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PROPAGATION OF CHAOS AND HYDRODYNAMIC
DESCRIPTION FOR TOPOLOGICAL MODELS

DARIO BENEDETTO, THIERRY PAUL, AND STEFANO ROSSI

ABSTRACT. In this work we extend the analysis carried out in [3], proving
propagation of chaos, i.e. convergence of the marginals, for the determin-
istic Cucker-Smale model with topological interaction. By looking at the
monokinetic solutions, we also obtain a rigorous derivation of the hydrody-
namic description given by the corresponding Euler system.
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1. INTRODUCTION

In recent decades, physics of complex systems has increasingly dealt with the
description of groups of animals exhibiting collective behavior, such as flocks
of birds, schools of fish, or locust swarms ([19], [2], [25], [17])-

From a modeling point of view, these systems offer new challenges and var-
ious models have been proposed to describe their interaction (see [24] or [4]).
Among the first to be introduced, the Cucker-Smale model [12] describes a bird
as a self-propelling particle interacting with its neighbors. The interaction is
such that neighboring birds tend to align their velocities.

After collecting observational data for bird flocks, in [1, 9] a new kind of
interaction between agents was introduced called “topological interaction” (see
also |7, 8, 16, 21, 22|) . In this case, the strength of the interaction of an agent
with another one is a function of the proximity rank of the latter with respect
to the former.
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MSC2020 subject classifications. 35Q92, 35Q83, 82B40,

Key words and phrases. mean-field limit, topological interaction, Cucker-Smale model.
1



From a mathematical point of view topological interactions come out of the
case of two-body interaction and present various problems in the derivation
of mean-field and hydrodynamic equations. Among the works in the existing
literature [20, 23, 26|, topological models taken into consideration were both
deterministic and stochastic. From the stochastic side, in [5, 6, 13, 14] kinetic
models of Boltzmann type are derived for topological interaction models based
On jump processes.

As far as deterministic models are concerned, in [18] the author has intro-
duced a Cucker-Smale model where the interaction instead of being metric as
usual is topological. In this work, the kinetic mean-field and hydrodynamic
equations of Euler type are also written and formally derived from a smoothed
version of the model.

This work extend the analysis started in [3], where the existence of the
dynamics and the mean field limit have been proved for the Cucker-Smale
topological model.

Here, we focus instead on the problems of propagation of chaos and hy-
drodynamic behaviour for the topological Cucker-Smale system. The starting
point will be the Liouville equation verified by the N-particle system.

The outline of the paper is as follows: in section (2) we recall the topological
Cucker-Smale model and introduce the associated Liouville equation, as well
as recall the results obtained in [3] which will be useful later on. In section
(3), we provide a proof of the propagation of chaos, which will be a direct
consequence of the validity of a law of large numbers. In section (4), we
focus on the derivation of the hydrodynamic description given by Fuler type
equations studying the so-called monokinetic solutions.

2. MODEL AND GENERAL FRAMEWORK

A Cucker-Smale type model for the motion of N agents, in the mean-field
scaling, is the system

) = 3 D p(er() — u(o), =

where (z;,v;) € RY x R? (d = 1,2,3,...) and the “communication weights”
{pij}f\szl are positive functions that take into account the interactions between
agents. In classical models, p;; depends only on the distance' |z; — z;| between
the agents. In topological models the weights depend on the positions of the
agents by their rank

pij = K(M(l’i, |z; — xj\)), (2.2)

'From now on, |- | = | - |4 denotes the euclidean norm on R,
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where K: [0,1] — R™ is a positive Lipschitz continuous non-increasing func-
tion such that Sé K(z) dz =~ and, for r > 0, the function

M (,7) = % S Xy — 1] < 1} (2.3)

counts the number of agents at distance less than or equal to r from z;, normal-
ized with N. Note that in this case p;; is a stepwise function of the positions
of all the agents. In the sequel we assume that K

In the mean-field limit N — 400, the one-agent distribution function f; =
f(z,v,t) is expected to verify the equation

Oufe +v-Vafi + Vo - (WIS, fil(x,0) /) = 0, (2.4)

where Sfi(z) = § fi(z,v)dv is the spatial distribution and where, given a
probability density f in R? x R? and a probability density p in R,

Wip. f1(z,0) = f K (M[p](x. | — ) (w—0)f(g.w) dy dw,  (2.5)
with

Mipl(wr) = | dp. (2.6)
By (r)

Here and after, B,(z) denotes the closed ball of center z and radius r in R

We also indicate by Bp the closed ball Bg(0).

A weak formulation of this equation is given requiring that the solution f;
fulfills

fa(x,v) dfi(z,v) = Ja (x¢(x,v),ve(z,v)) dfo(x,v) (2.7)
for any a € Cy(R? x RY), where f, is the initial probability measure and
(x¢(x,v),v¢(x,v)) is the flow defined by

z(z,v) = vz, v)
v(t,x,v) = WIS fe, fil(xe(x, v, ), v, v)) (2.8)
zo(z,v) =z, vo(z,v) = 0.

In other words, f; is the push-forward of fy along the flow generated by the
velocity field, determined by f; itself.

Given
ZN = (l’l, ey TN, UL, .. ,UN) = (XN,VN).
we define the empirical measure as

1 N
Kzy = N;(SL (dl‘) (51,7((:11))

It is easy to verify that if Zy(t) solves (2.1), then piz,«) is a weak solution
of (2.4). Namely, M[Spz, (z,r) is exactly M (x,r) defined in (2.3) (from now
on we use the more complete notation M[Spz, @), tzyw](x,7)). Thus, we can
rewrite the agent evolution in (2.1) as

{m’i(t) — ui(t)

vi(t) = W[SMZN(t)?: 1zy](@i(t), vi(t)).

(2.9)



In [3], in the framework of the mean-field theory, the rigorous derivation of
(2.4) starting from (2.1) is obtained. More precisely, the following theorem is
proved.

Theorem 1. |3, Theorems 3.4, 4.3 and 5.2|
It holds that:
i) except for a set of measure zero, given Zy € RN x RN there ezists a
unique global solution

(XN<ta ZN)? VN(ta ZN)) € Cl(R+7 RQdN) X C(R+7 RQdN)

of (2.1), with initial datum Zy. Moreover, given R, >0 and R, > 0, we
have that

|2:(t)| < Ry + tR,, |ui(t)] < R,
for any i, if |z;| < R, and |v;] < R,.
ii) Let fo(z,v) € L°(R? x RY) be a probability density such that supp(fy) <

Bgr, x Bg,. Given T > 0, there exists a unique weak solution [ €
C ([0, T]; L*(R? x RY)) of the kinetic equation (2.4). Moreover

supp(fi) < Br,+tr, % B, (2.10)

and | fillo < | folloe™".
i) In the hypotesis of the previous items, uY weakly converges to fi, if this is
true at time zero.

In this work, we focus on the statistical description of the dynamical system
(2.1), considering particles independently and identically distributed with law
FN(t = 0,Zy) = fO, where fy is the initial datum for the limit kinetic
equation (2.4). Then, the law at time ¢ of the dynamical system (2.1) is given
by FN(t, Zy), weak solution of the N-body Liouville equation

N
OFN(t, Zy) + ) v Vi FN(t, Zy)

i=1
N N
1
£ 2V (5 X KM [Spzy. iz ) w2 = 2,0) (0 = v) FY (¢, Zy) ) = 0.
i=1 j=1

(2.11)
Note also that FV (¢, Zy), for t > 0, is symmetric in the exchange of particles.

To quantify the distance between probability measures, we will consider the
Wasserstein distances of order 1:

Piv) = inf f = — | dn(z, ),
R4 xRd

meC(p,v)

where 1 and v are two measures over R? and C(u, ) is the set of all couplings,
1.e. measures on the product space with marginals respectively p and v in
the first and second variables. As a technical tool, we also use the following

discrepancy distance:
J dp — J du‘.
By () B ()
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3. CONVERGENCE OF THE MARGINALS

In this section we prove the propagation of chaos for solutions of the N-body
Liouville equation (2.11). We briefly explain the meaning of this term and we
refer to [10, 11] for a review. To do this, we introduce the s-particle marginals

S

FN(Z,) = JFN(ZS,st cozn)dzegy - dz, s=1,2---N (3.1)

where z; = (z;,v;). We expect that, if N is large, the details of the individual
mutual interactions are negligible, and that the description given by FN (¢, Zy)
is similar to the one given by f®*, where f; solves (2.4). Note thatf®*(Z,),
solves

OS2+ Y 0V O (24 Vi (WIS fl s, v) f2(2,)) = 0. (3.2)
1=1 i=1

This last equation describes the law of the system when each particle evolves
independently from the others, with an interaction given by the mean-field
force defined in (2.5). Then propagation of chaos holds if, for fixed s, the
convergence of FN(Zy:t) to f®(Zy;t) is proved in some distance between
probability distributions.

We want to prove the following result.

Theorem 2. Let f € C([0,T]; L(R??)) solution of the kinetic equation (2.4)
with initial datum fo(z,v) € L*(R? x R?) such that supp(fy) = Br, x Bg,.
Assume that the interaction function K is Lipschitz-continuous and consider
FN(t) solution of (2.11) such that FN(0) = f&V.

If FN denotes the s-marginal as defined in (3.1), for t € [0,T] and s €
{1,..., N}, it holds that
PAEN (), £2(1)) < 5o /Cog(N), (3.3)

where (B is a constant specified in (3.16) depending on Lip(K), | foll and on
the support, while

N-12 if d=1
Cy(N) =< N2log(N) if d=2 (3.4)
N1 if d>2.

We start the proof by introducing

Sx(t) = ((t), . un (B wa(t), .. wn(t)) = (Yar(t), Wi () € R x RN,

where (y;, w;) for all i evolve indipendently with the mean-field interaction:
4i(t) = wi(t)

{wi(t) = WSS, fil(yi(t), wi(t))-

We associate to such Xy (t) the empirical measure fis, ;).

(3.5)

We define a coupling 7V (t) between FV(t) and f& in the following way:
at time ¢t = 0, it is given by

7 (0) = ?N(ZE)NWZN —Xn). (3.6)



For positive times, 7V (¢) is given by the push-forward of 7V (0) along the
product flow given by (2.1) and (3.5). Then, from now on, the initial datum
of ¥n(t) and Zn(t) is the same, indicated by Zy.

Next, for any i € {1,..., N}, we introduce the quantity

Dis(t) = | (b =l + s = i) a0,

which does not depend on ¢, thanks to the symmetry of the law.

The weak convergence of the of the s-marginals FV to f® is a consequence
of the fact that Dy(t) — 0: namely, using the symmetry of 7,

WAV (1), 1o (1)) < Zj (12 = il + o = wil) dn™(Z,,5,) < 5D (1),

(here we are using that |Zs — Xgloas < X0 (| — yila + |vi — wila))-

In the proof we will employ the following results about the discrepancy
distance.

Proposition 1. |3, Propositions 2.4 and 2.5|

i) Let p and v be two probability measures on R? with support in a ball Br
and such that p e L°(RY). Then

D (v,p) < /R pl oW1 (v, p), (3.7)
where ¢ is a constant that depends on the dimension d.
ii) Given Xy = (1,...,2n), YN = (Y1,..-Yn), with |z; — y;| < & for some

0 and any © = 1,... N, consider the two empirical measure jix, and fiy, .
Then, for any probability measure p € L*(RY) supported on a ball Bg,

D(pxys bvy) < R plood + cZ(pyy, p).- (3.8)

Proof of Theorem 2. We have, for any i € {1,..., N},
Distt) = | (Jas(t) = )]+ 10(0) — wi(8)]) 472" (2,

where (z;(1), yi(t)) = (zi(t, Zn), vi(t, Zn)) and (yi(t), wi(t)) = (yi(t, Zn), wi(t, Zn)).
It follows that

Du(t) < f 5(t, Zy) SN (Z), (3.9)

with (¢, Zy) = max;—q1, n|zi(t) — vi(t)| + |vi(t) — w;i(t)]. Since (x;(t), vi(t))
and (y;(t),w;(t)) have the same initial conditions, it holds that
¢

|2:(8) = wi(O)] + [0i(t) — wilt)] < L |0i(7) = wi(7)| d7

+L WISkzy ) iz (@:(T), 0i(1)) = WIS fr, fo](y:(7), wi(7)) | .
6



In order to estimate 0(¢), we need to evaluate the last integrand. To do this
we bound this quantity by the sum of four terms:

(@) [WI[Spzyy tzy@](@:(T),vi(T)) = WIS fr, pizy @] (@i(7), vi(1))],

(0) WISfr pzyo)|(@:(7),vi(7)) = WIS [r, pisy ] (@i(7), vi(7))],

() [WISfr, ey (@i(7),vi(1)) = WIS fr, sy ()] (4 (), wi(T))],

(d) [WISTr tsyn)) (i), wi(r)) = WIS fr, fr](gi(7), wi(T))].
Since

| Mpzym (@, r) = MISfr](z, 1) < D(Sfr, Shzy ),
by (2.10) we have that (a) is bounded by

Let p e L*(R%) be a probability density. Then, it’s not difficult to prove that
given rq,7r9 > 0,

[M[p)(z,r1) — M(p](z,72)| < ¢|plls | — 7] (3.11)
and, given x;, 2, € R? and r > 0,
|M[p)(x1,7) = M(p](w2,7)] < el plloor® a1 — a]. (3.12)

By (3.11) and (3.12), K (M[Sf;](z, |z — y|)) is Lipschitz in both the z and y
variables, by the triangle inequality it follows that (b) and (c¢) are estimated
by ay(7)0(7, Zn), where ay(7) = cLip(K)|Sfr | REH(T) Ry + | K||oo-

Note that [Sf-|e < cRY|f:|lw and by Theorem (1), | frlw < €7 folw-
Hence

ay(7) < cLip(K)| folloo (Re + TRv)dfleHed'”. (3.13)

The last term (d) is easily treatable since, by (3.11), the interaction term
K(M[Sf-](x, |z —y|)) is Lipschitz in y. We obtain

(WIS frs iy, 0) = WIS fr, f](z,0)] < en (D)W ilpsy ), f)- (3.14)

Collecting all the estimates, we get

5(t,2) = | [an(r) (30004 Hilpsaor 1)) + eLiv() B (S o, Stz dr
0
By (3.8) with p = Sf,
D(Stisy(r), Stizy(n) < CUT)O(T, Zn) + cD(Sfr, Sz (r)-

Using (3.7), we conclude that

t

t

5(t,2x) < | s

0

7) <\/%(Sum<7>a Sfe) + Wiltsy(n, fr) +6(T, ZN)> dr.

By the Gronwall’s lemma, for 0 <t < T', we arrive at

5(t.20) < 0a(T) | (\#i(Shsy 0. 1) + Hiusyo. £0)) dr. - (315)

where ay(T) = ay (7)) exp(SOT cay (T) d7)7.



Noting that, since the initial datum of Xy (t) is Zy, thanks to (2.7),

J%(uzw)a fr) AN (Zy) = J%(uszr) dfPN(Zn) < Caa(N),

where the rate Cy(N), as defined in (3.4), is obtained by using the Fournier
and Guillin bound (see |15, Theorem 1), which is a quantitative version of the
law of large numbers. By concavity we obtain also

| St 1) AF8Y (Z) = [ Fi(Shz 55 452 (2) < V/CulN),

Using (3.9), we finally arrive at
Dy(t) < Tas(T) (v/Ca(N) + Coa(N) ).
Then (3.3) follows after denoting
B = cLip(K)| fo| oo max{R,, R,}*". (3.16)

4. MONOKINETIC SOLUTIONS

Suppose that for t € [0,T], (p(t,x),u(t, x)) is a regular solution of the Euler
system

(9tu+(u-V)u=J

R4

K (Mlp(t))(@, 2 = y) ) (ult. y) = u(t,))p(t, ) dy
(4.1)
with initial datum (po(z), uo(x)).
It is not difficult to show that

flt,x,v) = p(t,z)o(v — u(t, )) (4.2)

is a weak solution of the topological Vlasov equation in the sense of (2.7), (2.8),
these are called monokinetic solutions. Note that the field WS f;, fi](z,v) is
regular, so the flow in (2.8) is well-defined.

We will show how to obtain (4.2) from solutions of the Liouville equation.

Since the particle flow is not defined everywhere, it is delicate to consider a
measure-valued solution of the corresponding Liouville equation. To overcome
this problem we consider a regularization of the monokinetic initial datum:

fo(@,v) = (po(x)0(v — uo())) *a,0 ne (2, V),
where 7 is a compactly supported mollifier and n.(z) = n(z/e).

In the same way, it doesn’t seem clear if we can relax a mollification of
a monokinetic measure initial condition. Nevertheless, our next result shows
that after relaxing the regularization of the initial monokinetic measure and let
the number of particles to infinity, the marginals of solutions of the Liouville
equation tend, in Wasserstein topology, to tensorial powers of a monokinetic

measure built up out of the solution of the associated Euler system.
8



Theorem 3 (from particles to Euler). Let us consider a regular solution
(p(t),u(t)),t € [0,T] of the Euler system with initial data (po,uo) and let
FN<(t) be the solution of Liouville equation (2.11) with initial datum F™=(0) :=
(fo)®N. Then, for any t € [0,T] and s € N,

WAESE(), (p(t, )0 (v — ult, )™ (4.3)
< 570 (V/Cou(N) + max {#i (o, SV N (For F) )0 (44)

where
B@=dMMWﬁRMH&LM@MM (4.5)
and fo(z,v) = po(x)d(v — uo(z)).

Remark 1. Note that the statement doesn’t involve the Viasov equation and
that € and N are independent, so the result is true for any sequence of limiting
point (in €) of the distributions {F™ }nen(t).

Remark 2. Using estimate (4.3), it can be easily recovered the convergence of
the velocity moments of the marginals to the hydrodynamic variables.Setting
VN = (v1,...,0s), as € = 0 and N —

#i ([ e an ) —o
Rd
and, weakly,

| Freovy Y — (pteun)®

Remark 3. Along the same lines, we can also generalize the content of Theo-
rem 3, proving a convergence result for marginals FN< of the Liouville equation
with general initial conditions (g5)®N such that % (g5, po(2)d(v — ug(x))) — 0
as € — 0.

To prove Theorem 3, we need the following stability result for solutions of
the Vlasov system.

Proposition 2. Let f! with i = 1,2 be two probability measures, solutions of
the topological Viasov equation with initial data fg such that Sf* € L*(RY).
Suppose moreover that supp(f}) < Br,+r,t X Br,, then

74 (fL 17) < e”®max {%(fé, 1) A/ 7 (£ f&)} : (4.6)

where B(t) is defined as in (4.5).

The proof is similar to the one of Theorem 1 in [3| and is given in the
Appendix.

Proof of Theorem 3. Let f*(t) be the solution of the topological Vlasov equa-
tion with initial datum f§. By the triangle inequality, we have

P(EN0).520) < A (EZN 0, ()% 0) + 74 (£, 1)),

where we are using that %1 ((f€)®%, f®) < s#4(f¢, f).
9



We only need to estimate the first term since the second term is managed
by the stability estimate (4.6) in Proposition (2).

The remaining estimate is similar to the one given in the proof of Theorem
(2). In this case we have

H(EN0.()%0) <5 [ 0620005 2w, (@D

where §(t, Zy) is defined as in (3.9) but with the indipendent flow (y;(t), w;(t)) =
(yi(t, Zn), wi(t, Zn)) in (3.5) defined by means of f(t) instead of f(t) (we keep
the same notation for this flow without specifying the dependence on ¢).

This time we get
s6) = 9]+ 0se) = )] < [ ) — i)

+f WIStzy (s tizy@ (1), vi(7)) = WISFZ, [71(yi(7), wilT)) | dT.

0

In the last integrand we use the triangle inequality, so that we need to bound
the three terms

(@) IWIShzy(r) bzw @ [ (@i(7), 0i(T)) = WIS fr, fr](yi(7), wilT))],
(O) WIS fr, f)(yi(7), wilT)) = WIS fr, 7] (wi(7), wi(T))],
() WIS fr, f(i(7), wilr)) = WISEZ, £71(wi(7), wilT))]-

The term (a) is studied as in the proof of Theorem (2), getting

(@) < 0a(7) (\Ha(Stis 0, SF) + Falpis o ) +6(7, Z) ).
While (b') is studied as in (d), obtaining
(b) < ar (M) 717 fr),
and (¢’) as in (a), obtaining

(¢)) < cLip(K)R,2(S[2, S1.).

Collecting these three estimates together and using the triangle inequality,
we arrive at

(t, Z) < G0 (\ #3(Stisnrrs S2) + Hilusyns [2) + 8(7. Zv))

a(t) (VIS S ) + Half £5)

By the Gronwall’s lemma and using again the Fournier and Guillin bound
in (4.7) we get the thesis.

O
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APPENDIX: PROOF OF PROPOSITION 2
Let Z'(t,z) be the flow related to the field (v, W[Sf!, f!](¢,z,v)) and anal-
ogously for Z%(t, z).

We define an intermediate dynamics (f(t,2), Z(t, 2)), where f(t) is the push-
forward of fZ by the flow Z(t, z) related to the field (v, W[Sf!, f](t,z,v)).

Note that the couple (Z'(t,-), f'(t,)) exists for ¢ € [0,T] since Sf'(t) is

bounded and analogously for the couple (Z2(¢,-), f2(t, ")), while (Z(¢,-), f(¢,-))
exists for the standard Dobrushin theory, since K (M[Sf!(t)](x,|z —y])) is
locally Lipschitz in x and y.

Proceeding as in [3], we have
V(1L 12) < (S 1) + 4 (7 02) (48)

The first term is under control since the density dependence of the field is
the same and then

[WI[Sf, ftl](x>v) - W[Sftl,ft](x,vﬂ < at) 7S+ ]Et>
where a(t) = cLip(K)||Sfilw(R: + tR,)* ' R,. Then it is straightforward to
prove that

(£ 5) < PO (£, 59), (1.9)

where

t
B(t) = cLip(K)(R, + R,t)* 'R, f 1S fH| o AT
0
Concerning the second term in the inequality (4.8), we have
PF@), (1) < JIZ%,Z) — Z(t,2)| df3(2) < 6(t) = sup | Z*(t, 2) — Z(t, 2)|.

In order to estimate d(t), we have

| Z2(t, 2)— Z(t, 2)] <L

By the triangle inequality, we bound the last term in the integrand by the sum
of three quantities:

(A) [WISF FNZ% (7, 2)) = WIS [z, f21(Z% (7, 2))],
(B) WSS (22 (. 2)) = WIS, [ (2 (7, 2)),
(C) WISf}. JNZ2 (7, 2)) = WIS}, [A(Z(r, 2))|.
Reasoning as in the proof of Theorem (2), we get
(4) < cLip(K)R, 2(S 2. S 1),
(B) < an)#i(f7, ) < a(r)é(r), (4.10)
(C) < a(r)d(r).
Hence we need only to estimate 2(Sf2,Sf!). By the triangular inequality
2(Sf7.5f;) < 9(5f1317 Sfo)+ 2(Sfr, SfY).

5(T)+‘W[Sf3, FA(Z%(7,2)) = WSS}, f(Z(r, 2))| dr,



The second term can be bounded by using inequality (3.7) (see also Proposition
2.4 in [3]) obtaining that

DS SIY) < AL IS oo + RIS o, SF). (4.11)

In order to estimate 2(Sf2, Sf,) we proceed as in the proof of (3.8) (see
Proposition 2.5 of [3]). We briefly recall it.

For any z, z € R*, by definition of §(¢),
20 = Z2(t, 2)| = 0(t) < |20 — Z(t,2)] < |20 — Z°(t, 2)| + 8(1).

Let X be the set of functions ¢ € C([0,400),R), with first derivative
continuous up to a finite number of jumps. Given ¢ € X let ¢s(r) =
¢ (r +0) — ¢~ (r — 8), where, denoting by ¢ the function ¢(r) == = (¢ (s)| ds,
we have defined

) SO £0(), iEr >0
s =12 |
+ 2925(0) if r < 0.

It can be proved (see Lemma 2.1 in [3]) that

D(p1.p2) =  sup supfcb(lfv —y|) (dp1(y) — dp2(y))

peX:|gllx<t =

where [¢]x = {7 |¢'(r)| dr.

Fixed zy € R?, we define ®(z) = ¢(|z — x¢|) and s in the same way. Then,
it is not difficult to see that (see Proposition 2.3 in [3])

® (X2(t, 2)) < (X@, z)> .

Hence
| @ (a2 - asi) = | o) (ar2) - 47(2)
= [ (20, 2) — 2 (X, 2) afie)

< [ (@20~ @(FX(r.2)) R ) = [ (@) — @) A (2)

— r(<1>5—<1>) (dsz—dei) +f(<1>5—<1>>d5fi-

J

Since ®5— ® € X, the first term is bounded by ¢2(Sf,, Sf!), while the second
can be easily bounded by cR,(7)4725(7)|Sf}]w. We conclude that

D(SF2,5F,) < 8(7)(Ra + Rer) IS + c2(SFr SFY. (412)

Collecting estimates (4.10), (4.11) and (4.12) and using Gronwall’s lemma,
we arrive at

Y, (f(t),fz(t)> < e f@m Wi(SfL, Sf.)dr

0
12



The thesis follows from the last inequality together with (4.8) and (4.9).
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