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PROPAGATION OF CHAOS AND HYDRODYNAMIC
DESCRIPTION FOR TOPOLOGICAL MODELS

DARIO BENEDETTO, THIERRY PAUL, AND STEFANO ROSSI

ABSTRACT. In this work, we study the deterministic Cucker-Smale model
with topological interaction. Focusing on the solutions of the corresponding
Liouville equation, we show that propagation of chaos holds. Moreover,
considering monokinetic solutions, we also obtain a rigorous derivation of
the hydrodynamic description given by a pressureless Euler-type system.
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1. INTRODUCTION

In recent decades, physics of complex systems has increasingly dealt with the
description of groups of animals exhibiting collective behavior, such as flocks
of birds, fish schools, locust swarms, and migrating cells ([18],[13],[26],[2],[21]).

From a modeling point of view, these systems offer new challenges and var-
ious models have been proposed to describe their interaction (see for example
[38],4],[39]). Among the first to be introduced, the Cucker-Smale model ([14])
describes a bird as a self-propelling particle interacting with its neighbors. In
this case, the interaction is such that neighboring birds tend to align their ve-
locities and the strength of the interaction is described through weights which
depend on the metric distance between the agents.

Around 2008, a new type of interaction between agents called “topological
interaction” was introduced. In [1, 10], the CoBBS group in Rome, after
collecting 3D observational data for flocks of starlings, observed that regardless
of the density of the flock, each agent interacts on average with its first 6-7
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neighbors. This suggests that the strength of the interaction between agents
does not depend on the metric distance between them, but rather on the
“topological” distance that takes into account the proximity rank of the latter
with respect to the former (see also 7, 9, 20, 33, 35, 28, 36, 41]).

In the following years, deterministic and stochastic models with topological
interactions were introduced in the mathematical physics literature. In [5, 6,
15, 16| kinetic models of Boltzmann type are derived for topological interaction
models based on jump processes. As far as deterministic models are concerned,
in [24] a Cucker-Smale model is introduced where the interaction, instead
of being metric as usual, is topological. In [24], the kinetic mean-field and
hydrodynamic equations of Euler type are also written and derived in the case
of a smoothed version of the model. Indeed, from a mathematical point of
view, topological interactions fall outside the case of two-body interaction and
present various problems in the derivation of mean-field and hydrodynamic
equations. Specifically, the continuity estimate a la Dobrushin (see [17]), valid
in the metrical case of regular two-body interactions, does not work here since
the solutions are not weakly continuous with respect to the initial data, as
shown in [3]. In [3] the existence of the dynamics and the mean-field limit
have been rigorously proved for this same model, considering solutions of the
limit equation with bounded density and proving that, for positive times ¢, the
Wasserstein distance between the limit solution and the empirical measure at
time t tends to zero as the number of particles increases, if this holds at the
initial time.

In the present work, we focus on the problems of propagation of chaos and
derivation of the hydrodynamic equations for this model. The starting point is
the Liouville equation verified by the N-particle system and the aim is to show
that the marginals of the N-body distribution function converge to tensorial
powers of solutions of a suitable kinetic equation of Vlasov type. With the
same approach, we show the validity of the hydrodynamic equations which
describe the evolution of monokinetic initial data. The analysis will follow the
approach in [22] (see also [31], [30], [29] for numerical considerations and [34]
for the case of agent systems).

Due to the aforementioned difficulties, the topological nature of the prob-
lem requires different techniques for the proof of these two results. Regarding
propagation of chaos, the analysis makes use of another distance between prob-
ability measures, called discrepancy distance, in addition to the Wasserstein
one. Furthermore, being the dynamics well-defined only for almost all initial
data, we need to consider a regularization of the monokinetic initial datum in
the proof of the hydrodynamic derivation, obtaining the result for any limiting
point with respect to the regularization.

The outline of the paper is as follows: in Section 2 we recall the topological
Cucker-Smale model and introduce the associated Liouville equation, as well
as recalling the results obtained in [3] which will be useful later on. In Section
3 we provide a proof of the propagation of chaos, which will be a direct con-
sequence of the validity of the law of large numbers. In Section 4 we focus on



the derivation of the hydrodynamic description given by Euler-type equations
studying the so-called monokinetic solutions.

2. MODEL AND GENERAL FRAMEWORK

A Cucker-Smale type model for the motion of N agents, in the mean-field
scaling, is the system

bi(t) = %Zpij(vj(t) —v(t), i=1,...,N (2.1)

where (z;,v;) € RY x R? (d = 1,2,3,...) and the “communication weights”
{pij}%zl are positive functions that take into account the interactions between
agents. In classical models, p;; depends only on the euclidean distance |z; —z;|
between the agents. In topological models the weights depend on the positions
of the agents through their rank:

pij = K(M(x,-, |z; — :L‘j|)), (2.2)

where K: [0,1] — R is a positive Lipschitz continuous non-increasing func-
tion, and, for » > 0, the rank function

M (zi, 1) = i3 §N X{lzy — x| <7} (2.3)
N
k=1

counts the number of agents at a distance less than or equal to r from x;,
normalized with V. Note that in this case p;; is a piecewise-constant function
of the positions of all the agents.

We indicate by P(R¥) the space of probability measures on R*. In the
mean-field limit N — +o0, the one-agent distribution function f; = f(¢,z,v) €
P(R?d) is expected to verify the equation

of(t,x,v) +v-Vof(t,z,v) + V- WI[SF, fil(x,v)f(t,z,v) =0, (2.4)

where Sfi(z) = { fi(z,v)dv € P(R?) denotes the spatial distribution and,
given a probability measure f € P(R? x RY) and a probability measure p €
P(R%), W|p, f] is the mean-field interaction given by

WioAle0) = | K M[plGefe = y) (0= o)) dy du, (25
with

MIp)(z,r) = J dp. (2.6)

By ()

Here and after, B,(z) denotes the closed ball in R? of center  and radius r.
We also indicate by Bpg the closed ball B(0). Note that M|[p](x,r) < 1 for
any v € R and r > 0.

A weak formulation of equation (2.4) is given requiring that the solution f;
fulfills the identity

Ja(z, v)dfi(z,v) = Ja (x(t,z,v),v(t,z,v)) dfo(z,v) (2.7)
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for any a € Cy(R? x RY), where fy is the initial probability measure and
(x(t,x,v),v(t,x,v)) is the solution of the following Cauchy problem

z(t, z,v) = v(t,x,v)
0(t, x,v) = WIS [y, fil(x(t, z,v),v(t, x,v)) (2.8)
z(0,z,v) =z, v(0,z,v)=".
In other words, f; is the push-forward of fy, along the flow generated by the
one-particle system (2.8), where the force W depends on f; itself.

Given
dN dN
Zn = (x1,...,2N,01,...,05) € R x R™Y

we define the empirical measure on R? x R? as

1 N
Kzy = N ; 5% ® 5vi' (29)

It is easy to verify that if Zn(t) = (x1(t),...,xn(t),v1(), ..., vn(t)) solves
(2.1), (2.2), (2.3), then iz, ) is a weak solution of (2.4). Namely, M[Spz, |(x, )
is exactly M(z,r) defined in equation (2.3) above. Thus we can rewrite the

agent evolution for the Cucker-Smale model (2.1) with topological interactions
(2.2), (2.3) as

{fz'(t) = (1)
bi(t) = W[SMZN(t)v MZN(t)](xi<t>7 Ui<t)>7 i=1,...,N.

We indicate by Zn(t, Zn) = (Xn(t, Zn), VN (t, Zy)) the solution of this system
with initial datum Zy € R¥ x R4V,

In [3], in the framework of the mean-field theory, the rigorous derivation of
(2.4) starting from (2.10) is obtained. More precisely, the following theorem is
proved.

(2.10)

Theorem 0. [3, Theorems 3.4, 4.3 and 5.2

Let K: [0,1] — R" in (2.5) be a positive Lipschitz continuous non-increasing
function. It holds that:

i) except for a set of initial data Zy € R™ x R¥ with Lebesque measure
zero, there exists a unique global in-time solution

(Xn(t, Zn), Va(t, Zx)) € CHRT, R*™) x C(R*, R*™)
of (2.10). Moreover, if |z;| < R, and |v;| < R, for anyie {1,... N}, we
have that
l2,(t)| < Ry + tR,, |0i(t)] < Ry, i€{l,..., N} (2.11)

i) Let fo(z,v) € L*(R? x RY) be a probability density such that supp(fo) <
Bpg, x Br,. Giwen T > 0, there exists a unique solution, in the weak sense
defined by (2.7) and (2.8), of the kinetic equation (2.4) with initial datum
fo, such that f € C,, ([O, T]; L*(R? x Rd)), i.e. fi is a probability measure
with bounded density for any t = 0, weakly continuous in t.

Moreover, for any t = 0,

supp(fe) < Br,+tr, X Br, and | fele < [ folloe™, (2.12)
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where v = S(l) K(z) dz.

i1) If fo is as in item ii), for any t > 0 the empirical measure iz, ) associated
to the system (2.10) weakly converges to f; in the limit N — +00, provided
this is true at time zero and the initial data Zx are chosen such that the
dynamics exists, as in item 1).

In the present work, we focus on the statistical description of the dynam-
ical system (2.10), considering, at time 0, N independently and identically
distributed particles with law Fi (0, Zy) = f&V. At time t the particles are
distributed with the law Fy(t, Zy), weak solution of the N-body Liouville
equation

N

i=1

v (3 ZK( (S s = 2,]) ) (o) = ) Ex(t. Zn) ) = 0.

(2.13)
in the sense that Fi(t,Zy) is the push-forward of Fy(0,Zy) along the flow
Zn(t, Zn). Note that Fy(t,Zy), for t > 0, is symmetric in the exchange of
particles.

In the next section we show that, in the limit N — 400, for any s > 1
the s-particles marginals of Fiy(t, Zy) factorize, and the limit is described by
the solution of the mean-field equation f; with initial datum f;. To quantify
the convergence, we use the Wasserstein distance # defined as follows. Let
w, v € P(RF) be two probability measures with finite first moments,

Wl(:uu V) = inf |l’—y’d’ﬂ'($7y), (214>
meC(1,v) JRE «RE
where C(u, V) is the set of all couplings of p and v, i.e. probability measures
on the product space with marginals 1 and v in the first and second variable,
respectively.

3. CONVERGENCE OF THE MARGINALS

In this section we prove the propagation of chaos for solutions of the N-body
Liouville equation (2.13). We briefly explain the meaning of this expression
and we refer to [11, 12| for a review, and to [32| for a propagation of chaos
result in the case of non-topological Cucker-Smale models.

We introduce the s-particles marginals as follows, with an abuse of notation
regarding the order of the space and velocity variables in Fy(Zy):

Fn.s(Zs) = JFN(ZS7ZS+17 ey ZN)dZset . dzy, s=1,2,..., N,

where z; = (7;,v;) € R?%. We expect that, if N is large, the details of the
individual mutual interactions are negligible, and the description given by

Fn.(t, Z,) is similar to the one given by f®* where f, weakly solves (2.4).
5



Note that f&%(Z,) weakly solves

o f(Zs) + sz Vo [ (Zs) + Zv ( [S fe, fel (s, vi) £ S)> = 0.

This last equation describes the lavv of the system when each particle evolves
independently from the others, with the interaction given by the mean-field
force defined in (2.5). Then propagation of chaos holds if Fy.s(t, Zs) converges
to f2°(Zs) for any s > 1.

We will prove the following result.

Theorem 1 (Propagation of chaos for the topological CS model). Assume that
the interaction function K is as in Theorem 0, namely a positive Lipschitz
continuous non-increasing function. Let f € Cu([0,T]; L*(R?*)) be a weak
solution of the kinetic equation (2.4) with initial datum fo(x,v) € L”(R? x RY)
such that supp(fo) < Bg, x Bg,. Consider Fx(t) weak solution of (2.13) such
that Fy(0) = f&N.

For any integer s € {1,..., N}, it holds that

S[“p Wh(Fyalt), FE5 (1)) < sMDRQHRIT) | /TN,
tel0, T

where v == So z)dz, AM(T) is a constant depending on d, R,, R, and T, and
K = max(1, Llp( ), | K| ), where Lip(K) is the Lipschitz constant of K,
while

N—12 if d=1
Cy(N) =< Nlog(N) if d=2 (3.1)
N if d>2.

Remark 1. In the proof we will need a quantitative version of the law of large
numbers, i.e. an estimate of E[#1(p, uxy)] when Xy = (x1,...,xn) are N
independently and identically distributed R%-valued random variables with law
p € L*(RY). This is a widely studied problem in probability, in connection with
topics of optimal transport, random matching and combinatorial optimization
(see, for instance, the bibliographical notes to Chapter 6 of [40]). Here we use
the explicit bounds reported by Fournier and Guillin in [19], which imply that
E[#1(p, pxy)] < cCa(N), where Cy(N) is defined in (3.1) and c is a constant
depending polynomially on the diameter of supp(p) and on d.

Remark 2. The time dependence of the constant A\(T) in Theorem 1 comes
from the growth of the support of the distribution, and therefore grows poly-
nomially in time. In particular, it is also possible to prove the validity of the
theorem for times T slowly growing with N.

In the proof of Theorem 1 we will employ as a technical tool the discrepancy

distance, defined as follows:
f dp — f dv
Br(x) Br(2)

for p1, v two probability measures on R?. We will need the following results
concerning it.

D(p,v) == sup , (3.2)

z,r>0
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Proposition 0. [3, Propositions 2.4 and 2.5]

i) Let p and v be two probability measures on R? with support in a ball Bg
and such that p e L*(R?). Then

(v, p) < /R pl oW1 (v, p), (3.3)
where ¢ is a constant that depends on the dimension d.
i) Given Xy = (z1,...,2n), Yy = (Y1, ... yn), with |z; — y;| <0 for some §
and any i = 1,... N, consider the two empirical measures px, and fiy, .
Then, for any probability measure p € L*(R?) supported on a ball Bg,

D(pxws tiyy) < CR7Hplod + cD(pyy, p). (3-4)

In the following lemma, we summarize the technical details of the proofs

concerning the Lipschitz estimates of the interaction function W defined in
(2.5).

Lemma 1. Gienry, 1, >0, let fi, fo € P(RIxRY) be two probability measures
supported in B,, x B,, and py,ps € P(RY) two probability measures supported
in By, and such that |pslle < +00. For any &,& € B,, and n1,m2 € B,, it
holds:

(Wipr, f1l(§1,m) — Wipz, f2l(&2,m2)| < 2r,Lip(K)Z(p1, p2)+
(cLip(K)| pollcord 7o + | K loo) (FA(f1, f2) + &0 — &l + Im — m2l)

where ¢ is a constant that depends only on d.

Proof of Lemma 1. By the triangle inequality, [W|[p1, f1](&1,m) =W [p2, f2] (&2, m2)]
can be bounded by the sum of

Ay = |Wlpr, f1](€1,m) — Wpe, fi](&,m)l,
A2 = |W[p27 fl](flﬂh) - W[p27 f2](§17n1)|’
Ag = |Wpa, f2](&1,m) — Wp2, f2](&2sm2)]-

Estimate of A;: by the definition of M in (2.6) and the definition of discrepancy
distance in (3.2), we have for any r > 0

|M[p1](&1,7) — M[p2](§1,7)| < D(p1, pa)-

By the definition of W in (2.5) and the hypothesis on the supports, we get
that A; is bounded by

A1 < 2Lip(K)r 2 (p1, p2)-

Estimates of Ay and Ajs: it is easy to prove that, given z € R? and r, 75 > 0,

|M[p2](z,m1) — M[p2](z,m2)| < ] palloc 7] — 75| (3.5)
and, given x1, 2, € R? and r > 0,
|Mp2](z1,7) — Mp2](2,7)| < cd|pofcor® |1 — 22| (3.6)

By (3.5) and (3.6), the Lipschitz constants of the function

K(M[pg](x, | — fl)) (v—=m)
7



in the variables z,¢ € B,, and v,7n € B,, are bounded by cLip(K)|pa|oord=tr,

and || K|, respectively. Then, by the definition (2.14) of Wasserstein distance,
A < (cLip(K)|pafloors™ 1o + | K o) #1(f1 o),

and
Az < (cLip(K)|[palloory™ 7o + | K ) (161 = &f + | — m2]).-
[l
Proof of Theorem 1. For any Yx = (y1,...,Yn, Wi, ..., wy) € RV x RN e
consider

SNt EN) = (), .. yn(t), wi(t),. .., wy(t) e R x RN,

where, for i € {1,..., N}, (y:(t), w;(t)) has initial datum (y;,w;) and evolves
independently with the mean-field interaction:

{?)z‘(t) = w;(t)
is(t) = WISFi Al (wi(t)wi(®)), i=1,.... N,

We associate to such Xy (t,Xy) the empirical measure jis, ;) as in (2.9).

(3.7)

We define a coupling 7Y between Fy(t) and f&V in the following way: at
time ¢ = 0, it is given by

¥ (Zn, Sn) = [N (ZN)0(Zn — ).

For positive times, 7} is given by the push-forward of 7Y along the product

of the flows given by (2.10) and (3.7), i.e. for any o € Cy(R?*¥ x R2N)

J'(p(ZNa ZN) dﬂ-iN(ZNa EN) = J‘SO(ZN(ta ZN)7EN(t7 ZN)) fggN(ZN) dZN
Next, given i € {1,..., N}, we introduce the quantity

DN(t) = J (‘l’l — y,L’ + |Ui — U)A) dﬂi\[(ZN,EN),

which does not depend on i, thanks to the symmetry of the law. We prove the
weak convergence of the s-marginals Fy.; to f® by showing that Dy(t) — 0:
namely, using the symmetry of 77,

HilPra(®). 1) < 35 | (hoi = il + I = i) d (v, i) < sDa(0),
i1
where we used that |Z; — 34| < D70 (|xi — vila + [vi — wila).

From the definition of 7;, we have, for any i € {1,..., N},

Dis(t) = | (Jst) = (0] + fute) = wi(0)]) A1 (2x),

where (x;(t),v;(t)) for i = 1,... N solves (2.10) with initial datum Zy, and
(yi(t),w;(t)) for i = 1,... N solves the decoupled system (3.7) with the same
initial datum Zy. It follows that

Du(t) < f 5t Zn) AN (Z), (3.8)

with 0(t, Zn) := max;—1, n(|z:(t) — yigtﬂ + |vi(t) — w;(t)]).



Since (z;(t), v;(t)) and (y;(t), w;(t)) have the same initial conditions, it holds
that

2a(t) — yal))] + [ur(t) — wilt fm — wi(r)|dr

| W ESnzyton s, ) = WIS £ 01(0), ()

0
By Lemma 1 with r, = R,, r, = R, + TR,, we bound the last integrand by

2R’ULip(K)-@(S:uZN(T)7 SfT>+
(cLip(K)[|S frlloo(Be + TR) T Ry + [ K oo) (W1 (nzy (s fr) + (7, Zi)).

By choosing the coupling 7 = % Zfil O:()Ous () Oys () Oy () D1 definition (2.14),
we can estimate the Wasserstein distance between the two empirical measures
Pz () and fis () by 0(7, Zy), so that

W (Wzy(r)s fr) < O(T, Zn) + Wi(pisy (), [r)-
By the triangle inequality
D(Spzy(ry Sfr) < D(Spzy ), Skisy ) + P(Sksy @), Sfr),
and, by (3.4) with p = Sf;,
D(Ss(r)s Stizn(r)) < (Ro + TR) S fr06(7, Zn) + ¢D(S fr, Shsn()s
where, by (3.3),

D(Sfr, Stizy(n) < ) (Be + TR)S L V(S Fr. Sy

In the sequel we indicate by A(7) any positive, increasing polynomial func-
tion of 7, that depends on d, R,, R,, i.e. on the support of f, and Sf., and
with ¢ any constant that depends at most on the dimension d.

Collecting the previous estimates, and using that /2 < (1 +x)/2 for x > 0,
we get, for a suitable A(7),

t
| NI+ 18010 (36 Z3) + it £ + A Hi( s, F2)) dr
0
where we used that K = max(1, Lip(K), ||K ). Note that |S £ < cR| ]l

and, by Theorem 0, || f+ ] < 7| follo. By the Grénwall’s lemma and the fact
that = < e”,

t
(5(t, ZN) < eIC/\(T)(1+\|f0||ooedwT) f (Wl (,U,gN(T), fT) + \/%(S/LEN(T), Sf.r>> dr.
0

(3.9)
To estimate (3.8), we have to evaluate the expected value of the integrand in
(3.9) w.r.t. the probability measure df2™(Zy). Since the empirical measure
sy (r) 1s supported in Xy (t, Zy), then by (2.7),

JWI(:U’ZN(T)?JCT) dfeN (Zy) = J%(sz\m f) dfEY (Zy) < A(7)Caa(N),
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where the rate Cy(N), as defined in (3.1), is obtained by using the Fournier
and Guillin bound in [19], and A(7) grows polynomially in 7. By concavity we
also obtain

J\/%(SNEN(TMSJCT) dfgaN(ZN) = J\/%(SMZN7Sf7> df‘:@N(ZN)
< )\(T)\/ Cd(N)

We finally arrive at

Dy (1) < MO0 (G + Cay(N))

from which the thesis follows. O

4. EULER SYSTEMS ASSOCIATED TO MONOKINETIC INITIAL DATA

In this section we study the hydrodynamic description of the topological
Cucker-Smale model, by considering the following pressureless Euler-type sys-
tem for (p(t,z),u(t,z)) : [0,T] x R? > R x R%:

(Op(t,x) + Vo - (p(t,x)u(t,z)) =0
ou(t, ) + (u(t,z) - Vy)u(t,x) =

jR K (MIp(®)) (@, = = ) ) (ult, y) — ult, x))p(t,y) dy

[ (10, 2),u(0, 2)) = (po(), uo()),

where K (M|p]) is defined as in (2.5) and (2.6), and (po(x), up(z)) is a regular
compactly supported initial datum.

(4.1)

In the following, given 7' > 0, we assume that (4.1) admits a unique solution
(p(t, z),u(t,z)) which is regular and compactly supported for ¢ € [0,T]. We
leave this fact as a hypothesis, however see [23] for a proof in the case of the
non-topological Cucker Smale model (see also [25, 37, 27]).

It is not difficult to show that, if (p(¢,x),u(t,x)) is a regular solution of
(4.1), then

F(t,2,0) = p(t, 2)5(v — ut, 2)) (42)
is a weak solution of the topological Vlasov equation in the sense of (2.7), (2.8)
with measure-valued initial datum f(0,z,v) = po(x)d(v — up(x)): these are
called monokinetic solutions. Note that in this case the field W[S f;, fi](z,v)
is regular, so the flow in (2.8) is well-defined.

We will show how to obtain solutions of the Euler system (4.1) starting
from solutions of the topological Liouville equation (2.13). The main obstacle
is that, as stated in Theorem 0, the flow for the particle system is not defined
for every initial datum, so in general it is not possible to consider a measure-
valued solution of the Liouville equation (2.13). To overcome this problem we
consider a regularization of the monokinetic initial datum:

fo(x,0) = (po(2)d(v = uo(2))) #2017 (2, ), (4.3)

where 7 is a C*(R?*?) compactly supported mollifier and n.(z) = n(z/¢)/e%?,
10



Our next result shows that after relaxing the regularity of the initial monoki-
netic measure as in (4.3), in the limit N — +00, uniformly in ¢, the marginals
of solutions of the Liouville equation tend, in weak sense, to the tensorial
powers of a monokinetic measure (4.2), built up out of the solution of the
associated Euler system.

Theorem 2 (From particles to Euler). Let us consider a reqular solution
(p(t,x),u(t,z)), t € [0,T], of the Euler system (4.1) with regular compactly
supported initial data (po(x,v),ue(z,v)). We suppose moreover that, for any
t € [0,T] the supports of p(t,z) and u(t,x) are contained in Br, r, and that
[u(t,z)|o < Ry, for some Ry, R, > 0. Let F§(t) be a weak solution of the
Liouville equation (2.13) with initial datum F5(0) := (f&)®N, with f5 as in
(4.3).

Then, for any t € [0,T] and any s € {1,..., N}, setting Vs = (vq,...,vs),
we have

vz U F.(t) d‘/;,p(t)®5) < 5D 1T (1+1pr o) dr (W + {*/E) ,
Rds

and, for any Lipschitz function ® : R*? x R — R, setting X, = (z1,...,Ts),

JdXs AV, ®(X,, Vo) F5. (t, X, Vi) — JdXS [ [t 2)®(Xo, ua(t, ) .. u(t, xs))‘

i=1

< Lip(®) s (+lprler) dr ( ColV) + \4@ |

where A(T') is a constant depending on d, R,, R,, T and C4(N) is defined in
(3.1).

Remark 3. Note that the statement doesn’t involve the Viasov equation and
that € and N are independent, so the convergence holds also for N — oo
and any sequence of limiting points as € — 0 of the distributions {F5 (1)} nen-
In particular the rate of convergence is O(1/Cq(N)) along any sequence with
e =¢en = O(C4(N))?. Note the algebraic behavior in N, in contrast with the
logarithmic one, when the dynamics is mollified as, e.g., in |34, 8|.

Remark 4. Along the same lines, we can also generalize the content of Theo-
rem 2, proving a convergence result for marginals F;., of the Liouville equation
with general initial conditions (g5)®N such that #1 (g5, po(z)d(v — ug(z))) — 0
as € — 0.

To prove Theorem 2, we need the following stability result for solutions of
the Vlasov system.
Proposition 1. Given T > 0, for i € {1,2}, let f € C,([0,T], P(R? x R%))
be two weak solutions of the topological Viasov equation (2.4) with initial data
fie P(RY x RY) such that Sf} are well-defined and belong to L*(R?). Assume
moreover that supp(f}) € Br, gt X Br, fort >0 and R,, R, > 0.

Then, fort e [0,T],

#r (fL, f2) < SO mini=2 fo (IS F o) dr e {%(f&, I A (L f@)} ,

(4.4)



where K := max(1, Lip(K), | K|ls) and \(T') is a constant depending on d, R, R,
and T

The proof, which requires a nontrivial extension of inequality (3.4), is given
in the Appendix.

Proof of Theorem 2. To prove the thesis, it is sufficient to establish the follow-
ing estimate for ¢ € [0, T]:

W(FS (1), [B) < seb 1) § (1+]p(T) o) d < /C4(N) + f) (4.5)

where f is the monokinetic solution (4.2) of the Vlasov equation associated to
the solution (p(t),u(t)) of the Euler system (4.1) and A\(T") is a constant that
depends on d, R,, R, + TR,

Let f¢(t) be the solution of the topological Vlasov equation (2.4) with initial
datum f§. By the triangle inequality, we have

A (Ffa 00, £2) < 1 (Fra (0, () ) + sH4(£7.£0).
where we are using that 71 ((f7)®%, f2°) < sYA(fE, ).
The second term is managed by the stability estimate (4.4) in Proposition
1, which gives
A f7 i) < OB OO max A (£, o) N IATS Jo) |- (46)

By choosing 7(dz,dz") = e 2((z—2")/e) fo(z) dz d2’ in the definition (2.14) of
the Wasserstein distance, we can estimate %1 (f¢, fo) with € {|z|n(z) dz. Then
for e < 1, we estimate the maximum in (4.6) by ¢4/, where ¢ depends only on

7.
The estimate of the first term is similar to the one given in the proof of
Theorem 1. In this case we have

H(Fa0. %) <5 [ 50205 (2y)

where 6°(t, Zn) = max;—1_ n(|z;(t) — y5(t)| + |vi(t) — w5 (t)]), with the inde-
pendent flow ¥°(t) = (v (t), wi(t)) = (yi(t, Zn), wi(t, Zn)) solving
{yf(t) = w; (1)
wi (t) = WSS, fi(y; (), wi (), i=1,...,N.

This time we get
) = 0] + )~ i 0] < [ () — i )] o

+J WIStzy ) tizy@ (1), vi(7)) = WIS F2, f71(yi (1), wi (7)) | dT.

0

In order to avoid terms in ||Sf2|,, which could diverge for ¢ — 0, we use
carefully the triangle inequality in the last integrand, which we bound by

(WISpzy @) pzy@ | (@i(T), 0:(7)) = Wlpr, prsg, o (2:(7), vi(7)) |+
(Wlpr, bz (0] (@i(7), vi(7)) = WISST, F71(y: (1), wi (7))

12



By using that %(MZN(T))ME?V(T)) < 56(7—7 ZN) and K = maX{L Llp(K)7 HKHOO}a
by Lemma 1, we estimate the first term with

2RKD(Stizy 7y, pr) + KX(T)0°(T, ZN),
and the second one with
2R, Dpr, SF2) + KNT) il o0, £2) + (7, Zn)). (4.7)

We now estimate the discrepancies in the previous two equations. By the
triangle inequality

D(Shzy(r)s pr) < D(Shzy(r), St ) + D(Stiss, (), Pr);
in which, by inequality (3.4),
D(Spzy(r)s Shiss, (r)) < MT)|prllowd™ (T, Zn) + cD(Spss,r), pr)-
We bound the last term by using inequality (3.3):

D(Spss (), pr) < AT) (L + HpTHoo)(\/Wl(Suz;m, Sfe) + %(Sfi,pf))-
Again by inequality (3.3), we estimate the discrepancy in (4.7) with

P(pr: SI7) < M)A+ lpr o)V HAUS 7, pr)-
Note that, by (4.6), #1(Sfz, p-) is of order 4/e.

Collecting these estimates together, and using Gronwall’s lemma, we arrive
at

(L, Zn) < N Wtlorlo) dr

< (5 [ ar [ (VST S + ity 5) 087 ()

Using again the Fournier and Guillin bound in (3.1) we get the estimate (4.5),
from which the thesis follows.

O

APPENDIX: PROOF OF PROPOSITION 1

We consider, for t € [0,T], two weak solutions f! and f? of (2.4) in the
weak sense specified by (2.7) and (2.8), with support on Bg, ¢z, X Br,. We
indicate by Z'(t,z), ¢ = 1,2, the corresponding flows and we assume that
min;_ o SOT IS file dr is attained for ¢ = 1. We define the intermediate dy-

namics (f(t,z), Z(t,z)), where f(t) is the push-forward of f2 by the flow

Z(t, z) = (Z(t,z,v),y(t,x,v)) which solves
Z(t,z,v) = 0(t, z,v)

o(t,z,v) = WSSL, fi](E@(t, x,v), 0(t, z,v))
(

0,z,v) =z, 0(0,z,v)=w.

From the hypothesis, for i = 1,2, the spatial density S f{ is bounded, and then,
by (3.5) and (3.6), the field K (M[Sf*(¢)](x, |z — y|)) is locally Lipschitz in z
and y. Hence (Z(t,z2)), 1 = 1,2, exists for any t € [0, T], and also the couple

(f(t,2), Z(t,2)) is well-defined.
13



As in previous sections, we indicate by \(7) any constant that depends on

d, R,, R, + TR,. We have
V(18 52) < (S 1) + 43 (7 £2) (4.8)

The first term is under control since the continuity estimate a la Dobrushin
holds. Namely, from Lemma 1,

WISTE [ 0) = WISEE (@, 0)] < KAT) L+ [SfH o) #4 (L Fr),
from which
|ZY(t,2) — Z(t,2)] < |z — 3|+
L KT L+ IS fHoe) (£ fr) + 121 (7, 2) = Z(7, 2)]) dr,
which allows us to obtain

Wl (ftl> ft) < e/\(T)ICSS(1+|ISf‘}I‘OO)dTW1 (f(}? f02) ) te [07 T] (49)
Concerning the second term in the inequality (4.8), we have

P fo ) < f

» | Z%(t,2)—Z(t,2)|df2(2) < 0(t) =  sup |Z2(t,2)—Z(t, 2).

zesupp(f2)

To estimate 0(), we note that

\Z%(t,2)—Z(t, )| < J

0

(3)+{ WIS 2 £21(Z3 (7 2)) = WIS S FA(Z(r, )| ) dr.
Using Lemma 1, we estimate the last term in the integrand by
2RKD(S 2, 17) + KAT) (L + |S o) (7, fr) + 6(7))- (4.10)

Hence we need only to estimate 2(Sf2,Sf!). By the triangle inequality
PSS, SFY) < D(SF2 SF.) + DS, S1Y).
The second term can be bounded by using inequality (3.3), obtaining that

DS SF1) < IS on(Be + TR)IIA(S T, SF). (4.11)
We now establish an estimate for 2(S f2, Sf.) of the type of inequality (3.4).
For any z, z € R*, by definition of §(t),
20 — Z2(t,2)| — 6(t) < |20 — Z(t, 2)| < |20 — Z2(t, 2)| + 6(t).

Let X be the set of functions ¢ € C([0, +0),R), with first derivative contin-
uous up to a finite number of jumps. Given ¢ € X and 6 > 0, let ¢s5(r) =
ot (r+0) — ¢ (r —§), where, denoting by ¢ the function ¢(r) = SS |9’ (s)| ds,
we have defined

(b(r) £ o(r)), ifr=0,

1
+ §¢(O), if r <0.



It can be proved (see [3, Lemma 2.2|) that

D(p1,p2) =  sup Supfqﬁ(!x —yl) (dp1(y) — dpa(y)),

peX:|op|x<1 =
where @] x = SS“OO |’ (r)| dr.

Fixed x5 € R, we define ®(z) = ¢(|x — x0|) and ®; in the same way. Then,
it is not difficult to see that (see [3, Lemma 2.3])

O (X2(t,2)) < Ds <)”((t, z)) .
Hence
Jo(asgz-as) - [ o) (47 - 4f)
- [ (2002620 - o(X(7.20) df2(e)
< [ (#s(F 2 - #(X(r,20) AR () = [ (@) — D)) ASFol)

- [ @5 — o) (a5 —asst) + [ (@ - @pasy.
Since ®5;— ® € X, the first term is bounded by ¢2(Sf,, Sf}), while the second
can be easily bounded by ¢(R, + 7R,)*16(7)|Sf}] .. We conclude that

D(Sf7.5F) < XDVDISf o + cD(Sfr. SF7). (4.12)
Collecting estimates (4.10), (4.11) and (4.12), we arrive at

510 < [ A0+ 15521 (36) + A1 550 )

Using the Gronwall’s lemma and that = < e”, for t € [0, 77,

A, (ﬁ,f;) < () < PDKL (5110 dr

<[ rspsiar
0

The thesis follows from the last inequality, together with (4.8) and (4.9).
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