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A complete answer to the strong density
problem in Sobolev spaces with values into

compact manifolds
Antoine Detaille

Abstract

We consider the problem of strong density of smooth maps in the Sobolev space
𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩), where 0 < 𝑠 < +∞, 1 ≤ 𝑝 < +∞, 𝑄𝑚 is the unit cube in ℝ𝑚 , and 𝒩 is
a smooth compact connected Riemannian manifold without boundary. Our main
result fully answers the strong density problem in the whole range 0 < 𝑠 < +∞:
the space 𝒞∞(𝑄𝑚

;𝒩) is dense in 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩) if and only if 𝜋[𝑠𝑝](𝒩) = {0}. This
completes the results of Bethuel (𝑠 = 1), Brezis and Mironescu (0 < 𝑠 < 1), and
Bousquet, Ponce, and Van Schaftingen (𝑠 = 2, 3, . . . ). We also consider the case of
more general domains 𝛺, in the setting studied by Hang and Lin when 𝑠 = 1.

1 Introduction

We address here the question of the density of smooth maps in Sobolev spaces𝑊 𝑠,𝑝(𝛺;𝒩)
of maps with values into a compact manifold 𝒩 . Here and in the sequel, 1 ≤ 𝑝 < +∞ and
0 < 𝑠 < +∞. Recall the following well-known fundamental result in the theory of
classical real-valued Sobolev spaces: if 𝛺 ⊂ ℝ𝑚 is a sufficiently smooth open set, then
𝒞∞(𝛺;ℝ) is dense in 𝑊 𝑠,𝑝(𝛺;ℝ). The reader may consult, for instance, [12] or [33] for
a proof in the case where 𝛺 is a smooth domain, or [1] in the case where 𝛺 satisfies the
weaker segment condition. Here,

𝒞∞(𝛺) = {𝑢|𝛺: 𝑢 ∈ 𝒞∞(ℝ𝑚)}.

More difficult is the analogue question of the density of smooth maps in Sobolev
spaces when the target 𝒩 is a manifold. In what follows, we let 𝒩 be a smooth compact
connected Riemannian manifold without boundary, isometrically embedded in ℝ�.
The latter assumption is not restrictive, since we may always find such an embedding
provided that we choose � ∈ ℕ sufficiently large; see [26] and [27]. The natural analogue
question is whether 𝒞∞(𝛺;𝒩) is dense in 𝑊 𝑠,𝑝(𝛺;𝒩). Here, the space 𝑊 𝑠,𝑝(𝛺;𝒩) is
the set of all maps 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;ℝ�) such that 𝑢(𝑥) ∈ 𝒩 for almost every 𝑥 ∈ 𝛺. Due to
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the presence of the manifold constraint,𝑊 𝑠,𝑝(𝛺;𝒩) is in general not a vector space, but
it is nevertheless a metric space endowed with the distance defined by

𝑑𝑊 𝑠,𝑝(𝛺)(𝑢, 𝑣) = ∥𝑢 − 𝑣∥𝑊 𝑠,𝑝(𝛺).

The space 𝒞∞(𝛺;𝒩) is defined analogously as the set of all 𝒞∞(𝛺;ℝ�) maps taking
their values into 𝒩 .

Note that the usual technique for proving density of smooth maps, relying on regu-
larization by convolution, is not applicable in this context, since in general it does not
preserve the constraint that the maps take their values into 𝒩 . In the range 𝑠𝑝 ≥ 𝑚,
however, density always holds. Indeed, in this range, Sobolev maps are continuous, or
belong to the set VMO of functions with vanishing mean oscillation. One may therefore
proceed as in the classical case, via regularization and nearest point projection onto 𝒩 ;
see [31] and [18].

The case 𝑠𝑝 < 𝑚 is way more delicate. Schoen and Uhlenbeck [31] were the first to
observe that density may fail in this range, due to the presence of topological obstruc-
tions. More precisely, they showed that the map 𝑢 : 𝔹3 → 𝕊2 defined by 𝑢(𝑥) = 𝑥

|𝑥 |
may not be approximated by smooth functions in 𝑊1,2(𝔹3;𝕊2). This was subsequently
generalized by Bethuel and Zheng [4, Theorem 2] and finally by Escobedo [19], leading
to the conclusion that 𝒞∞(𝛺;𝒩) is never dense in 𝑊 𝑠,𝑝(𝛺;𝒩) when 𝜋[𝑠𝑝](𝒩) ≠ {0}.
Here, 𝜋ℓ (𝒩) is the ℓ -th homotopy group of 𝒩 , and [𝑠𝑝] denotes the integer part of 𝑠𝑝.
For further use, note that the condition 𝜋[𝑠𝑝](𝒩) = {0} means that every continuous
map 𝑓 : 𝕊[𝑠𝑝] → 𝒩 may be extended to a continuous map 𝑔 : 𝔹[𝑠𝑝]+1 → 𝒩 .

A natural question is whether the condition 𝜋[𝑠𝑝](𝒩) = {0} is also sufficient for the
density of𝒞∞(𝛺;𝒩) in𝑊 𝑠,𝑝(𝛺;𝒩). A remarkable result of Bethuel [2] asserts that, when
𝑠 = 1, 1 ≤ 𝑝 < 𝑚, and 𝛺 is a cube, the condition 𝜋[𝑠𝑝](𝒩) ≠ {0} is the only obstruction
to strong density of 𝒞∞(𝛺;𝒩) in 𝑊1,𝑝(𝛺;𝒩). Bethuel’s result has been extended to
other values of 𝑠 and 𝑝, but not all (see below). Our first main result provides a complete
generalization of Bethuel’s result (covering all values of 𝑠 and 𝑝).

Theorem 1.1. If 𝑠𝑝 < 𝑚 and 𝜋[𝑠𝑝](𝒩) = {0}, then 𝒞∞(𝑄𝑚
;𝒩) is dense in𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩).

The case of more general domains is more involved since the topology of the domain
also comes into play, as it was first noticed by Hang and Lin [22]. We investigate this
question in Section 8, establishing counterparts of Theorem 1.1 when the domain is a
smooth bounded open set, or even a smooth compact manifold of dimension 𝑚; see
Theorems 8.3 and 8.4 below.

When 𝜋[𝑠𝑝](𝒩) ≠ {0}, density fails, and a natural question in this context is whether
one can find a suitable substitute for the class 𝒞∞(𝑄𝑚

;𝒩). This is indeed the case
provided that we replace smooth functions on 𝛺 by functions that are smooth on
𝛺 except on some singular set whose dimension depends on [𝑠𝑝]. This direction of
research also originates in Bethuel’s paper [2]. (For subsequent results, see below.)

We define the class ℛ𝑖(𝛺;𝒩) as the set of maps 𝑢 : 𝛺 → 𝒩 which are smooth on
𝛺 \ 𝑇, where 𝑇 is a finite union of 𝑖-dimensional planes, and such that for every 𝑗 ∈ ℕ∗
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and 𝑥 ∈ 𝛺 \ 𝑇,
|𝐷 𝑗𝑢(𝑥)| ≤ 𝐶

1
dist(𝑥, 𝑇)𝑗

for some constant 𝐶 > 0 depending on 𝑢 and 𝑗. We establish the density of the class
ℛ𝑚−[𝑠𝑝]−1 in the full range 0 < 𝑠 < +∞ when 𝛺 = 𝑄𝑚 .

Theorem 1.2. If 𝑠𝑝 < 𝑚, then ℛ𝑚−[𝑠𝑝]−1(𝑄𝑚 ;𝒩) is dense in𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩).
We mention that, in some sense, the class ℛ𝑚−[𝑠𝑝]−1(𝑄𝑚 ;𝒩) is the best dense class in

𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩)one can hope for. More precisely, the singular set cannot be taken of smaller
dimension: the class ℛ𝑖(𝑄𝑚 ;𝒩) with 𝑖 < 𝑚 − [𝑠𝑝] − 1 is never dense in 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩) if
𝜋[𝑠𝑝](𝒩) ≠ {0}; see the discussion in [9].

In addition to its own importance, Theorem 1.2 is crucial in establishing Theorem 1.1.
In Section 6, we explain how to deal with more general domains. We show that Theo-
rem 1.2 has a valid counterpart on bounded domains 𝛺 that merely satisfy the segment
condition or when the domain is instead a smooth compact manifold of dimension 𝑚;
see Theorems 6.3 and 6.4 below.

Theorems 1.1 and 1.2 where known for some values of 𝑠 and 𝑝. As mentioned above,
the case 𝑠 = 1 was established by Bethuel in his seminal paper [2]. Progress was then
made by Brezis and Mironescu [15] and by Bousquet, Ponce, and Van Schaftingen [9].
Using an ad hoc method based on homogeneous extension, Brezis and Mironescu were able
to completely solve the case 0 < 𝑠 < 1. On the other hand, Bousquet, Ponce, and Van
Schaftingen introduced several important tools that are tailored to higher order Sobolev
spaces, which allowed them to give a full answer to the strong density problem in the
case 𝑠 = 2, 3, . . . Their approach incorporates and adapts major concepts from Bethuel’s
proof for 𝑠 = 1 (among which the method of good and bad cubes, which lies at the core of
the proof) and from Brezis and Li [13]. It turns out that this approach in [9] extends
to noninteger values of 𝑠. This is the main contribution of our paper. Other special
cases were obtained by Bethuel and Zheng [4], Escobedo [19], Hajłasz [21], Bethuel [3],
Rivière [28], Bousquet [6], Mucci [25], and Bousquet, Ponce, and Van Schaftingen [7, 8].
However, the case where 𝑠 > 1 is not an integer and 𝒩 is a general manifold is not
covered by these contributions and is the main novelty of Theorem 1.1.

The method of homogeneous extension used in [15] to settle the case where 0 < 𝑠 < 1
was shown by the authors themselves not to work when 𝑠 = 1; see [15, Lemma 4.9].
On the contrary, as we explained above, the approach in [9] can be adapted to handle
noninteger values of 𝑠. It is our goal here to explain in detail this adapted construction,
introducing the modifications and new ideas that are required to make it suitable for
the fractional order setting. This does not only prove the density of smooth maps in
the remaining case where 𝑠 > 1 is not an integer, but it also provides a unified proof
covering the full range 0 < 𝑠 < +∞, including the case 0 < 𝑠 < 1 originally treated via a
different approach.

This paper is organized as follows. In Sections 3 to 5, we develop the tools that we
need to prove Theorem 1.2, following the approach in [9] and extending the auxiliary
results to the noninteger case. With these tools at hand, we proceed in Section 6 with
the proof of Theorem 1.2. For the sake of simplicity, we first deal with the model
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case 𝛺 = 𝑄𝑚 , before explaining how to handle more general domains. In Section 8,
we present the proof of Theorem 1.1 and the counterpart of Theorem 1.1 in general
domains. The proofs rely on an additional tool presented in Section 7.

Before delving into technicalities, we start by presenting in Section 2 a sketch of the
proof of Theorems 1.2 and 1.1. Our objective is to give an overview of the general
strategy of the proof while avoiding giving too much details at this stage. We hope
that Section 2 will provide the reader with some intuition on the basic ideas behind the
different tools that will be used, and show how each of them fits into the big picture of
the proof, before we move to a more detailed presentation in the next sections. Section 2
also gathers the main useful definitions and basic auxiliary results used throughout the
paper.

Acknowledgements

I am deeply grateful to Petru Mironescu and Augusto Ponce for introducing me to this
beautiful topic, for their constant support and many helpful suggestions to improve
the exposition. I especially thank Petru Mironescu for long discussions concerning the
paper, and Augusto Ponce for sharing and discussing with me the preprint [11].

2 Definitions and sketch of the proof

From now on, we write 𝑠 = 𝑘 + 𝜎 with 𝑘 ∈ ℕ and 𝜎 ∈ [0, 1). We recall that the Sobolev
space 𝑊 𝑘,𝑝(𝛺) is the set of all 𝑢 ∈ 𝐿𝑝(𝛺) such that for every 𝑗 ∈ {1, . . . , 𝑘}, the weak
derivative 𝐷 𝑗𝑢 belongs to 𝐿𝑝(𝛺). This space is endowed with the norm defined by

∥𝑢∥𝑊 𝑘,𝑝(𝛺) = ∥𝑢∥𝐿𝑝(𝛺) +
𝑘∑
𝑗=1

∥𝐷 𝑗𝑢∥𝐿𝑝(𝛺).

When 𝜎 ∈ (0, 1), the fractional Sobolev space𝑊𝜎,𝑝(𝛺) is the set of all measurable maps
𝑢 : 𝛺 → ℝ such that |𝑢 |𝑊𝜎,𝑝(𝛺) < +∞, where the Gagliardo seminorm |·|𝑊𝜎,𝑝(𝛺) is defined
by

|𝑢 |𝑊𝜎,𝑝(𝛺) =

(∫
𝛺

∫
𝛺

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

.

It is endowed with the norm

∥𝑢∥𝑊𝜎,𝑝(𝛺) = ∥𝑢∥𝐿𝑝(𝛺) + |𝑢 |𝑊𝜎,𝑝(𝛺).

When 𝜎 ∈ (0, 1) and 𝑘 ≥ 1, the Sobolev space𝑊 𝑠,𝑝(𝛺) is the set of all 𝑢 ∈𝑊 𝑘,𝑝(𝛺) such
that 𝐷𝑘𝑢 ∈𝑊𝜎,𝑝(𝛺), endowed with the norm

∥𝑢∥𝑊 𝑠,𝑝(𝛺) = ∥𝑢∥𝑊 𝑘,𝑝(𝛺) + |𝐷𝑘𝑢 |𝑊𝜎,𝑝(𝛺).

When working specifically with the Gagliardo seminorm, we shall often consider im-
plicitly that 𝜎 ≠ 0. We also mention that here, we consider 𝐿𝑝(𝛺) maps as measurable
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functions 𝑢 : 𝛺 → ℝ (and not classes of functions), i.e., we do not identify two maps
that are almost everywhere equal. As we will see, this will be of importance in the
course of Section 3.

Throughout the paper, we make intensive use of decompositions of domains into
suitable families of cubes. For this purpose, we introduce a few notations. Given � > 0
and 𝑎 ∈ ℝ𝑚 , we denote by𝑄𝑚

� (𝑎) the cube of center 𝑎 and radius � in ℝ𝑚 , the radius of a
cube being half of the length of its edges. When 𝑎 = 0, we abbreviate 𝑄𝑚

� (0) = 𝑄𝑚
� . We

also abbreviate 𝑄𝑚
1 = 𝑄𝑚 .

A cubication 𝒦𝑚
� of radius � > 0 is any subset of𝑄𝑚

� +2�ℤ𝑚 . Given ℓ ∈ {0, . . . , 𝑚}, the
ℓ -skeleton of 𝒦𝑚

� is the set 𝒦 ℓ
� of all faces of dimension ℓ of all cubes in 𝒦𝑚

� . A subskeleton
of dimension ℓ of 𝒦𝑚

� is any subset of 𝒦 ℓ
� . Given a skeleton 𝒮ℓ , we denote by 𝑆ℓ the

union of all elements of 𝒮ℓ , that is,

𝑆ℓ =
⋃
𝜎ℓ∈𝒮ℓ

𝜎ℓ .

Given a skeleton𝒮ℓ , the dual skeleton of𝒮ℓ is the skeleton𝒯 ℓ ∗ of dimension ℓ ∗ = 𝑚−ℓ−1
consisting in all cubes of the form 𝜎ℓ

∗ + 𝑎 − 𝑥, where 𝜎ℓ
∗ ∈ 𝒮ℓ ∗ , 𝑎 is the center and 𝑥 a

vertex of a cube of 𝒮𝑚 with 𝑥 ∈ 𝜎ℓ
∗ . The dimension ℓ ∗ is the largest possible so that

𝑆ℓ ∩ 𝑇ℓ ∗ = ∅. Here,
𝑇ℓ

∗
=

⋃
𝜎ℓ∗∈𝒯 ℓ∗

𝜎ℓ
∗
.

For further use, we note that 𝑆ℓ ∗ is a homotopy retract of 𝑆𝑚 \𝑇ℓ ∗ ; see e.g. [34, Section 1]
or [7, Lemma 2.3].

Given a map Φ : ℝ𝑚 → ℝ𝑚 , the geometric support of Φ is defined by

SuppΦ = {𝑥 ∈ ℝ𝑚 :Φ(𝑥) ≠ 𝑥}.

This should not be confused with the analytic support of a map 𝜑 : ℝ𝑚 → ℝ, defined by

supp 𝜑 = {𝑥 ∈ ℝ𝑚 : 𝜑(𝑥) ≠ 0}.

We now present the sketch of the proof of Theorem 1.2. We also include graphical
illustrations of the various constructions involved in the proof, with 𝑚 = 2 and [𝑠𝑝] = 1.
As we explained in the introduction, we follow the approach of Bousquet, Ponce, and
Van Schaftingen [9], and we provide the necessary tools and ideas to adapt their method
to the fractional setting. Let 𝑢 ∈ 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩). For the sake of simplicity, we assume
that 𝑢 is defined in a neighborhood of 𝑄

𝑚
. The starting point is Bethuel’s concept of

good cubes and bad cubes that we now present. Let 𝒦𝑚
� be a cubication of 𝑄𝑚 , that is,

𝐾𝑚� = 𝑄𝑚 . Here, � > 0 is such that 1/� ∈ ℕ∗. (Actually, for technical reasons, we will
need to work on a cubication of a slightly larger cube than 𝑄𝑚 , but for this informal
exposition, let us stick to a cubication of 𝑄𝑚 for the sake of simplicity.) We fix 0 < 𝜌 < 1

2
and define the family ℰ𝑚� of all bad cubes as the set of cubes 𝜎𝑚 ∈ 𝒦𝑚

� such that

1
�𝑚−𝑠𝑝 ∥𝐷𝑢∥

𝑠𝑝

𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�)

> 𝑐 if 𝑠 ≥ 1, or 1
�𝑚−𝑠𝑝 |𝑢 |

𝑝

𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
2𝜌�)

> 𝑐 if 0 < 𝑠 < 1, (2.1)
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where 𝑐 > 0 is a small parameter to be determined later on. The remaining cubes are
the good cubes. From now on, we shall assume that we are in the case 𝑠 ≥ 1, in order to
avoid having to distinguish two cases. (The case 0 < 𝑠 < 1 is similar.) The condition
defining the good cubes ensures that 𝑢 does not oscillate too much on such cubes. On the
contrary, one cannot control the behavior of 𝑢 on bad cubes, but we can show that there
are not too many of them. Indeed, each bad cube contributes with at least 𝑐�

𝑚
𝑠𝑝−1 to the

energy of 𝑢, which limits the number of such cubes.
On Figure 2.1, one finds a possible decomposition of 𝑄2 in 16 cubes, which corre-

sponds to � = 1
4 . Here, the three cubes in red are bad cubes, while green cubes are good

cubes. For technical reasons that will become clear later on, it is useful to work on a
set slightly larger than the union of bad cubes. We therefore let 𝒰𝑚

� be the set of all
cubes in 𝒦𝑚

� that intersect some bad cube in ℰ𝑚� . This fact is ignored in our graphical
illustrations, which are drawn as if 𝒰𝑚

� = 𝒦𝑚
� . This allows us to keep readable pictures

with large cubes. Nevertheless, the reader should keep in mind that all constructions
explained below are actually performed not only on the red cubes, but also on all green
cubes adjacent to them, and that decompositions could possibly consist in many small
cubes.

Figure 2.1: Good and bad cubes

We now turn to the construction of the maps in 𝑢 in the class ℛ𝑚−[𝑠𝑝]−1 approximating
𝑢. The first tool is the opening, which is explained in Section 3. This technique originates
in the work of Brezis and Li [13] about the topology of Sobolev spaces of maps between
manifolds. We open the map 𝑢 in order to obtain a map 𝑢op

� which, on a neighborhood
of the [𝑠𝑝]-skeleton 𝑈 [𝑠𝑝]

� , is constant on the (𝑚 − [𝑠𝑝])-dimensional cubes orthogonal
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to cubes in 𝒰 [𝑠𝑝]
� . Therefore, on this neighborhood, the map 𝑢

op
� behaves locally as a

function of [𝑠𝑝]-variables. But since 𝑠𝑝 ≥ [𝑠𝑝], this means that, on this region, 𝑢op
� is

actually a VMO function. The map 𝑢op
� is obtained by modifying 𝑢 on a slightly larger

neighborhood of 𝑈 [𝑠𝑝]
� , and the construction does not increase too much the energy of

𝑢 on this neighborhood.
On Figure 2.2, one finds an illustration of the opening procedure when [𝑠𝑝] = 1. The

map 𝑢 is opened on the blue region, where it therefore satisfies VMO estimates.

Figure 2.2: Opening around the 1-skeleton of bad cubes

The next step is to smoothen the map 𝑢op
� . Given a mollifier 𝜑 ∈ 𝒞∞

𝑐 (𝐵𝑚1 ) and 𝑟 > 0,
the usual convolution product is defined as

𝜑𝑟 ∗ 𝑢(𝑥) =
∫
𝐵𝑚1

𝜑(𝑧)𝑢(𝑥 + 𝑟𝑧)d𝑧.

Here we rely on the method of adaptative smoothing, whose principle is to allow the
convolution parameter to depend on the point where the convolution is evaluated. This
technique was made popular by the work of Schoen and Uhlenbeck [30], where it was
used in the study of the regularity of harmonic maps with values into a manifold.

More precisely, given 𝜓 ∈ 𝒞∞(𝑄𝑚), we let

𝜑𝜓 ∗ 𝑢(𝑥) =
∫
𝐵𝑚1

𝜑(𝑧)𝑢(𝑥 + 𝜓(𝑥)𝑧)d𝑧.
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To pursue the proof, we choose a suitable map 𝜓� ∈ 𝒞∞(𝐵𝑚1 ), whose construction
depends on � and will be explained later on, and we define 𝑢sm

� = 𝜑𝜓� ∗ 𝑢
op
� .

This convolution procedure guarantees that the resulting map 𝑢sm
� is smooth, but has

the drawback that it need no longer take its values into𝒩 , since the convolution product
is in general not compatible with non convex constraints. We therefore need to estimate
the distance between 𝑢sm

� and 𝒩 . By straightforward computations, we write

|𝑢sm
� (𝑥) − 𝑢op

� (𝑧)| ≤ 𝐶1

⨏
𝑄𝑚

𝜓�(𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦.

Averaging over all 𝑧 ∈ 𝑄𝑚
𝜓(𝑥)(𝑥), since 𝑢op

� (𝑧) ∈ 𝒩 , we deduce that

dist (𝑢sm
� (𝑥),𝒩) ≤ 𝐶1

⨏
𝑄𝑚

𝜓�(𝑥)

⨏
𝑄𝑚

𝜓�(𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦d𝑧.

Here we see the usefulness of the opening construction performed at the previous step:
since 𝑢op

� is a VMO function close to 𝑈 [𝑠𝑝]
� , the right-hand side of the above estimate

may be made arbitrarily small in this region provided that we choose 𝜓�(𝑥) sufficiently
small. On the good cubes, we pursue the estimate by invoking the Poincaré–Wirtinger
inequality to write

dist (𝑢sm
� (𝑥),𝒩) ≤ 𝐶2

1
𝜓�(𝑥)

𝑚
𝑠𝑝−1

∥𝐷𝑢op
� ∥𝐿𝑠𝑝(𝑄𝑚

𝜓�(𝑥)(𝑥))

≤ 𝐶3
1

𝜓�(𝑥)
𝑚
𝑠𝑝−1

∥𝐷𝑢∥𝐿𝑠𝑝(𝑄𝑚
𝜓�(𝑥)(𝑥))

. (2.2)

If we choose 𝜓�(𝑥) of order �, then on the right-hand side of (2.2), we find precisely
the energy of 𝑢 which is controlled on the good cubes. Therefore, choosing suitably
the constant 𝑐 > 0 in (2.1), on the good cubes, 𝑢sm

� will be 𝛿-close to 𝒩 , for some given
arbitrarily small number 𝛿 > 0. To summarize, we are invited to choose the convolution
parameter very small on bad cubes, near the [𝑠𝑝]-skeleton, and of order � on good
cubes. Between those two regimes, we need a transition region in order to allow 𝜓�

to change of magnitude, which is precisely the reason to introduce both families 𝒰𝑚
�

and ℰ𝑚� instead of working directly on bad cubes. The precise way to perform this
construction is explained in Section 4, and gathering the estimates on good and bad
cubes, we conclude that 𝑢sm

� is close to 𝒩 on the good cubes, and on the part of bad
cubes close to the [𝑠𝑝]-skeleton.

It therefore remains to deal with the part of bad cubes far from the [𝑠𝑝]-skeleton,
where we have no control on the distance between 𝑢sm

� and 𝒩 (which corresponds to
the red region in Figure 2.2). This is the purpose of the last tool we need, which is called
thickening. The method is inspired from the use of homogeneous extension by Bethuel
in the case 𝑠 = 1. We illustrate the idea when 𝑠 = 1 and 𝑚 − 1 < 𝑝 < 𝑚. Given a map
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𝑣 ∈ 𝒞∞(𝑄𝑚), we define 𝑤 on 𝑄𝑚 by

𝑤(𝑥) = 𝑣
( 𝑥

|𝑥 |∞

)
.

Here we recall that |·|∞ stands for the ∞-norm in ℝ𝑚 , defined for 𝑥 = (𝑥1 , . . . , 𝑥𝑚) ∈ ℝ𝑚

by |𝑥 |∞ = max
1≤𝑖≤𝑚

|𝑥𝑖 |. Using radial integration, we see that 𝑤 ∈𝑊1,𝑝(𝑄𝑚) and

∥𝐷𝑤∥𝑝
𝐿𝑝(𝑄𝑚) ≤ 𝐶4∥𝐷𝑣∥𝑝𝐿𝑝(𝜕𝑄𝑚)

∫ 1

0
𝑟𝑚−𝑝−1 d𝑟 ≤ 𝐶5∥𝐷𝑣∥𝑝𝐿𝑝(𝜕𝑄𝑚).

Here we use the assumption 𝑝 < 𝑚. Hence, 𝑤 is a 𝑊1,𝑝(𝑄𝑚) map that depends only
on the values of 𝑣 on 𝜕𝑄𝑚 . We may iterate this construction on faces by downward
induction on the dimension to construct a map which only depends on the values of 𝑣
on the [𝑝]-skeleton of 𝑄𝑚 .

Two major difficulties arise when we try to adapt this construction to general Sobolev
maps and spaces. First, it requires to work with slices of Sobolev maps on sets of
zero measure. But more importantly, gluing such constructions on two cubes sharing a
common face is a delicate matter. This is already the case when 𝑠 = 1 if 𝑝 < 𝑚 − 1, since
the resulting maps do not coincide on the whole common face, and gets worse when
𝑠 > 1 + 1

𝑝 as the derivatives do not match at the interface. We bypass this difficulty
be working with a more involved version of homogeneous extension, the thickening
procedure.

Let 𝒯 [𝑠𝑝]∗
� denote the dual skeleton of 𝒰 [𝑠𝑝]

� . The homogeneous extension, in the form
presented above, associates with a map 𝑣 : 𝑈 [𝑠𝑝]

� → ℝ� a map 𝑤 : 𝑈𝑚
� \ 𝑇[𝑠𝑝]∗

� → ℝ�,
and this map is, in general, discontinuous on 𝑇

[𝑠𝑝]∗
� . The map 𝑤 may be written as

𝑤 = 𝑣 ◦Φhe, where Φhe : 𝑈𝑚
� \ 𝑇[𝑠𝑝]∗

� → 𝑈
[𝑠𝑝]
� is a Lipschitz map. Instead, the thickening

procedure associates with a map 𝑣 : 𝑈 [𝑠𝑝]
� +𝑄𝑚

𝛿 → ℝ� (for some 𝛿 > 0 sufficiently small)
a map 𝑤 : 𝑈𝑚

� \ 𝑇[𝑠𝑝]∗
� → ℝ�, which, again, is in general singular on the set 𝑇[𝑠𝑝]∗

� . The
map 𝑤 is obtained from 𝑣 as 𝑤 = 𝑣 ◦ Φth, where Φth : 𝑈𝑚

� \ 𝑇[𝑠𝑝]∗
� → 𝑈

[𝑠𝑝]
� + 𝑄𝑚

𝛿 is a
smooth map. Working with the neighborhood 𝑈 [𝑠𝑝]

� + 𝑄𝑚
𝛿 instead of the skeleton 𝑈 [𝑠𝑝]

�

is the key idea to avoid working with slices of Sobolev maps, and more importantly, to
be able to choose Φth smooth, which, in turn, is crucial to ensure that composition with
Φth preserves higher order Sobolev regularity.

The detailed construction, devised in [9, Section 4], is explained in Section 5, and we
apply it to modify the map 𝑢sm

� on 𝑈𝑚
� to a map 𝑢th

� whose values on 𝑈𝑚
� only depend

on the values of 𝑢sm
� near𝑈 [𝑠𝑝]

� , while not increasing too much the energy of the map on
𝑈𝑚

� . Therefore, the map 𝑢th
� is close to 𝒩 on the whole𝑄𝑚 \𝑇[𝑠𝑝]∗

� , which makes possible
to project it back onto 𝒩 relying on the nearest point projection Π. Since the map 𝑢sm

�

is smooth, the map 𝑢th
� is smooth on 𝑄𝑚 \𝑇[𝑠𝑝]∗

� , and we will show that the singularities
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created on 𝑇[𝑠𝑝]∗
� by the thickening are sufficiently mild so that 𝑢th

� belongs to the class
ℛ𝑚−[𝑠𝑝]−1(𝑄𝑚 ;ℝ�).

One finds an illustration of the thickening procedure on Figure 2.3. The values of 𝑢
on the dark blue region are propagated into the light blue region. This process creates
point singularities on the centers of bad cubes, which are represented by the intersection
of all the black lines.

Figure 2.3: Thickening around the centers of bad cubes

The maps 𝑢� = Π ◦ 𝑢th
� therefore belong to ℛ𝑚−[𝑠𝑝]−1(𝑄𝑚 ;𝒩), and they are actually

the approximations of 𝑢 that we were looking for. The only step that is required to
obtain this conclusion is to show the convergence 𝑢� → 𝑢 in 𝑊 𝑠,𝑝 as � → 0. This is
done in Section 6, and amounts to a careful combination of the estimates obtained at
each step of the construction. Except for the adaptative smoothing, all the modifications
performed on 𝑢 are localized in a neighborhood of 𝑈𝑚

� . The main ingredient to reach
the conclusion 𝑢� → 𝑢 is therefore the fact that there are not too many bad cubes, and
that actually the measure of the union of all bad cubes decays at a sufficiently high rate.

The density of the class ℛ being established, we may then move to the density of
smooth maps under the assumption 𝜋[𝑠𝑝](𝒩) = {0}. For this, it suffices to show that
maps 𝑢� of the class ℛ𝑚−[𝑠𝑝]−1(𝑄𝑚 ,𝒩) as constructed in the first part of the proof above
may be approximated by smooth maps. Under the assumption 𝜋[𝑠𝑝](𝒩) = {0}, for any
given arbitrarily small number 𝛿 > 0, one may find a smooth map 𝑢ex

𝛿 such that 𝑢ex
𝛿

coincides with 𝑢� everywhere on𝑄𝑚 except on𝑇[𝑠𝑝]∗
� +𝑄𝑚

𝛿 . This is explained in Section 8,
in connection with the notion of extension property introduced by Hang and Lin [22].
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The map 𝑢ex
𝛿 allows us to remove the singularities of 𝑢�, but this topological construc-

tion does not allow to conclude that 𝑢ex
𝛿 is close to 𝑢� with respect to the𝑊 𝑠,𝑝 distance,

since 𝑢ex
𝛿 could have arbitrarily large energy on the set 𝑇[𝑠𝑝]∗

� +𝑄𝑚
𝛿 where it differs from

𝑢�. To overcome this issue, we use a scaling argument to obtain a better extension.
Again, we illustrate the method on the model case where 𝑠 = 1 and 𝑚 − 1 < 𝑝 < 𝑚.
Assume that 𝑣 ∈ 𝑊1,𝑝(𝑄𝑚) and that 𝑤 ∈ 𝒞∞(𝑄𝑚) coincides with 𝑣 on 𝑄𝑚 \ 𝑄𝑚

𝛿 , where
0 < 𝛿 < 1

2 . Given 0 < 𝜏 < 1, we define 𝑤𝜏 on 𝑄𝑚 by

𝑤𝜏(𝑥) =


𝑤(𝑥) if 𝑥 ∈ 𝑄𝑚 \ 𝐵𝑚2𝛿,
𝑤
(
𝑥
𝜏

)
if 𝑥 ∈ 𝐵𝑚𝜏𝛿,

𝑤
(
𝑥
|𝑥 |
( 1

2−𝜏 (|𝑥 | − 𝜏𝛿) + 𝛿
) )

if 𝑥 ∈ 𝐵𝑚2𝛿 \ 𝐵
𝑚
𝜏𝛿.

This corresponds to shrinking𝑤 from 𝐵𝑚𝛿 to 𝐵𝑚𝜏𝛿 while keeping it unchanged on𝑄𝑚 \𝐵𝑚2𝛿,
filling the transition region by linear interpolation. By a change of variable, we estimate

∥𝐷𝑤𝜏∥𝑝𝐿𝑝(𝑄𝑚) = ∥𝐷𝑤𝜏∥𝑝𝐿𝑝(𝐵𝑚𝜏𝛿) + ∥𝐷𝑤𝜏∥𝑝𝐿𝑝(𝑄𝑚\𝐵𝑚𝜏𝛿)

≤ 𝐶6𝜏
𝑚−𝑝 ∥𝐷𝑤∥𝑝

𝐿𝑝(𝐵𝑚𝛿 )
+ 𝐶7∥𝐷𝑤∥𝑝

𝐿𝑝(𝑄𝑚\𝐵𝑚𝛿 )
.

Since 𝑣 = 𝑤 on 𝑄𝑚 \𝑄𝑚
𝛿 , we deduce that

∥𝐷𝑤𝜏∥𝑝𝐿𝑝(𝑄𝑚) ≤ 𝐶6𝜏
𝑚−𝑝 ∥𝐷𝑤∥𝑝

𝐿𝑝(𝐵𝑚𝛿 )
+ 𝐶7∥𝐷𝑣∥𝑝𝐿𝑝(𝑄𝑚\𝐵𝑚𝛿 )

.

Choosing 𝜏 sufficiently small – depending on 𝛿 and on 𝑤 – we may therefore make so
that

∥𝐷𝑤𝜏∥𝑝𝐿𝑝(𝑄𝑚) ≤ 𝐶8∥𝐷𝑣∥𝑝𝐿𝑝(𝑄𝑚).

In Section 7, we explain the technique of shrinking, which is actually a more involved
version of this scaling argument, devised in [9, Section 8] to handle lower order skeletons
and higher order regularity.

An illustration of this idea is available on Figure 2.4. The point singularities in
Figure 2.3 have been patched with a topological extension, which has been shrinked
into the small region in gray to obtain a map with controlled energy.

This allows to proceed with the proof of Theorem 1.1 in Section 8. The strategy is
exactly the same as in the model example above: we start with the smooth extension
𝑢ex
𝛿 provided by topological arguments, we shrink it to a map 𝑢sh

𝛿,𝜏, and we use carefully
the estimates available for shrinking to choose the parameter 𝜏 > 0 in order to obtain a
better extension with control of the energy. As 𝛿 → 0, this provides an approximation
of 𝑢� by smooth maps with values into 𝒩 , which is enough to prove Theorem 1.1 since
we already obtained the density of class ℛ.

After this sketch of our proofs, we move to the detailed construction of the different
tools that were described above. The proofs being rather long and technical, we hope
that this informal presentation will help the reader to identify and keep in mind the
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Figure 2.4: Shrinking around the centers of bad cubes

purpose and the intuition behind each construction when studying the details of the
reasoning.

We end this section with two lemmas that will be used repeatedly in the sequel. Most
of our constructions on cubications will be built blockwise: we start from a building
block defined on a cube, and we glue copies of this block on each cube of the skeleton to
obtain a map defined on the whole skeleton. When establishing Sobolev estimates for
such constructions, integer order estimates on the skeleton are readily obtained from
corresponding estimates on each cube by additivity of the integral. On the contrary,
the Gagliardo seminorm is not additive due to its nonlocal nature. We bypass this
obstruction by relying on the lemmas below.

Lemma 2.1. Let 𝛿 > 0 and let 𝛺 =
⋃
𝑖∈𝐼 𝛺𝑖 , where 𝐼 is finite or countable and 𝛺𝑖 ⊂ ℝ𝑚 for

every 𝑖 ∈ 𝐼. Set 𝛺𝑖 ,𝛿 = {𝑥 ∈ 𝛺: dist(𝑥,𝛺𝑖) < 𝛿}. For every 𝑢 : 𝛺 → ℝ measurable, one has

|𝑢 |𝑝
𝑊𝜎,𝑝(𝛺) ≤

∑
𝑖∈𝐼

|𝑢 |𝑝
𝑊𝜎,𝑝(𝛺𝑖 ,𝛿) + 𝐶𝛿

−𝜎𝑝 ∥𝑢∥𝑝
𝐿𝑝(𝛺)

for some constant 𝐶 > 0 depending on 𝑚, 𝜎, and 𝑝.

This lemma acts as a replacement for the additivity for the Gagliardo seminorm.
Similar kind of results were already present in the work of Bourdaud concerning the
continuity of the composition operator on Sobolev or Besov spaces; see e.g. [5] and the
references therein. The price to pay to have a decomposition of the Gagliardo seminorm
is that we need some margin of security between the different parts of the domain on
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which we split the energy, and that an additional term involving the 𝐿𝑝 norm of the map
under consideration shows up, which deteriorates as the margin of security shrinks. In
the sequel, Lemma 2.1 will often be employed by taking the 𝛺𝑖 to be rectangles, which
therefore suggests to have at our disposal estimates on rectangles slightly larger than the
𝛺𝑖 . Here we use the term rectangle to denote any product of𝑚 intervals with non-empty
interior. We reserve the word cube for the case where all the intervals have the same
length.

Proof. Let 𝑥, 𝑦 ∈ 𝛺. By assumption, either 𝑥, 𝑦 ∈ 𝛺𝑖 ,𝛿 for some 𝑖 ∈ 𝐼, or |𝑥 − 𝑦 | ≥ 𝛿.
Otherwise stated,

𝛺 ×𝛺 ⊂ {(𝑥, 𝑦) ∈ 𝛺 ×𝛺: |𝑥 − 𝑦 | ≥ 𝛿} ∪
⋃
𝑖∈𝐼

𝛺𝑖 ,𝛿 ×𝛺𝑖 ,𝛿 .

Therefore,

|𝑢 |𝑝
𝑊𝜎,𝑝(𝛺) ≤

∑
𝑖∈𝐼

|𝑢 |𝑝
𝑊𝜎,𝑝(𝛺𝑖 ,𝛿) +

∫
{(𝑥,𝑦)∈𝛺×𝛺:|𝑥−𝑦 |≥𝛿}

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦.

We estimate∫
{(𝑥,𝑦)∈𝛺×𝛺:|𝑥−𝑦 |≥𝛿}

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

≤ 2𝑝
∫
𝛺
|𝑢(𝑥)|𝑝

(∫
ℝ𝑚\𝐵𝑚𝛿 (𝑥)

1
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

)
d𝑥 ≤ 𝐶1𝛿

−𝜎𝑝
∫
𝛺
|𝑢(𝑥)|𝑝 d𝑥.

This completes the proof of the lemma. □

It is also possible to obtain a replacement for the additivity for the Gagliardo seminorm
without a term involving the 𝐿𝑝 norm of the map under consideration. The price to pay
is that such an estimate only applies on finite decompositions, hence not covering the
case where an infinite number of sets is involved. If 𝑄 ⊂ ℝ𝑚 is a rectangle, then �𝑄 is
the rectangle having the same center as 𝑄 and sidelengths multiplied by �.

Lemma 2.2. Let 0 < � < 1 and 𝑄 ⊂ ℝ𝑚 be a rectangle. For every 𝛺 ⊂ ℝ𝑚 such that
𝑄 \ �𝑄 ⊂ 𝛺 and every 𝑢 : 𝛺 → ℝ measurable, we have

|𝑢 |𝑊𝜎,𝑝(𝛺) ≤ 𝐶
(
|𝑢 |𝑊𝜎,𝑝(𝛺∩𝑄) + |𝑢 |𝑊𝜎,𝑝(𝛺\�𝑄)

)
for some constant 𝐶 > 0 depending on 𝑚, 𝜎, 𝑝, �, and the ratio between the largest and the
smallest side of 𝑄.

Lemma 2.2 is inspired from [24, Lemma 2.2], and we follow their proof. At the core
of the argument lies a very classical averaging argument, which was already present in
the proof of Besov’s lemma; see e.g. [1, Proof of Lemma 7.44]. A similar idea is also used
in the proof of Morrey’s embedding. This type of argument will be used in multiple
occasions in this paper.
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We note that the constant 𝐶 necessarily diverges to +∞ as � → 1. Moreover, one
cannot deduce an improved version of Lemma 2.1 without the 𝐿𝑝 norm by applying
Lemma 2.2 inductively, since the constant 𝐶 is actually larger than 1. Hence, we may
iterate the lemma to obtain an estimate for a decomposition into a finite number of sets,
but the constant depends on the number of sets.

Proof. We start by writing

|𝑢 |𝑝
𝑊𝜎,𝑝(𝛺) ≤ |𝑢 |𝑝

𝑊𝜎,𝑝(𝛺∩𝑄) + |𝑢 |𝑝
𝑊𝜎,𝑝(𝛺\�𝑄) + 2

∫
𝛺∩�𝑄

∫
𝛺\𝑄

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥.

Now we use the average estimate∫
𝛺∩�𝑄

∫
𝛺\𝑄

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥

≤ 2𝑝−1
(∫

𝛺∩�𝑄

∫
𝛺\𝑄

⨏
𝑄\�𝑄

|𝑢(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑧d𝑦d𝑥

+
∫
𝛺∩�𝑄

∫
𝛺\𝑄

⨏
𝑄\�𝑄

|𝑢(𝑧) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑧d𝑦d𝑥

)
. (2.3)

Let 𝑐 > 0 be the length of the smallest side of𝑄. Since |𝑥−𝑦 | ≥ 𝑐(1−�)whenever 𝑥 ∈ �𝑄
and 𝑦 ∈ 𝛺 \𝑄, first integrating with respect to 𝑦 in the first term on the right-hand side
of (2.3), we find∫

𝛺∩�𝑄

∫
𝛺\𝑄

⨏
𝑄\�𝑄

|𝑢(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑧d𝑦d𝑥

≤ 𝐶1
1

𝑐𝜎𝑝(1 − �)𝜎𝑝
∫
𝛺∩�𝑄

⨏
𝑄\�𝑄

|𝑢(𝑥) − 𝑢(𝑧)|𝑝 d𝑧d𝑥.

Now we observe that |𝑄 \ �𝑄 | ≥ (1 − �𝑚)𝑐𝑚 and that |𝑥 − 𝑧 | ≤ 𝐶2𝑐 for 𝑥 ∈ �𝑄 and
𝑧 ∈ 𝑄 \ �𝑄. Here 𝐶2 depends on the ratio between the largest and the smallest side of
𝑄. This allows us to conclude that∫

𝛺∩�𝑄

∫
𝛺\𝑄

⨏
𝑄\�𝑄

|𝑢(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑧d𝑦d𝑥

≤ 𝐶3
1

(1 − �)𝜎𝑝(1 − �𝑚)

∫
𝛺∩�𝑄

∫
𝑄\�𝑄

|𝑢(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑧 |𝑚+𝜎𝑝 d𝑧d𝑥 ≤ 𝐶4 |𝑢 |𝑝𝑊𝜎,𝑝(𝛺∩𝑄).

For the second term in the right-hand side of (2.3), we start by noting that if 𝑥 ∈ �𝑄
and 𝑦 ∈ 𝜕(𝑟𝑄) for some 𝑟 ≥ 1, then |𝑥 − 𝑦 | ≥ 𝑐(𝑟 − �). On the other hand, if 𝑦 ∈ 𝜕(𝑟𝑄)
and 𝑧 ∈ 𝑄 \ �𝑄, then

|𝑦 − 𝑧 | ≤ 𝐶5𝑐(𝑟 + 1) = 𝐶5𝑐
𝑟 + 1
𝑟 − �

(𝑟 − �) ≤ 𝐶6𝑐(𝑟 − �),
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where 𝐶5 depends on the ratio between the largest and the smallest side of𝑄. Therefore,
for any 𝑥 ∈ �𝑄, 𝑦 ∈ 𝛺 \ 𝑄, and 𝑧 ∈ 𝑄 \ �𝑄, we have |𝑦 − 𝑧 | ≤ 𝐶6 |𝑥 − 𝑦 |. Hence, we
obtain∫

𝛺∩�𝑄

∫
𝛺\𝑄

⨏
𝑄\�𝑄

|𝑢(𝑧) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑧d𝑦d𝑥

≤ 𝐶7
�𝑚

1 − �𝑚

∫
𝛺\𝑄

∫
𝑄\�𝑄

|𝑢(𝑧) − 𝑢(𝑦)|𝑝
|𝑦 − 𝑧 |𝑚+𝜎𝑝 d𝑧d𝑦 ≤ 𝐶8 |𝑢 |𝑝𝑊𝜎,𝑝(𝛺\�𝑄).

Gathering the estimates for both terms in the right-hand side of (2.3) yields the conclu-
sion. □

3 Opening

This section is devoted to the opening procedure. We follow the approach of Bousquet,
Ponce, and Van Schaftingen [9, Section 2], who adapted to higher order regularity a
construction of Brezis and Li [13]. The main result of this section is the following
fractional counterpart of [9, Proposition 2.1], which contains the opening construction.
Recall that we write 𝑠 = 𝑘 + 𝜎, with 𝑘 ∈ ℕ and 𝜎 ∈ [0, 1). Note carefully that the map Φ

constructed below depends on the map 𝑢 ∈𝑊 𝑠,𝑝 it is composed with.
Proposition 3.1. Let 𝛺 ⊂ ℝ𝑚 be open, ℓ ∈ {0, . . . , 𝑚 − 1}, � > 0, 0 < 𝜌 < 1

2 , and 𝒰ℓ be
a subskeleton of ℝ𝑚 of radius � such that 𝑈ℓ + 𝑄𝑚

2𝜌� ⊂ 𝛺. For every 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;ℝ�), there
exists a smooth map Φ : ℝ𝑚 → ℝ𝑚 such that

(i) for every 𝑑 ∈ {0, . . . , ℓ } and for every 𝜎𝑑 ∈ 𝒰 𝑑, Φ is constant on the (𝑚− 𝑑)-dimensional
cubes of radius 𝜌� which are orthogonal to 𝜎𝑑;

(ii) SuppΦ ⊂ 𝑈ℓ +𝑄𝑚
2𝜌� and Φ(𝑈ℓ +𝑄𝑚

2𝜌�) ⊂ 𝑈ℓ +𝑄𝑚
2𝜌�;

(iii) 𝑢 ◦ Φ ∈ 𝑊 𝑠,𝑝(𝛺;ℝ�), and moreover, for every 𝜔 ⊂ 𝛺 such that 𝑈ℓ + 𝑄𝑚
2𝜌� ⊂ 𝜔, the

following estimates hold:
(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢 ◦Φ|𝑊 𝑠,𝑝(𝜔) ≤ 𝐶
(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝜔) + ∥𝑢∥𝐿𝑝(𝜔)

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝑢 ◦Φ)∥𝐿𝑝(𝜔) ≤ 𝐶

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ)|𝑊𝜎,𝑝(𝜔) ≤ 𝐶

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝜔)

)
;
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(d) for every 0 < 𝑠 < +∞,
∥𝑢 ◦Φ∥𝐿𝑝(𝜔) ≤ 𝐶∥𝑢∥𝐿𝑝(𝜔);

(iv) for every 𝜔 ⊂ 𝛺 such that𝑈ℓ +𝑄𝑚
2𝜌� ⊂ 𝜔, the following estimates hold:

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢 ◦Φ − 𝑢 |𝑊 𝑠,𝑝(𝜔) ≤ 𝐶
(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝑈ℓ+𝑄𝑚

2𝜌�) + ∥𝑢∥𝐿𝑝(𝑈ℓ+𝑄𝑚
2𝜌�)

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢∥𝐿𝑝(𝜔) ≤ 𝐶

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈ℓ+𝑄𝑚
2𝜌�);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝜔) ≤ 𝐶

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈ℓ+𝑄𝑚

2𝜌�)

+ �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈ℓ+𝑄𝑚
2𝜌�)

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ − 𝑢∥𝐿𝑝(𝜔) ≤ 𝐶∥𝑢∥𝐿𝑝(𝑈ℓ+𝑄𝑚
2𝜌�);

for some constant 𝐶 > 0 depending on 𝑚, 𝑠, 𝑝, and 𝜌.
Recall that SuppΦ denotes the geometric support of Φ, defined as

SuppΦ = {𝑥 ∈ ℝ𝑚 :Φ(𝑥) ≠ 𝑥}.

Crucial to the proof of Theorem 1.2 are the estimates in (iii) with 𝜔 = 𝑈ℓ +𝑄𝑚
2𝜌�. They

imply that the opening procedure does not increase too much the energy of the map 𝑢
where it is modified. Proposition 3.1 will be used in the proof of Theorem 1.2 in order
to prove that a map can be opened by paying the price of an arbitrarily small increase
of the norm.

The map Φ will be constructed blockwise: for every 𝑑 ∈ {0, . . . , ℓ } and every 𝜎𝑑 ∈ 𝒰 𝑑,
we construct an opening map Φ𝜎𝑑 around the face 𝜎𝑑, and then we suitably combine
those maps together to yield the desired map Φ. The construction of the building block
Φ𝜎𝑑 is performed in Proposition 3.2 below. Before giving a precise statement, we first
introduce, for the convenience of the reader, some additional notation.

The construction of the map Φ provided by Proposition 3.2 involves four parameters
0 < 𝜌 < 𝑟 < 𝑟 < 𝜌 < 1. These parameters being fixed, we introduce the rectangles

𝑄1 = 𝑄1,� = 𝑄𝑑
(1−𝜌)� ×𝑄

𝑚−𝑑
𝜌� , 𝑄2 = 𝑄2,� = 𝑄𝑑

(1−𝑟)� ×𝑄
𝑚−𝑑
𝑟� ,

𝑄3 = 𝑄3,� = 𝑄𝑑
(1−𝑟)� ×𝑄

𝑚−𝑑
𝑟� and 𝑄4 = 𝑄4,� = 𝑄𝑑

(1−𝜌)� ×𝑄
𝑚−𝑑
𝜌� .

(3.1)
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The rectangle 𝑄1 is the place where the opening construction is actually performed:
the map Φ only depends on the first 𝑑 variables on 𝑄1. The rectangle 𝑄2 contains the
support of the map Φ, that is, Φ coincides with the identity outside of 𝑄2. The region
between 𝑄1 and the exterior of 𝑄2 serves as a transition region between both regimes.

From now on we shall keep using the notation 𝑄1, . . . , 𝑄4 for the sake of conciseness
and because it makes more apparent the inclusion relations between the four rectangles:
observe that 𝑄1 ⊂ 𝑄2 ⊂ 𝑄3 ⊂ 𝑄4. The dependence with respect to the parameters 𝜌, 𝑟,
𝑟, 𝜌 and � will be implicit.

Proposition 3.2. Let 𝑑 ∈ {0, . . . , 𝑚 − 1}, � > 0, and 0 < 𝜌 < 𝑟 < 𝑟 < 𝜌 < 1. For every
𝑢 ∈𝑊 𝑠,𝑝(𝑄4;ℝ�), there exists a smooth map Φ : 𝑄4 → 𝑄4 such that

(i) Φ(𝑥′, 𝑥′′) = (𝑥′, �(𝑥)) for every 𝑥 = (𝑥′, 𝑥′′) ∈ 𝑄4, where � : 𝑄4 → 𝑄𝑚−𝑑
𝜌�

is smooth;

(ii) for every 𝑥′ ∈ 𝑄𝑑
(1−𝜌)� , Φ is constant on {𝑥′} ×𝑄𝑚−𝑑

𝜌� ;

(iii) SuppΦ ⊂ 𝑄2 and Φ(𝑄2) ⊂ 𝑄2;

(iv) 𝑢 ◦Φ ∈𝑊 𝑠,𝑝(𝑄3;ℝ�), and moreover, the following estimates hold:
a) if 0 < 𝑠 < 1, then

|𝑢 ◦Φ|𝑊 𝑠,𝑝(𝑄3) ≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝑄4);

b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝑢 ◦Φ)∥𝐿𝑝(𝑄3) ≤ 𝐶

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑄4);

c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ)|𝑊𝜎,𝑝(𝑄3) ≤ 𝐶

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑄4) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑄4)

)
;

d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ∥𝐿𝑝(𝑄3) ≤ 𝐶∥𝑢∥𝐿𝑝(𝑄4);

for some constant 𝐶 > 0 depending on 𝑚, 𝑠, 𝑝, 𝜌, 𝑟, 𝑟, and 𝜌.

We comment on the domains involved in the estimates of item (iv) in Proposition 3.2
above. We need estimates on the rectangle 𝑄3 instead of the smaller rectangle 𝑄2
containing the support of Φ, in order to have enough room to apply Lemmas 2.1 and 2.2
as substitutes for the additivity of the integral when proving the fractional estimates in
Proposition 3.1. Moreover, we only control the energy on𝑄3 by the energy on the larger
rectangle 𝑄4 due to the averaging process involved in the proof of Proposition 3.2, as
we will see later on.
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Taking Proposition 3.2 granted for the moment, we proceed with the proof of Propo-
sition 3.1. Before providing a detailed rigorous proof, we sketch the argument.

We first open the map 𝑢 around each vertex of 𝒰0 by applying Proposition 3.2 with
𝑑 = 0 and using parameters 𝜌 = 2𝜌 and 𝜌 = 𝜌0 < 2𝜌. This produces a map 𝑢0 which
is constant on cubes of radius 𝜌0� around each vertex of 𝒰0. We next open the map
𝑢0 around each edge of 𝒰1 using Proposition 3.2 with 𝑑 = 1, 𝜌 = 𝜌0, and 𝜌 = 𝜌1 < 𝜌0.
One may see that the geometric supports of the building blocks around each face do not
overlap, so that we may glue them together to obtain a well-defined map on the whole
𝛺. This construction yields a map 𝑢1 which is constant on all (𝑚 − 1)-cubes of radius
𝜌1� which are orthogonal to the edges of 𝒰1, provided that they lie at distance at least
𝜌0� from the endpoints of the edges. But the map 𝑢1 is constructed from the map 𝑢0

which was constant on the cubes of radius 𝜌0� centered at the vertices of 𝒰ℓ . Hence
we conclude that the map 𝑢1 is constant on all (𝑚 − 1)-cubes of radius 𝜌1� which are
orthogonal to the edges of 𝒰ℓ . We then pursue this construction by induction until we
reach the desired dimension, which yields a map Φ as in Proposition 3.1.

An illustration of this construction on one cube for 𝑚 = 2 and ℓ = 1 is presented in
Figure 3.1. On the left part of the figure, one sees the result of opening around vertices.
The map 𝑢 becomes constant on the dark blue squares, and is left unchanged on the
white region, the light blue region serving as a transition. The central part of the figure
shows the opening step around edges. The map 𝑢 becomes constant on the segments
orthogonal to the edges of 𝒰1 that are sufficiently far from the vertices, some of which
being represented in black. The regions involved in the construction at the previous
step, when opening around the vertices, are depicted in light colors, to show how all the
regions are located relatively to each other. One sees that the opening regions around
vertices and edges connect perfectly. The right part of the figure shows the combination
of both steps. The map 𝑢 becomes constant on all segments orthogonal to the edges of
𝒰1.

Figure 3.1: Opening for 𝑚 = 2 and ℓ = 1

The construction sketched above is strongly inspired by [9, Proposition 2.1], but
nevertheless significantly different from [9, Proposition 2.1]. Indeed, in our approach,
at each step of the iterative process, the sets on which we apply opening around each face
(the building blocks of our global construction) do not overlap. Hence, gathering the
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constructions made around each face yields a globally well-defined map on the whole
𝛺, regardless of the map we started with at the beginning of the step. For instance,
the map 𝑢1 described in the above sketch is well-defined on the whole 𝛺, regardless
of the form of the map 𝑢0. On the other hand, the construction in [9] relies on the
fact that, at the 𝑑-th step of the iterative process, we work with a map that has already
been opened around the 𝑖-faces for 𝑖 < 𝑑. Indeed the constructions made at step 𝑑 are
not compatible near the lower dimensional faces, where they overlap. Our approach
simplifies the proof of Sobolev estimates, especially in the fractional case where one
needs some margin of security to apply Lemmas 2.1 and 2.2, but also for the case of
integer order estimates (already treated in [9]).

Proof of Proposition 3.1. As announced, we construct a family of maps (Φ𝑑)0≤𝑑≤ℓ by in-
duction. For the convenience of notation we set Φ−1 = id. Assuming that the maps Φ−1,
. . . , Φ𝑑−1 have already been constructed, we set 𝑢𝑑 = 𝑢 ◦Φ−1 ◦ · · · ◦Φ𝑑−1. Let (𝜌𝑑)0≤𝑑≤ℓ ,
(𝑟𝑑)0≤𝑑≤ℓ and (𝑟𝑑)0≤𝑑≤ℓ be decreasing sequences such that

𝜌 = 𝜌ℓ < 𝑟ℓ < 𝑟ℓ < 𝜌ℓ−1 < · · · < 𝜌𝑑 < 𝑟𝑑 < 𝑟𝑑 < 𝜌𝑑−1 < · · · < 𝜌0 < 𝑟0 < 𝑟0 < 2𝜌.

For every 𝑑 ∈ {0, . . . , ℓ } and every 𝜎𝑑 ∈ 𝒰 𝑑, there is an isometry 𝑇𝜎𝑑 of ℝ𝑚 mapping
𝑄𝑑

� × {0}𝑚−ℓ onto 𝜎𝑑. Via this isometry, we apply Proposition 3.2 to 𝑢𝑑 around 𝜎𝑑 with
parameters 𝜌 = 𝜌𝑑, 𝑟 = 𝑟𝑑, 𝑟 = 𝑟𝑑 and 𝜌 = 𝜌𝑑−1 – with the convention that 𝜌−1 = 2𝜌
– in order to obtain a map Φ𝜎𝑑 : 𝑇𝜎𝑑 (𝑄4) → 𝑇𝜎𝑑 (𝑄4) such that, for every 𝑥′ ∈ 𝜎𝑑 with
dist (𝑥′, 𝜕𝜎𝑑) > 𝜌𝑑−1, Φ𝜎𝑑 is constant on the cube orthogonal to 𝜎𝑑 of radius 𝜌𝑑� passing
through 𝑥′. We then define Φ𝑑 : ℝ𝑚 → ℝ𝑚 by

Φ𝑑(𝑥) =
{
Φ𝜎𝑑 (𝑥) if 𝑥 ∈ 𝑇𝜎𝑑 (𝑄4),
𝑥 otherwise.

This map is well-defined since SuppΦ𝜎𝑑 ⊂ 𝑇𝜎𝑑 (𝑄2) and 𝑇𝜎𝑑1 (𝑄2)∩𝑇𝜎𝑑2 (𝑄2) = ∅ if 𝜎𝑑1 ≠ 𝜎𝑑2 .
Finally, we set Φ = Φ0 ◦ · · · ◦Φℓ .

By induction and using the definition of the maps Φ𝜎𝑑 provided by Proposition 3.2,
we observe thatΦ satisfies properties (i) and (ii). We now turn to properties (iii) and (iv).
Let 𝑈ℓ + 𝑄𝑚

2𝜌� ⊂ 𝜔 ⊂ 𝛺. Notice that it suffices to prove property (iii) with Φ replaced
by Φ𝑑 and 𝑢 replaced by 𝑢𝑑, as one may then conclude by induction.

We start with the estimates for integer order derivatives. Let 𝑗 ∈ {1, . . . , 𝑘} and
𝑑 ∈ {0, . . . , ℓ }. By the additivity of the integral, we have

∥𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)∥𝑝𝐿𝑝(𝜔) ≤
∑

𝜎𝑑∈𝒰𝑑

∥𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)∥𝑝𝐿𝑝(𝑇𝜎𝑑 (𝑄3)) + ∥𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)∥𝑝
𝐿𝑝
(
𝜔\ ⋃

𝜎𝑑∈𝒰𝑑

𝑇𝜎𝑑 (𝑄3)
) .

Since SuppΦ𝜎𝑑 ⊂ 𝑇𝜎𝑑 (𝑄2) ⊂ 𝑇𝜎𝑑 (𝑄3), we find

∥𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)∥𝐿𝑝
(
𝜔\ ⋃

𝜎𝑑∈𝒰𝑑

𝑇𝜎𝑑 (𝑄3)
) = ∥𝐷 𝑗𝑢 𝑖 ∥

𝐿𝑝
(
𝜔\ ⋃

𝜎𝑑∈𝒰𝑑

𝑇𝜎𝑑 (𝑄3)
) ,
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while the estimate given by Proposition 3.2 yields

� 𝑗 ∥𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)∥𝐿𝑝(𝑇𝜎𝑑 (𝑄3)) = � 𝑗 ∥𝐷 𝑗(𝑢𝑑 ◦Φ𝜎𝑑 )∥𝐿𝑝(𝑇𝜎𝑑 (𝑄3)) ≤ 𝐶1

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢𝑑∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4)).

Combining both above estimates and using the fact that the number of overlaps between
one given set of the form 𝑇𝜎𝑑 (𝑄4) and all the other such sets is bounded from above by
a number depending only on 𝑚, we deduce that

� 𝑗 ∥𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)∥𝐿𝑝(𝜔) ≤ 𝐶2

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢𝑑∥𝐿𝑝(𝜔) for every 𝑗 ∈ {1, . . . , 𝑘}.

Since SuppΦ ⊂ 𝑈ℓ +𝑄𝑚
2𝜌�, the estimate (b) of point (iv) follows directly from estimate (b)

of point (iii) using again the additivity of the integral. The estimates for the 𝐿𝑝 norm of
𝑢 ◦Φ (estimates (d)) are proven similarly.

The estimates for the Gagliardo seminorm are proved similarly, replacing the addi-
tivity of the integral by Lemma 2.1. Indeed, if 𝑘 ≥ 1, this lemma ensures that

|𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)|𝑝𝑊𝜎,𝑝(𝜔) ≤
∑

𝜎𝑑∈𝒰𝑑

|𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)|𝑝𝑊𝜎,𝑝(𝑇𝜎𝑑 (𝑄3))

+ |𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)|𝑝𝐿𝑝(𝜔\SuppΦ𝑑)
+ 𝐶3�

−𝜎𝑝 ∥𝐷 𝑗(𝑢𝑑 ◦Φ𝑑)∥𝑝𝐿𝑝(𝜔) for every 𝑗 ∈ {1, . . . , 𝑘}.

Note that here, we made use of the fact that the distance between the support of
the map provided by Proposition 3.2 and the complement of 𝑄3 is bounded from
below by a constant multiple of �. Estimate (c) of point (iii) then follows as for the
integer order estimate. To obtain the estimate (c) for point (iv), we observe that actually
dist (SuppΦ, 𝜔 \ (𝑈ℓ +𝑄𝑚

2𝜌�)) is bounded from below by a constant multiple of �. We
conclude by making again use of Lemma 2.1 along with the integer order estimate that
we already obtained. Indeed, we have

|𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢 |𝑝
𝑊𝜎,𝑝(𝜔) ≤ |𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢 |𝑝

𝑊𝜎,𝑝(𝑈ℓ+𝑄𝑚
2𝜌�)

+ |𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢 |𝑝
𝑊𝜎,𝑝(𝜔\SuppΦ) + �−𝜎𝑝 ∥𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢∥𝑝

𝐿𝑝(𝜔).

The first term is upper bounded using the triangle inequality and estimate (c) of (iii),
the second one vanishes by definition of the geometric support and the third one is the
integer order term that we already estimated (item (b) of (iv)). The case 0 < 𝑠 < 1 is
handled in the same way, replacing 𝐷 𝑗𝑢 by 𝑢. □

We now turn to the proof of Proposition 3.2. Consider some fixed Borel map 𝑢 : 𝑄𝑚 →
𝒩 such that 𝑢 ∈ 𝑊 𝑠,𝑝(𝑄𝑚). In order to prove that there exists some map Φ (depending
on 𝑢) such that 𝑢 ◦ Φ ∈ 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩) along with the corresponding estimates, it will
be convenient to rely on some genericity arguments using the framework of Fuglede
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maps, in a formalism developed by Bousquet, Ponce, and Van Schaftingen in [11]; our
presentation is limited to the tools instrumental in our proofs. The results below are
taken from [11], sometimes with slight modifications. Nevertheless, we reproduce the
proofs here for the convenience of the reader.

We start with the following lemma, suited for 𝐿𝑝 regularity, which gives a criterion
to detect a family of maps 𝛾 such that composition with 𝛾 is compatible with 𝐿𝑝

convergence.

Lemma 3.3. Let (𝑋,𝒳 , �) be a measure space, 𝑢 : 𝑋 → ℝ a measurable map which does not
vanish �-almost everywhere, and (𝑢𝑛)𝑛∈ℕ a sequence of maps in 𝐿𝑝(𝑋, �) such that 𝑢𝑛 → 𝑢

in 𝐿𝑝(𝑋, �). There exists a summable function 𝑤 : 𝑋 → [0,+∞] satisfying
∫
𝑋
𝑤 d� > 0 and

a subsequence (𝑢𝑛𝑖 )𝑖∈ℕ such that for every measure space (𝑌,𝒴 ,�) and every measurable map
𝛾 : 𝑌 → 𝑋 satisfying 𝑤 ◦ 𝛾 ∈ 𝐿1(𝑌,�), we have 𝑢𝑛𝑖 ◦ 𝛾 ∈ 𝐿𝑝(𝑌,�),

𝑢𝑛𝑖 ◦ 𝛾 → 𝑢 ◦ 𝛾 in 𝐿𝑝(𝑌,�),

and ∫
𝑌

|𝑢 ◦ 𝛾 |𝑝 d� ≤ 2

∫
𝑌
𝑤 ◦ 𝛾 d�∫
𝑋
𝑤 d�

∫
𝑋

|𝑢 |𝑝 d�.

We insist on the fact that the map 𝑤 depends on 𝑢. Even modifying 𝑢 on a null set
may change the map 𝑤 given by Lemma 3.3.

Proof. Choose a sequence (�𝑖)𝑖∈ℕ diverging to +∞ such that �𝑖 ≥ 1 for every 𝑖 ∈ ℕ. Then
extract a subsequence (𝑢𝑛𝑖 )𝑖∈ℕ so that

∥𝑢∥𝐿𝑝(𝑋,�) +
∑
𝑖∈ℕ

�𝑖 ∥𝑢𝑛𝑖 − 𝑢∥𝐿𝑝(𝑋,�) < 2
1
𝑝 ∥𝑢∥𝐿𝑝(𝑋,�)

and define 𝑤 : 𝑋 → [0,+∞] by

𝑤 =

(
|𝑢 | +

∑
𝑖∈ℕ

�𝑖 |𝑢𝑛𝑖 − 𝑢 |
)𝑝
.

We deduce from the triangle inequality and Fatou’s lemma that 𝑤 is summable with(∫
𝑋

𝑤 d�
) 1
𝑝

= ∥𝑤
1
𝑝 ∥𝐿𝑝(𝑋,�) ≤ ∥𝑢∥𝐿𝑝(𝑋,�) +

∑
𝑖∈ℕ

�𝑖 ∥𝑢𝑛𝑖 − 𝑢∥𝐿𝑝(𝑋,�) < 2
1
𝑝 ∥𝑢∥𝐿𝑝(𝑋,�). (3.2)

Since �𝑖 ≥ 1, we have
|𝑢𝑛𝑖 |𝑝 ≤

(
|𝑢 | + |𝑢𝑛𝑖 − 𝑢 |

)𝑝
≤ 𝑤.

Hence, if 𝛾 : 𝑌 → 𝑋 satisfies 𝑤 ◦ 𝛾 ∈ 𝐿1(𝑌,�), we find that 𝑢𝑛𝑖 ◦ 𝛾 ∈ 𝐿𝑝(𝑌,�), and
moreover, we have ∫

𝑌

|𝑢𝑛𝑖 ◦ 𝛾 − 𝑢 ◦ 𝛾 |𝑝 d� ≤ 1
�
𝑝

𝑖

∫
𝑌

𝑤 ◦ 𝛾 d�.
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Letting 𝑖 → +∞ allows us to conclude that 𝑢𝑛𝑖 ◦ 𝛾 → 𝑢 ◦ 𝛾 in 𝐿𝑝(𝑌,�). Furthermore,
since |𝑢 ◦ 𝛾 |𝑝 ≤ 𝑤 ◦ 𝛾, we obtain∫

𝑌

|𝑢 ◦ 𝛾 |𝑝 d� ≤
∫
𝑌

𝑤 ◦ 𝛾 d�.

Combining the above inequality with (3.2) provides us with the desired estimate, and
therefore concludes the proof. □

Using the previous lemma, we may now obtain a criterion to detect a family of maps
𝛾 such that composition with 𝛾 is compatible with 𝑊 𝑘,𝑝 regularity, along with the
corresponding estimates. Once again, note that the map 𝑤 given by the lemma below
depends on 𝑢.

Lemma 3.4. Let 𝛺 ⊂ ℝ𝑚 be an open set and 𝑢 ∈ 𝑊 𝑘,𝑝(𝛺). There exists a summable map
𝑤 : 𝛺 → [0,+∞] such that ∫

𝛺
𝑤 = 1

and such that for every open set 𝜔 ⊂ ℝ𝑀 and every map 𝛾 ∈ 𝒞∞(𝜔;𝛺) with bounded
derivatives, if 𝑤 ◦ 𝛾 is summable, then we have 𝑢 ◦ 𝛾 ∈𝑊 𝑘,𝑝(𝜔), the derivatives 𝐷 𝑗(𝑢 ◦ 𝛾) are
given by the classical Faà di Bruno formula, and

∥𝐷 𝑗𝑢 ◦ 𝛾∥𝐿𝑝(𝜔) ≤ 𝐶

(∫
𝜔
𝑤 ◦ 𝛾

) 1
𝑝

∥𝐷 𝑗𝑢∥𝐿𝑝(𝛺) for every 𝑗 ∈ {0, . . . , 𝑘},

for some constant 𝐶 > 0 depending on 𝑚, 𝑀, 𝑘, and 𝑝.

We note for further use that, under the assumptions of Lemma 3.4, applying the Faà
di Bruno formula, we may estimate 𝐷 𝑗(𝑢 ◦ 𝛾) as follows:

∥𝐷 𝑗(𝑢 ◦ 𝛾)∥𝐿𝑝(𝜔)

≤ 𝐶

(∫
𝜔
𝑤 ◦ 𝛾

) 1
𝑝

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

∥𝐷𝑡1𝛾∥𝐿∞(𝜔) · · · ∥𝐷𝑡𝑖𝛾∥𝐿∞(𝜔)∥𝐷 𝑖𝑢∥𝐿𝑝(𝛺). (3.3)

We also make an important remark about a measurability issue. In Lemma 3.3, we
worked with arbitrary measure spaces. On the other hand, here we implicitly assume
that ℝ and ℝ𝑚 are endowed with the Borel 𝜎-algebra (and not the Lebesgue 𝜎-algebra)
in order to ensure that continuous maps are measurable.

Proof. We may assume, without loss of generality, that 𝑢 and its 𝑘 first derivatives
are not almost everywhere equal to 0. Let (𝑢𝑛)𝑛∈ℕ be a sequence of smooth maps
converging to 𝑢 in 𝑊 𝑘,𝑝(𝛺). We apply inductively Lemma 3.3 to 𝐷 𝑖𝑢 for 𝑖 ∈ {0, . . . , 𝑘}
to obtain summable maps 𝑤𝑖 : 𝛺 → [0,+∞] satisfying

∫
𝛺
𝑤𝑖 > 0 and a subsequence
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(𝑢𝑛𝑙 )𝑙∈ℕ such that, for every measurable map 𝛾 : 𝜔 → 𝛺 such that 𝑤𝑖 ◦ 𝛾 is summable,
𝐷 𝑖𝑢𝑛𝑙 ◦ 𝛾 → 𝐷 𝑖𝑢 ◦ 𝛾 in 𝐿𝑝(𝜔), and∫

𝜔
|𝐷 𝑖𝑢 ◦ 𝛾 |𝑝 ≤ 2

∫
𝜔
𝑤𝑖 ◦ 𝛾∫
𝛺
𝑤𝑖

∫
𝛺
|𝐷 𝑖𝑢 |𝑝 .

Let

𝑤 =
1

𝑘 + 1

𝑘∑
𝑖=0

𝑤𝑖∫
𝛺
𝑤𝑖
.

It is readily seen that ∫
𝛺
𝑤 = 1.

Observe also that 𝑤𝑖 ≤ (𝑘 + 1)𝑤
∫
𝛺
𝑤𝑖 . Therefore, if 𝑤 ◦ 𝛾 is summable, we find that

𝐷 𝑖𝑢 ◦ 𝛾 ∈ 𝐿𝑝(𝜔) with∫
𝜔
|𝐷 𝑖𝑢 ◦ 𝛾 |𝑝 ≤ 2(𝑘 + 1)

(∫
𝜔
𝑤 ◦ 𝛾

) ∫
𝛺
|𝐷 𝑖𝑢 |𝑝 . (3.4)

If in addition 𝛾 is smooth and has bounded derivatives, since 𝐷 𝑖𝑢𝑛𝑙 ◦ 𝛾 → 𝐷 𝑖𝑢 ◦ 𝛾 in
𝐿𝑝(𝜔), 𝐷 𝑖(𝑢𝑛𝑙 ◦ 𝛾) converges in 𝐿𝑝(𝜔) to a map which coincides with the function one
would obtain by applying the Faà di Bruno formula to compute 𝐷 𝑖(𝑢 ◦ 𝛾). Hence, the
closure property for Sobolev spaces ensures that 𝑢 ◦ 𝛾 ∈ 𝑊 𝑘,𝑝(𝜔) and that the Faà di
Bruno formula actually applies. The estimates for 𝐷 𝑗𝑢 ◦ 𝛾 are already contained in
inequality (3.4), and therefore the proof is complete. □

After dealing with integer order Sobolev spaces, we present the next lemma, which
contains the construction of a detector for maps preserving fractional Sobolev regularity
under composition.

Lemma 3.5. Let 𝛺 ⊂ ℝ𝑚 be an open set and 𝑢 ∈𝑊𝜎,𝑝(𝛺). Define 𝑤 : 𝛺 → [0,+∞] by

𝑤(𝑥) =
∫
𝛺

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦.

Assume moreover that there exists 𝑐 > 0 such that |𝐵𝑚� (𝑧) ∩ 𝛺 | ≥ 𝑐�𝑚 for every 𝑧 ∈ 𝛺 and
0 < � ≤ 1

2 diam𝛺. For every open set 𝜔 ⊂ ℝ𝑀 and every Lipschitz map 𝛾 : 𝜔 → 𝛺, if 𝑤 ◦ 𝛾
is summable, then we have 𝑢 ◦ 𝛾 ∈𝑊𝜎,𝑝(𝜔) with

|𝑢 ◦ 𝛾 |𝑊𝜎,𝑝(𝜔) ≤ 𝐶 |𝛾 |𝜎𝒞0,1(𝜔)

(∫
𝜔
𝑤 ◦ 𝛾

) 1
𝑝

for some constant 𝐶 > 0 depending on 𝑚, 𝑀, 𝜎, 𝑝, and 𝑐.
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We recall that |𝛾 |𝒞0,1(𝜔) denotes the Lipschitz seminorm of 𝛾, defined by

|𝛾 |𝒞0,1(𝜔) = sup
𝑥,𝑦∈𝜔
𝑥≠𝑦

|𝛾(𝑥) − 𝛾(𝑦)|
|𝑥 − 𝑦 | .

In contrast to what happens for integer order Sobolev spaces, here we have an explicit
expression for 𝑤 depending on 𝑢. It is useful to observe that∫

𝛺
𝑤 = |𝑢 |𝑝

𝑊𝜎,𝑝(𝛺).

We also comment on the assumption on the volumes of balls in 𝛺, which will be crucial
during the proof. It is in particular satisfied if 𝛺 is a cube. Indeed, in this case, any ball
centered at a point of 𝛺 with radius less that 1

2 diam𝛺 has at least one quadrant in 𝛺,
which implies that 𝛺 satisfies the assumptions of Lemma 3.5. To prove Proposition 3.2,
we only need to apply Lemma 3.5 on cubes, but later on in Section 7, we will need to
use a similar technique on more general domains, whence our motivation for already
presenting a more general statement here.

Proof. For every 𝑥, 𝑦 ∈ 𝜔, we let ℬ𝑥,𝑦 = 𝐵𝑚|𝛾(𝑥)−𝛾(𝑦)|

(
𝛾(𝑥)+𝛾(𝑦)

2

)
∩𝛺. We write

|𝑢 ◦ 𝛾(𝑥) − 𝑢 ◦ 𝛾(𝑦)|𝑝 ≤ 𝐶1

(⨏
ℬ𝑥,𝑦

|𝑢 ◦ 𝛾(𝑥) − 𝑢(𝑧)|𝑝 d𝑧 +
⨏

ℬ𝑥,𝑦

|𝑢(𝑧) − 𝑢 ◦ 𝛾(𝑦)|𝑝 d𝑧
)
.

Note that
𝐵𝑚|𝛾(𝑥)−𝛾(𝑦)|

2
(𝛾(𝑥)) ∩𝛺 ⊂ ℬ𝑥,𝑦 .

Since |𝛾(𝑥)−𝛾(𝑦)|
2 ≤ 1

2 diam𝛺, we deduce that |ℬ𝑥,𝑦 | ≥ 𝐶2 |𝛾(𝑥) − 𝛾(𝑦)|𝑚 . Moreover, we
observe that for every 𝑧 ∈ ℬ𝑥,𝑦 , we have

|𝛾(𝑥) − 𝑧 | ≤
����𝛾(𝑥) + 𝛾(𝑦)

2 − 𝑧
���� + 1

2 |𝛾(𝑥) − 𝛾(𝑦)| ≤ 3
2 |𝛾(𝑥) − 𝛾(𝑦)|,

and similarly |𝛾(𝑦) − 𝑧 | ≤ 3
2 |𝛾(𝑥) − 𝛾(𝑦)|. Hence,

|𝑢 ◦ 𝛾(𝑥) − 𝑢 ◦ 𝛾(𝑦)|𝑝 ≤ 𝐶3

(∫
ℬ𝑥,𝑦

|𝑢 ◦ 𝛾(𝑥) − 𝑢(𝑧)|𝑝
|𝛾(𝑥) − 𝑧 |𝑚 d𝑧 +

∫
ℬ𝑥,𝑦

|𝑢(𝑧) − 𝑢 ◦ 𝛾(𝑦)|𝑝
|𝛾(𝑦) − 𝑧 |𝑚 d𝑧

)
.

Dividing by |𝑥 − 𝑦 |𝑀+𝜎𝑝 and integrating over 𝜔 × 𝜔, we deduce that

|𝑢 ◦ 𝛾 |𝑝
𝑊𝜎,𝑝(𝜔) ≤ 𝐶4

∫
𝜔

∫
𝜔

∫
ℬ𝑥,𝑦

|𝑢 ◦ 𝛾(𝑥) − 𝑢(𝑧)|𝑝

|𝑥 − 𝑦 |𝑀+𝜎𝑝 |𝛾(𝑥) − 𝑧 |𝑚
d𝑧d𝑦d𝑥.

We use Tonelli’s theorem to deduce that

|𝑢 ◦ 𝛾 |𝑝
𝑊𝜎,𝑝(𝜔) ≤ 𝐶4

∫
𝛺

∫
𝜔

∫
𝒴𝑥,𝑧

|𝑢 ◦ 𝛾(𝑥) − 𝑢(𝑧)|𝑝

|𝑥 − 𝑦 |𝑀+𝜎𝑝 |𝛾(𝑥) − 𝑧 |𝑚
d𝑦d𝑥d𝑧,
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where 𝒴𝑥,𝑧 is the set of all 𝑦 ∈ 𝜔 such that 𝑧 ∈ ℬ𝑥,𝑦 , that is,

𝒴𝑥,𝑧 = {𝑦 ∈ 𝜔: |𝛾(𝑥) + 𝛾(𝑦) − 2𝑧 | < 2|𝛾(𝑥) − 𝛾(𝑦)|}.

Observe that

𝒴𝑥,𝑧 ⊂
{
𝑦 ∈ ℝ𝑀 : |𝛾(𝑥) − 𝑧 | < 3

2 |𝛾(𝑥) − 𝛾(𝑦)|
}

⊂
{
𝑦 ∈ ℝ𝑀 : |𝛾(𝑥) − 𝑧 | < 3

2 |𝛾 |𝒞0,1(𝜔) |𝑥 − 𝑦 |
}
= ℝ𝑀 \ 𝐵𝑀𝑟 (𝑥),

where
𝑟 = 𝑟(𝑥, 𝑧) = 2|𝛾(𝑥) − 𝑧 |

3|𝛾 |𝒞0,1(𝜔)
.

Hence,

|𝑢 ◦ 𝛾 |𝑝
𝑊𝜎,𝑝(𝜔) ≤ 𝐶4

∫
𝛺

∫
𝜔

∫
ℝ𝑀\𝐵𝑀𝑟 (𝑥)

|𝑢 ◦ 𝛾(𝑥) − 𝑢(𝑧)|𝑝

|𝑥 − 𝑦 |𝑀+𝜎𝑝 |𝛾(𝑥) − 𝑧 |𝑚
d𝑦d𝑥d𝑧

≤ 𝐶5 |𝛾 |𝜎𝑝𝒞0,1(𝜔)

∫
𝛺

∫
𝜔

|𝑢 ◦ 𝛾(𝑥) − 𝑢(𝑧)|𝑝
|𝛾(𝑥) − 𝑧 |𝑚+𝜎𝑝 d𝑥d𝑧,

which concludes the proof. □

Now that we have at our disposal a criterion to detect a family of maps that preserve
membership in Sobolev spaces after composition, it would be useful to know if, given a
detector 𝑤 associated to a fixed map 𝑢 ∈𝑊 𝑠,𝑝 , we may actually construct many smooth
maps 𝛾 such that 𝑤 ◦ 𝛾 is summable. This is based on a genericity argument, and is the
purpose of the next lemma, whose proof relies on an averaging argument initially due
to Federer and Fleming [20]. Our presentation and proof are taken from [9, Lemma 2.5].

Lemma 3.6. Let𝜔,𝛺, and𝑃 ⊂ ℝ𝑚 be measurable sets, with 0 < |𝑃 | < +∞. LetΦ : 𝜔+𝑃 → 𝛺
and 𝑤 : 𝛺 → [0,+∞] be measurable maps. For every 𝑎 ∈ 𝑃, define the map Φ𝑎 : 𝜔 → ℝ𝑚 by
Φ𝑎(𝑥) = Φ(𝑥 − 𝑎) + 𝑎. Assume that, for every 𝑎 ∈ 𝑃 and 𝑥 ∈ 𝜔, Φ𝑎(𝑥) ∈ 𝛺. There exists a
subset 𝐴 ⊂ 𝑃 of positive measure such that, for every 𝑎 ∈ 𝐴, we have∫

𝜔
𝑤 ◦Φ𝑎 ≤ 𝐶

|𝜔 + 𝑃 |
|𝑃 |

∫
𝛺
𝑤

for some constant 𝐶 > 0.

The constant 𝐶 in the above estimate does not depend on the different parameters
involved in the statement of the lemma. However, as we shall see in the proof, the
measure of the set 𝐴 may be taken arbitrarily close to |𝑃 | provided that we enlarge 𝐶
accordingly.

Proof. We are going to estimate the average⨏
𝑃

(∫
𝜔
𝑤 ◦Φ𝑎

)
d𝑎.
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By a change of variable by translation and Tonelli’s theorem, we compute that∫
𝑃

(∫
𝜔
𝑤 ◦Φ𝑎

)
d𝑎 =

∫
𝑃

(∫
𝜔+𝑎

𝑤(Φ(𝑦) + 𝑎)d𝑦
)

d𝑎

≤
∫
𝜔+𝑃

(∫
𝑃∩(𝑦−𝜔)

𝑤(Φ(𝑦) + 𝑎)d𝑎
)

d𝑦 ≤
∫
𝜔+𝑃

(∫
𝛺
𝑤(𝑥)d𝑥

)
d𝑦 = |𝜔 + 𝑃 |

∫
𝛺
𝑤.

Therefore, ⨏
𝑃

(∫
𝜔
𝑤 ◦Φ𝑎

)
d𝑎 ≤ |𝜔 + 𝑃 |

|𝑃 |

∫
𝛺
𝑤.

Hence, for every 0 < � < 1, there exists a subset 𝐴 ⊂ 𝑃 with measure |𝐴| ≥ � |𝑃 | such
that, for every 𝑎 ∈ 𝐴, we have∫

𝜔
𝑤 ◦Φ𝑎 ≤

1
1 − �

|𝜔 + 𝑃 |
|𝑃 |

∫
𝛺
𝑤,

and the proof of the lemma is complete. □

With all these tools at our disposal, we are now ready to prove Proposition 3.2. We start
by constructing one model map Φ satisfying the geometric properties in the conclusion
of the proposition. Then we use the previous lemmas to show that Φ𝑎 satisfies all the
conclusions of Proposition 3.2 for some 𝑎 ∈ ℝ𝑚 .

Proof of Proposition 3.2. We use the notation introduced in (3.1). We start with the con-
struction of the model map Φ. Let � > 0 be such that

� < min
( 𝑟 − 𝜌

2 ,
𝑟 − 𝑟

2 ,
𝜌 − 𝑟

2

)
.

We define Φ : 𝑄4,1 → 𝑄4,1 by

Φ(𝑥′, 𝑥′′) =
(
𝑥′, 𝜙

( 𝑥′
�
,
𝑥′′

�

)
𝑥′′

)
,

where 𝜙 : 𝑄4,1 → [0, 1] is a smooth function such that

(a) for 𝑥 ∈ 𝑄1,1 + 𝐵𝑚� , 𝜙(𝑥) = 0;

(b) for 𝑥 ∈ (𝑄4,1 \𝑄2,1) + 𝐵𝑚� , 𝜙(𝑥) = 1.

Recall that the 𝑄𝑖 ,1 are the rectangles defined in (3.1) with parameter � = 1. By scaling,
we have

∥𝐷 𝑗Φ∥𝐿∞(𝑄4) ≤ 𝐶1�
1−𝑗 for every 𝑗 ∈ {1, . . . , 𝑘 + 1}.

Now we set Φ𝑎(𝑥) = Φ(𝑥 − 𝑎) + 𝑎 for every 𝑎 ∈ 𝐵𝑚��. By construction, Φ𝑎 satisfies the
geometric properties (i) to (iii) for every 𝑎 ∈ 𝐵𝑚��.
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We now turn to the Sobolev estimates (iv). In the case where 𝑘 = 0, we apply
Lemma 3.5 to 𝑢, with 𝛺 = 𝑄4. Let 𝑤 : 𝑄4 → [0,+∞] be the corresponding detector. By
Lemma 3.6 with 𝜔 = 𝑄3, 𝛺 = 𝑄4, and 𝑃 = 𝐵𝑚��, there exists 𝑎 ∈ 𝐵𝑚�� such that∫

𝑄3

𝑤 ◦Φ𝑎 ≤ 𝐶2
|𝑄3 + 𝐵𝑚�� |

|𝐵𝑚�� |

∫
𝑄4

𝑤.

Since 𝑄3 has sides whose length is proportional to �, this implies that∫
𝑄3

𝑤 ◦Φ𝑎 ≤ 𝐶3

∫
𝑄4

𝑤. (3.5)

Therefore, 𝑢 ◦Φ𝑎 ∈𝑊 𝑠,𝑝(𝑄4) and

|𝑢 ◦Φ𝑎 |𝑊 𝑠,𝑝(𝑄3) ≤ 𝐶4 |Φ𝑎 |𝑠𝒞0,1(𝑄3)

(∫
𝑄3

𝑤 ◦Φ𝑎

) 1
𝑝

.

Combining the estimate on the derivative ofΦ𝑎 , equation (3.5) and the remark following
Lemma 3.5, we conclude that

|𝑢 ◦Φ𝑎 |𝑊 𝑠,𝑝(𝑄3) ≤ 𝐶5 |𝑢 |𝑊 𝑠,𝑝(𝑄4).

The 𝐿𝑝 estimate is obtained as in the case 𝑘 ≥ 1 below, and this concludes the proof
when 0 < 𝑠 < 1.

If now 𝑘 ≥ 1, we apply Lemma 3.4 to 𝑢 to obtain a detector 𝑤0 : 𝑄4 → [0,+∞] and we
apply Lemma 3.5 to 𝐷 𝑗𝑢 for every 𝑗 ∈ {1, . . . , 𝑘} to obtain a detector 𝑤 𝑗 : 𝑄4 → [0,+∞].
(In the case where 𝜎 = 0, we skip this second step and only construct 𝑤0. In the sequel
we continue to speak about 𝑤 𝑗 for 𝑗 ∈ {0, . . . , 𝑘}, it is implicit that when 𝜎 = 0 we only
consider 𝑤0.) Then we invoke Lemma 3.6 to find some 𝑎 ∈ 𝐵𝑚�� such that∫

𝑄3

𝑤 𝑗 ◦Φ𝑎 ≤ 𝐶6
|𝑄3 + 𝐵𝑚�� |

|𝐵𝑚�� |

∫
𝑄4

𝑤 𝑗 for every 𝑗 ∈ {0, . . . , 𝑘}. (3.6)

It is indeed possible to choose the same 𝑎 simultaneously for each 𝑤 𝑗 since the set 𝐴 in
Lemma 3.6 can be chosen of measure arbitrarily close of |𝐵𝑚�� |.

For the integer order derivatives, using the estimates on the derivatives of Φ𝑎 and the
fact that

∫
𝑄4
𝑤0 = 1, we immediately deduce that 𝑢 ◦Φ𝑎 ∈𝑊 𝑘,𝑝(𝑄3),

∥𝐷 𝑗(𝑢 ◦Φ𝑎)∥𝐿𝑝(𝑄3) ≤ 𝐶7

𝑗∑
𝑖=1

�𝑖−𝑗 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑄4) ,

and
∥𝑢 ◦Φ𝑎 ∥𝐿𝑝(𝑄3) ≤ ∥𝑢∥𝐿𝑝(𝑄4).
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In the case 𝑘 = 0, we may still obtain the 𝐿𝑝 estimate at order 0 above, constructing the
detector 𝑤0 with the help of Lemma 3.3 instead of Lemma 3.4 and using again the fact
that we may choose a suitable 𝑎 for several detectors simultaneously.

Dealing with fractional order derivatives requires additional computations. We con-
tinue to work with 𝑎 as in (3.6). Using the Faà di Bruno formula – which is indeed valid
for 𝑢 ◦Φ𝑎 by Lemma 3.4 – and the multilinearity of the differential, we find

|𝐷 𝑗(𝑢 ◦Φ𝑎)(𝑥) − 𝐷 𝑗(𝑢 ◦Φ𝑎)(𝑦)|𝑝 ≤ 𝐶8

𝑗∑
𝑖=1

(
|𝐷 𝑖𝑢 ◦Φ𝑎(𝑥) − 𝐷 𝑖𝑢 ◦Φ𝑎(𝑦)|𝑝�(𝑖−𝑗)𝑝

+
𝑗∑
𝑡=1

|𝐷 𝑖𝑢 ◦Φ𝑎(𝑥)|𝑝�(𝑖−1−𝑗+𝑡)𝑝 |𝐷𝑡Φ𝑎(𝑥) − 𝐷𝑡Φ𝑎(𝑦)|𝑝
)
. (3.7)

When dividing (3.7) by |𝑥 − 𝑦 |𝑚+𝜎𝑝 and integrating over 𝑄3 × 𝑄3, the first term on the
right-hand side gives �(𝑖−𝑗)𝑝 |𝐷 𝑖𝑢 ◦Φ𝑎 |𝑝𝑊𝜎,𝑝(𝑄3). As in the case 0 < 𝑠 < 1, we may estimate
it as

�(𝑖−𝑗)𝑝 |𝐷 𝑖𝑢 ◦Φ𝑎 |𝑝𝑊𝜎,𝑝(𝑄3) ≤ 𝐶9�
(𝑖−𝑗)𝑝 |𝐷 𝑖𝑢 |𝑝

𝑊𝜎,𝑝(𝑄4).

For the second term on the right-hand side of (3.7), we use an optimization argument.
For every 𝑟 > 0, we write∫

𝑄3

|𝐷𝑡Φ𝑎(𝑥) − 𝐷𝑡Φ𝑎(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≤ 𝐶10

(∫
𝐵𝑚𝑟 (𝑥)

�−𝑡𝑝
1

|𝑥 − 𝑦 |𝑚+𝜎𝑝−𝑝 d𝑦

+
∫
ℝ𝑚\𝐵𝑚𝑟 (𝑥)

�(1−𝑡)𝑝
1

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦
)
≤ 𝐶11(�−𝑡𝑝𝑟𝑝−𝜎𝑝 + �(1−𝑡)𝑝𝑟−𝜎𝑝).

Letting 𝑟 = �, we find∫
𝑄3

|𝐷𝑡Φ𝑎(𝑥) − 𝐷𝑡Φ𝑎(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≤ 𝐶12�

(1−𝑡−𝜎)𝑝 .

Therefore,∫
𝑄3

∫
𝑄3

|𝐷 𝑖𝑢 ◦Φ𝑎(𝑥)|𝑝�(𝑖−1−𝑗+𝑡)𝑝 |𝐷𝑡Φ𝑎(𝑥) − 𝐷𝑡Φ𝑎(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

≤ 𝐶13�
(𝑖−𝑗−𝜎)𝑝

∫
𝑄3

|𝐷 𝑖𝑢 ◦Φ𝑎(𝑥)|𝑝 d𝑥 ≤ 𝐶14�
(𝑖−𝑗−𝜎)𝑝

∫
𝑄4

|𝐷 𝑖𝑢 |𝑝 ,

where the last inequality follows from Lemma 3.4. Gathering the estimates for both
terms in (3.7) yields the desired fractional estimate and concludes the proof. □

We conclude this section with two additional results which are the counterparts
of [9, Addendum 1 and 2 to Proposition 2.1] in the context of fractional order estimates.
From now on, we place ourselves under the assumptions of Proposition 3.1. The first
proposition ensures that the opening procedure does not increase too much the energy
on one given cube.
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Proposition 3.7. Let 𝒦𝑚 be a cubication containing 𝒰𝑚 .

(a) If 𝑠 ≥ 1 and if 𝑢 ∈ 𝑊1,𝑠𝑝(𝐾𝑚 + 𝑄𝑚
2𝜌�;ℝ�), then the map Φ : ℝ𝑚 → ℝ𝑚 provided by

Proposition 3.1 can be chosen with the additional property that 𝑢 ◦ Φ ∈ 𝑊1,𝑠𝑝(𝐾𝑚 +
𝑄𝑚

𝜌�;ℝ�), and for every 𝜎𝑚 ∈ 𝒦𝑚 ,

∥𝐷(𝑢 ◦Φ)∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
𝜌�) ≤ 𝐶′∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚

2𝜌�)

for some constant 𝐶′ > 0 depending on 𝑚, 𝑠, 𝑝, and 𝜌.

(b) If 0 < 𝑠 < 1, then the map Φ : ℝ𝑚 → ℝ𝑚 provided by Proposition 3.1 can be chosen with
the additional property that 𝑢 ◦Φ ∈𝑊 𝑠,𝑝(𝐾𝑚 +𝑄𝑚

𝜌�;ℝ�), and for every 𝜎𝑚 ∈ 𝒦𝑚 ,

|𝑢 ◦Φ|𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
𝜌�) ≤ 𝐶′ |𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚

2𝜌�)

for some constant 𝐶′ > 0 depending on 𝑚, 𝑠, 𝑝, and 𝜌.

Proof. (a) In the case 𝑠 ≥ 1, since the choice of the parameter 𝑎 involved in the construc-
tion of the map provided by Proposition 3.2 is made over a set of positive measure, ac-
cording to the remark following Lemma 3.6, we may assume that the maps Φ𝜎𝑑 involved
in the construction of the map Φ satisfy in addition the conclusion of Proposition 3.2
with parameters 1 and 𝑠𝑝.

We keep the notation used in the proof of Proposition 3.1. Let 𝑑 ∈ {0, . . . , ℓ }. We are
going to prove that

∥𝐷(𝑢𝑑 ◦Φ𝑑)∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
𝜌𝑑�

) ≤ 𝐶′∥𝐷𝑢𝑑∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
𝜌𝑑−1�)

,

and the conclusion will follow by induction. By our additional assumption on the maps
Φ𝜎𝑑 , we have

∥𝐷(𝑢𝑑 ◦Φ𝑑)∥𝐿𝑠𝑝(𝑇𝜎𝑑 (𝑄3)) ≤ ∥𝐷(𝑢𝑑 ◦Φ𝑑)∥𝐿𝑠𝑝(𝑇𝜎𝑑 (𝑄4)) ≤ 𝐶1∥𝐷𝑢𝑑∥𝐿𝑠𝑝(𝑇𝜎𝑑 (𝑄4))

for every 𝜎𝑑 ∈ 𝒰 𝑑. We conclude by using the fact that

SuppΦ𝑑 ⊂
⋃

𝜎𝑑∈𝒰𝑑

𝑇𝜎𝑑 (𝑄2) ⊂
⋃

𝜎𝑑∈𝒰𝑑

𝑇𝜎𝑑 (𝑄3)

along with the additivity of the integral.
(b) The proof of the case 0 < 𝑠 < 1 is identical, except that we replace the additivity of

the integral by Lemma 2.2. Here we use the fact that the number of 𝑑-faces of a given cube
depends only on 𝑑 and𝑚, and that the geometric support of Φ𝜎𝑑 is contained in 𝑇𝜎𝑑 (𝑄2),
which is slightly smaller than 𝑇𝜎𝑑 (𝑄3). This justifies the application of Lemma 2.2. □

The second proposition gives VMO-type estimates for the opened map. As we men-
tioned in our informal presentation, such estimates are one of the main features of the
opening procedure, and they follow from the fact that 𝑢 ◦Φ behaves locally as a map of
ℓ variables in𝑈ℓ +𝑄𝑚

𝜌�.
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Proposition 3.8. Under the assumptions of Propositions 3.1 and 3.7, the map Φ : ℝ𝑚 → ℝ𝑚

satisfies the following estimates:

(a) if 𝑠 ≥ 1, then
(i) it holds that

lim
𝑟→0

sup
𝑄𝑚
𝑟 (𝑎)⊂𝑈ℓ+𝑄𝑚

𝜌�

𝑟
ℓ
𝑠𝑝−1

⨏
𝑄𝑚
𝑟 (𝑎)

⨏
𝑄𝑚
𝑟 (𝑎)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)| d𝑥d𝑦 = 0;

(ii) for every 𝜎𝑚 ∈ 𝒰𝑚 and every 𝑄𝑚
𝑟 (𝑎) ⊂ 𝑈ℓ +𝑄𝑚

𝜌� with 𝑎 ∈ 𝜎𝑚 ,⨏
𝑄𝑚
𝑟 (𝑎)

⨏
𝑄𝑚
𝑟 (𝑎)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)| d𝑥d𝑦 ≤ 𝐶′′ 𝑟
1− ℓ

𝑠𝑝

�
𝑚−ℓ
𝑠𝑝

∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�);

(b) if 0 < 𝑠 < 1, then
(i) it holds that

lim
𝑟→0

sup
𝑄𝑚
𝑟 (𝑎)⊂𝑈ℓ+𝑄𝑚

𝜌�

𝑟
ℓ
𝑝−𝑠

⨏
𝑄𝑚
𝑟 (𝑎)

⨏
𝑄𝑚
𝑟 (𝑎)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)| d𝑥d𝑦 = 0;

(ii) for every 𝜎𝑚 ∈ 𝒰𝑚 and every 𝑄𝑚
𝑟 (𝑎) ⊂ 𝑈ℓ +𝑄𝑚

𝜌� with 𝑎 ∈ 𝜎𝑚 ,⨏
𝑄𝑚
𝑟 (𝑎)

⨏
𝑄𝑚
𝑟 (𝑎)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)| d𝑥d𝑦 ≤ 𝐶′′ 𝑟
𝑠− ℓ

𝑝

�
𝑚−ℓ
𝑝

|𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
2𝜌�);

for some constant 𝐶′′ > 0 depending on 𝑚, 𝑠, 𝑝, and 𝜌.

Proof. We start with the proof of items (i). Let 𝑎 ∈ ℝ𝑚 and 𝑟 > 0 be such that 𝑄𝑚
𝑟 (𝑎) ⊂

𝑈ℓ +𝑄𝑚
𝜌� , and write 𝑄𝑚

𝑟 (𝑎) = 𝑄ℓ
𝑟 (𝑎′) ×𝑄𝑚−ℓ

𝑟 (𝑎′′). Then 𝑎 ∈ 𝑈ℓ +𝑄𝑚
𝜌�−𝑟 , and hence there

exists 𝜏ℓ ∈ 𝒰ℓ such that 𝑄𝑚
𝑟 (𝑎) ⊂ 𝜏ℓ + 𝑄𝑚

𝜌�. We may assume that 𝜏ℓ = 𝑄𝑚
� × {0}𝑚−ℓ .

Recall that the map Φ is constant on each (𝑚 − ℓ )-dimensional cube orthogonal to
𝑄ℓ

(1+𝜌)� × {0}𝑚−ℓ . Hence we may define 𝑣 : 𝑄ℓ
(1+𝜌)� → ℝ� by

𝑣(𝑥′) = 𝑢 ◦Φ(𝑥′, 𝑎′′).

Using Proposition 3.7, we deduce that 𝑣 ∈ 𝑊1,𝑠𝑝(𝑄ℓ
(1+𝜌)�;ℝ�) in the 𝑠 ≥ 1 case, respec-

tively 𝑣 ∈𝑊 𝑠,𝑝(𝑄ℓ
(1+𝜌)�;ℝ�) in the 0 < 𝑠 < 1 case. We next note that⨏

𝑄𝑚
𝑟 (𝑎)

⨏
𝑄𝑚
𝑟 (𝑎)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)| d𝑥d𝑦 =

⨏
𝑄ℓ
𝑟 (𝑎′)

⨏
𝑄ℓ
𝑟 (𝑎′)

|𝑣(𝑥′) − 𝑣(𝑦′)| d𝑥′d𝑦′.

30



The Poincaré–Wirtinger inequality implies that⨏
𝑄ℓ
𝑟 (𝑎′)

⨏
𝑄ℓ
𝑟 (𝑎′)

|𝑣(𝑥′) − 𝑣(𝑦′)| d𝑥′d𝑦′ ≤ 𝐶1𝑟
1− ℓ

𝑠𝑝 ∥𝐷𝑣∥𝐿𝑠𝑝(𝑄ℓ
𝑟 (𝑎′))

if 𝑠 ≥ 1, respectively⨏
𝑄ℓ
𝑟 (𝑎′)

⨏
𝑄ℓ
𝑟 (𝑎′)

|𝑣(𝑥′) − 𝑣(𝑦′)| d𝑥′d𝑦′ ≤ 𝐶2𝑟
𝑠− ℓ

𝑝 |𝑣 |𝑊 𝑠,𝑝(𝑄ℓ
𝑟 (𝑎′))

if 0 < 𝑠 < 1. It then suffices to invoke Lebesgue’s lemma to obtain both items (i).
We now turn to the proof of items (ii). When 𝑠 ≥ 1, we observe that

∥𝐷(𝑢 ◦Φ)∥𝐿𝑠𝑝(𝑄ℓ
𝑟 (𝑎′)×𝑄𝑚−ℓ

𝜌� (𝑎′′)) = (2𝜌�)
𝑚−ℓ
𝑠𝑝 ∥𝐷𝑣∥𝐿𝑠𝑝(𝑄ℓ

𝑟 (𝑎′)) , (3.8)

and hence, assuming in addition that 𝑎 ∈ 𝜎𝑚 with 𝜎𝑚 ∈ 𝒰𝑚 , we have

∥𝐷𝑣∥𝐿𝑠𝑝(𝑄ℓ
𝑟 (𝑎′)) =

1

(2𝜌�)
𝑚−ℓ
𝑠𝑝

∥𝐷(𝑢 ◦Φ)∥𝐿𝑠𝑝(𝑄ℓ
𝑟 (𝑎′)×𝑄𝑚−ℓ

𝜌� (𝑎′′)) ≤
1

(2𝜌�)
𝑚−ℓ
𝑠𝑝

∥𝐷(𝑢 ◦Φ)∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
𝜌�).

Thus,⨏
𝑄𝑚
𝑟 (𝑎)

⨏
𝑄𝑚
𝑟 (𝑎)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)| d𝑥d𝑦 ≤ 𝐶3
𝑟

1− ℓ
𝑠𝑝

(2𝜌�)
𝑚−ℓ
𝑠𝑝

∥𝐷(𝑢 ◦Φ)∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
𝜌�).

Proposition 3.7 implies that

∥𝐷(𝑢 ◦Φ)∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
𝜌�) ≤ 𝐶4∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚

2𝜌�) ,

which yields the desired conclusion.
For the case 0 < 𝑠 < 1, we follow the same path, replacing inequality (3.8) by the fact

that

|𝑣 |𝑊 𝑠,𝑝(𝑄ℓ
𝑟 (𝑎′)) =

1

(2𝜌�)
𝑚−ℓ
𝑝

(∫
𝑄𝑚−ℓ

𝜌� (𝑎′′)
|𝑢 ◦Φ(·, 𝑥′′)|𝑝

𝑊 𝑠,𝑝(𝑄ℓ
𝑟 (𝑎′))

d𝑥′′
) 1
𝑝

≤ 𝐶5
1

�
𝑚−ℓ
𝑝

|𝑢 |𝑊 𝑠,𝑝(𝑄ℓ
𝑟 (𝑎′)×𝑄𝑚−ℓ

𝜌� (𝑎′′)).

This concludes the proof of the proposition. □

4 Adaptative smoothing

In this section, we present the adaptative smoothing, which consists in a regularization
by convolution, 𝑥 ↦→ 𝜑𝜓(𝑥) ∗ 𝑢(𝑥), where the parameter 𝜓 of convolution is allowed to
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depend on the point 𝑥 where the regularized map is calculated. Already implicit in
the proof of the 𝐻 = 𝑊 theorem [23], this method was made popular by Schoen and
Uhlenbeck [30, Section 3]. The approach we follow here is an adaptation, suited to
fractional Sobolev spaces, of the one in [9, Section 3].

We now become more specific. Let 𝜑 be a mollifier, i.e.,

𝜑 ∈ 𝒞∞
c (𝐵𝑚1 ), 𝜑 ≥ 0 in 𝐵𝑚1 , 𝜑 is radial, and

∫
𝐵𝑚1

𝜑 = 1.

Let 𝑢 ∈ 𝐿1
loc(𝛺), and consider a map 𝜓 ∈ 𝒞∞(𝛺; (0,+∞)). For every 𝑥 ∈ 𝛺 satisfying

dist (𝑥, 𝜕𝛺) ≥ 𝜓(𝑥), we may define

𝜑𝜓 ∗ 𝑢(𝑥) =
∫
𝐵𝑚1

𝜑(𝑧)𝑢(𝑥 + 𝜓(𝑥)𝑧)d𝑧.

A change of variable yields

𝜑𝜓 ∗ 𝑢(𝑥) = 1
𝜓(𝑥)𝑚

∫
𝐵𝑚
𝜓(𝑥)(𝑥)

𝜑
( 𝑦 − 𝑥
𝜓(𝑥)

)
𝑢(𝑦)d𝑦. (4.1)

In particular, 𝜑𝜓 ∗ 𝑢 is smooth.
Let us first note a straightforward inequality. Let 𝜔 ⊂ {𝑥 ∈ 𝛺: dist (𝑥, 𝜕𝛺) ≥ 𝜓(𝑥)},

so that 𝜑𝜓 ∗ 𝑢 is well-defined on 𝜔. For any 𝑥 ∈ 𝜔, we write

𝜑𝜓 ∗ 𝑢(𝑥) − 𝑢(𝑥) =
∫
𝐵𝑚1

𝜑(𝑧)(𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝑢(𝑥))d𝑧.

Therefore, by Minkowski’s inequality, we find

∥𝜑𝜓 ∗ 𝑢 − 𝑢∥𝐿𝑝(𝜔) ≤
∫
𝐵𝑚1

𝜑(𝑧)
(∫

𝜔
|𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝑢(𝑥)|𝑝 d𝑥

) 1
𝑝

d𝑧

≤ sup
𝑣∈𝐵𝑚1

∥𝜏𝜓𝑣(𝑢) − 𝑢∥𝐿𝑝(𝜔) , (4.2)

where 𝜏𝜓𝑣(𝑢)(𝑥) = 𝑢(𝑥+𝜓(𝑥)𝑣). Our main task in this section will be to obtain estimates
in the spirit of 4.2 for maps in𝑊 𝑠,𝑝(𝛺;ℝ�).

Before stating the main result of this section, we pause to explain the role of an
important assumption. In the sequel, we will assume that ∥𝐷𝜓∥𝐿∞(𝛺) < 1. We illustrate
the usefulness of this condition in the simpler context of 𝐿𝑝 estimates. We start by using
Minkowski’s inequality to write

∥𝜑𝜓 ∗ 𝑢∥𝐿𝑝(𝜔) ≤
∫
𝐵𝑚1

𝜑(𝑧)
(∫

𝜔
|𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝑝 d𝑥

) 1
𝑝

d𝑧.
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Next we use the change of variable 𝑤 = 𝑥 + 𝜓(𝑥)𝑧. Note that the map Ψ : 𝜔 → 𝛺
defined by Ψ(𝑥) = 𝑥 + 𝜓(𝑥)𝑧 satisfies 𝐷Ψ(𝑥) = id+𝐷𝜓(𝑥) ⊗ 𝑧. Therefore, by rank-one
perturbation of the identity (see e.g. [29, Section 3.8]), we deduce that

jacΨ = |det (id+𝐷𝜓 ⊗ 𝑧)| = |1 + 𝐷𝜓 · 𝑧 | ≥ 1 − ∥𝐷𝜓∥𝐿∞(𝛺) for 𝑧 ∈ 𝐵𝑚1 .

Thanks to the assumption ∥𝐷𝜓∥𝐿∞(𝛺) < 1, the linear map𝐷𝛹 (𝑥) is invertible for 𝑧 ∈ 𝐵𝑚1 ,
so that the above change of variable is well-defined with Jacobian less than 1

1−∥𝐷𝜓∥𝐿∞(𝜔)
.

We conclude that
∥𝜑𝜓 ∗ 𝑢∥𝐿𝑝(𝜔) ≤

1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))
1
𝑝

∥𝑢∥𝐿𝑝(𝛺). (4.3)

We now state the main result of this section, which is the counterpart of [9, Proposi-
tion 3.2] in the context of fractional Sobolev spaces.
Proposition 4.1. Let 𝜑 ∈ 𝒞∞

c (𝐵𝑚1 ) be a mollifier and let 𝜓 ∈ 𝒞∞(𝛺) be a nonnegative function
such that ∥𝐷𝜓∥𝐿∞(𝛺) < 1. For every 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;ℝ�) and every open set 𝜔 ⊂ {𝑥 ∈
𝛺: dist (𝑥, 𝜕𝛺) > 𝜓(𝑥)}, we have 𝜑𝜓 ∗𝑢 ∈𝑊 𝑠,𝑝(𝜔;ℝ�), and moreover, the following estimates
hold:

(i) (a) if 0 < 𝑠 < 1, then

|𝜑𝜓 ∗ 𝑢 |𝑊 𝑠,𝑝(𝜔)≤ 𝐶
1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))
2
𝑝

|𝑢 |𝑊 𝑠,𝑝(𝛺);

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝜑𝜓 ∗ 𝑢)∥𝐿𝑝(𝜔)≤ 𝐶
1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))
1
𝑝

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝛺);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝜑𝜓 ∗ 𝑢)|𝑊𝜎,𝑝(𝜔)

≤ 𝐶
1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))
2
𝑝

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝛺) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝛺)

)
;

(ii) (a) if 0 < 𝑠 < 1, then

|𝜑𝜓 ∗ 𝑢 − 𝑢 |𝑊 𝑠,𝑝(𝜔)≤ sup
𝑣∈𝐵𝑚1

|𝜏𝜓𝑣(𝑢) − 𝑢 |𝑊 𝑠,𝑝(𝜔);

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝜑𝜓 ∗ 𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝜔)≤ sup
𝑣∈𝐵𝑚1

� 𝑗 ∥𝜏𝜓𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝜔)

+ 𝐶 1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))
1
𝑝

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐴);
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(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝜑𝜓 ∗ 𝑢) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝜔)≤ sup
𝑣∈𝐵𝑚1

� 𝑗+𝜎 |𝜏𝜓𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝜔)

+ 𝐶 1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))
2
𝑝

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐴) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐴)

)
;

for some constant 𝐶 > 0 depending on 𝑚, 𝑠, and 𝑝, where

𝐴 =
⋃

𝑥∈𝜔∩supp𝐷𝜓

𝐵𝑚𝜓(𝑥)(𝑥)

and � > 0 satisfies
� 𝑗 ∥𝐷 𝑗𝜓∥𝐿∞ ≤ � for every 𝑗 ∈ {2, . . . , 𝑘 + 1}.

Proof. The proof of item (i) is completely analogous to the proof of item (ii) and uses the
same ingredients. Hence we focus on item (ii), and we explain in the end what should
be changed in order to get (i).

We start with the integer order estimate in the case 𝑠 ≥ 1. By the Faà di Bruno formula,
for every 𝑥 ∈ 𝜔, we have

𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑥) =
∫
𝐵𝑚1

𝜑(𝑧)𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧)[(id+𝐷𝜓(𝑥) ⊗ 𝑧)𝑗]d𝑧

+
𝑗−1∑
𝑖=1

𝑛(𝑖 , 𝑗)∑
𝑙=1

∫
𝐵𝑚1

𝜑(𝑧)𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧)]d𝑧,
(4.4)

where 𝑛(𝑖 , 𝑗) ∈ ℕ∗ and 𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧) is a linear mapping ℝ𝑗×𝑚 → ℝ𝑖×𝑚 depending on 𝜓
and its derivatives. More precisely, each entry of 𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧) is either id+𝐷𝜓(𝑥) ⊗ 𝑧 or
𝐷𝑡𝜓(𝑥) ⊗ 𝑧 for some 𝑡 ∈ {2, . . . , 𝑗}, and the sum over all 𝑖 components of 𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧) of
the order of the derivative of 𝜓 appearing in this component is 𝑗. Moreover, since 𝑖 < 𝑗,
at least one entry of 𝐿𝑖 , 𝑗 ,𝑙(𝑥, 𝑧) has the form 𝐷𝑡𝜓(𝑥), and thus the second integral in (4.4)
lives only on supp𝐷𝜓. Therefore, taking into account the assumption ∥𝐷𝑡𝑢∥𝐿∞ ≤ �1−𝑡 ,
we deduce that

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧)]| ≤ 𝐶1 |𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|�𝑖−𝑗𝜒supp𝐷𝜓(𝑥).

On the other hand, we note that, by 𝑗-linearity of 𝐷 𝑗𝑢, we may write 𝐷 𝑗𝑢(𝑥 +
𝜓(𝑥)𝑧)[(id+𝐷𝜓(𝑥) ⊗ 𝑧)𝑗] as the sum of 𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) and 2𝑗 − 1 terms which are
the composition of 𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) with a 𝑗-linear map ℝ𝑗×𝑚 → ℝ𝑗×𝑚 whose entries
are either id or 𝐷𝜓(𝑥) ⊗ 𝑧, with at least one of them being the latter. Hence, since
∥𝐷𝜓∥𝐿∞ < 1, each of those 2𝑗 − 1 last terms is bounded by |𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝜒supp𝐷𝜓(𝑥).
For instance, if 𝑗 = 2, then

𝐷2𝑢(𝑥 + 𝜓(𝑥)𝑧)[(id+𝐷𝜓(𝑥) ⊗ 𝑧)2] = 𝐷2𝑢(𝑥 + 𝜓(𝑥)𝑧) + 𝐷2𝑢(𝑥 + 𝜓(𝑥)𝑧)[id, 𝐷𝜓(𝑥) ⊗ 𝑧]
+ 𝐷2𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐷𝜓(𝑥) ⊗ 𝑧, id] + 𝐷2𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐷𝜓(𝑥) ⊗ 𝑧, 𝐷𝜓(𝑥) ⊗ 𝑧].
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We observe that indeed, the three last terms are obtained by composition of 𝐷2𝑢(𝑥 +
𝜓(𝑥)𝑧) with a bilinear map, at least one of whose entries being 𝐷𝜓(𝑥) ⊗ 𝑧.

As a consequence, for every 𝑥 ∈ 𝜔, we may write

|𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑥) − 𝐷 𝑗𝑢(𝑥)| ≤
∫
𝐵𝑚1

𝜑(𝑧)|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥)| d𝑧

+ 𝐶2

𝑗∑
𝑖=1

�𝑖−𝑗𝜒supp𝐷𝜓(𝑥)
∫
𝐵𝑚1

𝜑(𝑧)|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)| d𝑧.

Minkowski’s inequality ensures that

∥𝐷 𝑗(𝜑𝜓 ∗ 𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝜔) ≤
∫
𝐵𝑚1

𝜑(𝑧)
[(∫

𝜔
|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥)|𝑝 d𝑥

) 1
𝑝

+ 𝐶
𝑗∑
𝑖=1

�𝑖−𝑗
(∫

𝜔∩supp𝐷𝜓
|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝑝 d𝑥

) 1
𝑝
]

d𝑧.

For the first term, we note that(∫
𝜔
|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥)|𝑝 d𝑥

) 1
𝑝

≤ sup
𝑣∈𝐵𝑚1

∥𝜏𝜓𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝜔).

For the second term, we use the change of variable 𝑤 = 𝑥 + 𝜓(𝑥)𝑧 that we considered
before. Taking into account the definition of the set 𝐴, we have 𝑤 ∈ 𝐵𝜓(𝑥)(𝑥) ⊂ 𝐴, and
therefore(∫

𝜔∩supp𝐷𝜓
|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝑝 d𝑥

) 1
𝑝

≤ 1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))
1
𝑝

(∫
𝐴

|𝐷 𝑖𝑢(𝑤)|𝑝 d𝑤
) 1
𝑝

.

We obtain the desired estimate by using the fact that 𝜑 has integral equal to 1.
The estimate in the fractional case 0 < 𝑠 < 1 is straightforward. Indeed, we first write

|𝜑𝜓 ∗𝑢(𝑥)−𝑢(𝑥)−𝜑𝜓 ∗𝑢(𝑦)+𝑢(𝑦)| ≤
∫
𝐵𝑚1

𝜑(𝑧)|𝑢(𝑥+𝜓(𝑥)𝑧)−𝑢(𝑥)−𝑢(𝑦+𝜓(𝑦)𝑧)+𝑢(𝑦)| d𝑧.

Minkowski’s inequality then implies that

|𝜑𝜓 ∗ 𝑢 − 𝑢 |𝑊 𝑠,𝑝(𝜔)

≤
∫
𝐵𝑚1

𝜑(𝑧)
(∫

𝜔

∫
𝜔

|𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝑢(𝑥) − 𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦

) 1
𝑝

d𝑧

≤ sup
𝑣∈𝐵𝑚1

|𝜏𝜓𝑣(𝑢) − 𝑢 |𝑊 𝑠,𝑝(𝜔).
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For the fractional estimate when 𝑠 ≥ 1, we again use equation (4.4) and the observa-
tions following this equation. Let 𝑥, 𝑦 ∈ 𝜔. We proceed by distinction of cases, using
the multilinearity of the differential.

Case 1: 𝑥, 𝑦 ∈ supp𝐷𝜓. For the terms with 𝑖 < 𝑗, using the 𝑗-linearity of 𝐷 𝑗𝑢, we
estimate

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧)] − 𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑦, 𝑧)]|

≤ 𝐶3

( 𝑗∑
𝑡=1

�𝑖−1−𝑗+𝑡 |𝐷𝑡𝜓(𝑥) − 𝐷𝑡𝜓(𝑦)| |𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|

+ �𝑖−𝑗 |𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)|
)
.

On the other hand, for the term involving the derivative of order 𝑗 of 𝑢, we have

|𝐷 𝑗𝑢(𝑥+𝜓(𝑥)𝑧)[(id+𝐷𝜓(𝑥)⊗𝑧)𝑗]−𝐷 𝑗𝑢(𝑥)−𝐷 𝑗𝑢(𝑦+𝜓(𝑦)𝑧)[(id+𝐷𝜓(𝑦)⊗𝑧)𝑗]+𝐷 𝑗𝑢(𝑦)|
≤ |𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|

+ 𝐶4 |𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧)| + 𝐶5 |𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧)| |𝐷𝜓(𝑥) − 𝐷𝜓(𝑦)|.
Now, for 𝑡 ∈ {1, . . . , 𝑗}, we estimate∫

𝜔

|𝐷𝑡𝜓(𝑥) − 𝐷𝑡𝜓(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

≤ �−𝑡𝑝
∫
𝐵𝑚𝑟 (𝑥)

1
|𝑥 − 𝑦 |𝑚+(𝜎−1)𝑝 d𝑦 + 𝐶6�

(1−𝑡)𝑝
∫
ℝ𝑚\𝐵𝑚𝑟 (𝑥)

1
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦

≤ 𝐶7

(
�−𝑡𝑝𝑟(1−𝜎)𝑝 + �(1−𝑡)𝑝𝑟−𝜎𝑝

)
for every 𝑟 > 0. Letting 𝑟 = � yields∫

𝜔

|𝐷𝑡𝜓(𝑥) − 𝐷𝑡𝜓(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≤ 𝐶8�

(1−𝑡−𝜎)𝑝 . (4.5)

Therefore, using Minkowski’s inequality on the expression obtained from (4.4), we
deduce that(∫

𝜔∩supp𝐷𝜓

∫
𝜔∩supp𝐷𝜓

|𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑥) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑦) + 𝐷 𝑗𝑢(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦
) 1
𝑝

≤
∫
𝐵𝑚1

𝜑(𝑧)
[(∫

𝜔∩supp𝐷𝜓

∫
𝜔∩supp𝐷𝜓

|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

+ 𝐶9

𝑗∑
𝑖=1

�𝑖−𝑗
(∫

𝜔∩supp𝐷𝜓

∫
𝜔∩supp𝐷𝜓

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

+ 𝐶10

𝑗∑
𝑖=1

�𝑖−𝑗−𝜎
(∫

𝜔∩supp𝐷𝜓
|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝑝 d𝑥

) 1
𝑝
]

d𝑧.
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Case 2: without loss of generality, 𝑥 ∈ supp𝐷𝜓 and 𝑦 ∉ supp𝐷𝜓. In this case, since
each 𝐿𝑖 ,𝑙 , 𝑗(𝑦, 𝑧) has at least one entry equal to 𝐷𝑡𝜓(𝑦), we find

𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑦, 𝑧)] = 0 = 𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑦, 𝑧)].

Hence,

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧)] − 𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑦, 𝑧)]|

≤
𝑗∑
𝑡=1

�𝑖−1−𝑗+𝑡 |𝐷𝑡𝜓(𝑥) − 𝐷𝑡𝜓(𝑦)| |𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|.

On the other hand, we have

|𝐷 𝑗𝑢(𝑥+𝜓(𝑥)𝑧)[(id+𝐷𝜓(𝑥)⊗𝑧)𝑗]−𝐷 𝑗𝑢(𝑥)−𝐷 𝑗𝑢(𝑦+𝜓(𝑦)𝑧)[(id+𝐷𝜓(𝑦)⊗𝑧)𝑗]+𝐷 𝑗𝑢(𝑦)|
≤ |𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|

+ 𝐶11 |𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧)| |𝐷𝜓(𝑥) − 𝐷𝜓(𝑦)|.

We then argue as in Case 1, using (4.5) to deal with the terms containing |𝐷𝑡𝜓(𝑥) −
𝐷𝑡𝜓(𝑦)|, and we deduce that(∫

𝜔\supp𝐷𝜓

∫
𝜔∩supp𝐷𝜓

|𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑥) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑦) + 𝐷 𝑗𝑢(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦
) 1
𝑝

≤
∫
𝐵𝑚1

𝜑(𝑧)
[(∫

𝜔\supp𝐷𝜓

∫
𝜔∩supp𝐷𝜓

|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

+ 𝐶12

𝑗∑
𝑖=1

�𝑖−𝑗−𝜎
(∫

𝜔∩supp𝐷𝜓
|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝑝 d𝑥

) 1
𝑝
]

d𝑧.

Case 3: 𝑥, 𝑦 ∉ supp𝐷𝜓. In this case, for 𝑖 < 𝑗, we observe that

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑥, 𝑧)] − 𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)[𝐿𝑖 ,𝑙 , 𝑗(𝑦, 𝑧)]| = 0.

Moreover,

|𝐷 𝑗𝑢(𝑥+𝜓(𝑥)𝑧)[(id+𝐷𝜓(𝑥)⊗𝑧)𝑗]−𝐷 𝑗𝑢(𝑥)−𝐷 𝑗𝑢(𝑦+𝜓(𝑦)𝑧)[(id+𝐷𝜓(𝑦)⊗𝑧)𝑗]+𝐷 𝑗𝑢(𝑦)|
= |𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|.

Hence, unlike in the previous cases, estimate (4.5) is not needed, and a simple application
of Minkowski’s inequality yields(∫

𝜔\supp𝐷𝜓

∫
𝜔\supp𝐷𝜓

|𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑥) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑦) + 𝐷 𝑗𝑢(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦
) 1
𝑝

≤
∫
𝐵𝑚1

𝜑(𝑧)
[(∫

𝜔\supp𝐷𝜓

∫
𝜔\supp𝐷𝜓

|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

d𝑧.
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Gathering the estimates obtained in Cases 1, 2, and 3, we deduce that(∫
𝜔

∫
𝜔

|𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑥) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗(𝜑𝜓 ∗ 𝑢)(𝑦) + 𝐷 𝑗𝑢(𝑦)|𝑝

|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦
) 1
𝑝

≤ 𝐶13

∫
𝐵𝑚1

𝜑(𝑧)
[(∫

𝜔

∫
𝜔

|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

+
𝑗∑
𝑖=1

�𝑖−𝑗
(∫

𝜔∩supp𝐷𝜓

∫
𝜔∩supp𝐷𝜓

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

+
𝑗∑
𝑖=1

�𝑖−𝑗−𝜎
(∫

𝜔∩supp𝐷𝜓
|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝑝 d𝑥

) 1
𝑝
]

d𝑧.

For the first term, we observe once again that(∫
𝜔

∫
𝜔

|𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦 + 𝜓(𝑦)𝑧) + 𝐷 𝑗𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

) 1
𝑝

≤ sup
𝑣∈𝐵𝑚1

|𝜏𝜓𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝜔).

For the third term, we use the change of variable 𝑤 = 𝑥 + 𝜓(𝑥)𝑧, and we find∫
𝜔∩supp𝐷𝜓

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧)|𝑝 d𝑥 ≤ 1
(1 − ∥𝐷𝜓∥𝐿∞(𝜔))

∫
𝐴

|𝐷 𝑖𝑢(𝑤)|𝑝 d𝑤

≤ 1
(1 − ∥𝐷𝜓∥𝐿∞(𝜔))2

∥𝐷 𝑖𝑢∥𝑝
𝐿𝑝(𝐴).

For the second term, we make use of the change of variable 𝑤 = 𝑥 + 𝜓(𝑥)𝑧 and �̃� =

𝑦 + 𝜓(𝑦)𝑧. Observe that |𝑤 − �̃� | ≤ 2|𝑥 − 𝑦 |, and hence∫
𝜔∩supp𝐷𝜓

∫
𝜔∩supp𝐷𝜓

|𝐷 𝑖𝑢(𝑥 + 𝜓(𝑥)𝑧) − 𝐷 𝑖𝑢(𝑦 + 𝜓(𝑦)𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

≤ 𝐶14
1

(1 − ∥𝐷𝜓∥𝐿∞(𝜔))2

∫
𝐴

∫
𝐴

|𝐷 𝑖𝑢(𝑤) − 𝐷 𝑖𝑢(�̃�)|𝑝
|𝑤 − �̃� |𝑚+𝜎𝑝 d𝑤d�̃�.

Using the fact that 𝜑 has integral equal to 1, this concludes the proof of the fractional
estimate when 𝑠 ≥ 1.

The proof of assertion (i) follows the same strategy. The only change is that, instead of
grouping the term 𝐷 𝑗𝑢(𝑥 + 𝜓(𝑥)𝑧) coming from the first term in (4.4) with the 𝐷 𝑗𝑢, we
have to estimate it as all the other terms. Unlike the 2𝑗 − 1 terms involving a derivative
of order 𝑗 of 𝑢, this term does not vanish outside of the support of 𝐷𝜓. This explains
the presence of the norm on the whole 𝛺 in estimates (i). □
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Adaptative smoothing is a very useful tool to approximate a 𝑊 𝑠,𝑝 map by smooth
maps, but it has a major drawback in the context of Sobolev spaces with values into
manifolds. Indeed, if 𝑢 ∈𝑊 𝑠,𝑝(𝛺;𝒩), in general 𝜑𝜓 ∗𝑢 does not take values into𝒩 , since
the convolution product is in general not compatible with the constraint. Therefore, it
will be crucial in the proof of Theorem 1.2 to be able to estimate the distance between
the smoothed maps and the manifold. We close this section by a discussion devoted to
this purpose, which also sheds light on how to use the estimates obtained during the
opening procedure in the previous section.

We work in a slightly more general setting, assuming that 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;ℝ�) is such
that 𝑢(𝑥) ∈ 𝐹 for almost every 𝑥 ∈ 𝛺, where 𝐹 ⊂ ℝ� is an arbitrary closed set. We place
ourselves under the assumptions of Propositions 3.1, 3.7, and 3.8. We denote by Φ

op
� the

map provided by Proposition 3.1 and we set 𝑢op
� = 𝑢 ◦ Φop

� . Let 𝑢sm
� = 𝜑𝜓� ∗ 𝑢

op
� , where

𝜑 is a fixed mollifier, and the variable regularization parameter 𝜓� is to be chosen later
on, depending on �.

Let 0 < 𝜌 < 𝜌 be fixed, and assume that 𝒰𝑚
� is a subskeleton of some skeleton 𝒦𝑚

�

such that 𝐾𝑚� ⊂ 𝜔. To fix the ideas, one may keep in mind that 𝐾𝑚� = 𝜔 in the case where
𝜔 can be decomposed as a finite union of cubes of radius �. We consider a subskeleton
ℰ𝑚� of 𝒰𝑚

� such that
𝐸𝑚� ⊂ Int𝑈𝑚

� (4.6)

in the relative topology of 𝐾𝑚� . (Later on in the proof of Theorem 1.2, ℰ𝑚� will be the
class of all bad cubes.)

Given a set 𝑆 ⊂ ℝ�, the directed Hausdorff distance from 𝑆 to 𝐹 is defined as

Dist𝐹 (𝑆) = sup{dist (𝑥, 𝐹) : 𝑥 ∈ 𝑆}.

Our objective is to show that, for a suitable choice of 𝜓� and 𝑟 > 0, we have

Dist𝐹 (𝑢sm
� ((𝐾𝑚 \𝑈𝑚

� ) ∪ (𝑈ℓ
� +𝑄𝑚

𝜌�))) ≤ max
{

max
𝜎𝑚∈𝒦𝑚

� \ℰ𝑚�
𝐶1

1
�
𝑚
𝑠𝑝−1

∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ,

sup
𝑥∈𝑈ℓ

�+𝑄𝑚
𝜌�

𝐶2

⨏
𝑄𝑚
𝑟 (𝑥)

⨏
𝑄𝑚
𝑟 (𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦d𝑧
}

(4.7)

if 𝑠 ≥ 1, respectively

Dist𝐹 (𝑢sm
� ((𝐾𝑚 \𝑈𝑚

� ) ∪ (𝑈ℓ
� +𝑄𝑚

𝜌�))) ≤ max
{

max
𝜎𝑚∈𝒦𝑚

� \ℰ𝑚�
𝐶1

1
�
𝑚
𝑝 −𝑠

|𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ,

sup
𝑥∈𝑈ℓ

�+𝑄𝑚
𝜌�

𝐶2

⨏
𝑄𝑚
𝑟 (𝑥)

⨏
𝑄𝑚
𝑟 (𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦d𝑧
}

(4.8)

if 0 < 𝑠 < 1. We note that, in order to make the right-hand side of (4.7), respectively (4.8),
small, we need to take 𝑟 sufficiently small, and also to have control on the 𝐿𝑠𝑝 norm
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of 𝐷𝑢, respectively the 𝑊 𝑠,𝑝 norm of 𝑢, on the cubes in 𝒦𝑚
� \ ℰ𝑚� . This will be our

motivation for the choice of good and bad cubes in the proof of Theorem 1.2.
We proceed with the proof of (4.7), respectively (4.8). Since 𝑢op

� takes its values into
𝐹, for almost every 𝑧 ∈ 𝑄𝑚

𝜓�(𝑥)(𝑥), we have

dist (𝑢sm
� (𝑥), 𝐹) ≤ |𝑢sm

� (𝑥) − 𝑢op
� (𝑧)|.

Averaging over 𝑄𝑚
𝜓�(𝑥)(𝑥), we find

dist (𝑢sm
� (𝑥), 𝐹) ≤

⨏
𝑄𝑚

𝜓�(𝑥)(𝑥)
|𝑢sm

� (𝑥) − 𝑢op
� (𝑧)| d𝑧.

Using the rewriting (4.1), we deduce that, for every 𝑥 ∈ 𝜔,

dist (𝑢sm
� (𝑥), 𝐹) ≤

⨏
𝑄𝑚

𝜓�(𝑥)(𝑥)

⨏
𝑄𝑚

𝜓�(𝑥)(𝑥)
𝜑
( 𝑦 − 𝑥
𝜓(𝑥)

)
|𝑢op

� (𝑦) − 𝑢op
� (𝑧)| d𝑦d𝑧

≤ 𝐶3

⨏
𝑄𝑚

𝜓�(𝑥)(𝑥)

⨏
𝑄𝑚

𝜓�(𝑥)(𝑥)
|𝑢op

� (𝑦) − 𝑢op
� (𝑧)| d𝑦d𝑧. (4.9)

If 𝑄𝑚
𝜓�(𝑥)(𝑥) ⊂ 𝑈ℓ

� + 𝑄𝑚
𝜌� and ℓ ≤ 𝑠𝑝, Proposition 3.8 ensures that the right-hand side

of (4.9) can be made arbitrarily small if we take 𝜓�(𝑥) sufficiently small. This invites us
to choose 𝜓� to be very small in a neighborhood of𝑈ℓ .

On the other hand, the Poincaré–Wirtinger inequality ensures that

dist (𝑢sm
� (𝑥), 𝐹) ≤ 𝐶4

1
𝜓�(𝑥)

𝑚
𝑠𝑝−1

∥𝐷𝑢op
� ∥𝐿𝑠𝑝(𝑄𝑚

𝜓(𝑥)(𝑥)) (4.10)

if 𝑠 ≥ 1, respectively

dist (𝑢sm
� (𝑥), 𝐹) ≤ 𝐶5

1
𝜓�(𝑥)

𝑚
𝑝 −𝑠

|𝐷𝑢op
� |𝑊 𝑠,𝑝(𝑄𝑚

𝜓(𝑥)(𝑥)) (4.11)

if 0 < 𝑠 < 1. These estimates are only useful in the region where we can control the 𝐿𝑠𝑝
norm of 𝐷𝑢 or the𝑊 𝑠,𝑝 norm of 𝑢, that is, on the good cubes. On the other hand, since
𝑠𝑝 < 𝑚, (4.10) and (4.11) suggest that 𝜓� should not be too small.

We now pause to explain the construction of a function 𝜓� suited for our approxi-
mation results. As explained in Section 2, we distinguish between three regimes. In
𝑈ℓ

� + 𝑄𝑚
𝜌�, we take 𝜓� very small, according to Proposition 3.8. On the good cubes,

we take 𝜓� of order �, in order to apply (4.10), respectively (4.11). Between these two
regimes, we need a transition region in order for 𝜓� to change of magnitude. Here the
second part of Proposition 3.8 comes into play. Indeed, if 𝑥 ∈ 𝜎𝑚 for some 𝜎𝑚 ∈ 𝒰𝑚

�

and 𝑄𝑚
𝜓�(𝑥) ⊂ 𝑈

ℓ
� +𝑄𝑚

𝜌� , we have

dist (𝑢sm
� (𝑥), 𝐹) ≤ 𝐶6

𝜓�(𝑥)1−
ℓ
𝑠𝑝

�
𝑚−ℓ
𝑠𝑝

∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) (4.12)
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if 𝑠 ≥ 1, respectively

dist (𝑢sm
� (𝑥), 𝐹) ≤ 𝐶7

𝜓�(𝑥)𝑠−
ℓ
𝑝

�
𝑚−ℓ
𝑝

|𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) (4.13)

if 0 < 𝑠 < 1. Again, this inequality is only useful on good cubes, but now it requires an
upper bound on 𝜓� instead if we take ℓ ≤ 𝑠𝑝.

Hence, we proceed with the following construction. Assumption (4.6) ensures that
we have enough room for the transition region for 𝜓�: we have dist (𝐸𝑚� , 𝐾𝑚� \𝑈𝑚

� ) ≥ �.
Therefore, we may find �� ∈ 𝒞∞(𝛺) such that

(a) 0 ≤ �� ≤ 1 in 𝛺;

(b) �� = 1 in 𝐾𝑚� \𝑈𝑚
� ;

(c) �� = 0 in 𝐸𝑚� ;

(d) for every 𝑗 ∈ {1, . . . , 𝑘 + 1},
� 𝑗 ∥𝐷 𝑗��∥𝐿∞ ≤ 𝐶8

for some constant 𝐶8 > 0 depending only on 𝑚.

Now we pick 0 < 𝑟 < 𝑡 and we let

𝜓� = 𝑡�� + 𝑟(1 − ��).

Therefore, 𝜓� = 𝑟 on 𝐸𝑚� and 𝜓� = 𝑡 on 𝐾𝑚� \𝑈𝑚
� . As we observed, we will need to take

𝑟 very small, while keeping 𝑡 of order �. We choose

𝑡 = min
{ �
𝐶8
, 𝜌 − 𝜌

}
� (4.14)

for some fixed 0 < � < 1. Therefore,

� 𝑗 ∥𝐷 𝑗𝜓�∥𝐿∞ ≤ �� for every 𝑗 ∈ {1, . . . , 𝑘 + 1},

which ensures that the assumptions of Proposition 4.1 are satisfied. Moreover, we have
0 < 𝜓� ≤ (𝜌 − 𝜌)�, which implies that, if 𝑥 ∈ 𝑈ℓ

� + 𝑄𝑚
𝜌�, then 𝑄𝑚

𝜓�(𝑥)(𝑥) ⊂ 𝑈ℓ
� + 𝑄𝑚

𝜌�.
Estimate (4.7), respectively (4.8), is a straightforward consequence of estimate (4.9)
for 𝑥 ∈ 𝐸𝑚� ∩ (𝑈ℓ + 𝑄𝑚

𝜌�), estimate (4.10), respectively (4.11), for 𝑥 ∈ 𝐾𝑚� \ 𝑈𝑚
� , and

estimate (4.12), respectively (4.13), for 𝑥 ∈ (𝑈𝑚
� \ 𝐸𝑚� ) ∩ (𝑈ℓ

� +𝑄𝑚
𝜌�).

Before closing this section, we summarize what we have obtained so far. Given a map
𝑢 ∈ 𝑊 𝑠,𝑝(𝛺; 𝐹), we have constructed a smooth map 𝑢sm

� for which we may estimate its
distance to 𝑢 in 𝑊 𝑠,𝑝 . Moreover, even though 𝑢sm

� does not necessarily take values into
𝐹, we are able to control the distance between 𝑢sm

� and 𝐹 everywhere on the cubication
𝐾𝑚� , except on the cubes in 𝒰𝑚

� , far from their ℓ -skeleton. Therefore, our next step is
to be able to modify 𝑢sm

� into a new map which, on the cubes in 𝒰𝑚
� , depends only on

the values of 𝑢sm
� near the ℓ -skeleton of the cubes, while controlling the 𝑊 𝑠,𝑝 distance

between 𝑢sm
� and this new map.
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5 Thickening

This section is devoted to the thickening procedure. As we explained in Section 2, this
technique is reminiscent of the homogeneous extension method, which was used by
Bethuel to deal with the case 𝑠 = 1; see [2]. This approach is valid for 𝑊 𝑠,𝑝 maps with
𝑠 < 1 + 1

𝑝 (but not beyond 𝑠 = 1 + 1
𝑝 ). In order to deal with 𝑊 𝑠,𝑝 maps with arbitrary 𝑠,

a new tool, thickening, is needed. Its construction was performed by Bousquet, Ponce,
and Van Schaftingen in [9, Section 4], which also contains the analytic estimates that
make thickening instrumental in the proof of Theorem 1.2 for integer 𝑠. In this section,
we establish the fractional counterparts of the estimates in [9]. The main feature of
this section is the need for new techniques, taking into account the geometry of the
thickening maps, that we develop in order to obtain fractional estimates. This will
become transparent, e.g., in the proof of estimates (a) and (c) in Proposition 5.3, relying
crucially on estimate (5.4).
Proposition 5.1. Let 𝛺 ⊂ ℝ𝑚 be open, ℓ ∈ {0, . . . , 𝑚 − 1}, � > 0, 0 < 𝜌 < 1, 𝒮𝑚 be a
cubication in ℝ𝑚 of radius �, 𝒰𝑚 be a subskeleton of 𝒮𝑚 such that𝑈𝑚 +𝑄𝑚

𝜌� ⊂ 𝛺, and 𝒯 ℓ ∗ be
the dual skeleton of 𝒰ℓ . There exists a smooth map Φ : ℝ𝑚 \ 𝑇ℓ ∗ → ℝ𝑚 such that

(i) Φ is injective;

(ii) for every 𝜎𝑚 ∈ 𝒮𝑚 , Φ(𝜎𝑚 \ 𝑇ℓ ∗) ⊂ 𝜎𝑚 \ 𝑇ℓ ∗ ;

(iii) SuppΦ ⊂ 𝑈𝑚 +𝑄𝑚
𝜌� and Φ(𝑈𝑚 \ 𝑇ℓ ∗) ⊂ 𝑈ℓ +𝑄𝑚

𝜌�;

(iv) for every 𝑗 ∈ ℕ∗ and for every 𝑥 ∈ (𝑈𝑚 +𝑄𝑚
𝜌�) \ 𝑇ℓ

∗ ,

|𝐷 𝑗Φ(𝑥)| ≤ 𝐶
�

dist(𝑥, 𝑇ℓ ∗)𝑗

for some constant 𝐶 > 0 depending on 𝑗, 𝑚 and 𝜌.

If in addition ℓ + 1 > 𝑠𝑝, then for every 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺;ℝ�), we have 𝑢 ◦ Φ ∈ 𝑊 𝑠,𝑝(𝛺;ℝ�), and
moreover, the following estimates hold:

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢 ◦Φ − 𝑢 |𝑊 𝑠,𝑝(𝛺) ≤ 𝐶′
(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝑈𝑚+𝑄𝑚

𝜌�) + ∥𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�)
)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢∥𝐿𝑝(𝛺) ≤ 𝐶′
𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝛺) ≤ 𝐶′
𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚

𝜌�) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈𝑚+𝑄𝑚
𝜌�)
)
;
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(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ − 𝑢∥𝐿𝑝(𝛺) ≤ 𝐶′∥𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�);

for some constant 𝐶′ > 0 depending on 𝑚, 𝑠, 𝑝, and 𝜌.

We emphasize that, unlike for opening in Section 3, the map Φ constructed in Propo-
sition 5.1 above is independent of the map 𝑢 ∈𝑊 𝑠,𝑝 it shall be composed with.

Similarly to opening, crucial to the proof of Theorem 1.2 is the fact that the thickening
procedure increases the energy of the map 𝑢 at most by a constant factor in the region
where 𝑢 is modified. This, in turn, implies that the distance between 𝑢 and 𝑢 ◦ Φ is
controlled by the energy of 𝑢 on𝑈𝑚+𝑄𝑚

𝜌� , as stated in the conclusion of Proposition 5.1.
In the proof of Theorem 1.2, this will be used in combination with the fact that the
measure of the set𝑈𝑚 +𝑄𝑚

𝜌� tends to 0 as � → 0 in order to ensure that 𝑢 ◦Φ is close to
𝑢 when � is sufficiently small.

As for the opening, Proposition 5.1 is proved blockwise: we first construct, in Propo-
sition 5.2, a map, still denoted Φ, which thickens each face of 𝒯 ℓ ∗ . We then suitably
glue those maps to obtain a thickening map as in Proposition 5.1. Before giving the
description of the building blocks used in the proof of Proposition 5.1, we introduce
some additional notation similarly to what we did for opening. The construction of the
map in Proposition 5.2 below involves three parameters 0 < 𝜌 < 𝜌 < 𝜌 < 1. These
parameters being fixed, we define the rectangles

𝑄1 = 𝑄𝑑
(1−𝜌)� ×𝑄

𝑚−𝑑
𝜌� , 𝑄2 = 𝑄𝑑

(1−𝜌)� ×𝑄
𝑚−𝑑
𝜌� , 𝑄3 = 𝑄𝑑

(1−𝜌)� ×𝑄
𝑚−𝑑
𝜌� . (5.1)

Note that 𝑄1 ⊂ 𝑄2 ⊂ 𝑄3. We also set 𝑇 = {0}𝑑 × 𝑄𝑚−𝑑
𝜌� , the part of the dual skeleton

contained in 𝑄3. The rectangle 𝑄3 contains the geometric support of Φ, that is, Φ = id
outside of 𝑄3. The rectangle 𝑄2 is the region where the thickening procedure is fully
performed: the set 𝑇 ∩ 𝑄2 is entirely mapped outside of 𝑄1, in 𝑄2 \ 𝑄1. The region
𝑄3 \𝑄2 serves as a transition, on which the map Φ becomes less and less singular, until
it reaches the exterior of 𝑄3 where it coincides with the identity.

This section is organized as follows. First we describe the geometric construction of
the building blocks for thickening. Then we prove the analytic estimates satisfied by
the composition of a map 𝑢 ∈ 𝑊 𝑠,𝑝 with those building blocks. Finally, we explain
the construction of the global thickening map based on the aforementioned building
blocks, and we prove all properties stated in the conclusion of Proposition 5.1.

We start by stating the geometric properties satisfied by the building blocks, which
do not depend on the map 𝑢 to which thickening is applied. The map Φ constructed
in Proposition 5.2 is exactly the map given by [9, Proposition 4.3]. Hence, we shall not
give a complete proof of Proposition 5.2, but we will limit ourselves to recall, for the
convenience of the reader, the main steps in the construction of the map Φ.

The main difference with [9] is the proof of the Sobolev estimates. In [9], they were
obtained on the whole 𝛺 as a corollary of the geometric properties of the map Φ, by the
use of the change of variable theorem. This approach does not seem to work to deal with
the Gagliardo seminorm. Hence, we first establish the estimates for the building blocks,
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and we deduce the global estimates by gluing, as for opening. To do so, we need to
take into account some additional features of the map Φ, that are part of its construction
in [9, Proof of Proposition 4.3] but do not appear in the conclusion of Proposition 4.3
in [9].

The construction of the map Φ involves another map � : ℝ𝑚 → ℝ, which we describe
hereafter. For (𝑥′, 𝑥′′) ∈ ℝ𝑑 ×ℝ𝑚−𝑑, we define

�(𝑥′, 𝑥′′) =
√

|𝑥′ |2 + �2�
( 𝑥′′
�

)
. (5.2)

In [9], � : ℝ𝑚−𝑑 → [0, 1] is an arbitrary smooth map such that �(𝑥′′) = 0 if 𝑥′′ ∈ 𝑄𝑚−𝑑
𝜌

and �(𝑥′′) = 1 if 𝑥′′ ∈ ℝ𝑚−𝑑 \𝑄𝑚−𝑑
𝜌 . For our purposes, we need to be more precise in our

choice of �. We would like to choose � to be nondecreasing with respect to cubes, that is,
�(𝑥′′) depends only on the ∞-norm of 𝑥′′ and �(𝑥′′) ≤ �(𝑦′′) if |𝑥′′ |∞ ≤ |𝑦′′ |∞. However,
this is not possible if we want � to be smooth, since the ∞-norm is not differentiable.
Nevertheless, we may choose � sufficiently close to be nondecreasing with respect to
cubes for our purposes, by replacing the ∞-norm by some 𝑞-norm for 𝑞 sufficiently
large.

More precisely, we take 1 < 𝑞 < +∞ sufficiently large, depending on 𝜌 and 𝜌, so that
there exists 0 < 𝑟1 < 𝑟2 satisfying

𝑄𝑚−𝑑
𝜌 ⊂ {𝑥′′ ∈ ℝ𝑚−𝑑: |𝑥′′ |𝑞 < 𝑟1} ⊂ {𝑥′′ ∈ ℝ𝑚−𝑑: |𝑥′′ |𝑞 < 𝑟2} ⊂ 𝑄𝑚−𝑑

𝜌 .

This is indeed possible since 𝑄𝑚−𝑑
𝜌 and 𝑄𝑚−𝑑

𝜌 are respectively the balls of radius 𝜌 and
𝜌 with respect to the ∞-norm in ℝ𝑚−𝑑, and since the 𝑞-norm converges uniformly on
compact sets to the ∞-norm as 𝑞 → +∞. We then pick a nondecreasing smooth map
�̃ : ℝ+ → [0, 1] such that �̃(𝑟) = 0 if 0 ≤ 𝑟 ≤ 𝑟1 and �̃(𝑟) = 1 if 𝑟 ≥ 𝑟2. We finally set
�(𝑥′′) = �̃(|𝑥′′ |𝑞). Since 1 < 𝑞 < +∞, � is smooth on ℝ𝑚−𝑑, and, by our choice of 𝑞, 𝑟1,
and 𝑟2, we indeed have �(𝑥′′) = 0 if 𝑥′′ ∈ 𝑄𝑚−𝑑

𝜌 and �(𝑥′′) = 1 if 𝑥′′ ∈ ℝ𝑚−𝑑 \𝑄𝑚−𝑑
𝜌 .

With the description of the map � at our disposal, we are now ready to state Proposi-
tion 5.2. Recall that the rectangles 𝑄𝑖 in (5.1) depend on 𝑑 and �.
Proposition 5.2. Let 𝑑 ∈ {1, . . . , 𝑚}, � > 0, and 0 < 𝜌 < 𝜌 < 𝜌. There exists a smooth
function Φ : ℝ𝑚 \ 𝑇 → ℝ𝑚 such that

(i) Φ is injective;

(ii) SuppΦ ⊂ 𝑄3;

(iii) Φ(𝑄2 \ 𝑇) ⊂ 𝑄2 \𝑄1;

(iv) for every 𝑥 ∈ 𝑄3 \ 𝑇,

|𝐷 𝑗Φ(𝑥)| ≤ 𝐶
�

� 𝑗(𝑥)
for every 𝑗 ∈ ℕ∗

for some constant 𝐶 > 0 depending on 𝑗, 𝑚, 𝜌, 𝜌, and 𝜌;
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(v) for every 𝑥 ∈ ℝ𝑚 \ 𝑇,

jacΦ(𝑥) ≥ 𝐶′ �𝛽

�𝛽(𝑥)
for every 0 < 𝛽 < 𝑑,

for some constant 𝐶′ > 0 depending on 𝛽, 𝑚, 𝜌, 𝜌, and 𝜌.

Proof. As we already mentioned, the desired map Φ is provided by [9, Proposition 4.3].
Hence, we limit ourselves to briefly recall its construction for the convenience of the
reader, and we refer to [9] for the complete proof of its properties. For technical
reasons, we start by constructing an intermediate map Ψ : ℝ𝑚 \ 𝑇 → ℝ𝑚 as follows;
see [9, Lemma 4.5]. We define

𝐵1 = 𝐵𝑑(1−𝜌)� ×𝑄
𝑚−𝑑
𝜌� , 𝐵2 = 𝐵𝑑(1−𝜌)� ×𝑄

𝑚−𝑑
𝜌� , 𝐵3 = 𝐵𝑑(1−𝜌)� ×𝑄

𝑚−𝑑
𝜌� .

The mapΨ is constructed to satisfy the conclusion of Proposition 5.2 with the rectangles
𝑄𝑖 replaced by the corresponding cylinders 𝐵𝑖 for 𝑖 ∈ {1, 2, 3}. Since 𝐵𝑖 ⊂ 𝑄𝑖 , it will
then suffice to compose Ψ with a suitable diffeomorphism Θ : ℝ𝑚 → ℝ𝑚 that dilates 𝐵1
to a set containing 𝑄1 in order to obtain the desired map Φ.

We choose a smooth map 𝜑 : (0,+∞) → [1,+∞) such that

(a) for 0 < 𝑟 ≤ 1 − 𝜌,

𝜑(𝑟) =
1 − 𝜌

𝑟

(
1 + 𝑏

ln(1
𝑟 )

)
;

(b) for 𝑟 ≥ 1 − 𝜌, 𝜑(𝑟) = 1;

(c) the function 𝑟 ∈ (0,+∞) ↦→ 𝑟𝜑(𝑟) is increasing.

This is possible provided that we choose 𝑏 > 0 such that

(1 − 𝜌)
(
1 + 𝑏

ln 1
1−𝜌

)
< 1 − 𝜌.

Then we define � : ℝ𝑚 \ 𝑇 → [1,+∞) by

�(𝑥) = 𝜑
( �(𝑥)

�

)
,

and finally
Ψ(𝑥′, 𝑥′′) = (�(𝑥′, 𝑥′′)𝑥′, 𝑥′′).

The injectivity ofΨ is a consequence of assumption (c) on𝜑. The fact that SuppΨ ⊂ 𝐵3
relies on assumption (b) on 𝜑, since we may observe that �(𝑥) ≥ (1 − 𝜌)� if 𝑥 ∈ ℝ𝑚 \ 𝐵3,
and therefore �(𝑥) = 1. Combining the observation that, using (c) again,

𝑟𝜑(𝑟) ≥ lim
𝑟→0

𝑟𝜑(𝑟) = 1 − 𝜌
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with the fact that �(𝑥) = |𝑥′ | if 𝑥 = (𝑥′, 𝑥′′) ∈ 𝐵2, we find thatΨ(𝐵2 \𝑇) ⊂ 𝐵2 \𝐵1. In order
to obtain (iv) on 𝐵3 \𝑇, we estimate |𝐷 𝑗�(𝑥)| with the help of the Faà di Bruno formula,
and then conclude using Leibniz’s rule. The proof of estimate (v) is more delicate. The
Jacobian of Ψ may be explicitly evaluated as the determinant of a rank-one perturbation
of a diagonal map, as we did in the proof of (4.3), and one then uses the properties of 𝜑
and � to get the required lower bound on the obtained expression. We refer the reader
to [9, Lemma 4.5] for the details.

It remains to correct the fact that we worked with the cylinders 𝐵𝑖 instead of the
rectangles 𝑄𝑖 . This essentially amount to construct a suitable deformation of ℝ𝑚 with
bounded derivatives and a suitable lower bound on the Jacobian. We let Θ : ℝ𝑚 → ℝ𝑚

be a diffeomorphism whose geometric support is contained in 𝑄3, which maps 𝐵2 \ 𝐵1
on a set contained in 𝑄2 \𝑄1 – that is, Θ dilates 𝐵1 on a set containing 𝑄1 – and satisfies
the estimates

� 𝑗−1 |𝐷 𝑗Θ | ≤ 𝐶1 and 0 < 𝐶2 ≤ jacΘ ≤ 𝐶3 on ℝ𝑚 .

We refer the reader to [9, Lemma 4.4] for the precise construction of this diffeomorphism.
Finally, we let Φ = Θ ◦Ψ. We observe that this construction satisfies the geometric

properties (i) to (iii). The estimate (v) on the Jacobian readily follows from the com-
position formula for the Jacobian. To get (iv), we invoke the Faà di Bruno formula to
compute

|𝐷 𝑗Φ(𝑥)| ≤ 𝐶4

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷 𝑖Θ(𝑥)| |𝐷𝑡1Ψ(𝑥)| · · · |𝐷𝑡𝑖Ψ(𝑥)|

≤ 𝐶5

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

�1−𝑖 �

�𝑡1(𝑥) · · ·
�

�𝑡𝑖 (𝑥) ≤ 𝐶6
�

� 𝑗(𝑥)
.

This concludes the proof of the proposition. □

Now that we have the building block Φ, we move to the Sobolev estimates satisfied
by the composition 𝑢 ◦Φ.

Proposition 5.3. Let 𝑑 > 𝑠𝑝. Let Φ be as in Proposition 5.2. Let 𝜔 ⊂ ℝ𝑚 be such that
𝑄3 ⊂ 𝜔 ⊂ 𝐵𝑚𝑐� for some 𝑐 > 0, and assume that there exists 𝑐′ > 0 such that

|𝐵𝑚� (𝑧) ∩ 𝜔 | ≥ 𝑐′�𝑚 for every 𝑧 ∈ 𝜔 and 0 < � ≤ 1
2 diam 𝜔. (5.3)

For every 𝑢 ∈𝑊 𝑠,𝑝(𝜔;ℝ�), we have 𝑢◦Φ ∈𝑊 𝑠,𝑝(𝜔;ℝ�), and moreover, the following estimates
hold:

(a) if 0 < 𝑠 < 1, then
|𝑢 ◦Φ|𝑊 𝑠,𝑝(𝜔) ≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝜔);
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝑢 ◦Φ)∥𝐿𝑝(𝜔) ≤ 𝐶

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ)|𝑊𝜎,𝑝(𝜔) ≤ 𝐶

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝜔)

)
;

(d) for every 0 < 𝑠 < +∞,
∥𝑢 ◦Φ∥𝐿𝑝(𝜔) ≤ 𝐶∥𝑢∥𝐿𝑝(𝜔);

for some constant 𝐶 > 0 depending on 𝑠, 𝑚, 𝑝, 𝑐, 𝑐′, 𝜌, 𝜌, and 𝜌.

We comment on the assumptions (5.3) on 𝜔. In this section, 𝜔 will be a rectangle
whose sidelengths are constant multiples of �. However, in Section 7, we will use
Proposition 7.3, which is very similar to Proposition 5.3, with a more complicated 𝜔.
This is why we stated Proposition 5.3 in a rather general form.

The assumption that 𝜔 is contained in some ball having radius of order � is purely
technical. It ensures that estimate (iv) of Proposition 5.2 still applies for 𝑥 ∈ 𝜔 \ 𝑇,
possibly increasing the constant. Indeed, since SuppΦ ⊂ 𝑄3, this estimate clearly still
applies when 𝑥 ∉ 𝑄3, but the constant deteriorates as |𝑥′ | → +∞, since then Φ = id
while �(𝑥) → +∞. We could bypass this restriction, but it would not be useful since
anyway we intend to apply Proposition 5.3 to domains 𝜔 satisfying this requirement.

To prove Proposition 5.3, we need a technical lemma. As it was the case for opening,
in the proof of the fractional Sobolev estimates, we will need to estimate terms of the
form |𝐷𝑡Φ(𝑥)−𝐷𝑡Φ(𝑦)|. However, unlike for the opening, we cannot upper bound such
terms by a simple application of the mean value theorem along a segment connecting
𝑥 and 𝑦, since such a segment could potentially get very close to – or even cross – the
dual skeleton 𝑇 where Φ is singular. The following lemma provides us with a suitable
path along which to apply the mean value theorem.

Lemma 5.4. For every 𝑥, 𝑦 ∈ ℝ𝑚 \𝑇, there exists a Lipschitz path 𝛾 : [0, 1] → ℝ𝑚 \𝑇 from 𝑥

to 𝑦 such that
|𝛾 |𝒞0,1([0,1]) ≤ 𝐶 |𝑥 − 𝑦 |

for some constant 𝐶 > 0 depending only on 𝑚, and such that � ≥ min(�(𝑥), �(𝑦)) along 𝛾,
where � is the map defined in (5.2).

Proof. We recall the well-known fact that, given 𝑥, 𝑦 on a sphere, there exists a Lipschitz
path on this sphere connecting those two points, with Lipschitz constant less that
𝐶1 |𝑥 − 𝑦 |. Indeed, it suffices to take the shortest arc of great circle joining 𝑥 to 𝑦. The
same fact holds for any 𝑞-sphere with 1 ≤ 𝑞 ≤ +∞. This can be deduced from the
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Euclidean case using the changing norm projection defined by 𝑥 ↦→ |𝑥 |𝑞
|𝑥 |2 𝑥, which is a

Lipschitz map.
The desired path is then obtained as follows. If 𝑥 = (𝑥′, 𝑥′′) and 𝑦 = (𝑦′, 𝑦′′), we first

go from 𝑥 to (𝑦′, 𝑥′′) by following successively an arc of great circle and a straight line in
the first 𝑑 components, while keeping the𝑚−𝑑 last components fixed. Then we go from
(𝑦′, 𝑥′′) to 𝑦 by following a path on a 𝑞-sphere as above, where 𝑞 is the parameter used
in the definition of �, followed by a straight line in the 𝑚 − 𝑑 last components, while
keeping the first 𝑑 components fixed. By construction, using the observations above,
this path has Lipschitz constant less than 𝐶2 |𝑥 − 𝑦 |. Moreover, since � only depends on
the 2-norm of the 𝑑 first components and on the 𝑞-norm of the𝑚−𝑑 last components and
is increasing with respect to both these parameters, we conclude that the constructed
path has all the expected properties. □

We may now prove Proposition 5.3.

Proof of Proposition 5.3. The integer order estimates were obtained in [9, Corollary 4.2].
Since the proof in the fractional case relies, in part, on the calculations in the integer
case, we reproduce here, for the convenience of the reader, the proof in [9]. When 𝑠 ≥ 1,
we have 𝑑 ≥ 𝑠𝑝 ≥ 1, and hence the dimension of 𝑇 is less than 𝑚 − 𝑑 − 1 ≤ 𝑚 − 2.
Therefore, in order to prove that 𝑢 ◦Φ ∈𝑊 𝑘,𝑝(𝜔;ℝ�), it suffices to prove that∫

𝜔\𝑇
|𝐷 𝑗(𝑢 ◦Φ)|𝑝 < +∞ for every 𝑗 ∈ {0, . . . , 𝑘}.

By the Faà di Bruno formula, we estimate for every 𝑗 ∈ {1, . . . , 𝑘} and 𝑥 ∈ 𝜔 \ 𝑇

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)|𝑝 ≤ 𝐶1

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝 |𝐷𝑡1Φ(𝑥)|𝑝 · · · |𝐷𝑡𝑖Φ(𝑥)|𝑝 .

Let 0 < 𝛽 < 𝑑. Using the estimates on the derivatives and the Jacobian of Φ, we find

|𝐷𝑡𝑙Φ| ≤ 𝐶2
(jacΦ)

𝑡𝑙
𝛽

�𝑡𝑙−1 ,

and therefore

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)|𝑝 ≤ 𝐶3

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝
(jacΦ(𝑥))

𝑡1𝑝
𝛽

�(𝑡1−1)𝑝 · · ·
(jacΦ(𝑥))

𝑡𝑖 𝑝

𝛽

�(𝑡𝑖−1)𝑝

≤ 𝐶4

𝑗∑
𝑖=1

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝
(jacΦ(𝑥))

𝑗𝑝
𝛽

�(𝑗−𝑖)𝑝
.
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Since 𝑗𝑝 ≤ 𝑠𝑝 < 𝑑, we may choose 𝛽 = 𝑗𝑝. Hence,

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)|𝑝 ≤ 𝐶4

𝑗∑
𝑖=1

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝
jacΦ(𝑥)
�(𝑗−𝑖)𝑝

.

Since Φ is injective and SuppΦ ⊂ 𝑄3, we have Φ(𝜔 \ 𝑇) ⊂ 𝜔. Hence, the change of
variable theorem ensures that∫

𝜔\𝑇
� 𝑗𝑝 |𝐷 𝑗(𝑢 ◦Φ)|𝑝 ≤

∫
𝜔\𝑇

𝐶4

𝑗∑
𝑖=1

�𝑖𝑝 |𝐷 𝑖𝑢(Φ(𝑥))|𝑝 jacΦ(𝑥)d𝑥 ≤ 𝐶4

𝑗∑
𝑖=1

∫
𝜔
�𝑖𝑝 |𝐷 𝑖𝑢 |𝑝 .

The proof of the zero order estimate (valid in the full range 0 < 𝑠 < 1) is straightfor-
ward using the same change of variable, noting that in particular, jacΦ ≥ 𝐶5 > 0. In
particular, we have 𝑢 ◦Φ ∈𝑊 𝑘,𝑝(𝜔;ℝ�).

We now turn to the proof of the fractional estimate in the case 0 < 𝑠 < 1.
Step 1: Mean value-type estimate. We prove that, for every 𝑥, 𝑦 ∈ 𝜔 \ 𝑇,

|Φ(𝑥) −Φ(𝑦)|
|𝑥 − 𝑦 | ≤ 𝐶6

�

�(𝑦) . (5.4)

It suffices to consider the case when �(𝑥) ≤ �(𝑦). First assume that �(𝑦) ≤ 2�(𝑥). In this
case, we use the mean value theorem with the path 𝛾 provided by Lemma 5.4 along
with the estimate satisfied by 𝐷Φ to write

|Φ(𝑥) −Φ(𝑦)|
|𝑥 − 𝑦 | ≤ 𝐶7

�

�(𝑥) ≤ 𝐶8
�

�(𝑦) .

Consider now the case where 2�(𝑥) ≤ �(𝑦). Observe that we have �(𝑦)−�(𝑥) ≤ 𝐶9 |𝑥− 𝑦 |
– this can be seen as a consequence of the triangle inequality for the Euclidean norm.
Hence,

𝐶9 |𝑥 − 𝑦 | ≥ �(𝑦) − �(𝑥) ≥ 1
2�(𝑦).

On the other hand, since 𝜔 ⊂ 𝐵𝑚𝑐�, we have |Φ(𝑥) − Φ(𝑦)| ≤ 𝐶10�. This concludes the
proof of (5.4).

Step 2: Averaging. We write∬
(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦 ≤ 𝐶11

∫
𝜔\𝑇

∫
𝜔\𝑇

⨏
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑥d𝑦,

where we have defined

ℬ𝑥,𝑦 = 𝐵𝑚|Φ(𝑥)−Φ(𝑦)|

(
Φ(𝑥) +Φ(𝑦)

2

)
∩ 𝜔.
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We observe that
𝐵𝑚|Φ(𝑥)−Φ(𝑦)|

2
(Φ(𝑥)) ∩ 𝜔 ⊂ ℬ𝑥,𝑦 .

Therefore, since |Φ(𝑥)−Φ(𝑦)|
2 ≤ 1

2 diam 𝜔, we find

|ℬ𝑥,𝑦 | ≥ 𝐶12 |Φ(𝑥) −Φ(𝑦)|𝑚 .

Here, we have used the volume assumption (5.3). Hence,∫
𝜔\𝑇

∫
𝜔\𝑇

⨏
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑥d𝑦

≤ 𝐶13

∫
𝜔\𝑇

∫
𝜔\𝑇

∫
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) −Φ(𝑦)|𝑚 |𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑥d𝑦

≤ 𝐶14

∫
𝜔\𝑇

∫
𝜔\𝑇

∫
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚 |𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑥d𝑦,

where we made use of the fact that |Φ(𝑥) − 𝑧 | ≤ 3
2 |Φ(𝑥) − Φ(𝑦)| whenever 𝑧 ∈ ℬ𝑥,𝑦 .

Invoking Tonelli’s theorem, we find∫
𝜔\𝑇

∫
𝜔\𝑇

∫
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚 |𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑥d𝑦

=

∫
𝜔\𝑇

∫
𝜔\𝑇

∫
𝒴𝑥,𝑧

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚 |𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑦d𝑧d𝑥,

where 𝒴𝑥,𝑧 is the set of all those 𝑦 ∈ 𝜔 \ 𝑇 such that 𝑧 ∈ ℬ𝑥,𝑦 , that is,

𝒴𝑥,𝑧 = {𝑦 ∈ 𝜔 \ 𝑇: |Φ(𝑥) +Φ(𝑦) − 2𝑧 | ≤ 2|Φ(𝑥) −Φ(𝑦)|}.

Since |Φ(𝑥) +Φ(𝑦) − 2𝑧 | ≥ 2|Φ(𝑥) − 𝑧 | − |Φ(𝑥) −Φ(𝑦)|, we find, using (5.4),

𝒴𝑥,𝑧 ⊂
{
𝑦 ∈ ℝ𝑚 : |Φ(𝑥) − 𝑧 | ≤ 3

2 |Φ(𝑥) −Φ(𝑦)|
}
⊂
{
𝑦 ∈ ℝ𝑚 : |Φ(𝑥) − 𝑧 | ≤ 𝐶15

�

�(𝑥) |𝑥 − 𝑦 |
}
.

Therefore, ∫
𝒴𝑥,𝑧

1
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑦 ≤ 𝐶16

�𝑠𝑝

�(𝑥)𝑠𝑝 |Φ(𝑥) − 𝑧 |𝑠𝑝 .

We conclude that∬
(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦 ≤ 𝐶17

∫
𝜔\𝑇

∫
𝜔

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝑠𝑝

�𝑠𝑝

�(𝑥)𝑠𝑝 d𝑧d𝑥.
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Step 3: Change of variable. Since 0 < 𝑠𝑝 < 𝑑, we may apply estimate (v) of Proposi-
tion 5.2 with 𝛽 = 𝑠𝑝. Taking into account the fact that Φ is injective and Φ(𝜔 \ 𝑇) ⊂ 𝜔,
we deduce from the change of variable theorem that

|𝑢 ◦Φ|𝑝
𝑊 𝑠,𝑝(𝜔) ≤ 𝐶18

∫
𝜔\𝑇

∫
𝜔

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝑠𝑝 jacΦ(𝑥)d𝑧d𝑥

≤ 𝐶18

∫
𝜔

∫
𝜔

|𝑢(𝑦) − 𝑢(𝑧)|𝑝
|𝑦 − 𝑧 |𝑚+𝑠𝑝 d𝑧d𝑦.

This concludes the proof in the case 0 < 𝑠 < 1.
We finish with the fractional estimate in the case 𝑠 ≥ 1.
Step 1: Estimate of |𝐷 𝑗𝑢(𝑥) − 𝐷 𝑗𝑢(𝑦)|. Consider 𝑥, 𝑦 ∈ 𝜔 \ 𝑇 such that, without loss of

generality, �(𝑥) ≤ �(𝑦). As in the previous sections, using the Faà di Bruno formula, the
multilinearity of the differential, and the estimates on the derivatives of Φ, we write

|𝐷 𝑗(𝑢 ◦Φ)(𝑥) − 𝐷 𝑗(𝑢 ◦Φ)(𝑦)|

≤ 𝐶19

𝑗∑
𝑖=1

(
|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢 ◦Φ(𝑦)| �𝑖

�(𝑦)𝑗

+
𝑗∑
𝑡=1

|𝐷 𝑖𝑢 ◦Φ(𝑥)| |𝐷𝑡Φ(𝑥) − 𝐷𝑡Φ(𝑦)| �𝑖−1

�(𝑥)𝑗−𝑡
)
. (5.5)

Step 2: Estimate of the second term in (5.5). We proceed as we did in the proofs of
Propositions 3.2 and 4.1, relying on an optimization argument. We split the integral
over 𝐵𝑚𝑟 (𝑥) and ℝ𝑚 \ 𝐵𝑚𝑟 (𝑥) and we insert 𝑟 = �(𝑥) to arrive at∫

𝜔\𝑇
�(𝑥)≤�(𝑦)

|𝐷𝑡Φ(𝑥) − 𝐷𝑡Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≤ 𝐶20

�𝑝

�(𝑥)(𝑡+𝜎)𝑝
.

Hence,∬
(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝 |𝐷𝑡Φ(𝑥) − 𝐷𝑡Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�(𝑖−1)𝑝

�(𝑥)(𝑗−𝑡)𝑝
d𝑥d𝑦

≤ 𝐶21

∫
𝜔\𝑇

|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝
�𝑖𝑝

�(𝑥)(𝑗+𝜎)𝑝
d𝑥.

Now, by the estimate satisfied by jacΦ, we have, for 0 < 𝛽 < 𝑑,∫
𝜔\𝑇

|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝 �𝑖𝑝

�(𝑥)(𝑗+𝜎)𝑝
d𝑥 ≤ 𝐶22�

𝑖𝑝−(𝑗+𝜎)𝑝
∫
𝜔\𝑇

|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝(jacΘ(𝑥))
(𝑗+𝜎)𝑝

𝛽 d𝑥.
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Since 𝑑 > 𝑠𝑝 ≥ (𝑗 + 𝜎)𝑝, we may choose 𝛽 = (𝑗 + 𝜎)𝑝. We conclude by using the change
of variable theorem that∫

𝜔\𝑇
|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝 �𝑖𝑝

�(𝑥)(𝑗+𝜎)𝑝
d𝑥 ≤ 𝐶23�

(𝑖−𝑗−𝜎)𝑝
∫
𝜔
|𝐷 𝑖𝑢 |𝑝 .

Step 3: Estimate of the first term in (5.5): averaging. We use the same methodology as
for the case 0 < 𝑠 < 1. Hence, we only write the main steps of the reasoning. We write∬

(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢 ◦Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑦)𝑗𝑝
d𝑥d𝑦

≤
∬

(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

⨏
ℬ𝑥,𝑦

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑦)𝑗𝑝
d𝑧d𝑥d𝑦

+
∬

(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

⨏
ℬ𝑥,𝑦

|𝐷 𝑖𝑢(𝑧) − 𝐷 𝑖𝑢 ◦Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑦)𝑗𝑝
d𝑧d𝑥d𝑦

≤
∫
𝜔\𝑇

∫
𝜔\𝑇

⨏
ℬ𝑥,𝑦

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑥)𝑗𝑝
d𝑧d𝑥d𝑦.

Observe that here it is important that we wrote estimate (5.5) with 1
�(𝑦) on the first term

in the right-hand side, so that we may further upper bound 1
�(𝑦) by 1

�(𝑥) . We then pursue
exactly as in the case 0 < 𝑠 < 1. Using the volume assumption (5.3), we find∫

𝜔\𝑇

∫
𝜔\𝑇

⨏
ℬ𝑥,𝑦

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑥)𝑗𝑝
d𝑧d𝑥d𝑦

≤ 𝐶24

∫
𝜔\𝑇

∫
𝜔\𝑇

∫
ℬ𝑥,𝑦

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚 |𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑥)𝑗𝑝
d𝑧d𝑥d𝑦.

Relying on Tonelli’s theorem, we deduce that∫
𝜔\𝑇

∫
𝜔\𝑇

∫
ℬ𝑥,𝑦

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚 |𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑥)𝑗𝑝
d𝑧d𝑥d𝑦

=

∫
𝜔\𝑇

∫
𝜔\𝑇

∫
𝒴𝑥,𝑧

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚 |𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑥)𝑗𝑝
d𝑦d𝑧d𝑥.

Using the inclusion
𝒴𝑥,𝑧 ⊂ ℝ𝑚 \ 𝐵𝑚𝑟 (𝑥),
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where
𝑟 = 𝑟(𝑥, 𝑧) = 𝐶25 |Φ(𝑥) − 𝑧 |�(𝑥)

�
,

we conclude that∬
(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢 ◦Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑦)𝑗𝑝
d𝑥d𝑦

≤ 𝐶26

∫
𝜔\𝑇

∫
𝜔

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝜎𝑝

�𝜎𝑝

�(𝑥)𝜎𝑝
�𝑖𝑝

�(𝑥)𝑗𝑝
d𝑧d𝑥.

Step 3: Estimate of the first term in (5.5): change of variable. As previously, we use
estimate (v) of Proposition 5.2 with 𝛽 = 𝑠𝑝 and the change of variable theorem to
conclude that∬

(𝜔\𝑇)×(𝜔\𝑇)
�(𝑥)≤�(𝑦)

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢 ◦Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

�𝑖𝑝

�(𝑦)𝑗𝑝
d𝑥d𝑦

≤ 𝐶27�
(𝑖−𝑗)𝑝

∫
𝜔

∫
𝜔

|𝐷 𝑖𝑢(𝑦) − 𝐷 𝑖𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑧d𝑦.

Gathering the estimates for both terms in (5.5) we obtain the desired conclusion, hence
finishing the proof of the proposition. □

Now that we have constructed the building block for the thickening procedure, we are
ready to proceed with the proof of Proposition 5.1. We start by presenting an informal
explanation of the construction to clarify the method.

We first apply thickening around the vertices of the dual skeleton 𝒯 ℓ ∗ , which are
actually the centers of the cubes in 𝒰𝑚 , with parameters 0 < 𝜌𝑚 < 𝜏𝑚−1 < 𝜌𝑚−1. This
maps the complement of the center of each cube on a neighborhood of the faces of
the cube. Then we apply thickening around the edges of the dual skeleton, which are
segments of lines passing through the center of the (𝑚−1)-faces of𝒰𝑚 , with parameters
𝜌𝑚−1 < 𝜏𝑚−2 < 𝜌𝑚−2. This maps the part of the complement of the edges of 𝒯 ℓ ∗ lying at
distance at most 𝜌𝑚−1 of the (𝑚 − 1)-faces of 𝒰𝑚 on a neighborhood of the (𝑚 − 2)-faces
of 𝒰𝑚 . But since at the previous step the complement of the centers of the cubes was
already mapped in a neighborhood of the faces of width 𝜌𝑚−1, we deduce that the
whole complement of the 1-skeleton of 𝒯 ℓ ∗ is mapped on a neighborhood of 𝒰𝑚−2. We
pursue this procedure by induction until we reach dimension ℓ ∗ with respect to the dual
skeleton – which corresponds to dimension ℓ with respect to 𝒰𝑚 – and this produces
the required map Φ.

Figures 5.1, 5.2, and 5.3 provide an illustration of this procedure on one cube when
𝑚 = 2 and ℓ = 0. This allows us to see the combination of two steps of the induction
procedure. Figure 5.1 shows thickening around the vertices of the dual skeleton, which
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correspond to the centers of the cubes of 𝒰𝑚 . The values of 𝑢 in the blue region on the
left part of the figure are propagated into the blue region on the right part of the figure.
This creates a point singularity in the center of each cube, depicted in red. Figure 5.2
illustrates thickening around the edges of the dual skeleton. The values of 𝑢 in the
dark blue region on the left part of the figure are propagated into the dark blue region
on the right part of the figure, which creates line singularities in red. The map 𝑢 is
left unchanged on the white region, the part in light blue serving as a transition. The
boundaries of the regions in Figure 5.1 are shown in light colors, to illustrate how all
the different regions involved in the construction combine together. The combination
of both steps inside the square is shown in Figure 5.3. The values in the blue regions on
the corners are propagated inside of the whole square, which creates line singularities
in red, forming a cross.

Figure 5.1: Thickening around vertices

Figure 5.2: Thickening around edges

Proof of Proposition 5.1. The map Φ is constructed as follows. First take finite sequences
(𝜌𝑖)ℓ≤𝑖≤𝑚 and (𝜏𝑖)ℓ≤𝑖≤𝑚 such that

0 < 𝜌𝑚 < 𝜏𝑚−1 < 𝜌𝑚−1 < · · · < 𝜌ℓ+1 < 𝜏ℓ < 𝜌ℓ = 𝜌.
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Figure 5.3: Final thickening at order 1

The map Φ is defined by downward induction. For 𝑑 = 𝑚, we let Φ𝑑 = id. Then, if 𝑑 ∈
{ℓ +1, . . . , 𝑚}, given 𝜎𝑑 ∈ 𝒰 𝑑, we identify 𝜎𝑑 with𝑄𝑑

� ×{0}𝑚−𝑑 and 𝑇(𝑑−1)∗ ∩(𝜎𝑑+𝑄𝑚
𝜏𝑑−1�)

with {0}𝑑 ×𝑄𝑚−𝑑
𝜏𝑑−1� , and we let Φ𝜎𝑑 be the map given by Proposition 5.2 applied around

𝜎𝑑 with parameters 𝜌 = 𝜌𝑑, 𝜌 = 𝜏𝑑−1, and 𝜌 = 𝜌𝑑−1. We let Ψ𝑑 : ℝ𝑚 \ 𝑇(𝑑−1)∗ → ℝ𝑚 be
defined by

Ψ𝑑(𝑥) =
{
Φ𝜎𝑑 (𝑥) if 𝑥 ∈ 𝑇𝜎𝑑 (𝑄3) for some 𝜎𝑑 ∈ 𝒰 𝑑,
𝑥 otherwise,

where 𝑇𝜎𝑑 is an isometry mapping𝑄𝑑
� ×{0}𝑚−𝑑 on 𝜎𝑑. Finally, we define Φ𝑑−1 = Ψ𝑑 ◦Φ𝑑.

The desired map is given by Φ = Φℓ .
As we mentioned, properties (i) to (iv) are already contained in [9, Proposition 4.1], so

that we only need to prove estimates (a) to (d). We first prove estimates with Φ replaced
by Ψ𝑑 for every 𝑑 ∈ {ℓ + 1, . . . , 𝑚}. We let 𝜔 = 𝑄𝑑

(1−𝜌𝑚)� × 𝑄
𝑚−𝑑
𝜌� . Note that 𝜔 satisfies

the assumptions of Proposition 5.3. In particular, we have 𝑄3 ⊂ 𝜔 ⊂ 𝑈𝑚 + 𝑄𝑚
𝜌� for

every 𝑑 ∈ {ℓ + 1, . . . , 𝑚}. We apply Proposition 5.3 to find that, for every 𝜎𝑑 ∈ 𝒰 𝑑, the
following estimates hold:

(a) if 0 < 𝑠 < 1, then
|𝑢 ◦Φ𝜎𝑑 |𝑊 𝑠,𝑝(𝑇𝜎𝑑 (𝜔)) ≤ 𝐶1 |𝑢 |𝑊 𝑠,𝑝(𝑇𝜎𝑑 (𝜔));

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝑢 ◦Φ𝜎𝑑 )∥𝐿𝑝(𝑇𝜎𝑑 (𝜔)) ≤ 𝐶2

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝜔));

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ𝜎𝑑 )|𝑊𝜎,𝑝(𝑇𝜎𝑑 (𝜔)) ≤ 𝐶3

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝜔)) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑇𝜎𝑑 (𝜔))

)
;
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(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ𝜎𝑑 ∥𝐿𝑝(𝑇𝜎𝑑 (𝜔)) ≤ 𝐶4∥𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝜔)).

Using the additivity of the integral for integer order estimates and Lemma 2.1 for
fractional order estimates, we find that

(a) if 0 < 𝑠 < 1, then

|𝑢 ◦Ψ𝑑 |𝑝
𝑊 𝑠,𝑝(𝑈𝑚+𝑄𝑚

𝜌�)
≤ 𝐶5

∑
𝜎𝑑∈𝒰𝑑

|𝑢 ◦Φ𝜎𝑑 |
𝑝

𝑊 𝑠,𝑝(𝑇𝜎𝑑 (𝜔))

+ 𝐶6 |𝑢 ◦Ψ𝑑 |𝑝
𝑊 𝑠,𝑝((𝑈𝑚+𝑄𝑚

𝜌�)\SuppΨ𝑑) + 𝐶7�
−𝑠𝑝 ∥𝑢 ◦Ψ𝑑∥𝑝

𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�)

;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

∥𝐷 𝑗(𝑢 ◦Ψ𝑑)∥𝑝
𝐿𝑝(𝑈𝑚+𝑄𝑚

𝜌�)
≤ 𝐶8

∑
𝜎𝑑∈𝒰𝑑

∥𝐷 𝑗(𝑢 ◦Φ𝜎𝑑 )∥
𝑝

𝐿𝑝(𝑇𝜎𝑑 (𝜔))

+ 𝐶9∥𝐷 𝑗(𝑢 ◦Ψ𝑑)∥𝑝
𝐿𝑝((𝑈𝑚+𝑄𝑚

𝜌�)\SuppΨ𝑑);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

|𝐷 𝑗(𝑢 ◦Ψ𝑑)|𝑝
𝑊𝜎,𝑝(𝑈𝑚+𝑄𝑚

𝜌�)
≤ 𝐶10

∑
𝜎𝑑∈𝒰𝑑

|𝐷 𝑗(𝑢 ◦Φ𝜎𝑑 )|
𝑝

𝑊𝜎,𝑝(𝑇𝜎𝑑 (𝜔))

+ 𝐶11 |𝐷 𝑗(𝑢 ◦Ψ𝑑)|𝑝
𝑊𝜎,𝑝((𝑈𝑚+𝑄𝑚

𝜌�)\SuppΨ𝑑) + 𝐶12�
−𝜎𝑝 ∥𝐷 𝑗(𝑢 ◦Ψ𝑑)∥𝑝

𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�)

;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Ψ𝑑∥𝑝
𝐿𝑝(𝑈𝑚+𝑄𝑚

𝜌�)
≤ 𝐶13

∑
𝜎𝑑∈𝒰𝑑

∥𝑢 ◦Φ𝜎𝑑 ∥
𝑝

𝐿𝑝(𝑇𝜎𝑑 (𝜔))
+ 𝐶14∥𝑢 ◦Ψ𝑑∥𝑝

𝐿𝑝((𝑈𝑚+𝑄𝑚
𝜌�)\SuppΨ𝑑).

Combining both sets of estimates, by downward induction, we deduce that

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢 ◦Φ|𝑊 𝑠,𝑝(𝑈𝑚+𝑄𝑚
𝜌�) ≤ 𝐶15

(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝑈𝑚+𝑄𝑚

𝜌�) + ∥𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�)
)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗(𝑢 ◦Φ)∥𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�) ≤ 𝐶16

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�);
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(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ)|𝑊𝜎,𝑝(𝑈𝑚+𝑄𝑚
𝜌�) ≤ 𝐶17

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚

𝜌�) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈𝑚+𝑄𝑚
𝜌�)
)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ∥𝐿𝑝(𝑈𝑚+𝑄𝑚
𝜌�) ≤ 𝐶18∥𝑢∥𝐿𝑝(𝑈𝑚+𝑄𝑚

𝜌�).

Conclusion follows by an additional application of the additivity of the integral or
Lemma 2.1, by noting that actually SuppΦ ⊂ 𝑈𝑚 +𝑄𝑚

𝜏ℓ�. □

We close this section with a discussion about how the thickening technique that we
investigated inserts itself in the proof of Theorem 1.2. At the end of Section 4, we
obtained an estimate on Dist𝐹 (𝑢sm

� ((𝐾𝑚 \𝑈𝑚
� ) ∪ (𝑈ℓ

� +𝑄𝑚
𝜌�)), where we recall that 𝑢sm

� is
the map obtained by successively opening and smoothing a map 𝑢 ∈ 𝑊 𝑠,𝑝(𝛺; 𝐹), with
𝐹 ⊂ ℝ� being an arbitrary closed set. Informally, we were able to control the distance
between 𝑢sm

� and 𝐹 except on the cubes in 𝒰𝑚
� , far from the ℓ -skeleton. We apply now

thickening to the map 𝑢sm
� . Let Φth

� be the map provided by Proposition 5.1 applied to
𝒰𝑚

� with 𝒮𝑚 = 𝒦𝑚
� and using parameter 𝜌. We set 𝑢th

� = 𝑢sm
� ◦ Φth

� . To have 𝑢 ∈ 𝑊 𝑠,𝑝

along with the estimates provided by Proposition 5.1, we need to take ℓ + 1 > 𝑠𝑝. Since
we already required ℓ ≤ 𝑠𝑝 in Section 4, this invites us to work with ℓ = [𝑠𝑝].

By inclusion (ii) in Proposition 5.1, we have Φth
� (𝐾𝑚� \ (𝑇ℓ ∗� ∪ 𝑈𝑚

� )) ⊂ 𝐾𝑚� \ 𝑈𝑚
� . On

the other hand, by inclusion (iii) in Proposition 5.1, we have Φth
� (𝑈𝑚

� \ 𝑇ℓ ∗� ) ⊂ 𝑈ℓ
� + 𝑄𝑚

𝜌�.
Therefore,

Φth
� (𝐾𝑚� \ 𝑇ℓ ∗� ) ⊂ (𝐾𝑚� \𝑈𝑚

� ) ∪ (𝑈ℓ
� +𝑄𝑚

𝜌�).

Combining this observation with estimate (4.7), respectively (4.8), we deduce that

Dist𝐹 (𝑢th
� (𝐾𝑚� \ 𝑇ℓ ∗� )) ≤ max

{
max

𝜎𝑚∈𝒦𝑚
� \ℰ𝑚�

𝐶
1

�
𝑚
𝑠𝑝−1

∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ,

sup
𝑥∈𝑈ℓ

�+𝑄𝑚
𝜌�

𝐶′
⨏
𝑄𝑚
𝑟 (𝑥)

⨏
𝑄𝑚
𝑟 (𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦d𝑧
}

(5.6)

if 𝑠 ≥ 1, respectively

Dist𝐹 (𝑢th
� (𝐾𝑚� \ 𝑇ℓ ∗� )) ≤ max

{
max

𝜎𝑚∈𝒦𝑚
� \ℰ𝑚�

𝐶
1

�
𝑚
𝑝 −𝑠

|𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ,

sup
𝑥∈𝑈ℓ

�+𝑄𝑚
𝜌�

𝐶′
⨏
𝑄𝑚
𝑟 (𝑥)

⨏
𝑄𝑚
𝑟 (𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦d𝑧
}

(5.7)
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if 0 < 𝑠 < 1. Moreover, 𝑢sm
� being smooth, the map 𝑢th

� is smooth on 𝐾𝑚� \ 𝑇ℓ ∗� . To
summarize, we have obtained a map 𝑢th

� which is smooth on 𝐾𝑚� \ 𝑇ℓ ∗� , and whose
distance from 𝐹 is controlled on the whole 𝐾𝑚� \ 𝑇ℓ ∗� .

Now let us get back to the case we are interested in, that is, where 𝐹 = 𝒩 . In this
case, it is well-known that there exists � > 0 such that the nearest point projection
Π : 𝒩 + 𝐵𝑚� → 𝒩 is well-defined and smooth. The open set 𝒩 + 𝐵𝑚� is called a tubular
neighborhood of 𝒩 . Assume that the right-hand side of (5.6) or (5.7) is less than �. Note
that this requires both to take 𝑟 sufficiently small and to choose ℰ𝑚� such that, for every
𝜎𝑚 ∈ 𝒦𝑚

� \ ℰ𝑚� ,

∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ≤

�
𝑚
𝑠𝑝−1

𝐶
�, respectively |𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚

2𝜌�) ≤
�
𝑚
𝑝 −𝑠

𝐶
�. (5.8)

Under this assumption, the map 𝑢� = Π ◦ 𝑢th
� is well-defined and smooth on 𝐾𝑚� \ 𝑇ℓ ∗� ,

and takes its values into 𝒩 .
We next prove that the map 𝑢� actually belongs to the class ℛ𝑚−[𝑠𝑝]−1(𝐾𝑚� ;𝒩). This

follows from property (iv) in Proposition 5.1. Indeed, since𝑚−[𝑠𝑝]−1 = ℓ ∗, the singular
set of 𝑢th

� , and hence of 𝑢�, is as in the definition of ℛ𝑚−[𝑠𝑝]−1(𝐾𝑚� ;𝒩). Therefore, it only
remains to prove the estimates on the derivatives of 𝑢�. Since 𝑢sm

� and Π are smooth,
we deduce from the Faà di Bruno formula that

|𝐷 𝑗𝑢� | ≤ 𝐶1

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷 𝑖(Π ◦ 𝑢sm
� )| |𝐷𝑡1Φth

� | · · · |𝐷𝑡𝑖Φth
� |

≤ 𝐶2

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷𝑡1Φth
� | · · · |𝐷𝑡𝑖Φth

� |.

By property (iv) in Proposition 5.1, we conclude that, for 𝑥 ∈ (𝑈𝑚
� +𝑄𝑚

𝜌�) \ 𝑇ℓ
∗

� ,

|𝐷 𝑗𝑢�(𝑥)| ≤ 𝐶3

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

�

dist(𝑥, 𝑇ℓ ∗)𝑡1
· · ·

�

dist(𝑥, 𝑇ℓ ∗)𝑡𝑖
≤ 𝐶4

�𝑖

dist(𝑥, 𝑇ℓ ∗)𝑗
. (5.9)

Combining (5.9) with the fact that, clearly, 𝑢� is smooth outside 𝑈𝑚
� + 𝑄𝑚

𝜌�, we find
that 𝑢� belongs indeed to ℛ𝑚−[𝑠𝑝]−1(𝐾𝑚� ;𝒩).

With all these observations and tools at our disposal, we are finally ready to proceed
with the proof of Theorem 1.2. It only remains to explain carefully how to implement
the aforementioned steps and to check that the estimates obtained at each step combine
to yield 𝑢� → 𝑢 in𝑊 𝑠,𝑝 as � → 0.
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6 Density of class ℛ

This section is devoted to the proof of the density of the class ℛ𝑚−[𝑠𝑝]−1(𝛺;𝒩) in
𝑊 𝑠,𝑝(𝛺;𝒩). For the sake of clarity, we start by proving the result when the domain 𝛺 is
a cube, which is the case covered by Theorem 1.2 stated in the introduction. In a second
step, we explain how to deal with more general domains.

As we explained, the major part of the work that remains to be done is to suitably
estimate the𝑊 𝑠,𝑝 distance between the maps 𝑢� and 𝑢. As the reader may have noticed,
the Sobolev estimates obtained in Sections 3 to 5 deteriorate as � → 0. For instance,
the term involving the 𝐿𝑝 norm of 𝐷 𝑖𝑢 in the estimate of the 𝑗-order derivative blows
up at rate �𝑖−𝑗 . As we shall see in the proof, this blow-up is compensated by the fact
that the measure of the set 𝑈𝑚

� + 𝑄𝑚
2𝜌� decays sufficiently fast as � → 0. For the integer

order terms, this is exploited by a combination of the Hölder and Gagliardo–Nirenberg
inequalities. The treatment of fractional order terms is more involved, and we bring
ourselves back to the integer order setting with the help of the following lemma.

Lemma 6.1. Let 𝛺 ⊂ ℝ𝑚 be a convex set and let 𝜔 ⊂ 𝛺. For every 𝑞, 𝑟 ≥ 𝑝 and every
𝑢 ∈𝑊1,1

loc (𝛺),
|𝑢 |𝑊𝜎,𝑝(𝜔) ≤ 𝐶 |𝜔 |

1
𝑝− 𝜎

𝑟 − 1−𝜎
𝑞 ∥𝐷𝑢∥𝜎

𝐿𝑟 (𝛺)∥𝑢∥
1−𝜎
𝐿𝑞(𝜔)

for some constant 𝐶 > 0 depending only on 𝑚.

Proof. By density, we may assume that 𝑢 ∈ 𝒞∞(𝛺). We once again rely on an optimiza-
tion technique. For every 𝜌 > 0, we write

|𝑢 |𝑝
𝑊𝜎,𝑝(𝜔) ≤

∫
𝜔

∫
𝜔\𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥 +

∫
𝜔

∫
𝜔∩𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥.

The first term is readily estimated as∫
𝜔

∫
𝜔\𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥 ≤ 𝐶1𝜌

−𝜎𝑝
∫
𝜔
|𝑢 |𝑝 ≤ 𝐶1𝜌

−𝜎𝑝 |𝜔 |1−
𝑝
𝑞

(∫
𝜔
|𝑢 |𝑞

) 𝑝
𝑞

.

For the second term, we start by using the mean value theorem along with Jensen’s
inequality to find∫

𝜔

∫
𝜔∩𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥 ≤

∫ 1

0

∫
𝜔

∫
𝜔∩𝐵𝑚𝜌 (𝑥)

|𝐷𝑢(𝑥 + 𝑡(𝑦 − 𝑥))|𝑝

|𝑥 − 𝑦 |𝑚+(𝜎−1)𝑝 d𝑦d𝑥d𝑡.

Here we use the convexity of 𝛺 to ensure that 𝑥 + 𝑡(𝑦 − 𝑥) ∈ 𝛺 for every 𝑥, 𝑦 ∈ 𝜔 and
𝑡 ∈ [0, 1]. We use the change of variable ℎ = 𝑦 − 𝑥 and Tonelli’s theorem to deduce that∫

𝜔

∫
𝜔∩𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥 ≤

∫ 1

0

∫
(𝜔−𝜔)∩𝐵𝑚𝜌

∫
𝜔∩(𝜔−ℎ)

|𝐷𝑢(𝑥 + 𝑡ℎ)|𝑝

|ℎ |𝑚+(𝜎−1)𝑝 d𝑥dℎd𝑡.
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By convexity of 𝛺, if 𝑥 ∈ 𝜔 ∩ (𝜔 − ℎ), we have 𝑥 + 𝑡ℎ ∈ 𝛺 for every 𝑡 ∈ [0, 1]. Moreover,
the measure of the set (𝜔 ∩ (𝜔 − ℎ)) + 𝑡ℎ is less than |𝜔 |. Hence,∫

𝜔

∫
𝜔∩𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥

≤ |𝜔 |1−
𝑝
𝑟

∫ 1

0

∫
(𝜔−𝜔)∩𝐵𝑚𝜌

1
|ℎ |𝑚+(𝜎−1)𝑝

(∫
𝛺
|𝐷𝑢(𝑧)|𝑟 d𝑧

) 𝑝
𝑟

dℎd𝑡.

We conclude that∫
𝜔

∫
𝜔∩𝐵𝑚𝜌 (𝑥)

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦d𝑥 ≤ 𝐶2𝜌

(1−𝜎)𝑝 |𝜔 |1−
𝑝
𝑟

( ∫
𝛺
|𝐷𝑢 |𝑟

) 𝑝
𝑟

.

We may assume that 𝐷𝑢 does not vanish identically, otherwise there is nothing to
prove. We insert

𝜌 = |𝜔 |
1
𝑟 − 1

𝑞
∥𝑢∥𝐿𝑞(𝜔)
∥𝐷𝑢∥𝐿𝑝(𝛺)

,

and we find
|𝑢 |𝑊𝜎,𝑝(𝜔) ≤ 𝐶3 |𝜔 |

1
𝑝− 𝜎

𝑟 − 1−𝜎
𝑞 ∥𝑢∥1−𝜎

𝐿𝑞(𝜔)∥𝐷𝑢∥
𝜎
𝐿𝑟 (𝛺).

The proof of the lemma is complete. □

We finally prove Theorem 1.2. Recall that 𝛺 = 𝑄𝑚 . Note that, in Sections 3 to 5,
no assumptions were required on 𝛺. During the proof, we shall carefully indicate
whenever restrictions on 𝛺 are needed. Then, we shall explain how the proof should
be modified when 𝛺 is not a cube, which will lead to a counterpart of Theorem 1.2 for
more general domains 𝛺.

Proof of Theorem 1.2. Let 𝑢 ∈ 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩). Note that, for every 𝛾 > 0, the map 𝑢𝛾
defined by 𝑢𝛾(𝑥) = 𝑢

(
𝑥

1+2𝛾
)

belongs to 𝑊 𝑠,𝑝(𝑄𝑚
1+2𝛾) and satisfies 𝑢𝛾 → 𝑢 in 𝑊 𝑠,𝑝(𝑄𝑚)

as 𝛾 → 0. Therefore, we may assume that 𝑢 ∈ 𝑊 𝑠,𝑝(𝑄𝑚
1+2𝛾;𝒩). Here we used the fact

that 𝛺 = 𝑄𝑚 , but we could work instead with any domain on which such a dilation
argument may be implemented.

Let 0 < � < 𝛾 and 0 < 𝜌 < 1
2 , so that 2𝜌� < 𝛾. Guided by the observations at the end

of Sections 4 and 5, we define the following families of cubes. We let 𝒦𝑚
� be a cubication

of 𝑄𝑚
1+𝛾, that is, 𝐾𝑚� = 𝑄𝑚

1+𝛾. This uses that 𝑄𝑚
1+𝛾 is a cube, but the important fact is that

𝑄𝑚 ⊂ 𝐾𝑚� ⊂ 𝑄𝑚
1+𝛾. Then, following (5.8), we construct the set of bad cubes ℰ𝑚� as the

family of all cubes 𝜎𝑚 ∈ 𝒦𝑚
� such that

∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ≤

�
𝑚
𝑠𝑝−1

𝐶
� if 𝑠 ≥ 1, (6.1)

respectively

|𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ≤

�
𝑚
𝑝 −𝑠

𝐶
� if 0 < 𝑠 < 1, (6.2)
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where � > 0 is the radius of a tubular neighborhood of 𝒩 . We also define 𝒰𝑚
� to be the

set of all cubes in 𝒦𝑚
� intersecting a cube in ℰ𝑚� . Doing so, we indeed have 𝐸𝑚� ⊂ Int𝑈𝑚

�
in the relative topology of 𝐾𝑚� .

We apply opening to the map 𝑢 choosing ℓ = [𝑠𝑝]. Let Φop
� : ℝ𝑚 → ℝ𝑚 be the smooth

map provided by Proposition 3.1 applied to 𝑢 with 𝛺 = 𝑄𝑚
1+2𝛾, and define

𝑢
op
� = 𝑢 ◦Φop

� .

Hence, we find that

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢op
� − 𝑢 |𝑊 𝑠,𝑝(𝑄𝑚

1+2𝛾) ≤ 𝐶1

(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝑈ℓ

�+𝑄𝑚
2𝜌�)

+ ∥𝑢∥𝐿𝑝(𝑈ℓ
�+𝑄𝑚

2𝜌�)

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗𝑢
op
� − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚

1+2𝛾) ≤ 𝐶2

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈ℓ
�+𝑄𝑚

2𝜌�)
;

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗𝑢
op
� − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝑄𝑚

1+2𝛾) ≤ 𝐶3

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈ℓ

�+𝑄𝑚
2𝜌�)

+ �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈ℓ
�+𝑄𝑚

2𝜌�)

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢op
� − 𝑢∥𝐿𝑝(𝑄𝑚

1+2𝛾) ≤ 𝐶4∥𝑢∥𝐿𝑝(𝑈ℓ
�+𝑄𝑚

2𝜌�)
.

Then we apply adaptative smoothing to the map 𝑢
op
� with 𝛺 = 𝑄𝑚

1+2𝛾. Let 𝜑 ∈ 𝐵𝑚1
be a fixed mollifier. Since 𝐸𝑚� ⊂ Int𝑈𝑚

� , we may define 𝜓� as at the end of Section 4.
Namely, we let

𝜓� = 𝑡�� + 𝑟(1 − ��),
where �� satisfies assumptions (a) to (d) page 41 and 0 < 𝑟 < 𝑡 with 𝑡 defined by (4.14).
With this choice, 𝜓� satisfies the assumptions of Proposition 4.1, and moreover 0 <
𝜓� ≤ 𝜌�. This implies that 𝑄𝑚

1+𝛾 ⊂ {𝑥 ∈ 𝑄𝑚
1+2𝛾: dist (𝑥, 𝜕𝑄𝑚

1+2𝛾) ≥ 𝜓(𝑥)}, and hence
𝑢sm
� = 𝜑𝜓� ∗ 𝑢

op
� is well-defined and smooth on 𝑄𝑚

1+𝛾. Moreover, Proposition 4.1 and
equation (4.2) for the zero order case applied with 𝜔 = 𝑄𝑚

1+𝛾 ensure that

(a) if 0 < 𝑠 < 1, then

|𝑢sm
� − 𝑢op

� |𝑊 𝑠,𝑝(𝑄𝑚
1+𝛾)≤ sup

𝑣∈𝐵𝑚1
|𝜏𝜓�𝑣(𝑢

op
� ) − 𝑢op

� |𝑊 𝑠,𝑝(𝑄𝑚
1+𝛾);
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗𝑢sm
� − 𝐷 𝑗𝑢

op
� ∥𝐿𝑝(𝑄𝑚

1+𝛾)≤ sup
𝑣∈𝐵𝑚1

� 𝑗 ∥𝜏𝜓�𝑣(𝐷 𝑗𝑢
op
� ) − 𝐷 𝑗𝑢

op
� ∥𝐿𝑝(𝑄𝑚

1+𝛾)

+ 𝐶5

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢
op
� ∥𝐿𝑝(𝐴);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗𝑢sm
� − 𝐷 𝑗𝑢

op
� |𝑊𝜎,𝑝(𝑄𝑚

1+𝛾)≤ sup
𝑣∈𝐵𝑚1

� 𝑗+𝜎 |𝜏𝜓�𝑣(𝐷 𝑗𝑢
op
� ) − 𝐷 𝑗𝑢

op
� |𝑊𝜎,𝑝(𝑄𝑚

1+𝛾)

+ 𝐶6

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢

op
� ∥𝐿𝑝(𝐴) + �𝑖+𝜎 |𝐷 𝑖𝑢

op
� |𝑊𝜎,𝑝(𝐴)

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢sm
� − 𝑢op

� ∥𝐿𝑝(𝑄𝑚
1+𝛾) ≤ sup

𝑣∈𝐵𝑚1
∥𝜏𝜓�𝑣(𝑢

op
� ) − 𝑢op

� ∥𝐿𝑝(𝑄𝑚
1+𝛾).

Here,
𝐴 =

⋃
𝑥∈𝑄𝑚

1+𝛾∩supp𝐷𝜓�

𝐵𝑚𝜓�(𝑥)(𝑥).

By the triangle inequality, for every 𝑣 ∈ 𝐵𝑚1 , we have

∥𝜏𝜓�𝑣(𝐷 𝑗𝑢
op
� ) − 𝐷 𝑗𝑢

op
� ∥𝐿𝑝(𝑄𝑚

1+𝛾)

≤ ∥𝜏𝜓�𝑣(𝐷 𝑗𝑢
op
� ) − 𝜏𝜓�𝑣(𝐷 𝑗𝑢)∥𝐿𝑝(𝑄𝑚

1+𝛾)

+ ∥𝜏𝜓�𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚
1+𝛾) + ∥𝐷 𝑗𝑢 − 𝐷 𝑗𝑢

op
� ∥𝐿𝑝(𝑄𝑚

1+𝛾).

By the change of variable theorem, we find

∥𝜏𝜓�𝑣(𝐷 𝑗𝑢
op
� ) − 𝜏𝜓�𝑣(𝐷 𝑗𝑢)∥𝐿𝑝(𝑄𝑚

1+𝛾) ≤ 𝐶7∥𝐷 𝑗𝑢
op
� − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚

1+𝛾).

A similar estimate holds for the Gagliardo seminorm. Furthermore, observing that
supp𝐷𝜓� ⊂ 𝑈𝑚

� and using that 𝜓� ≤ 𝜌�, we have 𝐴 ⊂ 𝑈𝑚
� + 𝑄𝑚

𝜌�. Combining this with
estimate (iii) in Proposition 3.1 applied with 𝜔 = 𝑈𝑚

� +𝑄𝑚
𝜌� , we deduce that

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢sm
� − 𝑢op

� |𝑊 𝑠,𝑝(𝑄𝑚
1+𝛾)≤ sup

𝑣∈𝐵𝑚1
�𝑠 |𝜏𝜓�𝑣(𝑢) − 𝑢 |𝑊 𝑠,𝑝(𝑄𝑚

1+𝛾)

+ 𝐶8

(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�) + ∥𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�)

)
;
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗𝑢sm
� − 𝐷 𝑗𝑢

op
� ∥𝐿𝑝(𝑄𝑚

1+𝛾)≤ sup
𝑣∈𝐵𝑚1

� 𝑗 ∥𝜏𝜓�𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚
1+𝛾)

+ 𝐶9

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗𝑢sm
� − 𝐷 𝑗𝑢

op
� |𝑊𝜎,𝑝(𝑄𝑚

1+𝛾)≤ sup
𝑣∈𝐵𝑚1

� 𝑗+𝜎 |𝜏𝜓�𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝑄𝑚
1+𝛾)

+ 𝐶10

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�)

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢sm
� − 𝑢op

� ∥𝐿𝑝(𝑄𝑚
1+𝛾) ≤ sup

𝑣∈𝐵𝑚1
∥𝜏𝜓�𝑣(𝑢) − 𝑢∥𝐿𝑝(𝑄𝑚

1+𝛾) + 𝐶11∥𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�).

Finally, we apply thickening to the map 𝑢sm
� . Choose 0 < 𝜌 < 𝜌, let Φth

� : ℝ𝑚 \ 𝑇ℓ ∗� →
ℝ𝑚 be the smooth map given by Proposition 5.1 applied with parameter 𝜌 and with
𝛺 = 𝑄𝑚

1+𝛾, and set
𝑢th
� = 𝑢sm

� ◦Φth
� .

This map coincides with 𝑢sm
� outside of 𝑈𝑚

� + 𝑄𝑚
𝜌�. Since ℓ + 1 > 𝑠𝑝, Proposition 5.1

ensures that 𝑢th
� ∈𝑊 𝑠,𝑝(𝑄𝑚

1+𝛾;ℝ�), and moreover, the following estimates hold:

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢th
� − 𝑢sm

� |𝑊 𝑠,𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶12

(
�𝑠 |𝑢sm

� |𝑊 𝑠,𝑝(𝑈𝑚
� +𝑄𝑚

𝜌�) + ∥𝑢sm
� ∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
𝜌�)
)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗𝑢th
� − 𝐷 𝑗𝑢sm

� ∥𝐿𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶13

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢sm
� ∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
𝜌�);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗𝑢th
� −𝐷 𝑗𝑢sm

� |𝑊𝜎,𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶14

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢sm

� ∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

𝜌�)+�
𝑖+𝜎 |𝐷 𝑖𝑢sm

� |𝑊𝜎,𝑝(𝑈𝑚
� +𝑄𝑚

𝜌�)
)
;
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(d) for every 0 < 𝑠 < +∞,

∥𝑢th
� − 𝑢sm

� ∥𝐿𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶15∥𝑢sm

� ∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

𝜌�).

Hence, invoking estimate (i) in Proposition 4.1 with𝛺 = 𝑈𝑚
� +𝑄𝑚

(𝜌+𝜌)� and 𝜔 = 𝑈𝑚
� +𝑄𝑚

𝜌�,
and then estimate (iii) in Proposition 3.1 with 𝜔 = 𝑈𝑚

� +𝑄𝑚
(𝜌+𝜌)�, we obtain

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢th
� − 𝑢sm

� |𝑊 𝑠,𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶16

(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�) + ∥𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�)

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗𝑢th
� − 𝐷 𝑗𝑢sm

� ∥𝐿𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶17

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗𝑢th
� −𝐷 𝑗𝑢sm

� |𝑊𝜎,𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶18

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�)+�

𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�)
)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢th
� − 𝑢sm

� ∥𝐿𝑝(𝑄𝑚
1+𝛾) ≤ 𝐶19∥𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�).

Using the triangle inequality, we conclude that

(a) if 0 < 𝑠 < 1, then

�𝑠 |𝑢th
� − 𝑢� |𝑊 𝑠,𝑝(𝑄𝑚

1+𝛾) ≤ sup
𝑣∈𝐵𝑚1

�𝑠 |𝜏𝜓�𝑣(𝑢) − 𝑢 |𝑊 𝑠,𝑝(𝑄𝑚
1+𝛾)

+ 𝐶20

(
�𝑠 |𝑢 |𝑊 𝑠,𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�) + ∥𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�)

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗 ∥𝐷 𝑗𝑢th
� − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚

1+𝛾)

≤ sup
𝑣∈𝐵𝑚1

� 𝑗 ∥𝜏𝜓�𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚
1+𝛾) + 𝐶21

𝑗∑
𝑖=1

�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�);
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(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

� 𝑗+𝜎 |𝐷 𝑗𝑢th
� − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝑄𝑚

1+𝛾)

≤ sup
𝑣∈𝐵𝑚1

� 𝑗+𝜎 |𝜏𝜓�𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝑄𝑚
1+𝛾)

+ 𝐶22

𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�)

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢th
� − 𝑢∥𝐿𝑝(𝑄𝑚

1+𝛾) ≤ sup
𝑣∈𝐵𝑚1

∥𝜏𝜓�𝑣(𝑢) − 𝑢∥𝐿𝑝(𝑄𝑚
1+𝛾) + 𝐶23∥𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�).

Due to our choice of 𝜓�, and since ℓ ≤ 𝑠𝑝 and

𝑄𝑚 ⊂ 𝐾𝑚� ⊂ 𝑄𝑚
1+𝛾 ⊂ {𝑥 ∈ 𝑄𝑚

1+2𝛾: dist (𝑥, 𝜕𝑄𝑚
1+2𝛾) ≥ 𝜓(𝑥)},

according to estimates (5.6) and (5.7), we have

Dist𝒩 (𝑢th
� (𝐾𝑚� \ 𝑇ℓ ∗� )) ≤ max

{
max

𝜎𝑚∈𝒦𝑚
� \ℰ𝑚�

𝐶
1

�
𝑚
𝑠𝑝−1

∥𝐷𝑢∥𝐿𝑠𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ,

sup
𝑥∈𝑈ℓ

�+𝑄𝑚
𝜌�

𝐶′
⨏
𝑄𝑚
𝑟 (𝑥)

⨏
𝑄𝑚
𝑟 (𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦d𝑧
}

(6.3)

if 𝑠 ≥ 1, respectively

Dist𝒩 (𝑢th
� (𝐾𝑚� \ 𝑇ℓ ∗� )) ≤ max

{
max

𝜎𝑚∈𝒦𝑚
� \ℰ𝑚�

𝐶
1

�
𝑚
𝑝 −𝑠

|𝑢 |𝑊 𝑠,𝑝(𝜎𝑚+𝑄𝑚
2𝜌�) ,

sup
𝑥∈𝑈ℓ

�+𝑄𝑚
𝜌�

𝐶′
⨏
𝑄𝑚
𝑟 (𝑥)

⨏
𝑄𝑚
𝑟 (𝑥)

|𝑢op
� (𝑦) − 𝑢op

� (𝑧)| d𝑦d𝑧
}

(6.4)

if 0 < 𝑠 < 1. Note here that, in defining the bad cubes in equation (6.1), respectively (6.2),
we take the constant 𝐶 > 0 which shows up in estimate (6.3), respectively (6.4). Doing
so, by definition of the set of bad cubes ℰ𝑚� , the first term in each max is smaller than
the radius � of a tubular neighborhood of 𝒩 . Moreover, since ℓ ≤ 𝑠𝑝, Proposition 3.8
ensures that we may take 𝑟 > 0 so small that the second term in each max is also smaller
than �. Therefore, we deduce that

Dist𝒩 (𝑢th
� (𝐾𝑚� \ 𝑇ℓ ∗� )) ≤ �.

This enables us to define 𝑢� = Π ◦ 𝑢th
� , which, as we already explained at the end of

Section 5, is smooth on 𝐾𝑚� \ 𝑇ℓ ∗ , and belongs to ℛ𝑚−[𝑠𝑝]−1(𝐾𝑚� ;𝒩).
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Since 𝑄𝑚 ⊂ 𝐾𝑚� , to conclude, it only remains to prove that 𝑢� → 𝑢 in 𝑊 𝑠,𝑝(𝐾𝑚� ) as
� → 0. We claim that it suffices to show that 𝑢th

� → 𝑢 in 𝑊 𝑠,𝑝(𝐾𝑚� ) as � → 0. Indeed,
the map Π is smooth and has uniformly bounded derivatives, and 𝒩 is compact.
Hence, the continuity of the composition operator from 𝑊 𝑠,𝑝 ∩ 𝐿∞ to 𝑊 𝑠,𝑝 – see for
instance [17, Chapter 15.3] – ensures that, if 𝑢th

� → 𝑢 in 𝑊 𝑠,𝑝(𝐾𝑚� ), then 𝑢� = Π ◦ 𝑢th
�

converges in𝑊 𝑠,𝑝(𝐾𝑚� ) to Π ◦ 𝑢 = 𝑢.
We now prove that 𝑢th

� → 𝑢. We start by noting that the continuity of the translation
operator implies that

lim
�→0

sup
𝑣∈𝐵𝑚1

∥𝜏𝜓�𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢∥𝐿𝑝(𝑄𝑚
1+𝛾) = 0

and
lim
�→0

sup
𝑣∈𝐵𝑚1

|𝜏𝜓�𝑣(𝐷 𝑗𝑢) − 𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝑄𝑚
1+𝛾) = 0

for every 𝑗 ∈ {0, . . . , 𝑘}.
We first deal with the case 𝑠 ≥ 1. By the Gagliardo–Nirenberg interpolation inequality

– see for instance [14, 16] – for every 𝑖 ∈ {1, . . . , 𝑘}, we have 𝐷 𝑖𝑢 ∈ 𝐿
𝑠𝑝

𝑖 (𝑄𝑚
1+2𝛾). Hölder’s

inequality ensures that

∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) ≤ |𝑈𝑚
� +𝑄𝑚

2𝜌� |
𝑠−𝑖
𝑠𝑝 ∥𝐷 𝑖𝑢∥

𝐿
𝑠𝑝
𝑖 (𝑈𝑚

� +𝑄𝑚
2𝜌�)

,

while Lemma 6.1 guarantees that

|𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) ≤ 𝐶24 |𝑈𝑚
� +𝑄𝑚

2𝜌� |
𝑠−𝑖−𝜎
𝑠𝑝 ∥𝐷 𝑖+1𝑢∥𝜎

𝐿
𝑠𝑝
𝑖+1 (𝑄𝑚

1+2𝛾)
∥𝐷 𝑖𝑢∥1−𝜎

𝐿
𝑠𝑝
𝑖 (𝑈𝑚

� +𝑄𝑚
2𝜌�)
.

Here, we use the fact that 𝑄𝑚
1+2𝛾 is convex to justify the use of Lemma 6.1.

We now wish to estimate the measure of the set𝑈𝑚
� +𝑄𝑚

2𝜌�. First note that

|𝑈𝑚
� +𝑄𝑚

2𝜌� | ≤ 𝐶25 card (𝒰𝑚
� )�𝑚 . (6.5)

Then, for every 𝜎𝑚 ∈ 𝒰𝑚
� , there exists 𝜏𝑚 ∈ ℰ𝑚� which intersects 𝜎𝑚 , and thus 𝜏𝑚+𝑄𝑚

2𝜌� ⊂
𝜎𝑚 + 𝑄𝑚

2(1+𝜌)�. If we write 𝜎𝑚 = 𝑄𝑚
� (𝑎), we find 𝜏𝑚 + 𝑄𝑚

2𝜌� ⊂ 𝑄𝑚
𝛼�(𝑎) with 𝛼 = 3 + 2𝜌.

Hence,
𝜏𝑚 +𝑄𝑚

2𝜌� ⊂ 𝑄𝑚
𝛼�(𝑎) ∩𝑄𝑚

1+2𝛾 .

We deduce from the definition of ℰ𝑚� that

� < 𝐶
1

�
𝑚
𝑠𝑝−1

∥𝐷𝑢∥𝐿𝑠𝑝(𝜏𝑚+𝑄𝑚
2𝜌�) ≤ 𝐶

1
�
𝑚
𝑠𝑝−1

∥𝐷𝑢∥𝐿𝑠𝑝(𝑄𝑚
𝛼�(𝑎)∩𝑄𝑚

1+2𝛾).

Since the number of overlaps between one of the cubes 𝑄𝑚
𝛼�(𝑎) and all the other ones

is bounded from above by a number depending only on 𝑚, summing over all cubes in
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𝒰𝑚
� and using the additivity of the integral, we deduce that

card (𝒰𝑚
� ) ≤ 𝐶26

1
�𝑚−𝑠𝑝

∑
𝑄𝑚

� (𝑎)∈𝒰𝑚
�

∫
𝑄𝑚

𝛼�(𝑎)∩𝑄𝑚
1+2𝛾

|𝐷𝑢 |𝑠𝑝

≤ 𝐶27
1

�𝑚−𝑠𝑝

∫
(𝑈𝑚

� +𝑄𝑚
2(𝜌+1)�)∩𝑄

𝑚
1+2𝛾

|𝐷𝑢 |𝑠𝑝 . (6.6)

For further use, we already note that, in the case 0 < 𝑠 < 1, the exact same reasoning
leads to

� < 𝐶
1

�
𝑚
𝑝 −𝑠

|𝑢 |𝑊 𝑠,𝑝(𝑄𝑚
𝛼�(𝑎)∩𝑄𝑚

1+2𝛾).

As for the case 𝑠 ≥ 1, replacing the additivity of the integral by the superadditivity of
the Gagliardo seminorm, we obtain

card (𝒰𝑚
� ) ≤ 𝐶28

1
�𝑚−𝑠𝑝

∫
(𝑈𝑚

� +𝑄𝑚
2(𝜌+1)�)∩𝑄

𝑚
1+2𝛾

∫
(𝑈𝑚

� +𝑄𝑚
2(𝜌+1)�)∩𝑄

𝑚
1+2𝛾

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦. (6.7)

In both cases 𝑠 ≥ 1 and 0 < 𝑠 < 1, we conclude that

lim
�→0

|𝑈𝑚
� +𝑄𝑚

2𝜌� |
�𝑠𝑝

= 0. (6.8)

Indeed, we first use estimate (6.5) along with (6.6), respectively (6.7), to deduce that

|𝑈𝑚
� +𝑄𝑚

2𝜌� |
�𝑠𝑝

≤ 𝐶29∥𝐷𝑢∥𝑝𝐿𝑝(𝑄𝑚
1+2𝛾)

, respectively
|𝑈𝑚

� +𝑄𝑚
2𝜌� |

�𝑠𝑝
≤ 𝐶30 |𝑢 |𝑝𝑊 𝑠,𝑝(𝑄𝑚

1+2𝛾)
.

In particular, |𝑈𝑚
� + 𝑄𝑚

2𝜌� | → 0. Using this information along with Lebesgue’s lemma,
we invoke again estimate (6.6), respectively (6.7), to deduce (6.8).

We next proceed as follows. When 𝑠 ≥ 1, we find

𝑗∑
𝑖=1

�𝑖−𝑗 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�)

≤
𝑗∑
𝑖=1

�𝑠−𝑗
( |𝑈𝑚

� +𝑄𝑚
2𝜌� |

�𝑠𝑝

) 𝑠−𝑖
𝑠𝑝

∥𝐷 𝑖𝑢∥
𝐿
𝑠𝑝
𝑖 (𝑈𝑚

� +𝑄𝑚
2𝜌�)

→ 0 as � → 0 (6.9)
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and
𝑗∑
𝑖=1

(
�𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�) + �𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑈𝑚

� +𝑄𝑚
2𝜌�)

)
≤

𝑗∑
𝑖=1

�𝑠−𝑗−𝜎
( |𝑈𝑚

� +𝑄𝑚
2𝜌� |

�𝑠𝑝

) 𝑠−𝑖
𝑠𝑝

∥𝐷 𝑖𝑢∥
𝐿
𝑠𝑝
𝑖 (𝑈𝑚

� +𝑄𝑚
2𝜌�)

+ 𝐶24

𝑗−1∑
𝑖=1

�𝑠−𝑗−𝜎
( |𝑈𝑚

� +𝑄𝑚
2𝜌� |

�𝑠𝑝

) 𝑠−𝑖−𝜎
𝑠𝑝

∥𝐷 𝑖𝑢∥1−𝜎
𝐿
𝑠𝑝
𝑖 (𝑈𝑚

� +𝑄𝑚
2𝜌�)

∥𝐷 𝑖+1𝑢∥𝜎
𝐿
𝑠𝑝
𝑖+1 (𝑄𝑚

1+2𝛾)

+ |𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) → 0 as � → 0.

(6.10)

For the last term in (6.10), we use (6.8) and the Lebesgue lemma. Similarly, we have

∥𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) → 0 as � → 0.

This completes the proof that 𝑢th
� → 𝑢 in𝑊 𝑠,𝑝(𝑄𝑚

1+𝛾) when 𝑠 ≥ 1.
The case 0 < 𝑠 < 1 is concluded analogously. Note that since 𝒩 is compact, we have

𝑢 ∈ 𝐿∞. Therefore, we have

|𝑢 |𝑊 𝑠,𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) + �−𝑠 ∥𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�)

≤ |𝑢 |𝑊 𝑠,𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) + �−𝑠𝐶31 |𝑈𝑚
� +𝑄𝑚

2𝜌� |
1
𝑝

≤ |𝑢 |𝑊 𝑠,𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) + 𝐶31

( |𝑈𝑚
� +𝑄𝑚

2𝜌� |
�𝑠𝑝

) 1
𝑝

→ 0 as � → 0.

Combining this with the fact that ∥𝑢∥𝐿𝑝(𝑈𝑚
� +𝑄𝑚

2𝜌�) → 0 as � → 0, we deduce that 𝑢th
� → 𝑢

in𝑊 𝑠,𝑝(𝑄𝑚
1+𝛾) as � → 0 when 0 < 𝑠 < 1. This completes the proof of Theorem 1.2. □

We now explain how to deal with more general domains. The first step is to be able
to implement the dilation procedure used at the beginning of the proof. The method
we used adapts without any modification to domains that are starshaped with respect
to one of their points. However, using a more involved technique, it is possible to work
with even more general domains. The reader may consult [17, Lemma 15.25] for an
implementation of this technique on smooth domains using the normal vector, or [11]
for an argument on continuous bounded domains using local parametrizations. Here
we show that the approach even works under the weaker segment condition.

We recall that 𝛺 satisfies the segment condition whenever, for every 𝑥 ∈ 𝜕𝛺, there
exists an open set 𝑈𝑥 ⊂ ℝ𝑚 containing 𝑥 and a nonzero vector 𝑧𝑥 ∈ ℝ𝑚 such that, if
𝑦 ∈ 𝑈𝑥 ∩𝛺, then 𝑦 + 𝑡𝑧𝑥 ∈ 𝛺 for every 0 < 𝑡 < 1.
Lemma 6.2. Let 𝛺 ⊂ ℝ𝑚 be a bounded open domain satisfying the segment condition. For
every 𝛾 > 0 sufficiently small, there exists a smooth diffeomorphism Φ𝛾 : ℝ𝑚 → ℝ𝑚 such that
Φ𝛾(𝛺) ⊂ 𝛺 and

𝐷 𝑗Φ𝛾 → id uniformly on ℝ𝑚 for every 𝑗 ∈ ℕ as 𝛾 → 0.
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Geometrically, the segment condition means that 𝛺 cannot lie on both sides of 𝜕𝛺.
A typical example of a domain 𝛺 not satisfying this assumption is given by two open
cubes whose boundaries share a common face. It is known – see for instance [1, 3.17] –
that there exists a 𝑊1,𝑝 map on this domain which cannot be approximated by 𝒞∞(𝛺)
maps, even in the real valued case.

Proof of Lemma 6.2. Let 𝐵𝛿 = 𝐵𝑚−1
𝛿 × (−𝛿, 𝛿) be a cylinder of radius and half-height 𝛿.

Since 𝜕𝛺 is compact, there exists a finite number of points 𝑥1, . . . , 𝑥𝑛 ∈ ℝ𝑚 and
associated isometries 𝑇1, . . . , 𝑇𝑛 of ℝ𝑚 mapping 0 to 𝑥𝑖 such that

𝜕𝛺 ⊂
𝑛⋃
𝑖=1

𝑇𝑖(𝐵𝛿/2), (6.11)

and also associated nonzero vectors 𝑧1, . . . , 𝑧𝑛 ∈ ℝ𝑚 such that, if 𝑦 ∈ 𝑇𝑖(𝐵𝛿) ∩𝛺, then
𝑦+𝑡𝑧𝑖 ∈ 𝛺 for every 0 < 𝑡 < 1. Let𝜓 : ℝ𝑚−1 → [0, 1] be a smooth map such that𝜓(𝑥) = 1
if 𝑥 ∈ 𝐵𝛿/2 and 𝜓(𝑥) = 0 if 𝑥 ∈ ℝ𝑚−1 \ 𝐵3𝛿/4. For 0 < 𝛾 < 1, we define Φ𝑖 ,𝛾 : ℝ𝑚 → ℝ𝑚 by

Φ𝑖 ,𝛾(𝑥) = 𝑥 + 𝛾𝜓(𝑇−1
𝑖 (𝑥))𝑧𝑖 .

If 𝛾 < (∥𝐷𝜓∥𝐿∞ |𝑧𝑖 |)−1, we observe that Φ𝑖 ,𝛾 is a smooth diffeomorphism. Moreover, by
construction of the vectors 𝑧𝑖 , we have Φ𝑖 ,𝛾(𝛺) ⊂ 𝛺.

We let
Φ𝛾 = Φ𝑛,𝛾 ◦ · · · ◦Φ1,𝛾 .

Observe that

𝐷 𝑗Φ𝛾 → id uniformly on ℝ𝑚 for every 𝑗 ∈ ℕ as 𝛾 → 0.

By (6.11) and the construction of the maps Φ𝑖 ,𝛾, for every 𝑥 ∈ 𝜕𝛺, there exists 𝑖 ∈
{1, . . . , 𝑛} such that Φ𝑖 ,𝛾(𝑥) ∈ 𝛺, and this shows that Φ𝛾(𝛺) ⊂ 𝛺. This proves that the
family of maps Φ𝛾 satisfies the conclusions of the lemma. □

Using this construction, we observe that, if 𝛺 ⊂ ℝ𝑚 is a bounded domain satisfying
the segment condition and 𝑢 ∈𝑊 𝑠,𝑝(𝛺;𝒩), the map 𝑢𝛾 = 𝑢◦Φ𝛾 belongs to𝑊 𝑠,𝑝(𝛺𝛾;𝒩),
where 𝛺𝛾 = Φ−1

𝛾 (𝛺) is an open subset of ℝ𝑚 containing 𝛺. Moreover, 𝑢𝛾 → 𝑢 in
𝑊 𝑠,𝑝(𝛺;𝒩) as 𝛾 → 0.

Therefore, we may carry out the same reasoning as in the proof of Theorem 1.2 by
choosing a cubication 𝒦𝑚

� such that 𝛺 ⊂ 𝐾𝑚� ⊂ 𝛺𝛾.
The other place in the proof of Theorem 1.2 where we used a specific assumption

on the domain is when we applied Lemma 6.1, because we needed convexity to justify
the use of this lemma. However, this is an artifact. Indeed, since we work on a dilated
domain, by dilating slightly more if necessary, we may assume that 𝑢 ∈ 𝑊 𝑠,𝑝(�̃�) for
some open set �̃� ⊂ ℝ𝑚 containing 𝛺𝛾. It then suffices to apply instead Lemma 6.1 to
the map 𝑢𝜓 ∈𝑊 𝑠,𝑝(ℝ𝑚), where 𝜓 : ℝ𝑚 → [0, 1] is a smooth map such that 𝜓 = 1 on 𝛺𝛾

and 𝜓 = 0 on ℝ𝑚 \ �̃�.
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Taking these modifications into consideration, the proof of Theorem 1.2 above can be
carried out the exact same way on any bounded domain 𝛺 ⊂ ℝ𝑚 satisfying the segment
condition. This leads to the following result.
Theorem 6.3. Let 𝛺 ⊂ ℝ𝑚 be a bounded domain satisfying the segment condition. If 𝑠𝑝 < 𝑚,
then the class ℛ𝑚−[𝑠𝑝]−1(𝛺;𝒩) is dense in𝑊 𝑠,𝑝(𝛺;𝒩).

A second perspective of generalization for Theorem 1.2 consists in replacing 𝛺 with
a smooth manifold. From now on, we assume that ℳ is a smooth, compact, connected
Riemannian manifold of dimension 𝑚, isometrically embedded in ℝ�̃ for some �̃ ∈ ℕ.
In the context where the domain is a smooth manifold, the suitable adaptation of the
definition of the class ℛ is the following. We define the class ℛ𝑖(ℳ;𝒩) as the set of
maps 𝑢 : ℳ → 𝒩 which are smooth on ℳ\𝑇, where𝑇 is a finite union of 𝑖-dimensional
submanifolds of ℳ, and such that for every 𝑗 ∈ ℕ∗ and 𝑥 ∈ ℳ \ 𝑇,

|𝐷 𝑗𝑢(𝑥)| ≤ 𝐶
1

dist (𝑥, 𝑇)𝑗

for some constant 𝐶 > 0 depending on 𝑢 and 𝑗.
Our next result is the following counterpart of Theorem 1.2 when the domain is a

smooth manifold.
Theorem 6.4. If 𝑠𝑝 < 𝑚, then the class ℛ𝑚−[𝑠𝑝]−1(ℳ;𝒩) is dense in𝑊 𝑠,𝑝(ℳ;𝒩).

We first prove Theorem 6.4 when ℳ has no boundary. This allows us to rely on the
nearest point projection onto ℳ. In the end, we shall briefly explain how to deduce the
case with boundary from the case without boundary.

Hence, we first assume that ℳ has no boundary. Then, Theorem 6.4 can be deduced
from Theorem 6.3, by extending the function we want to approximate on a tubular
neighborhood of ℳ and using a slicing argument. The key observation is that, if � > 0
is the radius of a tubular neighborhood of ℳ, then for every 𝑢 ∈ 𝑊 𝑠,𝑝(ℳ;𝒩), the
map 𝑣 = 𝑢 ◦ Π belongs to 𝑊 𝑠,𝑝(ℳ + 𝐵�̃

�/2;𝒩). Indeed, for any summable function
𝑤 : ℳ → [0,+∞], we deduce from the coarea formula that∫

ℳ+𝐵�̃
�/2

𝑤 ◦Π ≤ 𝐶1

∫
ℳ

(∫
Π−1(𝑥)∩(ℳ+𝐵�̃

�/2)
𝑤(Π(𝑦))dℋ �̃−𝑚(𝑦)

)
d𝑥 ≤ 𝐶2�

�̃−𝑚
∫
ℳ
𝑤 < +∞.

Conclusion then follows from the theory of Fuglede maps presented in Section 3 (valid
also for maps between manifolds, see [11]).

To implement this strategy of extension and slicing, we need the following transver-
sality result.
Lemma 6.5. Let 𝛴 ⊂ ℝ�̃ be an ℓ -dimensional hyperplane. For almost every 𝑎 ∈ ℝ�̃, the set
ℳ∩(𝛴+ 𝑎) is a smooth submanifold ofℳ of dimension𝑚− �̃+ℓ – or the empty set if ℓ < �̃−𝑚.
Moreover, if ℳ ∩ (𝛴 + 𝑎) ≠ ∅, then for every 𝑥 ∈ ℳ and every 𝑎 as above, we have

dist (𝑥,ℳ ∩ (𝛴 + 𝑎)) ≤ 𝐶 dist (𝑥,𝛴 + 𝑎),

for some constant 𝐶 > 0 depending on ℳ, 𝛴, and 𝑎.
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Taking Lemma 6.5 for granted, we prove Theorem 6.4.

Proof of Theorem 6.4 when ℳ has no boundary. Let 𝑢 ∈ 𝑊 𝑠,𝑝(ℳ;𝒩). Let � > 0 be the
radius of a tubular neighborhood of ℳ, and let Π : ℳ + 𝐵�̃

� → ℳ be the nearest point
projection. We define 𝛺 = ℳ + 𝐵�̃

�/2, which is a smooth bounded open subset of ℝ�̃.
As explained above, the map 𝑣 = 𝑢 ◦Π belongs to𝑊 𝑠,𝑝(𝛺;𝒩). Therefore, Theorem 6.3
ensures the existence of a sequence (𝑣𝑛)𝑛∈ℕ of maps in ℛ�̃−[𝑠𝑝]−1(𝛺;𝒩) converging to 𝑣
in𝑊 𝑠,𝑝(𝛺) as 𝑛 → +∞. Invoking Lemma 6.5, we deduce that for almost every 𝑎 ∈ 𝐵�̃

�/2,
the map 𝑢𝑛,𝑎 = 𝜏𝑎(𝑣𝑛)|ℳ : ℳ → 𝒩 belongs to the class ℛ𝑚−[𝑠𝑝]−1(ℳ;𝒩). Here, we
recall that the translation 𝜏𝑎(𝑣𝑛) is defined by 𝜏𝑎(𝑣𝑛)(𝑥) = 𝑣𝑛(𝑥 + 𝑎). Indeed, the first
part of Lemma 6.5 ensures that the singular set of 𝑢𝑛,𝑎 is as in the definition of the
class ℛ𝑚−[𝑠𝑝]−1. On the other hand, the distance estimate in Lemma 6.5 implies that the
estimates on the derivatives of 𝑢𝑛,𝑎 are satisfied.

Moreover, using a slicing argument, we find that for almost every 𝑎 ∈ 𝐵�̃
�/2, up to

extraction of a subsequence, (𝑢𝑛,𝑎)𝑛∈ℕ converges in 𝑊 𝑠,𝑝(ℳ) to the map 𝜏𝑎(𝑣)|ℳ . This
can be seen, for instance, using the theory of Fuglede maps presented in Section 3.
Indeed, consider a summable map 𝑤 : 𝛺 → [0,+∞], and let 𝑖 : ℳ → 𝛺 be the inclusion
map. Observe that 𝜏𝑎(𝑣)|ℳ = 𝑣 ◦ (𝑖 + 𝑎). We estimate∫

𝐵�̃
�/2

∫
ℳ
𝑤(𝑖(𝑥) + 𝑎)d𝑥d𝑎 =

∫
ℳ

∫
𝐵�̃
�/2(𝑥)

𝑤(𝑎)d𝑎d𝑥 ≤ |ℳ|∥𝑤∥𝐿1(𝛺) < +∞.

Therefore, for almost every 𝑎 ∈ 𝐵�̃
�/2, 𝑤 ◦ (𝑖 + 𝑎) is summable on ℳ. If we now choose 𝑤

to be a detector for 𝑊 𝑠,𝑝 convergence, then, up to a subsequence independent of 𝑎, we
have

𝑢𝑛,𝑎 = 𝑣𝑛 ◦ (𝑖 + 𝑎) → 𝑣 ◦ (𝑖 + 𝑎) = 𝜏𝑎(𝑣)|ℳ in𝑊 𝑠,𝑝(ℳ) as 𝑛 → +∞.

On the other hand, by the continuity of translations in𝑊 𝑠,𝑝 , we know that 𝜏𝑎(𝑣)|ℳ →
𝑣 |ℳ = 𝑢 in 𝑊 𝑠,𝑝(ℳ) as 𝑎 → 0 (more precisely, we should rely on an argument in the
spirit of [11, Proposition 2.4], since there is again a slicing involved here).

We conclude the proof by invoking a diagonal argument: choosing a suitable sequence
(𝑎𝑛)𝑛∈ℕ in 𝐵�̃

�/2 such that 𝑎𝑛 → 0, the maps 𝑢𝑛 = 𝑢𝑛,𝑎𝑛 belong to ℛ𝑚−[𝑠𝑝]−1(ℳ;𝒩) and
converge to 𝑢 in𝑊 𝑠,𝑝(ℳ) as 𝑛 → +∞. □

We now prove Lemma 6.5.

Proof of Lemma 6.5. Define Ψ : ℳ × 𝛴 → ℝ�̃ by

Ψ(𝑥, 𝑧) = 𝑥 − 𝑧.

The map Ψ is a smooth map between smooth manifolds. Therefore, Sard’s lemma
ensures that for almost every 𝑎 ∈ ℝ�̃, the linear map 𝐷Ψ(𝑥, 𝑧) : 𝑇𝑥ℳ × 𝑇𝑧𝛴 → ℝ�̃ is
surjective for every (𝑥, 𝑧) ∈ Ψ−1({𝑎}). For such 𝑎, we compute

ℝ�̃ = 𝐷Ψ(𝑥, 𝑧)[𝑇𝑥ℳ × 𝑇𝑧𝛴] = 𝑇𝑥ℳ + 𝑇𝑧𝛴.
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Moreover we observe that (𝑥, 𝑧) ∈ Ψ−1({𝑎}) if and only if 𝑥 − 𝑧 = 𝑎. This shows that

ℝ�̃ = 𝑇𝑥ℳ + 𝑇𝑧𝛴 for every 𝑥 = 𝑧 + 𝑎 ∈ 𝛴 + 𝑎.

Otherwise stated, for almost every 𝑎 ∈ ℝ�̃, ℳ and 𝛴 + 𝑎 are transversal, which implies
that ℳ ∩ (𝛴 + 𝑎) is a smooth submanifold of ℳ of dimension 𝑚 − �̃ + ℓ ; see e.g. [32,
Theorem 1.39]. This concludes the proof of the first part of the lemma.

We now turn to the distance estimate. Without loss of generality, we may restrict
ourselves to prove the estimate when 𝑎 = 0. Let 𝑦 ∈ ℳ ∩ 𝛴. Since ℳ and 𝛴 intersect
transversely, after a suitable rotation followed by a translation – which do not modify the
distances – we may assume that 𝑦 = 0, and that there exist 𝛿 > 0 and ℎ > 0 such that 𝛴 =

{0}�̃−ℓ×ℝℓ andℳ∩(𝐵𝑚𝛿 ×(−ℎ, ℎ)�̃−𝑚) is the graph of a smooth map 𝜙 : 𝐵𝑚𝛿 → (−ℎ, ℎ)�̃−𝑚 .
Denote by 𝜋2 : ℝ�̃ → ℝℓ the projection onto the ℓ last variables, which corresponds to
the orthogonal projection onto 𝛴, and by 𝜋1 : ℝ�̃ → ℝ𝑚 the projection onto the 𝑚 first
variables. We observe that, for 𝑥 = (𝜋1(𝑥), 𝜙(𝜋1(𝑥))) ∈ ℳ ∩ (𝐵𝑚𝛿 × (−ℎ, ℎ)�̃−𝑚), we have

dist (𝑥,𝛴) = |𝑥 − (0,𝜋2(𝑥))|,

while

dist (𝑥,ℳ ∩ 𝛴) ≤ |(𝜋1(𝑥), 𝜙(𝜋1(𝑥))) − (𝜋1((0,𝜋2(𝑥))), 𝜙(𝜋1((0,𝜋2(𝑥)))))|
≤ (1 + |𝜙 |𝒞0,1)dist (𝑥,𝛴).

We conclude by using a finite covering argument. Indeed, since ℳ ∩ 𝛴 is compact,
we may cover it by a finite number of cylindrical domains as above. We obtain a
neighborhood𝑈� = ℳ ∩ 𝛴 + 𝐵�̃

� of radius � > 0 such that, for every 𝑥 ∈ 𝑈�, we have

dist (𝑥,ℳ ∩ 𝛴) ≤ 𝐶1 dist (𝑥,𝛴).

On the other hand, for points 𝑥 ∈ ℳ with 𝑥 ∉ 𝑈�, we have dist (𝑥,𝛴) ≥ 𝐶2 > 0, while
dist (𝑥,ℳ ∩ 𝛴) ≤ 𝐶3 since ℳ ∩ 𝛴 ≠ ∅. This completes the proof of the lemma. □

Finally, we give the proof of Theorem 6.4 in the case where ℳ has non-empty bound-
ary.

Proof of Theorem 6.4 when ℳ has non-empty boundary. The key idea is to viewℳ, or more
precisely any compact subset of the interior of ℳ, as a subset of a smooth manifold
without boundary, embedded in ℝ�̃ ×ℝ, identifying ℝ�̃ with ℝ�̃ × {0}. For this, we rely
on [10, Lemma 3.4], which is a consequence of the collar neighborhood theorem.

Let 𝐾 be any compact subset in the relative interior of ℳ. From [10, Lemma 3.4], we
deduce that there exists a smooth compact submanifold ℳ̃ ofℝ�̃×ℝ, without boundary,
such that

𝐾 × {0} ⊂ ℳ̃ and 𝜋(ℳ̃) ⊂ ℳ ,

where 𝜋 : ℝ�̃ ×ℝ → ℝ�̃ is the projection onto the first �̃ variables.
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Let 𝑢 ∈ 𝑊 𝑠,𝑝(ℳ;𝒩). The map 𝑣 = 𝑢 ◦ 𝜋 belongs to 𝑊 𝑠,𝑝(ℳ̃ ,𝒩). Hence, by The-
orem 6.4 for manifolds without boundary, there exists a sequence (𝑣𝐾𝑛 )𝑛∈ℕ of maps in
ℛ𝑚−[𝑠𝑝]−1(ℳ̃;𝒩) such that 𝑣𝐾𝑛 → 𝑣 in𝑊 𝑠,𝑝(ℳ̃). In particular, (𝑣𝐾𝑛 )|𝐾 → 𝑢|𝐾 in𝑊 𝑠,𝑝(𝐾).

Now, we observe that, for every � > 0 sufficiently small, if we take 𝐾 = 𝐾� such that
ℳ \ 𝐾� is contained in a uniform neighborhood of radius � of 𝜕ℳ, then 𝑢|𝐾� may be
dilated to a map 𝑢� ∈ 𝑊 𝑠,𝑝(ℳ;𝒩). Moreover, if we denote by 𝑢𝑛,� the corresponding
dilations of the maps (𝑣𝐾�

𝑛 )|𝐾� , we have both

𝑢� → 𝑢 as � → 0 and 𝑢𝑛,� → 𝑢� as 𝑛 → +∞.

We conclude using a diagonal argument. □

7 Shrinking

This section is dedicated to the shrinking procedure. As we explained in Section 2,
shrinking is actually a more involved version of a scaling argument, whose purpose is
to modify a given map in order to obtain a better map whose energy is controlled. The
main result of this section is the following proposition, counterpart of [9, Proposition 8.1]
in the fractional setting, which provides the shrinking construction. We emphasize
that, similar to thickening but unlike opening, the map Φ does not depend on the map
𝑢 ∈𝑊 𝑠,𝑝 it shall be composed with.

Proposition 7.1. Let ℓ ∈ {0, . . . , 𝑚 − 1}, � > 0, 0 < � < 1
2 , 0 < 𝜏 < 1

2 , 𝒦𝑚 be a cubication in
ℝ𝑚 of radius �, and 𝒯 ℓ ∗ be the dual skeleton of 𝒦 ℓ . There exists a smooth map Φ : ℝ𝑚 → ℝ𝑚

such that

(i) Φ is injective;

(ii) for every 𝜎𝑚 ∈ 𝒦𝑚 , Φ(𝜎𝑚) ⊂ 𝜎𝑚;

(iii) SuppΦ ⊂ 𝑇ℓ ∗ +𝑄𝑚
2�� and Φ(𝑇ℓ ∗ +𝑄𝑚

𝜏��) ⊃ 𝑇ℓ
∗ +𝑄𝑚

��.

If in addition ℓ + 1 > 𝑠𝑝, then for every 𝑢 ∈ 𝑊 𝑠,𝑝(𝐾𝑚 ;ℝ�) and every 𝑣 ∈ 𝑊 𝑠,𝑝(𝐾𝑚 ;ℝ�) such
that 𝑢 = 𝑣 on the complement of 𝑇ℓ ∗ + 𝑄𝑚

��, we have 𝑢 ◦ Φ ∈ 𝑊 𝑠,𝑝(𝐾𝑚 ;ℝ�), and moreover, the
following estimates hold:

(a) if 0 < 𝑠 < 1, then

(��)𝑠 |𝑢 ◦Φ − 𝑣 |𝑊 𝑠,𝑝(𝐾𝑚)

≤ 𝐶
(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇ℓ
∗+𝑄𝑚

��)) + ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇ℓ

∗+𝑄𝑚
��))

)
+ 𝐶𝜏

ℓ+1−𝑠𝑝
𝑝

(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
+ 𝐶(��)𝑠 |𝑣 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + 𝐶∥𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑣∥𝐿𝑝(𝐾𝑚) ≤ 𝐶

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇ℓ

∗+𝑄𝑚
��))

+ 𝐶𝜏
ℓ+1−𝑠𝑝

𝑝

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)) + 𝐶(��)

𝑗 ∥𝐷 𝑗𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑣 |𝑊𝜎,𝑝(𝐾𝑚)

≤ 𝐶

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇ℓ
∗+𝑄𝑚

��))+(��)
𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇ℓ
∗+𝑄𝑚

��))

)
+ 𝐶𝜏

ℓ+1−𝑠𝑝
𝑝

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
+ 𝐶(��)𝑗 ∥𝐷 𝑗𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + 𝐶(��)
𝑗+𝜎 |𝐷 𝑗𝑣 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��));

(d) for 0 < 𝑠 < +∞,

∥𝑢 ◦Φ − 𝑣∥𝐿𝑝(𝐾𝑚) ≤ 𝐶∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇ℓ

∗+𝑄𝑚
��))

+ 𝐶𝜏
ℓ+1−𝑠𝑝

𝑝 ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)) + 𝐶∥𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��));

for some constant 𝐶 > 0 depending on 𝑚, 𝑠, and 𝑝.

For integer order estimates, we could avoid mentioning the map 𝑣 in the statement of
Proposition 7.1 and only establish energy estimates for 𝑢 ◦Φ alone on 𝐾𝑚 ∩ (𝑇ℓ ∗ +𝑄𝑚

2�𝜌),
as in [9], as the estimates above then follow from the assumption 𝑢 = 𝑣 outside of
𝑇ℓ

∗ + 𝑄𝑚
2�𝜌 using the additivity of the integral. However, for fractional order estimates,

we face the usual problem linked to the lack of additivity of the Gagliardo seminorm.
We pause here to explain how Proposition 7.1 will be used in the proof of Theorem 1.1.

Given 𝑢 and 𝑣 as above, Proposition 7.1 allows us to control, via a suitable choice of
𝜏 > 0, the energy of 𝑢 ◦ Φ in terms of the energy of 𝑣 alone. Indeed, given � > 0, if we
choose 𝜏� sufficiently small – depending on 𝑣 – then, using the fact that 𝑢 = 𝑣 outside
of 𝑇ℓ ∗ +𝑄𝑚

��, we find

(a) if 0 < 𝑠 < 1, then

(��)𝑠 |𝑢 ◦Φ − 𝑣 |𝑊 𝑠,𝑝(𝐾𝑚) ≤ 𝐶′
(
(��)𝑠 |𝑣 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + ∥𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑣∥𝐿𝑝(𝐾𝑚) ≤ 𝐶′
𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ) − 𝐷 𝑗𝑣 |𝑊𝜎,𝑝(𝐾𝑚)

≤ 𝐶′
𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + (��)𝑖+𝜎 |𝐷 𝑖𝑣 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ − 𝑣∥𝐿𝑝(𝐾𝑚) ≤ 𝐶′∥𝑣∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));

for some constant 𝐶′ > 0 depending on 𝑚, 𝑠, and 𝑝. Estimates (a) to (d) will be used in
the proof of Theorem 1.1.

This section is organized as follows. In a first time, we explain the construction of the
building blocks for shrinking, and we prove their geometric properties. Then we state
the analytic estimates satisfied by the composition of a𝑊 𝑠,𝑝 map 𝑢 with those building
blocks. Finally, we explain how to suitably combine the building blocks in order to
obtain the global shrinking construction, along with the required properties.

We start with the construction of the building blocks for shrinking, which is very
similar to thickening. Therefore, in this section, we shall follow an analogous path
to the one in Section 5. We start by introducing some additional notation, similar to
Sections 3 and 5. Let 0 < � < � < � < 1 and 0 < 𝜏 < �/� be fixed. We set

𝐵1 = 𝐵𝑑𝜏�� ×𝑄𝑚−𝑑
(1−�)� , 𝑄2 = 𝑄𝑑

�� ×𝑄𝑚−𝑑
(1−�)� , 𝑄3 = 𝑄𝑑

�� ×𝑄𝑚−𝑑
(1−�)� .

Note that 𝐵1 ⊂ 𝑄2 ⊂ 𝑄3. The rectangle 𝑄3 contains the geometric support of the
building block Φ, that is, Φ = id outside of 𝑄3. The rectangle 𝑄2 is shrinked into the
cylinder 𝐵1: we have Φ(𝐵1) ⊃ 𝑄2. As usual, the region in between serves as a transition
region.

As we did for thickening, we split the construction of the building block Φ into
two parts. First, we deal with the geometric properties that need to be satisfied by Φ

independently of the map 𝑢, and then, we move to the Sobolev estimates satisfied by
𝑢 ◦ Φ. We take Φ to be exactly the map given by [9, Proposition 8.3], and we therefore
only recall briefly how this map is built, referring the reader to [9] for the details. Once
again, the main change in our approach is that we establish the Sobolev estimates first
for the building blocks, and then we glue them together in order to obtain the estimates
given by Proposition 7.1.
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Analogously to Section 5, we define � : ℝ𝑚 → ℝ by

�(𝑥) =
√

|𝑥′ |2 + (��)2�
( 𝑥′′
��

)
+ (��)2�𝜏2 (7.1)

for every 𝑥 = (𝑥′, 𝑥′′) ∈ ℝ𝑑 × ℝ𝑚−𝑑. Here, � : ℝ𝑚−𝑑 → ℝ is defined similarly as in
Section 5. We choose 1 < 𝑞 < +∞ sufficiently large so that there exist 0 < 𝑟1 < 𝑟2
satisfying

𝑄𝑚−𝑑
1−�
�

⊂ {𝑥′′ ∈ ℝ𝑚−𝑑: |𝑥′′ |𝑞 < 𝑟1} ⊂ {𝑥′′ ∈ ℝ𝑚−𝑑: |𝑥′′ |𝑞 < 𝑟2} ⊂ 𝑄𝑚−𝑑
1−�
�

.

Then, we pick a nondecreasing smooth map �̃ : ℝ+ → [0, 1] such that �̃(𝑟) = 0 if
0 ≤ 𝑟 ≤ 𝑟1 and �̃(𝑟) = 1 if 𝑟 ≥ 𝑟2. Finally, we let�(𝑥′′) = �̃(|𝑥′′ |𝑞). With this definition, the
map � is smooth and satisfies �(𝑥′′) = 0 if 𝑥′′ ∈ 𝑄𝑚−𝑑

1−�
�

and �(𝑥′′) = 1 if 𝑥′′ ∈ ℝ𝑚−𝑑 \𝑄𝑚−𝑑
1−�
�

.

The number � > 0 is to be determined later on, depending only on �/�. As we will see
in the course of the proof, the extra term involving 𝜏, which was not present in Section 5,
serves to obtain a desingularized construction.

We are now ready to state the geometric properties of Φ, which are the purpose of
Proposition 7.2 below.
Proposition 7.2. Let 𝑑 ∈ {1, . . . , 𝑚}, � > 0, 0 < � < � < � < 1, and 0 < 𝜏 < �/�.
There exists a smooth function Φ : ℝ𝑚 → ℝ𝑚 of the form Φ(𝑥) = (�(𝑥)𝑥′, 𝑥′′), with � : ℝ𝑚 →
[1,+∞), and such that

(i) Φ is injective;

(ii) SuppΦ ⊂ 𝑄3;

(iii) Φ(𝐵1) ⊃ 𝑄2;

(iv) for every 𝑥 ∈ 𝑄3,
|𝐷 𝑗Φ(𝑥)| ≤ 𝐶

��

� 𝑗(𝑥)
for every 𝑗 ∈ ℕ∗,

and for every 𝑥 ∈ ℝ𝑚 ,

|𝐷 𝑗Φ(𝑥)| ≤ 𝐶
(��)1−𝑗

𝜏 𝑗
for every 𝑗 ∈ ℕ∗,

for some constant 𝐶 > 0 depending on 𝑗, 𝑚, �/� and �/�;

(v) for every 𝑥 ∈ ℝ𝑚 ,

jacΦ(𝑥) ≥ 𝐶′ (��)𝛽

�𝛽(𝑥)
for every 0 < 𝛽 < 𝑑,

and for every 𝑥 ∈ 𝐵1,

jacΦ(𝑥) ≥ 𝐶′ 1
𝜏𝑑
,

for some constant 𝐶′ > 0 depending on 𝛽, 𝑗, 𝑚, �/� and �/�.

76



Proof. As we announced, we use the same construction as in [9, Proposition 8.3]. Similar
to thickening, we start by constructing an intermediate map Ψ : ℝ𝑚 → ℝ𝑚 which satis-
fies the conclusion of Proposition 7.2 with the rectangles 𝑄𝑖 replaced by the cylinders
𝐵𝑖 defined as

𝐵2 = 𝐵𝑑�� ×𝑄𝑚−𝑑
(1−�)� , 𝐵3 = 𝐵𝑑�� ×𝑄𝑚−𝑑

(1−�)� .

It will then suffice to compose Ψ with a suitable diffeomorphism Θ : ℝ𝑚 → ℝ𝑚 dilating
𝐵2 to a set containing 𝑄2 in order to obtain the desired map Φ.

We let 𝜑 : (0,+∞) → [1,+∞) be a smooth function such that

(a) for 0 < 𝑟 ≤ 𝜏
√

1 + �,

𝜑(𝑟) =
�/�
𝑟

√
1 + �

(
1 + 𝑏

ln 1
𝑟

)
;

(b) for 𝑟 ≥ 1, 𝜑(𝑟) = 1;

(c) the function 𝑟 ∈ (0,+∞) ↦→ 𝑟𝜑(𝑟) is increasing.

This is possible provided that we choose � such that

(�/�)
√

1 + � < 1

and then 𝑏 > 0 such that

(�/�)
√

1 + �
(
1 + 𝑏

ln 1
(�/�)

√
1+�

)
< 1.

Then, we define � : ℝ𝑚 → [1,+∞) by

�(𝑥) = 𝜑
( �(𝑥)
��

)
,

and finally
Ψ(𝑥′, 𝑥′′) = (�(𝑥′, 𝑥′′)𝑥′, 𝑥′′).

The injectivity of Ψ relies on assumption (c) on 𝜑. The fact that SuppΨ ⊂ 𝐵3 uses
assumption (b) on 𝜑, observing that �(𝑥) ≥ �� whenever 𝑥 ∈ ℝ𝑚 \ 𝐵3, and hence
�(𝑥) = 1. To prove (iii), note that if 𝑥 = (𝑥′, 𝑥′′) ∈ 𝐵1 and 𝑡 ≥ 0, we have

Ψ(𝑡𝑥′, 𝑥′′) =
(
𝑡𝜑

(√
𝑡2
��� 𝑥′
��

���2 + �𝜏2
)
𝑥′, 𝑥′′

)
,

where we used the fact that � vanishes inside of 𝑄𝑚−𝑑
1−�
�

. For 𝑡 = 0, the factor in front

of 𝑥′ vanishes, while for 𝑡 = 𝜏, it is larger than
��

|𝑥′ | ≥ 1. We conclude by invoking
the intermediate value theorem. The proof of (iv) amounts to estimate |𝐷 𝑗�| using the
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Faà di Bruno formula, and then conclude using Leibniz’s rule. We obtain the second
estimate from the first one by noting that � ≥ (��)

√
�𝜏. The proof of (v) again involves

explicitly computing jacΨ as the determinant of a perturbation of a linear map, and
then estimating the obtained expression. The second estimate relies on the fact that if
𝑥 = (𝑥′, 𝑥′′) ∈ 𝐵1, then |𝑥′ | ≤ (��)𝜏 and �

(
𝑥′′
��

)
= 0, whence �(𝑥) ≤ (��)

√
1 + �𝜏. We refer

the reader to [9, Lemma 8.5] for the details.
We then let Θ : ℝ𝑚 → ℝ𝑚 be a smooth diffeomorphism also of the form Θ(𝑥) =

(�̃(𝑥)𝑥′, 𝑥′′), with �̃ : ℝ𝑚 → [1,+∞), such that Θ is supported in 𝑄3, maps 𝐵2 on a set
containing 𝑄2, and satisfies the estimates

(��)𝑗−1 |𝐷 𝑗Θ | ≤ 𝐶4 and 0 < 𝐶5 ≤ jacΘ ≤ 𝐶6 on ℝ𝑚 ;

see [9, Lemma 8.4]. Using the composition formula for the Jacobian and the Faà di
Bruno formula, we conclude, as for thickening, that Φ = Θ ◦Ψ is the desired map. □

We now turn to the Sobolev estimates satisfied by 𝑢 ◦Φ.
Proposition 7.3. Let 𝑑 > 𝑠𝑝. Let Φ be as in Proposition 7.2. Let 𝜔 ⊂ ℝ𝑚 be such that
𝑄2 ⊂ 𝜔 ⊂ 𝐵𝑚𝑐�� for some 𝑐 > 0, and assume that there exists 𝑐′ > 0 such that

|𝐵𝑚� (𝑧) ∩ (𝜔 \𝑄2)| ≥ 𝑐′�𝑚 for every 𝑧 ∈ 𝜔 \𝑄2 and 0 < � ≤ 1
2 diam 𝜔. (7.2)

For every 𝑢 ∈ 𝑊 𝑠,𝑝(Φ−1(𝜔);ℝ�), we have 𝑢 ◦ Φ ∈ 𝑊 𝑠,𝑝(Φ−1(𝜔);ℝ�), and moreover, the
following estimates hold:

(a) if 0 < 𝑠 < 1, then

|𝑢 ◦Φ|𝑊 𝑠,𝑝(Φ−1(𝜔)) ≤ 𝐶 |𝑢 |𝑊 𝑠,𝑝(𝜔\𝑄2) + 𝐶𝜏
𝑑−𝑠𝑝
𝑝 |𝑢 |𝑊 𝑠,𝑝(𝜔);

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗(𝑢 ◦Φ)∥𝐿𝑝(Φ−1(𝜔)) ≤ 𝐶

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔\𝑄2) + 𝐶𝜏
𝑑−𝑗𝑝
𝑝

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔);

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗(𝑢◦Φ)|𝑊𝜎,𝑝(Φ−1(𝜔)) ≤ 𝐶

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔\𝑄2)+(��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝜔\𝑄2)

)
+ 𝐶𝜏

𝑑−(𝑗+𝜎)𝑝
𝑝

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝜔)) + (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝜔)

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ∥𝐿𝑝(Φ−1(𝜔)) ≤ 𝐶∥𝑢∥𝐿𝑝(𝜔\𝑄2) + 𝐶𝜏
𝑑
𝑝 ∥𝑢∥𝐿𝑝(𝜔);
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for some constant 𝐶 > 0 depending on 𝑠, 𝑚, 𝑝, 𝑐, 𝑐′, �/�, and �/�.

We encounter again the assumption that balls centered at a point of 𝜔 significantly
intersect 𝜔. We call the attention of the reader to the fact that, in the proof of Proposi-
tion 7.1, Proposition 7.3 will be applied with 𝜔 being a domain more complicated than
just a rectangle. This contrasts with the situation encountered in Sections 3 and 5.

In the proof of Proposition 7.3, we need the counterpart of Lemma 5.4 for the map
� used for shrinking. The proof is the same as the proof of Lemma 5.4, since both
constructions are identical up to an additive constant under the square root, and is
therefore omitted.

Lemma 7.4. For every 𝑥, 𝑦 ∈ ℝ𝑚 , there exists a Lipschitz path 𝛾 : [0, 1] → ℝ𝑚 from 𝑥 to 𝑦
such that

|𝛾 |𝒞0,1([0,1]) ≤ 𝐶 |𝑥 − 𝑦 |
for some constant 𝐶 > 0 depending only on 𝑚, and such that � ≥ min(�(𝑥), �(𝑦)) along 𝛾,
where � is the map defined in (7.1).

We are now ready to prove Proposition 7.3.

Proof of Proposition 7.3. As for thickening, the integer order estimate when 𝑠 ≥ 1 is
proved exactly as [9, Corollary 8.2], but is presented here as a prelude for the more
involved fractional order case.

By the Faà di Bruno formula, we estimate

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)|𝑝 ≤ 𝐶7

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝 |𝐷𝑡1Φ(𝑥)|𝑝 · · · |𝐷𝑡𝑖Φ(𝑥)|𝑝

for every 𝑗 ∈ {1, . . . , 𝑘} and 𝑥 ∈ Φ−1(𝜔). Let 0 < 𝛽 < 𝑑. Using the estimates on the

derivatives and the Jacobian of Φ, we find |𝐷𝑡𝑙Φ| ≤ 𝐶8
(jacΦ)

𝑡𝑙
𝛽

(��)𝑡𝑙−1 , and therefore

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)|𝑝 ≤ 𝐶9

𝑗∑
𝑖=1

∑
1≤𝑡1≤···≤𝑡𝑖
𝑡1+···+𝑡𝑖=𝑗

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝
(jacΦ(𝑥))

𝑡1𝑝
𝛽

(��)(𝑡1−1)𝑝 · · ·
(jacΦ(𝑥))

𝑡𝑖 𝑝

𝛽

(��)(𝑡𝑖−1)𝑝

≤ 𝐶10

𝑗∑
𝑖=1

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝
(jacΦ(𝑥))

𝑗𝑝
𝛽

(��)(𝑗−𝑖)𝑝
.

Since 𝑗𝑝 ≤ 𝑠𝑝 < 𝑑, we may choose 𝛽 = 𝑗𝑝. Hence,

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)|𝑝 ≤ 𝐶10

𝑗∑
𝑖=1

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝
jacΦ(𝑥)
(��)(𝑗−𝑖)𝑝

.
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Since Φ is injective, the change of variable theorem ensures that∫
Φ−1(𝜔\𝑄2)

(��)𝑗𝑝 |𝐷 𝑗(𝑢 ◦Φ)|𝑝 ≤
∫
Φ−1(𝜔\𝑄2)

𝐶10

𝑗∑
𝑖=1

(��)𝑖𝑝 |𝐷 𝑖𝑢(Φ(𝑥))|𝑝 jacΦ(𝑥)d𝑥

≤ 𝐶10

𝑗∑
𝑖=1

∫
𝜔\𝑄2

(��)𝑖𝑝 |𝐷 𝑖𝑢 |𝑝 .

Combining inclusion (iii) and estimates (iv) and (v) in Proposition 7.2, we find

|𝐷 𝑗(𝑢 ◦Φ)(𝑥)|𝑝 ≤ 𝐶11𝜏
𝑑−𝑗𝑝

𝑗∑
𝑖=1

|𝐷 𝑖𝑢(Φ(𝑥))|𝑝
jacΦ(𝑥)
(��)(𝑗−𝑖)𝑝

for every 𝑥 ∈ Φ−1(𝑄2) ⊂ 𝐵1. Using again the change of variable theorem, we deduce
that∫

Φ−1(𝑄2)
(��)𝑗𝑝 |𝐷 𝑗(𝑢 ◦Φ)|𝑝 ≤

∫
Φ−1(𝑄2)

𝐶11𝜏
𝑑−𝑗𝑝

𝑗∑
𝑖=1

(��)𝑖𝑝 |𝐷 𝑖𝑢(Φ(𝑥))|𝑝 jacΦ(𝑥)d𝑥

≤ 𝐶11𝜏
𝑑−𝑗𝑝

𝑗∑
𝑖=1

∫
𝑄2

(��)𝑖𝑝 |𝐷 𝑖𝑢 |𝑝 .

We conclude by additivity of the integral, combining the estimates on Φ−1(𝜔 \ 𝑄2) and
on Φ−1(𝑄2).

The proof of the estimate at order 0 relies on the same decomposition and change of
variable, noting that in particular jacΦ ≥ 𝐶12 to handle the region Φ−1(𝜔 \𝑄2).

We now move to the fractional estimate when 0 < 𝑠 < 1. Observe that, as in (5.4), we
have

|Φ(𝑥) −Φ(𝑦)|
|𝑥 − 𝑦 | ≤ 𝐶13

��

�(𝑦) for every 𝑥, 𝑦 ∈ 𝜔. (7.3)

We start by splitting, in the spirit of the proof of Proposition 5.3,∬
Φ−1(𝜔)×Φ−1(𝜔)

�(𝑥)≤�(𝑦)

|𝑢 ◦Φ(𝑥) − 𝑢 ◦Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 , (7.4)

where we have set

𝐼1 =
∬

Φ−1(𝜔\𝑄2)×Φ−1(𝜔\𝑄2)
�(𝑥)≤�(𝑦)

|𝑢◦Φ(𝑥)−𝑢◦Φ(𝑦)|𝑝
|𝑥−𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦, 𝐼2 =

∬
Φ−1(𝑄2)×Φ−1(𝑄2)

�(𝑥)≤�(𝑦)

|𝑢◦Φ(𝑥)−𝑢◦Φ(𝑦)|𝑝
|𝑥−𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦,

𝐼3 =
∬

Φ−1(𝜔\𝑄2)×Φ−1(𝑄2)
�(𝑥)≤�(𝑦)

|𝑢◦Φ(𝑥)−𝑢◦Φ(𝑦)|𝑝
|𝑥−𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦, 𝐼4 =

∬
Φ−1(𝑄2)×Φ−1(𝜔\𝑄2)

�(𝑥)≤�(𝑦)

|𝑢◦Φ(𝑥)−𝑢◦Φ(𝑦)|𝑝
|𝑥−𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦.
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Estimating the right-hand side of (7.4) is similar to Step 2 in the case 0 < 𝑠 < 1 of
Proposition 5.3. The novelty here is that we need to be more careful with the domains
on which the estimates are performed. Indeed, in order to obtain (a), we need to
estimate the right-hand side of (7.4) by a sum of terms that are either preceded by a
suitable power of 𝜏, or involve only the energy of 𝑢 on 𝜔 \𝑄2.

We begin with 𝐼2. We define

ℬ𝑥,𝑦 = 𝐵𝑚|Φ(𝑥)−Φ(𝑦)|

(
Φ(𝑥) +Φ(𝑦)

2

)
∩𝑄2 ,

so that
𝐼2 ≤ 𝐶14

∫
Φ−1(𝑄2)

∫
Φ−1(𝑄2)

⨏
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑦d𝑥.

Observe that |ℬ𝑥,𝑦 | ≥ 𝐶15 |Φ(𝑥) − Φ(𝑦)|𝑚 due to the fact that 𝑄2 is a rectangle with
comparable sidelengths. Moreover, |Φ(𝑥) − 𝑧 | ≤ 3

2 |Φ(𝑥) − Φ(𝑦)|. Hence, using Tonelli’s
theorem, we find∫

Φ−1(𝑄2)

∫
Φ−1(𝑄2)

⨏
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑦d𝑥

≤ 𝐶16

∫
Φ−1(𝑄2)

∫
𝑄2

∫
𝒴𝑥,𝑧

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 |Φ(𝑥) − 𝑧 |𝑚 d𝑦d𝑧d𝑥,

where

𝒴𝑥,𝑧 = {𝑦 ∈ Φ−1(𝑄2): 𝑧 ∈ ℬ𝑥,𝑦} ⊂ {𝑦 ∈ ℝ𝑚 : |Φ(𝑥) − 𝑧 | < 𝐶17
��

�(𝑥) |𝑥 − 𝑦 |}.

Therefore,∫
Φ−1(𝑄2)

∫
𝑄2

∫
𝒴𝑥,𝑧

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 |Φ(𝑥) − 𝑧 |𝑚 d𝑦d𝑧d𝑥

≤ 𝐶18

∫
Φ−1(𝑄2)

∫
𝑄2

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝑠𝑝

(��)𝑠𝑝
�(𝑥)𝑠𝑝 d𝑧d𝑥. (7.5)

Now we use: (i) the fact that �(𝑥) ≥ 𝐶19��𝜏, (ii) the second estimate on jacΦ – valid on
Φ−1(𝑄2) ⊂ 𝐵1 – and (iii) the change of variable theorem to get∫

Φ−1(𝑄2)

∫
𝑄2

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝑠𝑝

(��)𝑠𝑝
�(𝑥)𝑠𝑝 d𝑧d𝑥 ≤ 𝐶20𝜏

𝑑−𝑠𝑝
∫
𝑄2

∫
𝑄2

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦.

The three other terms are handled similarly, so we only point out the required changes.
We define instead

ℬ𝑥,𝑦 = 𝐵𝑚|Φ(𝑥)−Φ(𝑦)|

(
Φ(𝑥) +Φ(𝑦)

2

)
∩ (𝜔 \𝑄2).
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For 𝐼3, we split

𝐼3 ≤ 𝐶21

(∫
Φ−1(𝜔\𝑄2)

∫
Φ−1(𝑄2)

⨏
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑦d𝑥

+
∫
Φ−1(𝜔\𝑄2)

∫
Φ−1(𝑄2)

⨏
ℬ𝑥,𝑦

|𝑢 ◦Φ(𝑦) − 𝑢(𝑧)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑧d𝑦d𝑥

)
.

Note that we still have |ℬ𝑥,𝑦 | ≥ 𝐶22 |Φ(𝑥) − Φ(𝑦)|𝑚 , using this time the assumption on
the volume of balls centered in 𝜔 \ 𝑄2. We then pursue as for the second term in the
right-hand side of (7.4): we use Tonelli’s theorem, and after that, we integrate with
respect to 𝑦. Similar to (7.5), we deduce that

𝐼3 ≤ 𝐶23

(∫
Φ−1(𝜔\𝑄2)

∫
𝜔\𝑄2

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝑠𝑝

(��)𝑠𝑝
�(𝑥)𝑠𝑝 d𝑧d𝑥

+
∫
Φ−1(𝑄2)

∫
𝜔\𝑄2

|𝑢 ◦Φ(𝑥) − 𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝑠𝑝

(��)𝑠𝑝
�(𝑥)𝑠𝑝 d𝑧d𝑥

)
.

Invoking the change of variable theorem, using the first estimate on jacΦ with 𝛽 = 𝑠𝑝

for the first term and the second estimate on jacΦ for the second term, we conclude that

𝐼3 ≤
(∫

𝜔\𝑄2

∫
𝜔\𝑄2

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦 + 𝜏𝑑−𝑠𝑝

∫
𝜔

∫
𝜔

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦

)
.

By the exact same reasoning,

𝐼4 ≤
(∫

𝜔\𝑄2

∫
𝜔\𝑄2

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦 + 𝜏𝑑−𝑠𝑝

∫
𝜔

∫
𝜔

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦

)
,

while
𝐼1 ≤ 𝐶24

∫
𝜔\𝑄2

∫
𝜔\𝑄2

|𝑢(𝑥) − 𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝑠𝑝 d𝑥d𝑦.

Collecting the estimates for the right-hand side of (7.4), we arrive at estimate (a) of
Proposition 7.3.

We finish with the estimate for the Gagliardo seminorm in the case 𝑠 ≥ 1. Consider 𝑥,
𝑦 ∈ Φ−1(𝜔) such that, without loss of generality, �(𝑥) ≤ �(𝑦). As usual, using the Faà di
Bruno formula, the multilinearity of the differential and the estimates on the derivatives
of Φ, we write

|𝐷 𝑗(𝑢 ◦Φ)(𝑥) − 𝐷 𝑗(𝑢 ◦Φ)(𝑦)|

≤ 𝐶25

𝑗∑
𝑖=1

(
|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢 ◦Φ(𝑦)| (��)

𝑖

�(𝑦)𝑗

+
𝑗∑
𝑡=1

|𝐷 𝑖𝑢 ◦Φ(𝑥)| |𝐷𝑡Φ(𝑥) − 𝐷𝑡Φ(𝑦)| (��)
𝑖−1

�(𝑥)𝑗−𝑡
)
. (7.6)

82



For the second term in (7.6), we proceed once again by splitting the integral over 𝐵𝑚𝑟 (𝑥)
and ℝ𝑚 \ 𝐵𝑚𝑟 (𝑥) with 𝑟 = �(𝑥) to arrive at∫

Φ−1(𝜔)
�(𝑥)≤�(𝑦)

|𝐷𝑡Φ(𝑥) − 𝐷𝑡Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑦 ≤ 𝐶26

(��)𝑝

�(𝑥)(𝑡+𝜎)𝑝
.

Hence,∬
Φ−1(𝜔)×Φ−1(𝜔)

�(𝑥)≤�(𝑦)

|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝 |𝐷𝑡Φ(𝑥) − 𝐷𝑡Φ(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝

(��)(𝑖−1)𝑝

�(𝑥)(𝑗−𝑡)𝑝
d𝑥d𝑦

≤ 𝐶27

∫
Φ−1(𝜔)

|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝
(��)𝑖𝑝

�(𝑥)(𝑗+𝜎)𝑝
d𝑥. (7.7)

We then argue as for the integer order term. We split the integral in the right-hand side
of (7.7) over the regions 𝜔 \𝑄2 and 𝑄2. Owing to the change of variable theorem, using
the first estimate on jacΦ with 𝛽 = (𝑗 + 𝜎)𝑝 over 𝜔 \𝑄2 and the second estimate on jacΦ
over 𝑄2, we obtain∫

Φ−1(𝜔)
|𝐷 𝑖𝑢 ◦Φ(𝑥)|𝑝 1

�(𝑥)(𝑗+𝜎)𝑝
d𝑥

≤ 𝐶28(��)𝑖𝑝−(𝑗+𝜎)𝑝
∫
𝜔\𝑄2

|𝐷 𝑖𝑢 |𝑝 + 𝐶29𝜏
𝑑−(𝑗+𝜎)𝑝(��)𝑖𝑝−(𝑗+𝜎)𝑝

∫
𝑄2

|𝐷 𝑖𝑢 |𝑝 .

As for thickening, the first term in (7.6) is handled exactly as in the case 0 < 𝑠 < 1,
taking into account the presence of the factor (��)𝑖𝑝

�(𝑦)𝑗𝑝 : we use the same splitting as in (7.4),
and then the usual averaging argument. Doing so, we deduce that the first term in (7.6)
is bounded from above by a constant multiple of∫

Φ−1(𝜔\𝑄2)

∫
𝜔\𝑄2

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝜎𝑝

(��)(𝑖+𝜎)𝑝

�(𝑥)(𝑗+𝜎)𝑝
d𝑧d𝑥

+
∫
Φ−1(𝑄2)

∫
𝜔

|𝐷 𝑖𝑢 ◦Φ(𝑥) − 𝐷 𝑖𝑢(𝑧)|𝑝
|Φ(𝑥) − 𝑧 |𝑚+𝜎𝑝

(��)(𝑖+𝜎)𝑝

�(𝑥)(𝑗+𝜎)𝑝
d𝑧d𝑥. (7.8)

An additional use of the change of variable theorem shows that (7.8) is estimated, up to
a constant factor, by

(��)(𝑖−𝑗)𝑝
∫
𝜔\𝑄2

∫
𝜔\𝑄2

|𝐷 𝑖𝑢(𝑥) − 𝐷 𝑖𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑥d𝑦

+ 𝜏𝑑−(𝑗+𝜎)𝑝(��)(𝑖−𝑗)𝑝
∫
𝜔

∫
𝜔

|𝐷 𝑖𝑢(𝑥) − 𝐷 𝑖𝑢(𝑦)|𝑝
|𝑥 − 𝑦 |𝑚+𝜎𝑝 d𝑧d𝑥.

Gathering the estimates for both terms in (7.6), we obtain the desired conclusion,
hence finishing the proof of Proposition 7.3. □
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Now that we have at our disposal the building blocks for the shrinking procedure,
we are ready to prove Proposition 7.1. As usual, for the convenience of the reader, we
start with an informal presentation of the construction.

We first apply shrinking around the vertices of the dual skeleton 𝒯 ℓ ∗ , with parameters
0 < �𝑚−1 < �𝑚 < �𝑚 and 𝜏�

�𝑚
, where�𝑚−1 ≥ � and�𝑚 ≤ 2�. This shrinks a neighborhood

of size �𝑚−1� of these vertices into a neighborhood of size 𝜏��. We then apply shrinking
around the edges of 𝒯 ℓ ∗ with parameters 0 < �𝑚−2 < �𝑚−1 < �𝑚−1 and 𝜏�

�𝑚−1
, where

�𝑚−2 ≥ �. This shrinks the part of a neighborhood of size �𝑚−2� of the edges of 𝒯 ℓ ∗

lying at distance at most �𝑚−1� of the (𝑚−1)-faces of𝒦𝑚 into a neighborhood of size 𝜏��
of those edges. But since the part of the neighborhood of size �𝑚−2� lying at distance
more than �𝑚−1� of the (𝑚 − 1)-faces of 𝒦𝑚 has already been shrinked during the
previous step, we conclude that the whole neighborhood of size �𝑚−2� of 𝑇1 is shrinked
into a neighborhood of size 𝜏��. We continue this procedure by downward induction
until we reach the dimension ℓ ∗, which produces the desired map Φ.

We illustrate this induction procedure in Figures 7.1, 7.2, and 7.3. Here, we take
𝑚 = 2 and ℓ = 0. In Figure 7.1, which corresponds to the first step of the induction, the
values in the gray region around the center of the cube in the left part of the figure are
shrinked into the much smaller gray region on the right. During the next step, depicted
in Figure 7.2, the values in gray around the edges of the cube on the left are shrinked into
the much smaller gray region around the dual skeleton on the right. The combination
of both steps is shown in Figure 7.3. The values in the region in gray on the left are
shrinked into the small neighborhood of the dual skeleton in gray on the right.

Figure 7.1: Shrinking around vertices

As we will see, the induction procedure is more involved than in the case of thickening,
and relies on Proposition 7.3 applied with domains more general than rectangles.

Proof of Proposition 7.1. The map Φ is constructed by downward induction. We consider
finite sequences (�𝑖)ℓ≤𝑖≤𝑚 and (�𝑖)ℓ≤𝑖≤𝑚 such that

0 < � = �ℓ < �ℓ+1 < �ℓ+1 < · · · < �𝑚−1 < �𝑚 < �𝑚 ≤ 2�.

We first define Φ𝑚 = id. Then, assuming that Φ𝑑 has been defined for some 𝑑 ∈
{ℓ + 1, . . . , 𝑚}, we identify any 𝜎𝑑 ∈ 𝒦 𝑑 with 𝑄𝑑

� × {0}𝑚−𝑑, and we let Φ𝜎𝑑 be the map
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Figure 7.2: Shrinking around edges

Figure 7.3: Final shrinking at order 1

given by Proposition 7.2 applied around 𝜎𝑑 with parameters � = �𝑑−1, � = �𝑑, � = �𝑑,
and 𝜏�

�𝑑
. We define Ψ𝑑 : ℝ𝑚 → ℝ𝑚 by

Ψ𝑑(𝑥) =
{
Φ𝜎𝑑 (𝑥) if 𝑥 ∈ 𝑇𝜎𝑑 (𝑄3) for some 𝜎𝑑 ∈ 𝒦 𝑑,
𝑥 otherwise,

where 𝑇𝜎𝑑 is an isometry of ℝ𝑚 mapping𝑄𝑑
� × {0}𝑚−𝑑 to 𝜎𝑑. We then let Φ𝑑−1 = Ψ𝑑 ◦Φ𝑑.

The required map is given by Φ = Φℓ .
Properties (i) to (iii) are already contained in [9, Proposition 8.1], so it only remains

to prove the Sobolev estimates. The argument is similar to the one used in the proof
of Proposition 5.1. We proceed by induction. One of the issues is how to remove
inductively neighborhoods of dual skeletons. We let 𝑄4 = 𝑄𝑑

2�� × 𝑄𝑚−𝑑
(1−�)�, so that

𝑄3 ⊂ 𝑄4 for every 𝑑 ∈ {ℓ + 1, . . . , 𝑚}. First, note that invoking Proposition 7.3 with
𝜔 = 𝑄4 \ 𝑇−1

𝜎𝑑
(𝑇𝑚−𝑑−1 +𝑄𝑚

�𝑑�) ensures that

(a) if 0 < 𝑠 < 1, then

|𝑢◦Φ𝜎𝑑 |𝑊 𝑠,𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑−1+𝑄𝑚
�𝑑�

)) ≤ 𝐶1 |𝑢 |𝑊 𝑠,𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑+𝑄𝑚
�𝑑−1�))

+𝐶2𝜏
𝑑−𝑠𝑝
𝑝 |𝑢 |𝑊 𝑠,𝑝(𝑇𝜎𝑑 (𝑄4));
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗(𝑢◦Φ𝜎𝑑 )∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑−1+𝑄𝑚
�𝑑�

)) ≤ 𝐶3

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑+𝑄𝑚
�𝑑−1�))

+ 𝐶4𝜏
𝑑−𝑗𝑝
𝑝

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4));

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ𝜎𝑑 )|𝑊𝜎,𝑝(𝑄4\(𝑇𝑚−𝑑−1+𝑄𝑚
�𝑑�

))

≤ 𝐶5

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑+𝑄𝑚

�𝑑−1�))
+ (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑+𝑄𝑚

�𝑑−1�))

)
+ 𝐶6𝜏

𝑑−(𝑗+𝜎)𝑝
𝑝

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4))) + (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝑇𝜎𝑑 (𝑄4))

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ𝜎𝑑 ∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑−1+𝑄𝑚
�𝑑�

)) ≤ 𝐶7∥𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4)\(𝑇𝑚−𝑑+𝑄𝑚
�𝑑−1�))

+ 𝐶8𝜏
𝑑∥𝑢∥𝐿𝑝(𝑇𝜎𝑑 (𝑄4)).

Indeed, we have: (i) (𝑇𝜎𝑑 (𝑄4) \ (𝑇𝑚−𝑑−1 + 𝑄𝑚
�𝑑�)) \ 𝑇𝜎𝑑 (𝑄2) ⊂ 𝑇𝜎𝑑 (𝑄4) \ (𝑇𝑚−𝑑 + 𝑄𝑚

�𝑑−1�),
(ii) 𝑄4 \ 𝑇−1

𝜎𝑑
(𝑇𝑚−𝑑−1 + 𝑄𝑚

�𝑑�) ⊂ Φ−1(𝜔), and (iii) 𝜔 satisfies the condition on the volume
of balls required to apply Proposition 7.3. Affirmation (ii) is a consequence of the fact
that Φ has the specific form Φ(𝑥) = (�(𝑥)𝑥′, 𝑥′′) with � : ℝ𝑚 → [1,+∞). Affirmation (iii)
follows from the fact that 𝜔 \ 𝑄2 is actually a rectangle to which other rectangles have
been removed. Note that, for convenience of notation, we let 𝑇−1 = ∅.

Using the additivity of the integral or Lemma 2.1 combined with the usual finite
number of overlaps argument, we deduce that

(a) if 0 < 𝑠 < 1, then

(��)𝑠 |𝑢 ◦Ψ𝑑 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑−1+𝑄𝑚

�𝑑�
))

≤ 𝐶9

(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇𝑚−𝑑+𝑄𝑚
�𝑑−1�))

+ ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑+𝑄𝑚

�𝑑−1�))

)
+ 𝐶10𝜏

ℓ+1−𝑠𝑝
𝑝

(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗(𝑢 ◦Ψ𝑑)∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑−1+𝑄𝑚

�𝑑�
))

≤ 𝐶11

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑+𝑄𝑚

�𝑑−1�))

+ 𝐶12𝜏
ℓ+1−𝑠𝑝

𝑝

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Ψ𝑑)|𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑−1+𝑄𝑚

�𝑑�
))

≤𝐶13

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇𝑚−𝑑+𝑄𝑚
�𝑑−1�))

+ (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑+𝑄𝑚

�𝑑−1�))

)
+ 𝐶14𝜏

ℓ+1−𝑠𝑝
𝑝

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Ψ𝑑∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑−1+𝑄𝑚

�𝑑�
))

≤ 𝐶15∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇𝑚−𝑑+𝑄𝑚

�𝑑−1�))
+ 𝐶16𝜏

ℓ+1−𝑠𝑝
𝑝 ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))

In particular, since 𝜏 < 1, another application of Proposition 7.3 yields the following
simpler estimates:

(a) if 0 < 𝑠 < 1, then

(��)𝑠 |𝑢 ◦Ψ𝑑 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

≤ 𝐶17

(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗(𝑢 ◦Ψ𝑑)∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)) ≤ 𝐶18

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));
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(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Ψ𝑑)|𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

≤ 𝐶19

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Ψ𝑑∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)) ≤ 𝐶20∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)).

Combining both these sets of estimates through a downward induction procedure on
𝑑, we arrive at the following estimates:

(a) if 0 < 𝑠 < 1, then

(��)𝑠 |𝑢 ◦Φ|𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

≤ 𝐶21

(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇ℓ
∗+𝑄𝑚

��)) + ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇ℓ

∗+𝑄𝑚
��))

)
+ 𝐶22𝜏

ℓ+1−𝑠𝑝
𝑝

(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗(𝑢 ◦Φ)∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)) ≤ 𝐶23

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇ℓ

∗+𝑄𝑚
��))

+ 𝐶24𝜏
ℓ+1−𝑠𝑝

𝑝

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗(𝑢 ◦Φ)|𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

≤ 𝐶25

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇ℓ
∗+𝑄𝑚

��))+(��)
𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)\(𝑇ℓ
∗+𝑄𝑚

��))

)
+ 𝐶26𝜏

ℓ+1−𝑠𝑝
𝑝

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢 ◦Φ∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

≤ 𝐶27∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)\(𝑇ℓ

∗+𝑄𝑚
��)) + 𝐶28𝜏

ℓ+1−𝑠𝑝
𝑝 ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)).
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Conclusion follows from the fact that 𝑢 = 𝑣 outside of 𝑇ℓ ∗ + 𝑄𝑚
��, by noting that

actually SuppΦ ⊂ 𝑇ℓ
∗ + 𝑄𝑚

�𝑚�, and using once again the additivity of the integral or
Lemma 2.1. □

8 Density of smooth maps

In view of Theorem 1.2, in order to prove Theorem 1.1, it suffices to show that maps of
the class ℛ may be approximated by smooth maps with values into 𝒩 . As we already
announced, the basic idea to do so is to remove the singularities of maps in the class ℛ
by filling them with a smooth map. The key tool in this direction is the following lemma,
which relies on the fact that 𝐾ℓ is a homotopy retract of the complement 𝐾𝑚 \ 𝑇ℓ ∗ of
the dual skeleton 𝑇ℓ ∗ . The statement we present is from [9, Proposition 7.1], but similar
ideas were already used, e.g., in [34, Section 1], [21, Section 2], or [22, Section 6].

Lemma 8.1. Let 𝒦𝑚 be a cubication in ℝ𝑚 of radius � > 0, ℓ ∈ {0, . . . , 𝑚 − 1}, 𝒯 ℓ ∗ the dual
skeleton of 𝒦 ℓ , and 𝑢 ∈ 𝒞∞(𝐾𝑚 \ 𝑇ℓ ∗ ;𝒩). If there exists 𝑓 ∈ 𝒞0(𝐾𝑚 ;𝒩) such that 𝑓|𝐾ℓ = 𝑢|𝐾ℓ ,
then for every 0 < � < 1, there exists 𝑣 ∈ 𝒞∞(𝐾𝑚 ;𝒩) such that 𝑣 = 𝑢 on 𝐾𝑚 \ (𝑇ℓ ∗ +𝑄𝑚

��).

In order to apply Lemma 8.1, it is useful to know when a continuous map from 𝐾ℓ to
𝒩 may be extended to a continuous map from 𝐾𝑚 to 𝒩 . Following Hang and Lin [22],
we introduce the notion of extension property.

Let𝒦𝑚 be a cubication inℝ𝑚 and ℓ ∈ {0, . . . , 𝑚−1}. We say that𝒦𝑚 has the ℓ -extension
property with respect to 𝒩 whenever, for every continuous map 𝑓 : 𝐾ℓ+1 → 𝒩 , 𝑓|𝐾ℓ has
an extension 𝑔 ∈ 𝒞0(𝐾𝑚 ;𝒩). The identification of the key role played by the extension
property in the strong density problem was one of the major contributions of [22]. In
this respect, we start with the following proposition, which provides an approximation
results for maps in the class ℛ as the ones used in the proof of Theorem 1.2. All the other
results in this section, starting with Theorem 1.1, will be deduced from this proposition.

Proposition 8.2. Let 𝒦𝑚 be a cubication in ℝ𝑚 . Let ℓ ∈ {0, . . . , 𝑚 − 1} be such that ℓ = [𝑠𝑝],
and 𝒯 ℓ ∗ the dual skeleton of 𝒦 ℓ . If 𝜋ℓ (𝒩) = {0} and if 𝐾𝑚 has the ℓ -extension property with
respect to 𝒩 , then 𝒞∞(𝐾𝑚 ;𝒩) is dense in 𝒞∞(𝐾𝑚 \𝑇ℓ ∗ ;𝒩)∩𝑊 𝑠,𝑝(𝐾𝑚 ;𝒩) with respect to the
𝑊 𝑠,𝑝 distance.

Proof. Let 𝑢 ∈ 𝒞∞(𝐾𝑚\𝑇ℓ ∗ ;𝒩)∩𝑊 𝑠,𝑝(𝐾𝑚 ;𝒩). We denote by� the radius of the cubication
𝒦𝑚 . Using the assumption 𝜋ℓ (𝒩) = {0}, we may extend 𝑢|𝐾ℓ to a continuous map from
𝐾ℓ+1 to 𝒩 . The ℓ -extension property of 𝒦𝑚 with respect to 𝒩 then ensures that 𝑢|𝐾ℓ
extends to a continuous map from𝐾𝑚 to𝒩 . Therefore, Lemma 8.1 implies that, for every
0 < � < 1, there exists a map 𝑢ex

� ∈ 𝒞∞(𝐾𝑚 ;𝒩) such that 𝑢ex
� = 𝑢 on 𝐾𝑚 \ (𝑇ℓ ∗ +𝑄𝑚

��).
We now apply shrinking to this map 𝑢ex

� . More precisely, we assume that � < 1
2 , we

take 0 < 𝜏 < 1
2 and we define 𝑢sh

𝜏,� = 𝑢ex
� ◦Φsh

𝜏,�, whereΦsh
𝜏,� is provided by Proposition 7.1.

By Proposition 7.1 and the remark below, choosing 𝜏 = 𝜏� sufficiently small, we deduce
that
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(a) if 0 < 𝑠 < 1, then

(��)𝑠 |𝑢sh
𝜏� ,� − 𝑢 |𝑊 𝑠,𝑝(𝐾𝑚) ≤ 𝐶1

(
(��)𝑠 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + ∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗 ∥𝐷 𝑗𝑢sh
𝜏� ,� − 𝐷

𝑗𝑢∥𝐿𝑝(𝐾𝑚) ≤ 𝐶2

𝑗∑
𝑖=1

(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

(��)𝑗+𝜎 |𝐷 𝑗𝑢sh
𝜏� ,� − 𝐷

𝑗𝑢 |𝑊𝜎,𝑝(𝐾𝑚)

≤ 𝐶3

𝑗∑
𝑖=1

(
(��)𝑖 ∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + (��)𝑖+𝜎 |𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

)
;

(d) for every 0 < 𝑠 < +∞,

∥𝑢sh
𝜏� ,� − 𝑢∥𝐿𝑝(𝐾𝑚) ≤ 𝐶4∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)).

Using the compactness of 𝒩 and the fact that 𝑢 ∈ 𝑊 𝑠,𝑝(𝐾𝑚), we deduce from the
Gagliardo–Nirenberg inequality that 𝐷 𝑖𝑢 ∈ 𝐿

𝑠𝑝

𝑖 (𝐾𝑚). Therefore, by Hölder’s inequality,

∥𝐷 𝑖𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)) ≤ |𝐾𝑚 ∩ (𝑇ℓ ∗ +𝑄𝑚

2��)|
𝑠−𝑖
𝑠𝑝 ∥𝐷 𝑖𝑢∥

𝐿
𝑠𝑝
𝑖 (𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))
.

Similarly, using Lemma 6.1, for every 𝑖 ∈ {1, . . . , 𝑘 − 1}, we find that

|𝐷 𝑖𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��))

≤ 𝐶5 |𝐾𝑚 ∩ (𝑇ℓ ∗ +𝑄𝑚
2��)|

𝑠−𝑖−𝜎
𝑠𝑝 ∥𝐷 𝑖𝑢∥1−𝜎

𝐿
𝑠𝑝
𝑖 (𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))
∥𝐷 𝑖+1𝑢∥𝜎

𝐿
𝑠𝑝
𝑖+1 (𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))
.

(Strictly speaking, Lemma 6.1 requires the domain to be convex. However, we already
saw that this assumption is an artifact, which may easily be bypassed. Here, this can
be done, for instance, relying on the existence of a continuous extension operator from
𝑊 𝑠,𝑝(𝐾𝑚 ;ℝ�) to 𝑊 𝑠,𝑝(ℝ𝑚 ;ℝ�).) Moreover, using the fact that 𝑢 ∈ 𝐿∞(𝐾𝑚) since 𝒩 is
compact, we have

∥𝑢∥𝐿𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��)) ≤ 𝐶6 |𝐾𝑚 ∩ (𝑇ℓ ∗ +𝑄𝑚

2��)|
1
𝑝 .

On the other hand, we observe that |𝐾𝑚 ∩ (𝑇ℓ ∗ +𝑄𝑚
2��)| ≤ 𝐶7(��)ℓ+1. Therefore,

(a) if 0 < 𝑠 < 1, then

|𝑢sh
𝜏� ,� − 𝑢 |𝑊 𝑠,𝑝(𝐾𝑚) ≤ 𝐶8 |𝑢 |𝑊 𝑠,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��)) + 𝐶9(��)
ℓ+1−𝑠𝑝

𝑝 ;
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(b) if 𝑠 ≥ 1, then for every 𝑗 ∈ {1, . . . , 𝑘},

∥𝐷 𝑗𝑢sh
𝜏� ,� − 𝐷

𝑗𝑢∥𝐿𝑝(𝐾𝑚) ≤ 𝐶10

𝑗∑
𝑖=1

(��)𝑖−𝑗+
𝑠−𝑖
𝑠𝑝 (ℓ+1)∥𝐷 𝑖𝑢∥

𝐿
𝑠𝑝
𝑖 (𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))
;

(c) if 𝑠 ≥ 1 and 𝜎 ≠ 0, then for every 𝑗 ∈ {1, . . . , 𝑘},

|𝐷 𝑗𝑢sh
𝜏� ,� − 𝐷

𝑗𝑢 |𝑊𝜎,𝑝(𝐾𝑚) ≤ 𝐶11

𝑗∑
𝑖=1

(��)𝑖−𝑗−𝜎+
𝑠−𝑖
𝑠𝑝 (ℓ+1)∥𝐷 𝑖𝑢∥

𝐿
𝑠𝑝
𝑖 (𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))

+ 𝐶12

𝑘−1∑
𝑖=1

(��)𝑖−𝑗+
𝑠−𝑖−𝜎
𝑠𝑝 (ℓ+1)∥𝐷 𝑖𝑢∥1−𝜎

𝐿
𝑠𝑝
𝑖 (𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))
∥𝐷 𝑖+1𝑢∥𝜎

𝐿
𝑠𝑝
𝑖+1 (𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚

2��))

+ 𝐶13 |𝐷 𝑗𝑢 |𝑊𝜎,𝑝(𝐾𝑚∩(𝑇ℓ∗+𝑄𝑚
2��));

(d) for every 0 < 𝑠 < +∞,

∥𝑢sh
𝜏� ,� − 𝑢∥𝐿𝑝(𝐾𝑚) ≤ 𝐶14(��)

ℓ+1
𝑝 .

Since 𝑠𝑝 < ℓ + 1, we observe that all the powers on �� above are positive. Moreover,
since |𝐾𝑚 ∩ (𝑇ℓ ∗ + 𝑄𝑚

2��)| → 0 as � → 0, we deduce from Lebesgue’s lemma that all
Lebesgue norms and Gagliardo seminorms above tend to 0 when � → 0.

This shows that 𝑢sh
𝜏� ,� → 𝑢 in 𝑊 𝑠,𝑝(𝐾𝑚), and since 𝑢sh

𝜏� ,� ∈ 𝒞∞(𝐾𝑚 ;𝒩), the proof is
complete. □

Theorem 1.1 follows from Proposition 8.2 by using the fact that a cube has the ex-
tension property with respect to any manifold. This was already present in [22]. For a
proof, the reader may also consult [9, Proposition 7.3].

Proof of Theorem 1.1. From the proof of Theorem 1.2, for every map 𝑢 ∈ 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩)
and every number � > 0 there exists 𝑣 ∈ 𝒞∞(𝐾𝑚 \ 𝑇ℓ ∗ ;𝒩) ∩𝑊 𝑠,𝑝(𝐾𝑚 ;𝒩) such that
∥𝑢 − 𝑣∥𝑊 𝑠,𝑝(𝑄𝑚) ≤ �, where ℓ = [𝑠𝑝] and 𝒦𝑚 is a cubication (depending on 𝑣) in ℝ𝑚

slightly larger than 𝑄𝑚 . Removing cubes that do not intersect 𝑄𝑚 if necessary, we may
assume that 𝐾𝑚 is also a cube. Doing so, 𝐾𝑚 has the ℓ -extension property with respect
to 𝒩 . Hence, 𝒞∞(𝐾𝑚 ;𝒩) is dense in 𝒞∞(𝐾𝑚 \ 𝑇ℓ ∗ ;𝒩) ∩𝑊 𝑠,𝑝(𝐾𝑚 ;𝒩) with respect to the
𝑊 𝑠,𝑝 distance. This implies that 𝒞∞(𝑄𝑚

;𝒩) is dense in 𝑊 𝑠,𝑝(𝑄𝑚 ;𝒩), and finishes the
proof of Theorem 1.1. □

We now turn to the case of more general domains. Replacing Theorem 1.2 by Theo-
rem 6.3 in the above proof, we obtain the following counterpart of Theorem 1.1: If 𝛺
satisfies the segment condition, if 𝜋[𝑠𝑝](𝒩) = {0}, and if we may find a sequence (�𝑛)𝑛∈ℕ
of positive real numbers such that �𝑛 → 0 and such that for every 𝑛 ∈ ℕ, the cubication
𝒦𝑚

�𝑛 used in the proof of Theorem 6.3 satisfies the [𝑠𝑝]-extension property with respect
to 𝒩 , then 𝒞∞(𝛺;𝒩) is dense in𝑊 𝑠,𝑝(𝛺;𝒩).
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Under an assumption as weak as the segment condition, it is not clear how to link the
topology of the cubications 𝐾𝑚�𝑛 containing 𝛺 to the topology of 𝛺 itself. However, in
the case where𝛺 is a smooth domain, the topological assumption above can be clarified.
Indeed, in this case, using a retraction along the normal vector to 𝜕𝛺, one may show
that, if 𝒦𝑚

� is a cubication of radius � > 0 in ℝ𝑚 for � > 0 sufficiently small such that
𝒦𝑚

� is made only of cubes that intersect 𝛺, then 𝐾𝑚� is homotopic to 𝛺. This implies
that, if we endow 𝛺 with a structure of CW-complex, then the ℓ -extension property of
𝒦𝑚
ℓ

is equivalent to the ℓ -extension property of 𝛺, and this does not depends on the
choice of CW-complex structure on 𝛺; see e.g. [22, Section 2]. Here, analogously to the
definition on a cubication, we say that 𝛺 has the ℓ -extension property with respect to
𝒩 whenever for any map 𝑓 ∈ 𝒞0(𝛺ℓ+1;𝒩), 𝑓|𝛺ℓ has an extension 𝑓 ∈ 𝒞0(𝛺;𝒩), where
𝛺ℓ denotes the ℓ -skeleton of the CW-complex structure on 𝛺.

This leads to the following theorem.

Theorem 8.3. Let 𝛺 ⊂ ℝ𝑚 be a smooth bounded open domain. If 𝑠𝑝 < 𝑚, if 𝜋[𝑠𝑝](𝒩) =

{0}, and if 𝛺 has the [𝑠𝑝]-extension property with respect to 𝒩 , then 𝒞∞(𝛺;𝒩) is dense in
𝑊 𝑠,𝑝(𝛺;𝒩).

As for Theorem 1.2, a last perspective of generalisation for Theorem 1.1 consists in
allowing the domain to be a smooth compact, connected Riemannian manifold ℳ of
dimension 𝑚, and isometrically embedded in ℝ�̃. As we did for Theorem 6.4, we may
restrict to the case where ℳ has empty boundary, since the general case reduces to this
special case by embedding into a larger manifold without boundary.

In this setting, a tubular neighborhood of ℳ is homotopic to ℳ through the nearest
point projection, and therefore has the ℓ -extension property if and only if ℳ has the
ℓ -extension property. We may thus proceed as for Theorem 6.4 to deduce the following
result.

Theorem 8.4. If 𝑠𝑝 < 𝑚, if 𝜋[𝑠𝑝](𝒩) = {0}, and if ℳ has the [𝑠𝑝]-extension property with
respect to 𝒩 , then 𝒞∞(ℳ;𝒩) is dense in𝑊 𝑠,𝑝(ℳ;𝒩).

Proof. First assume that ℳ has empty boundary. Let � > 0 be the radius of a tubular
neighborhood of ℳ, let Π denote the nearest point projection onto ℳ, and let 𝛺 =

ℳ+𝐵�̃
�/2. Given 𝑢 ∈𝑊 𝑠,𝑝(ℳ;𝒩), as explained before the proof of Theorem 6.4, the map

𝑣 = 𝑢 ◦ Π belongs to 𝑊 𝑠,𝑝(𝛺;𝒩). By the observation above, 𝛺 has the [𝑠𝑝]-extension
property. Therefore, by Theorem 8.3, there exists a sequence (𝑣𝑛)𝑛∈ℕ in 𝒞∞(𝛺;𝒩)which
converges to 𝑣 in 𝑊 𝑠,𝑝(𝛺). We conclude as in the proof of Theorem 6.4, using a slicing
argument to find a sequence (𝑎𝑛)𝑛∈ℕ in 𝐵�̃

�/2 such that 𝑎𝑛 → 0 as 𝑛 → +∞ satisfying
𝑢𝑛 = 𝜏𝑎𝑛 (𝑣𝑛)|ℳ → 𝑢 in𝑊 𝑠,𝑝(ℳ).

The case where ℳ is allowed to have non-empty boundary is deduced from the
empty boundary case exactly as for the proof of Theorem 6.4, and we therefore omit the
proof. □
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