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PROPAGATION OF CHAOS AND HYDRODYNAMIC

DESCRIPTION FOR TOPOLOGICAL MODELS

DARIO BENEDETTO, THIERRY PAUL, AND STEFANO ROSSI

Abstract. In this work we extend the analysis carried out in [3], proving
propagation of chaos, i.e. convergence of the marginals, for the determin-
istic Cucker-Smale model with topological interaction. By looking at the
monokinetic solutions, we also obtain a rigorous derivation of the hydrody-
namic description given by the corresponding Euler system.
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1. Introduction

In recent decades, physics of complex systems has increasingly dealt with the
description of groups of animals exhibiting collective behavior, such as �ocks
of birds, schools of �sh, or locust swarms ([19], [2], [25], [17]).

From a modeling point of view, these systems o�er new challenges and var-
ious models have been proposed to describe their interaction (see [24] or [4]).
Among the �rst to be introduced, the Cucker-Smale model [12] describes a bird
as a self-propelling particle interacting with its neighbors. The interaction is
such that neighboring birds tend to align their velocities.

After collecting observational data for bird �ocks, in [1, 9] a new kind of
interaction between agents was introduced called �topological interaction� (see
also [7, 8, 16, 21, 22]) . In this case, the strength of the interaction of an agent
with another one is a function of the proximity rank of the latter with respect
to the former.
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MSC2020 subject classi�cations. 35Q92, 35Q83, 82B40,
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From a mathematical point of view topological interactions come out of the
case of two-body interaction and present various problems in the derivation
of mean-�eld and hydrodynamic equations. Among the works in the existing
literature [20, 23, 26], topological models taken into consideration were both
deterministic and stochastic. From the stochastic side, in [5, 6, 13, 14] kinetic
models of Boltzmann type are derived for topological interaction models based
on jump processes.

As far as deterministic models are concerned, in [18] the author has intro-
duced a Cucker-Smale model where the interaction instead of being metric as
usual is topological. In this work, the kinetic mean-�eld and hydrodynamic
equations of Euler type are also written and formally derived from a smoothed
version of the model.

This work extend the analysis started in [3], where the existence of the
dynamics and the mean �eld limit have been proved for the Cucker-Smale
topological model.

Here, we focus instead on the problems of propagation of chaos and hy-
drodynamic behaviour for the topological Cucker-Smale system. The starting
point will be the Liouville equation veri�ed by the N -particle system.

The outline of the paper is as follows: in section (2) we recall the topological
Cucker-Smale model and introduce the associated Liouville equation, as well
as recall the results obtained in [3] which will be useful later on. In section
(3), we provide a proof of the propagation of chaos, which will be a direct
consequence of the validity of a law of large numbers. In section (4), we
focus on the derivation of the hydrodynamic description given by Euler type
equations studying the so-called monokinetic solutions.

2. Model and general framework

A Cucker-Smale type model for the motion of N agents, in the mean-�eld
scaling, is the system

$

’

&

’

%

9xiptq “ viptq

9viptq “
1

N

N
ÿ

j“1

pijpvjptq ´ viptqq,
(2.1)

where pxi, viq P Rd ˆ Rd (d “ 1, 2, 3, . . . ) and the �communication weights�
tpiju

N
i,j“1 are positive functions that take into account the interactions between

agents. In classical models, pij depends only on the distance1 |xi´xj| between
the agents. In topological models the weights depend on the positions of the
agents by their rank

pij – K
`

Mpxi, |xi ´ xj|q
˘

, (2.2)

1From now on, | ¨ | “ | ¨ |d denotes the euclidean norm on Rd.
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where K : r0, 1s Ñ R` is a positive Lipschitz continuous non-increasing func-

tion such that
ş1

0
Kpzq dz “ γ and, for r ą 0, the function

Mpxi, rq–
1

N

N
ÿ

k“1

X t|xk ´ xi| ď ru (2.3)

counts the number of agents at distance less than or equal to r from xi, normal-
ized with N . Note that in this case pij is a stepwise function of the positions
of all the agents. In the sequel we assume that K

In the mean-�eld limit N Ñ `8, the one-agent distribution function ft “
fpx, v, tq is expected to verify the equation

Btft ` v ¨∇xft `∇v ¨ pW rSft, ftspx, vqftq “ 0, (2.4)

where Sftpxq –
ş

ftpx, vq dv is the spatial distribution and where, given a
probability density f in Rd ˆ Rd and a probability density ρ in Rd,

W rρ, f spx, vq–

ż

K pM rρspx, |x´ y|qq pw ´ vqfpy, wq dy dw, (2.5)

with

M rρspx, rq–

ż

Bxprq

dρ. (2.6)

Here and after, Brpxq denotes the closed ball of center x and radius r in Rd.
We also indicate by BR the closed ball BRp0q.

A weak formulation of this equation is given requiring that the solution ft
ful�lls

ż

αpx, vq dftpx, vq “

ż

α pxtpx, vq, vtpx, vqq df0px, vq (2.7)

for any α P CbpRd ˆ Rdq, where f0 is the initial probability measure and
pxtpx, vq, vtpx, vqq is the �ow de�ned by

$

’

&

’

%

9xtpx, vq “ vtpx, vq

9vtpt, x, vq “ W rSft, ftspxtpx, v, q, vtpx, vqq

x0px, vq “ x, v0px, vq “ v.

(2.8)

In other words, ft is the push-forward of f0 along the �ow generated by the
velocity �eld, determined by ft itself.

Given
ZN “ px1, . . . , xN , v1, . . . , vNq “ pXN , VNq.

we de�ne the empirical measure as

µZN –
1

N

N
ÿ

i“1

δxipdxq δvipdvq.

It is easy to verify that if ZNptq solves (2.1), then µZN ptq is a weak solution
of (2.4). Namely, M rSµZN px, rq is exactly Mpx, rq de�ned in (2.3) (from now
on we use the more complete notation M rSµZN ptq, µZN ptqspx, rq). Thus, we can
rewrite the agent evolution in (2.1) as

"

9xiptq “ viptq

9viptq “ W rSµZN ptq, µZN ptqspxiptq, viptqq.
(2.9)
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In [3], in the framework of the mean-�eld theory, the rigorous derivation of
(2.4) starting from (2.1) is obtained. More precisely, the following theorem is
proved.

Theorem 1. [3, Theorems 3.4, 4.3 and 5.2]
It holds that:

i) except for a set of measure zero, given ZN P RNd ˆ RNd, there exists a
unique global solution

pXNpt, ZNq, VNpt, ZNqq P C
1
pR`,R2dN

q ˆ CpR`,R2dN
q

of (2.1), with initial datum ZN . Moreover, given Rx ą 0 and Rv ą 0, we
have that

|xiptq| ď Rx ` tRv, |viptq| ď Rv

for any i, if |xi| ď Rx and |vi| ď Rv.
ii) Let f0px, vq P L

8pRd ˆ Rdq be a probability density such that supppf0q Ă

BRx ˆ BRv . Given T ą 0, there exists a unique weak solution f P

C
`

r0, T s;L8pRd ˆ Rdq
˘

of the kinetic equation (2.4). Moreover

supppftq Ă BRx`tRv ˆBRv (2.10)

and }ft}8 ď }f0}8edγt.
iii) In the hypotesis of the previous items, µNt weakly converges to ft, if this is

true at time zero.

In this work, we focus on the statistical description of the dynamical system
(2.1), considering particles independently and identically distributed with law
FNpt “ 0, ZNq “ fbN0 , where f0 is the initial datum for the limit kinetic
equation (2.4). Then, the law at time t of the dynamical system (2.1) is given
by FNpt, ZNq, weak solution of the N -body Liouville equation

BtF
N
pt, ZNq `

N
ÿ

i“1

vi ¨∇xiF
N
pt, ZNq

`

N
ÿ

i“1

∇vi ¨

´ 1

N

N
ÿ

j“1

KpM rSµZN , µZN sqpxi, |xi ´ xj|qpvj ´ viqF
N
pt, ZNq

¯

“ 0.

(2.11)
Note also that FNpt, ZNq, for t ą 0, is symmetric in the exchange of particles.

To quantify the distance between probability measures, we will consider the
Wasserstein distances of order 1:

W1pµ, νq “ inf
πPCpµ,νq

ż

RdˆRd
|x´ y| dπpx, yq,

where µ and ν are two measures over Rd and Cpµ, νq is the set of all couplings,
i.e. measures on the product space with marginals respectively µ and ν in
the �rst and second variables. As a technical tool, we also use the following
discrepancy distance:

Dpµ, νq “ sup
x,rą0

ˇ

ˇ

ˇ

ż

Brpxq

dµ´

ż

Brpxq

dν
ˇ

ˇ

ˇ
.
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3. Convergence of the marginals

In this section we prove the propagation of chaos for solutions of the N -body
Liouville equation (2.11). We brie�y explain the meaning of this term and we
refer to [10, 11] for a review. To do this, we introduce the s-particle marginals

FN
s pZsq “

ż

FN
pZs, zs`1 ¨ ¨ ¨ zNqdzs`1 ¨ ¨ ¨ dzN , s “ 1, 2 ¨ ¨ ¨N (3.1)

where zi “ pxi, viq. We expect that, if N is large, the details of the individual
mutual interactions are negligible, and that the description given by FN

s pt, ZNq
is similar to the one given by fbst , where ft solves (2.4). Note thatfbst pZsq,
solves

Btf
bs
t pZsq`

s
ÿ

i“1

vi ¨∇xif
bs
t pZsq`

s
ÿ

i“1

∇vi ¨

´

W rSft, ftspxi, viqf
bs
t pZsq

¯

“ 0. (3.2)

This last equation describes the law of the system when each particle evolves
independently from the others, with an interaction given by the mean-�eld
force de�ned in (2.5). Then propagation of chaos holds if, for �xed s, the
convergence of FN

s pZN ; tq to fbspZN ; tq is proved in some distance between
probability distributions.

We want to prove the following result.

Theorem 2. Let f P Cpr0, T s;L8pR2dqq solution of the kinetic equation (2.4)
with initial datum f0px, vq P L

8pRd ˆ Rdq such that supppf0q Ă BRx ˆ BRv .
Assume that the interaction function K is Lipschitz-continuous and consider
FNptq solution of (2.11) such that FNp0q “ fbN0 .

If FN
s denotes the s-marginal as de�ned in (3.1), for t P r0, T s and s P

t1, . . . , Nu, it holds that

W1pF
N
s ptq, f

bs
ptqq ď seβT

dedγT
a

C2dpNq, (3.3)

where β is a constant speci�ed in (3.16) depending on LippKq, }f0}8 and on
the support, while

CdpNq “

$

’

&

’

%

N´1{2 if d “ 1

N´1{2logpNq if d “ 2

N´1{d if d ą 2.

(3.4)

We start the proof by introducing

ΣNptq “ py1ptq, . . . , yNptq, w1ptq, . . . , wNptqq “ pYNptq,WNptqq P RdN
ˆ RdN ,

where pyi, wiq for all i evolve indipendently with the mean-�eld interaction:
"

9yiptq “ wiptq

9wiptq “ W rSft, ftspyiptq, wiptqq.
(3.5)

We associate to such ΣNptq the empirical measure µΣN ptq.

We de�ne a coupling πNptq between FNptq and fbNt in the following way:
at time t “ 0, it is given by

πNp0q “ fbN0 pZNqδpZN ´ ΣNq. (3.6)
5



For positive times, πNptq is given by the push-forward of πNp0q along the
product �ow given by (2.1) and (3.5). Then, from now on, the initial datum
of ΣNptq and ZNptq is the same, indicated by ZN .

Next, for any i P t1, . . . , Nu, we introduce the quantity

DNptq “

ż

´

|xi ´ yi| ` |vi ´ wi|
¯

dπNptq,

which does not depend on i, thanks to the symmetry of the law.

The weak convergence of the of the s-marginals FN
s to fbs is a consequence

of the fact that DNptq Ñ 0: namely, using the symmetry of πN ,

W1pF
N
s ptq, f

bs
ptqq ď

s
ÿ

i“1

ż

´

|xi ´ yi| ` |vi ´ wi|
¯

dπNpZs,Σsq ď sDNptq,

(here we are using that |Zs ´ Σs|2ds ď
řs
i“1p|xi ´ yi|d ` |vi ´ wi|dq).

In the proof we will employ the following results about the discrepancy
distance.

Proposition 1. [3, Propositions 2.4 and 2.5]

i) Let ρ and ν be two probability measures on Rd with support in a ball BR

and such that ρ P L8pRdq. Then

Dpν, ρq ď c
a

Rd´1}ρ}8W1pν, ρq, (3.7)

where c is a constant that depends on the dimension d.
ii) Given XN “ px1, . . . , xNq, YN “ py1, . . . yNq, with |xi ´ yi| ď δ for some

δ and any i “ 1, . . . N , consider the two empirical measure µXN and µYN .
Then, for any probability measure ρ P L8pRdq supported on a ball BR,

DpµXN , µYN q ď cRd´1
}ρ}8δ ` cDpµYN , ρq. (3.8)

Proof of Theorem 2. We have, for any i P t1, . . . , Nu,

DNptq “

ż

´

|xiptq ´ yiptq| ` |viptq ´ wiptq|
¯

dfbN0 pZNq,

where pxiptq, yiptqq ” pxipt, ZNq, vipt, ZNqq and pyiptq, wiptqq “ pyipt, ZNq, wipt, ZNqq.
It follows that

DNptq ď

ż

δpt, ZNq dfbN0 pZNq, (3.9)

with δpt, ZNq “ maxi“1,...,N |xiptq ´ yiptq| ` |viptq ´ wiptq|. Since pxiptq, viptqq
and pyiptq, wiptqq have the same initial conditions, it holds that

|xiptq ´ yiptq| ` |viptq ´ wiptq| ď

ż t

0

|vipτq ´ wipτq| dτ

`

ż t

0

ˇ

ˇ

ˇ
W rSµZN pτq, µZN pτqspxipτq, vipτqq ´W rSfτ , fτ spyipτq, wipτqq

ˇ

ˇ

ˇ
dτ.
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In order to estimate δptq, we need to evaluate the last integrand. To do this
we bound this quantity by the sum of four terms:

paq |W rSµZN pτq, µZN pτqspxipτq, vipτqq ´W rSfτ , µZN pτqspxipτq, vipτqq|,

pbq |W rSfτ , µZN pτqspxipτq, vipτqq ´W rSfτ , µΣN pτqspxipτq, vipτqq|,

pcq |W rSfτ , µΣN pτqspxipτq, vipτqq ´W rSfτ , µΣN pτqspyipτq, wipτqq|,

pdq |W rSfτ , µΣN pτqspyipτq, wipτqq ´W rSfτ , fτ spyipτq, wipτqq|.

Since

|M rµZN pτqspx, rq ´M rSfτ spx, rq| ď DpSfτ , SµZN pτqq,

by (2.10) we have that (a) is bounded by

2LippKqRvDpSfτ , SµZN pτqq. (3.10)

Let ρ P L8pRdq be a probability density. Then, it's not di�cult to prove that
given r1, r2 ą 0,

|M rρspx, r1q ´M rρspx, r2q| ď c}ρ}8
ˇ

ˇrd1 ´ r
d
2

ˇ

ˇ (3.11)

and, given x1, x2 P Rd and r ą 0,

|M rρspx1, rq ´M rρspx2, rq| ď c}ρ}8r
d´1
|x1 ´ x2|. (3.12)

By (3.11) and (3.12), K pM rSfτ spx, |x´ y|qq is Lipschitz in both the x and y
variables, by the triangle inequality it follows that (b) and (c) are estimated
by α1pτqδpτ, ZNq, where α1pτq “ cLippKq}Sfτ}8R

d´1
x pτqRv ` }K}8.

Note that }Sfτ}8 ď cRd
v}fτ}8 and by Theorem (1), }fτ}8 ď edγτ}f0}8.

Hence

α1pτq ď cLippKq}f0}8pRx ` τRvq
d´1Rd`1

v edγτ . (3.13)

The last term (d) is easily treatable since, by (3.11), the interaction term
KpM rSfτ spx, |x´ y|qq is Lipschitz in y. We obtain

|W rSfτ , µΣN pτqspx, vq ´W rSfτ , fτ spx, vq| ď α1pτqW1pµΣN pτq, fτ q. (3.14)

Collecting all the estimates, we get

δpt, ZNq ď

ż t

0

”

α1pτq
´

δpτq`W1pµΣN pτq, fτ q
¯

`cLippKqRvDpSfτ , SµZN pτqq
ı

dτ.

By (3.8) with ρ “ Sfτ ,

DpSµΣN pτq, SµZN pτqq ď C1pτqδpτ, ZNq ` cDpSfτ , SµΣN pτqq.

Using (3.7), we conclude that

δpt, ZNq ď

ż t

0

α1pτq
´
b

W1pSµΣN pτq, Sfτ q `W1pµΣN pτq, fτ q ` δpτ, ZNq
¯

dτ.

By the Gronwall's lemma, for 0 ď t ď T , we arrive at

δpt, ZNq ď α2pT q

ż t

0

´
b

W1pSµΣN pτq, Sfτ q `W1pµΣN pτq, fτ q
¯

dτ, (3.15)

where α2pT q “ α1pT q expp
şT

0
cα1pτq dτq.

7



Noting that, since the initial datum of ΣNptq is ZN , thanks to (2.7),
ż

W1pµΣN pτq, fτ q dfbN0 pZNq “

ż

W1pµZN , fτ q dfbNτ pZNq ď C2dpNq,

where the rate CdpNq, as de�ned in (3.4), is obtained by using the Fournier
and Guillin bound (see [15, Theorem 1]), which is a quantitative version of the
law of large numbers. By concavity we obtain also
ż

b

W1pSµΣN pτq, Sfτ q dfbN0 pZNq “

ż

a

W1pSµZN , Sfτ q dfbNτ pZNq ď
a

CdpNq,

Using (3.9), we �nally arrive at

DNptq ď Tα2pT q
´

a

CdpNq ` C2dpNq
¯

.

Then (3.3) follows after denoting

β “ cLippKq}f0}8 maxtRx, Rvu
2d. (3.16)

�

4. Monokinetic solutions

Suppose that for t P r0, T s, pρpt, xq, upt, xqq is a regular solution of the Euler
system

$

&

%

Btρ`∇ ¨ pρuq “ 0,

Btu` pu ¨∇qu “
ż

Rd
K
´

M rρptqspx, |x´ y|q
¯

pupt, yq ´ upt, xqqρpt, yq dy

(4.1)
with initial datum pρ0pxq, u0pxqq.

It is not di�cult to show that

fpt, x, vq “ ρpt, xqδpv ´ upt, xqq (4.2)

is a weak solution of the topological Vlasov equation in the sense of (2.7), (2.8),
these are called monokinetic solutions. Note that the �eld W rSft, ftspx, vq is
regular, so the �ow in (2.8) is well-de�ned.

We will show how to obtain (4.2) from solutions of the Liouville equation.

Since the particle �ow is not de�ned everywhere, it is delicate to consider a
measure-valued solution of the corresponding Liouville equation. To overcome
this problem we consider a regularization of the monokinetic initial datum:

f ε0 px, vq “ pρ0pxqδpv ´ u0pxqqq ˚x,v ηεpx, vq,

where η is a compactly supported molli�er and ηεpzq “ ηpz{εq.

In the same way, it doesn't seem clear if we can relax a molli�cation of
a monokinetic measure initial condition. Nevertheless, our next result shows
that after relaxing the regularization of the initial monokinetic measure and let
the number of particles to in�nity, the marginals of solutions of the Liouville
equation tend, in Wasserstein topology, to tensorial powers of a monokinetic
measure built up out of the solution of the associated Euler system.

8



Theorem 3 (from particles to Euler). Let us consider a regular solution
pρptq, uptqq, t P r0, T s of the Euler system with initial data pρ0, u0q and let
FN,εptq be the solution of Liouville equation (2.11) with initial datum FN,εp0q :“
pf ε0 q

bN . Then, for any t P r0, T s and s P N,
W1pF

N,ε
s ptq, pρpt, ¨qδpv ´ upt, ¨qqbsq (4.3)

ď seβ̄ptq
´

a

C2dpNq `max
!

W1pf0, f
ε
0 q,

a

W1pf0, f ε0 q
)¯

, (4.4)

where

β̄ptq “ cLippKqpRx `Rvtq
d´1Rv

ż t

0

}ρptq}8 dτ. (4.5)

and f0px, vq “ ρ0pxqδpv ´ u0pxqq.

Remark 1. Note that the statement doesn't involve the Vlasov equation and
that ε and N are independent, so the result is true for any sequence of limiting
point (in ε) of the distributions tFNuNPNptq.

Remark 2. Using estimate (4.3), it can be easily recovered the convergence of
the velocity moments of the marginals to the hydrodynamic variables.Setting
V N
s “ pv1, . . . , vsq, as εÑ 0 and N Ñ 8

W1

ˆ
ż

Rd
FN,ε
s ptq dV N

s , ρptq
bs

˙

ÝÑ 0

and, weakly,
ż

Rd
FN,ε
s ptqV N

s dV N
s ÝÑ pρptquptqqbs.

Remark 3. Along the same lines, we can also generalize the content of Theo-
rem 3, proving a convergence result for marginals FN,ε

s of the Liouville equation
with general initial conditions pgε0q

bN such that W1 pg
ε
0, ρ0pxqδpv ´ u0pxqqq Ñ 0

as εÑ 0.

To prove Theorem 3, we need the following stability result for solutions of
the Vlasov system.

Proposition 2. Let f i

t with i “ 1, 2 be two probability measures, solutions of
the topological Vlasov equation with initial data f i

0 such that Sf i P L8pRdq.
Suppose moreover that supppf i

tq Ă BRx`Rvt ˆBRv , then

W1

`

f 1
t , f

2
t

˘

ď eβ̄ptq max

"

W1pf
1
0 , f

2
0 q,

b

W1pf 1
0 , f

2
0 q

*

, (4.6)

where β̄ptq is de�ned as in (4.5).

The proof is similar to the one of Theorem 1 in [3] and is given in the
Appendix.

Proof of Theorem 3. Let f εptq be the solution of the topological Vlasov equa-
tion with initial datum f ε0 . By the triangle inequality, we have

W1

´

F ε,N
s ptq, fbsptq

¯

ď W1

´

F ε,N
s ptq, pf εqbsptq

¯

` sW1

´

f εptq, fptq
¯

,

where we are using that W1ppf
εqbs, fbsq ď sW1pf

ε, fq.
9



We only need to estimate the �rst term since the second term is managed
by the stability estimate (4.6) in Proposition (2).

The remaining estimate is similar to the one given in the proof of Theorem
(2). In this case we have

W1

´

F ε,N
s ptq, pf εqbsptq

¯

ď s

ż

δpt, ZNq dpf ε0 q
bN
pZNq, (4.7)

where δpt, ZNq is de�ned as in (3.9) but with the indipendent �ow pyiptq, wiptqq “
pyipt, ZNq, wipt, ZNqq in (3.5) de�ned by means of f εptq instead of fptq (we keep
the same notation for this �ow without specifying the dependence on ε).

This time we get

|xiptq ´ yiptq| ` |viptq ´ wiptq| ď

ż t

0

|vipτq ´ wipτq| dτ

`

ż t

0

ˇ

ˇ

ˇ
W rSµZN pτq, µZN pτqspxipτq, vipτqq ´W rSf

ε
τ , f

ε
τ spyipτq, wipτqq

ˇ

ˇ

ˇ
dτ.

In the last integrand we use the triangle inequality, so that we need to bound
the three terms

pa1q |W rSµZN pτq, µZN pτqspxipτq, vipτqq ´W rSfτ , fτ spyipτq, wipτqq|,

pb1q |W rSfτ , fτ spyipτq, wipτqq ´W rSfτ , f
ε
τ spyipτq, wipτqq|,

pc1q |W rSfτ , f
ε
τ spyipτq, wipτqq ´W rSf

ε
τ , f

ε
τ spyipτq, wipτqq|.

The term (a) is studied as in the proof of Theorem (2), getting

(a') ď α1pτq
´
b

W1pSµΣN pτq, Sfτ q `W1pµΣN pτq, fτ q ` δpτ, ZNq
¯

.

While (b') is studied as in (d), obtaining

(b') ď α1pτqW1pf
ε
τ , fτ q,

and (c') as in (a), obtaining

(c') ď cLippKqRvDpSf
ε
τ , Sfτ q.

Collecting these three estimates together and using the triangle inequality,
we arrive at

δpt, ZNq ď ᾱptq
´
b

W1pSµΣN pτq, Sf
ε
τ q `W1pµΣN pτq, f

ε
τ q ` δpτ, ZNq

¯

` ᾱptq
´

a

W1pSfτ , Sf ετ q `W1pfτ , f
ε
τ q

¯

By the Gronwall's lemma and using again the Fournier and Guillin bound
in (4.7) we get the thesis.

�
10



Appendix: proof of Proposition 2

Let Z1pt, zq be the �ow related to the �eld pv,W rSf 1, f 1spt, x, vqq and anal-
ogously for Z2pt, zq.

We de�ne an intermediate dynamics pf̃pt, zq, Z̃pt, zqq, where f̃ptq is the push-

forward of f 2
0 by the �ow Z̃pt, zq related to the �eld pv,W rSf 1, f̃ spt, x, vqq.

Note that the couple pZ1pt, ¨q, f 1pt, ¨qq exists for t P r0, T s since Sf 1ptq is

bounded and analogously for the couple pZ2pt, ¨q, f 2pt, ¨qq, while pZ̃pt, ¨q, f̃pt, ¨qq
exists for the standard Dobrushin theory, since K pM rSf 1ptqspx, |x´ y|qq is
locally Lipschitz in x and y.

Proceeding as in [3], we have

W1

`

f 1
t , f

2
t

˘

ď W1

´

f 1
t , f̃t

¯

`W1

´

f̃t, f
2
t

¯

. (4.8)

The �rst term is under control since the density dependence of the �eld is
the same and then

|W rSf 1
t , f

1
t spx, vq ´W rSf

1
t , f̃tspx, vq| ď ᾱptqW1pf

1
t , f̃tq

where ᾱptq “ cLippKq}Sft}8pRx ` tRvq
d´1Rv. Then it is straightforward to

prove that

W1

´

f 1
t , f̃t

¯

ď eβ̄ptqW1

`

f 1
0 , f

2
0

˘

, (4.9)

where

β̄ptq “ cLippKqpRx `Rvtq
d´1Rv

ż t

0

}Sf 1
τ }8 dτ.

Concerning the second term in the inequality (4.8), we have

W1pf̃ptq, f
2
ptqq ď

ż

|Z2
pt, zq ´ Z̃pt, zq| df 2

0 pzq ď δptq– sup
z
|Z2
pt, zq ´ Z̃pt, zq|.

In order to estimate δptq, we have

|Z2
pt, zq´Z̃pt, zq| ď

ż t

0

δpτq`
ˇ

ˇ

ˇ
W rSf 2

τ , f
2
τ spZ

2
pτ, zqq ´W rSf 1

τ , f̃τ spZ̃pτ, zqq
ˇ

ˇ

ˇ
dτ,

By the triangle inequality, we bound the last term in the integrand by the sum
of three quantities:

pAq |W rSf 2
τ , f

2
τ spZ

2
pτ, zqq ´W rSf 1

τ , f
2
τ spZ

2
pτ, zqq|,

pBq |W rSf 1
τ , f

2
τ spZ

2
pτ, zqq ´W rSf 1

τ , f̃τ spZ
2
pτ, zqq|,

pCq |W rSf 1
τ , f̃τ spZ

2
pτ, zqq ´W rSf 1

τ , f̃τ spZ̃pτ, zqq|.

Reasoning as in the proof of Theorem (2), we get

pAq ď cLippKqRvDpSf
2
τ , Sf

1
τ q,

pBq ď ᾱpτqW1pf
2
τ , f̃τ q ď ᾱpτqδpτq,

pCq ď ᾱpτqδpτq.

(4.10)

Hence we need only to estimate DpSf 2
τ , Sf

1
τ q. By the triangular inequality

DpSf 2
τ , Sf

1
τ q ď DpSf 2

τ , Sf̃τ q `DpSf̃τ , Sf
1
τ q.

11



The second term can be bounded by using inequality (3.7) (see also Proposition
2.4 in [3]) obtaining that

DpSf̃τ , Sf
1
τ q ď c

b

}Sf 1
τ }8pRx ` τRvq

d´1W1pSf̃τ , Sf 1
τ q. (4.11)

In order to estimate DpSf 2
τ , Sf̃τ q we proceed as in the proof of (3.8) (see

Proposition 2.5 of [3]). We brie�y recall it.

For any z0, z P R2d, by de�nition of δptq,

|z0 ´ Z
2
pt, zq| ´ δptq ď |z0 ´ Z̃pt, zq| ď |z0 ´ Z

2
pt, zq| ` δptq.

Let X be the set of functions φ P Cpr0,`8q,Rq, with �rst derivative
continuous up to a �nite number of jumps. Given φ P X, let φδprq –

φ`pr ` δq ´ φ´pr ´ δq, where, denoting by φ̃ the function φ̃prq–
şr

0
|φ1psq| ds,

we have de�ned

φ˘prq–

$

’

&

’

%

1

2
pφ̃prq ˘ φprqq, if r ě 0,

˘
1

2
φp0q, if r ă 0.

It can be proved (see Lemma 2.1 in [3]) that

Dpρ1, ρ2q “ sup
φPX: }φ}Xď1

sup
x

ż

φ
`

|x´ y|
˘`

dρ1pyq ´ dρ2pyq
˘

where }φ}X –
ş`8

0
|φ1prq| dr.

Fixed x0 P Rd, we de�ne Φpxq “ φp|x´ x0|q and Φδ in the same way. Then,
it is not di�cult to see that (see Proposition 2.3 in [3])

Φ
`

X2
pt, zq

˘

ď Φδ

´

X̃pt, zq
¯

.

Hence
ż

Φ
´

dSf 2
τ ´ dSf̃τ

¯

“

ż

Φpxq
´

df 2
pzq ´ df̃pzq

¯

“

ż

´

ΦpX2
pτ, zqq ´ ΦpX̃pτ, zqq

¯

df 2
0 pzq

ď

ż

´

ΦδpX̃pτ, zqq ´ ΦpX̃pτ, zqq
¯

df 2
0 pzq “

ż

pΦδpxq ´ Φpxqq dSf̃τ pxq

“

ż

pΦδ ´ Φq
´

dSf̃τ ´ dSf 1
τ

¯

`

ż

pΦδ ´ Φq dSf 1
τ .

Since Φδ´Φ P X, the �rst term is bounded by cDpSf̃τ , Sf 1
τ q, while the second

can be easily bounded by cRxpτq
d´1δpτq}Sf 1

τ }8. We conclude that

DpSf 2
τ , Sf̃τ q ď cδpτqpRx `Rvτq

d´1
}Sf 1

τ }8 ` cDpSf̃τ , Sf
1
τ q. (4.12)

Collecting estimates (4.10), (4.11) and (4.12) and using Gronwall's lemma,
we arrive at

W1

´

f̃ptq, f 2
ptq

¯

ď eβ̄ptq
ż t

0

ᾱpτq

b

W1pSf 1
τ , Sf̃τ q dτ.

12



The thesis follows from the last inequality together with (4.8) and (4.9).
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