpNq, where CdpNq is defined in (3.1) and c is a constant
depending polynomially on the diameter of supppρq and on d.

Remark 2. The time dependence of the constant λpT q in Theorem 1 comes
from the growth of the support of the distribution, and therefore grows poly-
nomially in time. In particular, it is also possible to prove the validity of the
theorem for times T slowly growing with N .

In the proof of Theorem 1 we will employ as a technical tool the discrepancy
distance, defined as follows:

Dpµ, νq :“ sup
x,rą0

ˇ

ˇ

ˇ

ż

B̄rpxq

dµ´

ż

B̄rpxq

dν
ˇ

ˇ

ˇ
, (3.2)

for µ, ν two probability measures on Rd. We will need the following results
concerning it.
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Proposition 0. [3, Propositions 2.4 and 2.5]

i) Let ρ and ν be two probability measures on Rd with support in a ball B̄R

and such that ρ P L8pRdq. Then

Dpν, ρq ď c
a

Rd´1}ρ}8W1pν, ρq, (3.3)

where c is a constant that depends on the dimension d.
ii) Given XN “ px1, . . . , xNq, YN “ py1, . . . yNq, with |xi ´ yi| ď δ for some δ

and any i “ 1, . . . N , consider the two empirical measures µXN and µYN .
Then, for any probability measure ρ P L8pRdq supported on a ball B̄R,

DpµXN , µYN q ď cRd´1
}ρ}8δ ` cDpµYN , ρq. (3.4)

In the following lemma, we summarize the technical details of the proofs
concerning the Lipschitz estimates of the interaction function W defined in
(2.5).

Lemma 1. Given rx, rv ą 0, let f1, f2 P PpRdˆRdq be two probability measures
supported in B̄rx ˆ B̄rv and ρ1, ρ2 P PpRdq two probability measures supported
in B̄rx and such that }ρ2}8 ă `8. For any ξ1, ξ2 P B̄rx and η1, η2 P B̄rv it
holds:

|W rρ1, f1spξ1, η1q ´W rρ2, f2spξ2, η2q| ď 2rvLippKqDpρ1, ρ2q`

pcLippKq}ρ2}8r
d´1
x rv ` }K}8q pW1pf1, f2q ` |ξ1 ´ ξ2| ` |η1 ´ η2|q ,

where c is a constant that depends only on d.

Proof of Lemma 1. By the triangle inequality, |W rρ1, f1spξ1, η1q´W rρ2, f2spξ2, η2q|

can be bounded by the sum of

A1 :“ |W rρ1, f1spξ1, η1q ´W rρ2, f1spξ1, η1q|,

A2 :“ |W rρ2, f1spξ1, η1q ´W rρ2, f2spξ1, η1q|,

A3 :“ |W rρ2, f2spξ1, η1q ´W rρ2, f2spξ2, η2q|.

Estimate of A1: by the definition ofM in (2.6) and the definition of discrepancy
distance in (3.2), we have for any r ě 0

|M rρ1spξ1, rq ´M rρ2spξ1, rq| ď Dpρ1, ρ2q.

By the definition of W in (2.5) and the hypothesis on the supports, we get
that A1 is bounded by

A1 ď 2LippKqrvDpρ1, ρ2q.

Estimates of A2 and A3: it is easy to prove that, given x P Rd and r1, r2 ą 0,

|M rρ2spx, r1q ´M rρ2spx, r2q| ď c}ρ2}8
ˇ

ˇrd1 ´ r
d
2

ˇ

ˇ (3.5)

and, given x1, x2 P Rd and r ą 0,

|M rρ2spx1, rq ´M rρ2spx2, rq| ď cd}ρ2}8r
d´1
|x1 ´ x2|. (3.6)

By (3.5) and (3.6), the Lipschitz constants of the function

K
´

M rρ2spx, |x´ ξ|q
¯

pv ´ ηq

7



in the variables x, ξ P B̄rx and v, η P B̄rv are bounded by cLippKq}ρ2}8r
d´1
x rv

and }K}8, respectively. Then, by the definition (2.14) of Wasserstein distance,

A2 ď pcLippKq}ρ2}8r
d´1
x rv ` }K}8qW1pf1, f2q,

and
A3 ď pcLippKq}ρ2}8r

d´1
x rv ` }K}8qp|ξ1 ´ ξ2| ` |η1 ´ η2|q.

�

Proof of Theorem 1. For any ΣN “ py1, . . . , yN , w1, . . . , wNq P RdN ˆ RdN , we
consider

ΣNpt,ΣNq “ py1ptq, . . . , yNptq, w1ptq, . . . , wNptqq P RdN
ˆ RdN ,

where, for i P t1, . . . , Nu, pyiptq, wiptqq has initial datum pyi, wiq and evolves
independently with the mean-field interaction:

"

9yiptq “ wiptq

9wiptq “ W rSft, ftspyiptq, wiptqq, i “ 1, . . . , N.
(3.7)

We associate to such ΣNpt,ΣNq the empirical measure µΣN ptq as in (2.9).

We define a coupling πNt between FNptq and fbNt in the following way: at
time t “ 0, it is given by

πN0 pZN ,ΣNq :“ fbN0 pZNqδpZN ´ ΣNq.

For positive times, πNt is given by the push-forward of πN0 along the product
of the flows given by (2.10) and (3.7), i.e. for any ϕ P CbpR2dN ˆ R2dNq

ż

ϕpZN ,ΣNq dπNt pZN ,ΣNq “

ż

ϕpZNpt, ZNq,ΣNpt, ZNqq f
bN
0 pZNq dZN .

Next, given i P t1, . . . , Nu, we introduce the quantity

DNptq :“

ż

´

|xi ´ yi| ` |vi ´ wi|
¯

dπNt pZN ,ΣNq,

which does not depend on i, thanks to the symmetry of the law. We prove the
weak convergence of the s-marginals FN :s to fbs by showing that DNptq Ñ 0:
namely, using the symmetry of πNt ,

W1pFN :sptq, f
bs
t q ď

s
ÿ

i“1

ż

´

|xi ´ yi| ` |vi ´ wi|
¯

dπNt pZN ,ΣNq ď sDNptq,

where we used that |Zs ´ Σs| ď
řs
i“1p|xi ´ yi|d ` |vi ´ wi|dq.

From the definition of πt, we have, for any i P t1, . . . , Nu,

DNptq “

ż

´

|xiptq ´ yiptq| ` |viptq ´ wiptq|
¯

dfbN0 pZNq,

where pxiptq, viptqq for i “ 1, . . . N solves (2.10) with initial datum ZN , and
pyiptq, wiptqq for i “ 1, . . . N solves the decoupled system (3.7) with the same
initial datum ZN . It follows that

DNptq ď

ż

δpt, ZNq dfbN0 pZNq, (3.8)

with δpt, ZNq :“ maxi“1,...,Np|xiptq ´ yiptq| ` |viptq ´ wiptq|q.
8



Since pxiptq, viptqq and pyiptq, wiptqq have the same initial conditions, it holds
that

|xiptq ´ yiptq| ` |viptq ´ wiptq| ď

ż t

0

|vipτq ´ wipτq| dτ

`

ż t

0

ˇ

ˇ

ˇ
W rSµZN pτq, µZN pτqspxipτq, vipτqq ´W rSfτ , fτ spyipτq, wipτqq

ˇ

ˇ

ˇ
dτ.

By Lemma 1 with rv “ Rv, rx “ Rx ` τRx, we bound the last integrand by

2RvLippKqDpSµZN pτq, Sfτ q`

pcLippKq}Sfτ}8pRx ` τRvq
d´1Rv ` }K}8q

`

W1pµZN pτq, fτ q ` δpτ, ZNq
˘

.

By choosing the coupling π “ 1
N

řN
i“1 δxipτqδvipτqδyipτqδwipτq in definition (2.14),

we can estimate the Wasserstein distance between the two empirical measures
µZN pτq and µΣN pτq by δpτ, ZNq, so that

W1pµZN pτq, fτ q ď δpτ, ZNq `W1pµΣN pτq, fτ q.

By the triangle inequality

DpSµZN pτq, Sfτ q ď DpSµZN pτq, SµΣN pτqq `DpSµΣN pτq, Sfτ q,

and, by (3.4) with ρ “ Sfτ ,

DpSµΣN pτq, SµZN pτqq ď cpRx ` τRvq
d´1
}Sfτ}8δpτ, ZNq ` cDpSfτ , SµΣN pτqq,

where, by (3.3),

DpSfτ , SµΣN pτqq ď c
b

pRx ` τRvq
d´1}Sfτ}8W1pSfτ , SµΣN pτqq.

In the sequel we indicate by λpτq any positive, increasing polynomial func-
tion of τ , that depends on d, Rv, Rv, i.e. on the support of fτ and Sfτ , and
with c any constant that depends at most on the dimension d.

Collecting the previous estimates, and using that x1{2 ď p1`xq{2 for x ě 0,
we get, for a suitable λpτq,

δpt, ZNq ď
ż t

0

Kλpτqp1` }Sfτ}8q
´

δpτ, ZNq `W1pµΣN pτq, fτ q `
b

W1pSµΣN pτq, Sfτ q
¯

dτ,

where we used that K “ maxp1,LippKq, }K}8q. Note that }Sfτ}8 ď cRd
v}fτ}8

and, by Theorem 0, }fτ}8 ď edγτ}f0}8. By the Grönwall’s lemma and the fact
that x ă ex,

δpt, ZNq ď eKλpT qp1`}f0}8edγT q

ż t

0

´

W1pµΣN pτq, fτ q `
b

W1pSµΣN pτq, Sfτ q
¯

dτ.

(3.9)
To estimate (3.8), we have to evaluate the expected value of the integrand in
(3.9) w.r.t. the probability measure dfbN0 pZNq. Since the empirical measure
µΣN pτq is supported in ΣNpt, ZNq, then by (2.7),

ż

W1pµΣN pτq, fτ q dfbN0 pZNq “

ż

W1pµZN , fτ q dfbNτ pZNq ď λpτqC2dpNq,

9



where the rate CdpNq, as defined in (3.1), is obtained by using the Fournier
and Guillin bound in [19], and λpτq grows polynomially in τ . By concavity we
also obtain

ż

b

W1pSµΣN pτq, Sfτ q dfbN0 pZNq “

ż

a

W1pSµZN , Sfτ q dfbNτ pZNq

ď λpτq
a

CdpNq.

We finally arrive at

DNptq ď eKλpT qp1`}f0}8edγT q
´

a

CdpNq ` C2dpNq
¯

,

from which the thesis follows. �

4. Euler systems associated to monokinetic initial data

In this section we study the hydrodynamic description of the topological
Cucker-Smale model, by considering the following pressureless Euler-type sys-
tem for pρpt, xq, upt, xqq : r0, T s ˆ Rd Ñ Rˆ Rd:

$

’

’

’

’

’

&

’

’

’

’

’

%

Btρpt, xq `∇x ¨ pρpt, xqupt, xqq “ 0

Btupt, xq ` pupt, xq ¨∇xqupt, xq “
ż

Rd
K
´

M rρptqspx, |x´ y|q
¯

pupt, yq ´ upt, xqqρpt, yq dy

pρp0, xq, up0, xqq “ pρ0pxq, u0pxqq,

(4.1)

where KpM rρsq is defined as in (2.5) and (2.6), and pρ0pxq, u0pxqq is a regular
compactly supported initial datum.

In the following, given T ą 0, we assume that (4.1) admits a unique solution
pρpt, xq, upt, xqq which is regular and compactly supported for t P r0, T s. We
leave this fact as a hypothesis, however see [23] for a proof in the case of the
non-topological Cucker Smale model (see also [25, 37, 27]).

It is not difficult to show that, if pρpt, xq, upt, xqq is a regular solution of
(4.1), then

fpt, x, vq :“ ρpt, xqδpv ´ upt, xqq (4.2)
is a weak solution of the topological Vlasov equation in the sense of (2.7), (2.8)
with measure-valued initial datum fp0, x, vq “ ρ0pxqδpv ´ u0pxqq: these are
called monokinetic solutions. Note that in this case the field W rSft, ftspx, vq
is regular, so the flow in (2.8) is well-defined.

We will show how to obtain solutions of the Euler system (4.1) starting
from solutions of the topological Liouville equation (2.13). The main obstacle
is that, as stated in Theorem 0, the flow for the particle system is not defined
for every initial datum, so in general it is not possible to consider a measure-
valued solution of the Liouville equation (2.13). To overcome this problem we
consider a regularization of the monokinetic initial datum:

f ε0 px, vq “ pρ0pxqδpv ´ u0pxqqq ˚x,v ηεpx, vq, (4.3)

where η is a C8pR2dq compactly supported mollifier and ηεpzq “ ηpz{εq{ε2d.
10



Our next result shows that after relaxing the regularity of the initial monoki-
netic measure as in (4.3), in the limit N Ñ `8, uniformly in ε, the marginals
of solutions of the Liouville equation tend, in weak sense, to the tensorial
powers of a monokinetic measure (4.2), built up out of the solution of the
associated Euler system.

Theorem 2 (From particles to Euler). Let us consider a regular solution
pρpt, xq, upt, xqq, t P r0, T s, of the Euler system (4.1) with regular compactly
supported initial data pρ0px, vq, u0px, vqq. We suppose moreover that, for any
t P r0, T s the supports of ρpt, xq and upt, xq are contained in B̄Rx`tRv and that
}upt, xq}8 ď Rv, for some Rx, Rv ą 0. Let F ε

Nptq be a weak solution of the
Liouville equation (2.13) with initial datum F ε

Np0q :“ pf ε0 q
bN , with f ε0 as in

(4.3).

Then, for any t P r0, T s and any s P t1, . . . , Nu, setting Vs “ pv1, . . . , vsq,
we have

W1

ˆ
ż

Rds
F ε
N :sptq dVs, ρptq

bs

˙

ď seKλpT q
şT
0 p1`}ρτ }8q dτ

´

a

CdpNq `
4
?
ε
¯

,

and, for any Lipschitz function Φ : Rsd ˆ Rsd Ñ R, setting Xs “ px1, . . . , xsq,
ˇ

ˇ

ˇ

ˇ

ˇ

ż

dXs dVsΦpXs, VsqF
ε
N :spt,Xs, Vsq ´

ż

dXs

s
ź

i“1

ρpt, xiqΦpXs, u1pt, x1q . . . uspt, xsqq

ˇ

ˇ

ˇ

ˇ

ˇ

ď LippΦqseKλpT q
şT
0 p1`}ρτ }8q dτ

´

a

CdpNq `
4
?
ε
¯

,

where λpT q is a constant depending on d,Rx, Rv, T and CdpNq is defined in
(3.1).

Remark 3. Note that the statement doesn’t involve the Vlasov equation and
that ε and N are independent, so the convergence holds also for N Ñ 8

and any sequence of limiting points as ε Ñ 0 of the distributions tF ε
NptquNPN.

In particular the rate of convergence is Op
a

CdpNqq along any sequence with
ε “ εN “ OpCdpNqq

2. Note the algebraic behavior in N , in contrast with the
logarithmic one, when the dynamics is mollified as, e.g., in [34, 8].

Remark 4. Along the same lines, we can also generalize the content of Theo-
rem 2, proving a convergence result for marginals F ε

N :s of the Liouville equation
with general initial conditions pgε0qbN such that W1 pg

ε
0, ρ0pxqδpv ´ u0pxqqq Ñ 0

as εÑ 0.

To prove Theorem 2, we need the following stability result for solutions of
the Vlasov system.

Proposition 1. Given T ą 0, for i P t1, 2u, let f i P Cwpr0, T s,PpRd ˆ Rdqq

be two weak solutions of the topological Vlasov equation (2.4) with initial data
f i

0 P PpRdˆRdq such that Sf i
t are well-defined and belong to L8pRdq. Assume

moreover that supppf i
tq Ă B̄Rx`Rvt ˆ B̄Rv for t ą 0 and Rx, Rv ą 0.

Then, for t P r0, T s,

W1

`

f 1
t , f

2
t

˘

ď eKλpT qmini“1,2

şT
0 p1`}Sf

i
τ }8q dτ max

"

W1pf
1
0 , f

2
0 q,

b

W1pf 1
0 , f

2
0 q

*

,

(4.4)
11



where K :“ maxp1,LippKq, }K}8q and λpT q is a constant depending on d,Rx, Rv

and T .

The proof, which requires a nontrivial extension of inequality (3.4), is given
in the Appendix.

Proof of Theorem 2. To prove the thesis, it is sufficient to establish the follow-
ing estimate for t P r0, T s:

W1pF
ε
N :sptq, f

bs
t q ď seKλpT q

şT
0 p1`}ρpτq}8q dτ

´

a

CdpNq `
4
?
ε
¯

, (4.5)

where f is the monokinetic solution (4.2) of the Vlasov equation associated to
the solution pρptq, uptqq of the Euler system (4.1) and λpT q is a constant that
depends on d, Rv, Rx ` TRv.

Let f εptq be the solution of the topological Vlasov equation (2.4) with initial
datum f ε0 . By the triangle inequality, we have

W1

´

F ε
N :sptq, f

bs
t

¯

ď W1

´

F ε
N :sptq, pf

ε
t q
bs
¯

` sW1

´

f εt , ft

¯

,

where we are using that W1ppf
ε
t q
bs, fbst q ď sW1pf

ε
t , ftq.

The second term is managed by the stability estimate (4.4) in Proposition
1, which gives

W1

´

f εt , ft

¯

ď eKλpT q
şT
0 p1`}ρpτq}8qdτ max

!

W1pf
ε
0 , f0q,

a

W1pf ε0 , f0q

)

. (4.6)

By choosing πpdz, dz1q “ ε´2dηppz´z1q{εqf0pzq dz dz1 in the definition (2.14) of
the Wasserstein distance, we can estimate W1pf

ε
0 , f0q with ε

ş

|z|ηpzq dz. Then
for ε ă 1, we estimate the maximum in (4.6) by c

?
ε, where c depends only on

η.

The estimate of the first term is similar to the one given in the proof of
Theorem 1. In this case we have

W1

´

F ε
N :sptq, pf

ε
t q
bs
¯

ď s

ż

R2dN

δεpt, ZNq dpf ε0 q
bN
pZNq,

where δεpt, ZNq :“ maxi“1,...,Np|xiptq ´ yεi ptq| ` |viptq ´ wεi ptq|q, with the inde-
pendent flow Σεptq :“ pyεi ptq, w

ε
i ptqq “ py

ε
i pt, ZNq, w

ε
i pt, ZNqq solving

"

9yεi ptq “ wεi ptq

9wεi ptq “ W rSf εt , f
ε
t spy

ε
i ptq, w

ε
i ptqq, i “ 1, . . . , N.

This time we get

|xiptq ´ y
ε
i ptq| ` |viptq ´ w

ε
i ptq| ď

ż t

0

|vipτq ´ w
ε
i pτq| dτ

`

ż t

0

ˇ

ˇ

ˇ
W rSµZN pτq, µZN pτqspxipτq, vipτqq ´W rSf

ε
τ , f

ε
τ spy

ε
i pτq, w

ε
i pτqq

ˇ

ˇ

ˇ
dτ.

In order to avoid terms in }Sf ετ }8, which could diverge for ε Ñ 0, we use
carefully the triangle inequality in the last integrand, which we bound by

|W rSµZN pτq, µZN pτqspxipτq, vipτqq ´W rρτ , µΣεN pτq
spxipτq, vipτqq|`

|W rρτ , µΣεN pτq
spxipτq, vipτqq ´W rSf

ε
τ , f

ε
τ spy

ε
i pτq, w

ε
i pτqq|.

12



By using that W1pµZN pτq, µΣεN pτq
q ď δεpτ, ZNq and K “ maxt1,LippKq, }K}8u,

by Lemma 1, we estimate the first term with

2RvKDpSµZN pτq, ρτ q `Kλpτqδεpτ, ZNq,
and the second one with

2RvDpρτ , Sf
ε
τ q `Kλpτq

`

W1pµΣεN pτq
, f ετ q ` δ

ε
pτ, ZNq

˘

. (4.7)

We now estimate the discrepancies in the previous two equations. By the
triangle inequality

DpSµZN pτq, ρτ q ď DpSµZN pτq, SµΣεN pτq
q `DpSµΣεN pτq

, ρτ q,

in which, by inequality (3.4),

DpSµZN pτq, SµΣεN pτq
q ď λpτq}ρτ}8δ

ε
pτ, ZNq ` cDpSµΣεN pτq

, ρτ q.

We bound the last term by using inequality (3.3):

DpSµΣεN pτq
, ρτ q ď λpτqp1` }ρτ}8q

`

b

W1pSµΣεN pτq
, Sf ετ q `

a

W1pSf ετ , ρτ q
¯

.

Again by inequality (3.3), we estimate the discrepancy in (4.7) with

Dpρτ , Sf
ε
τ q ď λpτqp1` }ρτ}8q

a

W1pSf ετ , ρτ q.

Note that, by (4.6), W1pSf
ε
τ , ρτ q is of order

?
ε.

Collecting these estimates together, and using Grönwall’s lemma, we arrive
at

δεpt, ZNq ď eKλpT q
şT
0 p1`}ρτ }8qdτ

ˆ

´

4
?
ε`

ż T

0

dτ

ż

´b

W1pSf ετ , SµΣεN pτq
q `W1pµΣεN pτq

, f ετ q
¯

dfbN0 pZNq
¯

.

Using again the Fournier and Guillin bound in (3.1) we get the estimate (4.5),
from which the thesis follows.

�

Appendix: proof of Proposition 1

We consider, for t P r0, T s, two weak solutions f 1
t and f 2

t of (2.4) in the
weak sense specified by (2.7) and (2.8), with support on B̄Rx`tRv ˆ B̄Rv . We
indicate by Zipt, zq, i “ 1, 2, the corresponding flows and we assume that
mini“1,2

şT

0
}Sf iτ}8 dτ is attained for i “ 1. We define the intermediate dy-

namics pf̃pt, zq, Z̃pt, zqq, where f̃ptq is the push-forward of f 2
0 by the flow

Z̃pt, zq “ px̃pt, x, vq, ỹpt, x, vqq which solves
$

’

&

’

%

9̃xpt, x, vq “ ṽpt, x, vq

9̃vpt, x, vq “ W rSf 1
t , f̃tspx̃pt, x, vq, ṽpt, x, vqq

x̃p0, x, vq “ x, ṽp0, x, vq “ v.

From the hypothesis, for i “ 1, 2, the spatial density Sf it is bounded, and then,
by (3.5) and (3.6), the field K pM rSf iptqspx, |x´ y|qq is locally Lipschitz in x
and y. Hence pZipt, zqq, i “ 1, 2, exists for any t P r0, T s, and also the couple
pf̃pt, zq, Z̃pt, zqq is well-defined.
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As in previous sections, we indicate by λpτq any constant that depends on
d, Rv, Rx ` τRv. We have

W1

`

f 1
t , f

2
t

˘

ď W1

´

f 1
t , f̃t

¯

`W1

´

f̃t, f
2
t

¯

. (4.8)

The first term is under control since the continuity estimate à la Dobrushin
holds. Namely, from Lemma 1,

|W rSf 1
τ , f

1
τ spx, vq ´W rSf

1
τ , f̃τ spx, vq| ď Kλpτqp1` }Sf 1

τ }8qW1pf
1
τ , f̃τ q,

from which

|Z1
pt, zq ´ Z̃pt, z̃q| ď |z ´ z̃|`

ż t

0

Kλpτqp1` }Sf 1
τ }8q

`

W1pf
1
τ , f̃τ q ` |Z

1
pτ, zq ´ Z̃pτ, z̃q|

˘

dτ,

which allows us to obtain

W1

´

f 1
t , f̃t

¯

ď eλpT qK
şt
0p1`}Sf

1
τ }8q dτW1

`

f 1
0 , f

2
0

˘

, t P r0, T s. (4.9)

Concerning the second term in the inequality (4.8), we have

W1pf̃t, f
2
t q ď

ż

R2d

|Z2
pt, zq´Z̃pt, zq| df 2

0 pzq ď δptq– sup
zPsupppf20 q

|Z2
pt, zq´Z̃pt, zq|.

To estimate δptq, we note that

|Z2
pt, zq´Z̃pt, zq| ď

ż t

0

´

δpτq`
ˇ

ˇ

ˇ
W rSf 2

τ , f
2
τ spZ

2
pτ, zqq ´W rSf 1

τ , f̃τ spZ̃pτ, zqq
ˇ

ˇ

ˇ

¯

dτ.

Using Lemma 1, we estimate the last term in the integrand by

2RvKDpSf 2
τ , Sf

1
τ q `Kλpτqp1` }Sf 1

τ }8qpW1pf
2
τ , f̃τ q ` δpτqq. (4.10)

Hence we need only to estimate DpSf 2
τ , Sf

1
τ q. By the triangle inequality

DpSf 2
τ , Sf

1
τ q ď DpSf 2

τ , Sf̃τ q `DpSf̃τ , Sf
1
τ q.

The second term can be bounded by using inequality (3.3), obtaining that

DpSf̃τ , Sf
1
τ q ď c

b

}Sf 1
τ }8pRx ` τRvq

d´1W1pSf̃τ , Sf 1
τ q. (4.11)

We now establish an estimate for DpSf 2
τ , Sf̃τ q of the type of inequality (3.4).

For any z0, z P R2d, by definition of δptq,

|z0 ´ Z
2
pt, zq| ´ δptq ď |z0 ´ Z̃pt, zq| ď |z0 ´ Z

2
pt, zq| ` δptq.

Let X be the set of functions φ P Cpr0,`8q,Rq, with first derivative contin-
uous up to a finite number of jumps. Given φ P X and δ ą 0, let φδprq –
φ`pr ` δq ´ φ´pr ´ δq, where, denoting by φ̃ the function φ̃prq–

şr

0
|φ1psq| ds,

we have defined

φ˘prq–

$

’

&

’

%

1

2
pφ̃prq ˘ φprqq, if r ě 0,

˘
1

2
φp0q, if r ă 0.
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It can be proved (see [3, Lemma 2.2]) that

Dpρ1, ρ2q “ sup
φPX: }φ}Xď1

sup
x

ż

φ
`

|x´ y|
˘`

dρ1pyq ´ dρ2pyq
˘

,

where }φ}X –
ş`8

0
|φ1prq| dr.

Fixed x0 P Rd, we define Φpxq “ φp|x´ x0|q and Φδ in the same way. Then,
it is not difficult to see that (see [3, Lemma 2.3])

Φ
`

X2
pt, zq

˘

ď Φδ

´

X̃pt, zq
¯

.

Hence
ż

Φ
´

dSf 2
τ ´ dSf̃τ

¯

“

ż

Φpxq
´

df 2
pzq ´ df̃pzq

¯

“

ż

´

ΦpX2
pτ, zqq ´ ΦpX̃pτ, zqq

¯

df 2
0 pzq

ď

ż

´

ΦδpX̃pτ, zqq ´ ΦpX̃pτ, zqq
¯

df 2
0 pzq “

ż

pΦδpxq ´ Φpxqq dSf̃τ pxq

“

ż

pΦδ ´ Φq
´

dSf̃τ ´ dSf 1
τ

¯

`

ż

pΦδ ´ Φq dSf 1
τ .

Since Φδ´Φ P X, the first term is bounded by cDpSf̃τ , Sf 1
τ q, while the second

can be easily bounded by cpRx ` τRvq
d´1δpτq}Sf 1

τ }8. We conclude that

DpSf 2
τ , Sf̃τ q ď λpτqδpτq}Sf 1

τ }8 ` cDpSf̃τ , Sf
1
τ q. (4.12)

Collecting estimates (4.10), (4.11) and (4.12), we arrive at

δptq ď

ż t

0

λpτqKp1` }Sf 1
τ }8q

´

δpτq `

b

W1pSf 1
τ , Sf̃τ q

¯

dτ.

Using the Grönwall’s lemma and that x ď ex, for t P r0, T s,

W1

´

f̃t, f
2
t

¯

ď δptq ď eλpT qK
şT
0 p1`}Sf

1
τ }8q dτ

ˆ

ż T

0

b

W1pSf 1
τ , Sf̃τ q dτ.

The thesis follows from the last inequality, together with (4.8) and (4.9).
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