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Abstract We consider the problem of identifying the provenance of free/open
source software (FOSS) and specifically the need of identifying where reused
source code has been copied from. We propose a lightweight approach to solve
the problem based on software identifiers—such as the names of variables,
classes, and functions chosen by programmers. The proposed approach is able
to efficiently narrow down to a small set of candidate origin products, to be
further analyzed with more expensive techniques to make a final provenance
determination.

By analyzing the PyPI (Python Packaging Index) open source ecosystem
we find that globally defined identifiers are very distinct. Across PyPI’s 244 K
packages we found 11.2 M different global identifiers (classes and method/function
names—with only 0.6% of identifiers shared among the two types of entities);
76% of identifiers were used only in one package, and 93% in at most 3. Ran-
domly selecting 3 non-frequent global identifiers from an input product is
enough to narrow down its origins to a maximum of 3 products within 89% of
the cases.

We validate the proposed approach by mapping Debian source packages
implemented in Python to the corresponding PyPI packages; this approach
uses at most five trials, where each trial uses three randomly chosen global
identifiers from a randomly chosen python file of the subject software package,
then ranks results using a popularity index and requires to inspect only the top
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result. In our experiments, this method is effective at finding the true origin
of a project with a recall of 0.9 and precision of 0.77.

Keywords software provenance, source code tracking, identifiers, open
source software, python

1 Introduction

In modern software development, applications are rarely built from scratch.
Rather, software is for the most part [45,50] built reusing existing free/open
source software (FOSS) components, mixing in varying amounts of custom
in-house code. A 2014 survey claims that at least 75% of organizations rely on
open source as the foundation of their applications [45]; a 2020 analysis [50]
by an industry player in the field of mergers and acquisitions reports that 99%
of audited code bases contain FOSS components, with 70% of all audited code
being itself open source software.

In terms of development practices, reuse of open source code happens in
different forms: from retrieving and integrating entire FOSS components (also
known as “software vendoring” [54]), to simply copying chunks of publicly
accessible code and pasting them into the source code files of the software
under development. While useful for speeding up development and believed to
have benefits on code quality, coding efficiency, and maintenance [18], FOSS
code reuse requires proper management of the software supply chain to avoid
nefarious side-effects [22]. From a security perspective, for example, operation
engineers will need to monitor the status of all software components deployed
in production and keep them updated when newer versions that fix security
flaws are released. As a matter of concern, 88% of applications audited in the
previously mentioned study contained open source dependencies that under-
went no development activity over the two previous years [50].

From a legal point of view, when the source code of an application made
available to end-users contains parts copied from other FOSS components, the
software distributor is responsible to ensure that all involved licenses (open
source or otherwise) are mutually compatible and consistent with the appli-
cable end-user software license [40]. Short of that, the distributor might incur
significant legal and financial risks due to potential copyright violations.

The state-of-the-art approach to minimize both security and legal risks re-
lated to the reuse of FOSS components is based on a set of practices and tools
that are plugged into the software build process [38], e.g., as part of continuous
integration (CI) pipelines. The software being built is automatically analyzed
to determine what are the main software components it contains—a process
known as Software Composition Analysis, or SCA [35]—which results in the
production of a Software Bill of Material, or SBOM [48]. Then, licensing and
security information about each identified component are retrieved and veri-
fied for adherence to custom in-house policies, failing the build and triggering
further audits or decisions when necessary.
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A key ingredient of these pipelines is the ability to identify where the
source code being built comes from, that is, determine the prove-
nance of software source code artifacts at various granularities: entire
source code trees, individual source code files, brief code snippets. A failure
in identifying the provenance of source code can result in overlooking relevant
information about security or licensing issues, with potentially severe con-
sequences. In addition to this correctness requirement, and due to the need
of deploying provenance tracking solutions as part of automated workflows,
lookup efficiency is often a key factor in deciding whether an approach is
practically usable or not.

Several techniques are available today to determine the provenance of
source code artifacts. However, searching for the occurrence of an entity in
vast bodies of open source code remains challenging. For instance, applying
conventional clone detection methods such as text-based comparison and AST
matching is computationally expensive and quickly becomes impractical. Con-
versely, methods based on exact file matching, e.g., based on cryptographic
hashes, will fail to identify relevant software origins when even very minor file
changes are applied. A satisfactory software provenance identification tech-
nique should be fast, scalable, and capable of finding matches even in the
presence of some code changes, in order to be practically useful.

Contributions. In this paper we propose a lightweight approach to de-
termine the provenance of source code artifacts based on the unique-
ness of identifiers—i.e., the names chosen by developers to reference common
programming abstractions like variables, data types, classes, methods, etc. We
aim to show that, by first indexing the set of identifiers found in a large cor-
pus of open source software components, and then querying the index using
as input the identifiers found in a given source component of unknown origin,
it is both practically possible and efficient to determine its provenance (within
the corpus). Specifically, we consider the software ecosystem consisting of open
source Python packages available from the Python Package Index (PyPI)1, for
a total of 244 thousand packages as of March 2021.

As foundational empirical evidence to validate the proposed approach we
will first answer the research question:

RQ1 How frequent are global identifiers among open source Python packages?

We will answer this question at package level. We define the frequency of
an identifier as the number of software products (or “packages”, according
to PyPI terminology) that define such identifier within a given corpus. More
generally we will characterize the distribution of global identifier popularity.
We find that global identifiers declared by programmers tend to be unique.
About 76% of class and function names uniquely identify a software product
among the 244 K packages in our corpus (have frequency equal to 1); and that
up to 93% of them are found in at most 3 different packages (frequency 3). This

1 https://pypi.org/, accessed 2021-11-15

https://pypi.org/
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characteristic makes identifiers ideal candidates to base software provenance
methods upon.

However, in some cases a given identifier will not be enough to uniquely
identify the origin software product. Hence, to explore the practical applica-
bility of the proposed approach as a basis for provenance detection, we will
answer the research question:

RQ2 How many global identifiers are needed to narrow down the origin of a
given source code artifact to a small set of candidates, within the open
source Python ecosystem?

Based on the answer to this question we can leverage the proposed approach
to efficiently reduce the search space from all the software products in the
corpus to a handful of candidates (and then potentially apply more expensive
methods—such as clone detection techniques—to find the final result). We
explore this answer at different granularities, from individual files up to entire
packages, as well as different methods for choosing the identifiers to query
starting from the input source artifact. We find that on average it is enough to
chose 3 non-frequent (within the corpus) global identifiers from a given source
code file to narrow down the software origin to no more than 3 products with
89% probability.

As our last contribution we validate the practical usefulness of the proposed
approach by using it to determine the origin of Python packages shipped by
the Debian GNU/Linux distribution. By independent means (not based on
identifiers) we establish a ground truth correspondence between 2181 packages
included in the Debian Buster release and the PyPI packages they originate
from. We then first use the proposed approach to narrow down candidate
origins for each Debian package, and then rank candidates by pertinence using
SourceRank [43]. We find that this approach returns the correct origin as
the first candidate with a recall of 0.7 and precision of 0.8 when using 3
identifiers from only one file, and a recall of 0.8 and precision of 0.9 when
using 3 identifiers from 3 different files. Furthermore, by repeating the search
at most 5 times, and only inspecting the top result in each search, the recall
improves to 0.9 with a precision of 0.77.

Paper structure. We review related work in Section 2. Section 3 details the con-
ceptual model of software provenance that underpins the approach proposed
in this paper. The main body of empirical work is presented in Sections 4 to 6:
Section 4 establishes the uniqueness of identifiers in the studied PyPI corpus
(RQ1), Section 5 measures how many identifiers are needed to narrow down
the set of candidate product origins (RQ2), and Section 6 validates the ap-
proach by identifying the PyPI origin of Debian Python packages. We discuss
obtained empirical results in Section 7, including threats to their validity. We
conclude in Section 8, where we also suggest directions for future work.



Title Suppressed Due to Excessive Length 5

2 Related work

Several bodies of work in the literature use identifier-based approaches to
determine software provenance. In this section we compare and contrast them
with the approach proposed in this paper.

2.1 Software provenance

The term provenance denotes a body of evidence used to establish what is
the origin and the history of a development of an artifact of any kind. In the
specific context of software development, stakeholders often wish to know how
a (software) artifact came to occur, where it originated from, its evolution,
and where it moves to over time [19,41]. The exponential increase of available
free and open source software (FOSS) has led to the prevalence of code reuse
which in turn has made software provenance an increasingly relevant concern
in software development. However, provenance recovery has received relatively
little attention in software engineering research, with few exceptions that we
discuss below.

In its most basic definition, the provenance of a software artifact is the lo-
cation, within a reference corpus, where the artifact can be found. Godfrey [19]
enumerates three common challenges that have to be faced to fully address this
problem: definition of the scope and type of artifacts one wants to track, the
gap between identified provenance and ground truth, and the need of scaling
up provenance identification algorithms to large data sets. With respect to this
checklist, in the present study we identify the provenance of (Python) source
code entities at various granularities (package, version, file), sampling identi-
fiers (class and function names) contained in the entity itself and matching
them against a large-scale identifier-to-entity corpus. Our base lookup run-
time complexity is logarithmic (O(log(n))—using standard database indexing
technology—allowing to scale to large corpora. Also, to the best of our knowl-
edge, this is the first study of software provenance recovery that uses a small
subset of identifiers extracted from the software under audit.

Our approach is a practical instantiation of the Bertillonage framework in-
troduced by Davies et al. [12,13] and Godfrey [19]. The principle of Bertillon-
age is using computationally inexpensive techniques to narrow down the prove-
nance search space and then applying more expensive approaches like manual
determination or clone detection algorithms. With the present work we estab-
lish empirically that identifier-based search is a viable approach, both in terms
of correctness and efficiency, for the first part (narrowing down) of Bertillon-
age, without restricting the design space for the second part.

For software artifacts implemented in Java, Davies et al. [12,13] also adopted
the Bertillonage framework to identify the origin of .jar bundles within a large
Java source code corpus, Maven2. As indexing keys they used anchored class
signatures, consisting of the class and method names in a class file. By search-
ing for all signatures of a given package in a signature corpus, they recovered
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the set of packages with the highest similarity with the queried one. We show
in this paper that comparable results can be obtained using significantly less
information (a few identifiers only, instead of all signatures in the package).
Moreover, our approach is more flexible as it can match at different artifact
granularities (packages, versions, files).

Other linked problems in the area of software provenance are addressed
in the literature. For example, Godfrey et al. [20] proposed to use identifiers
as a way to identify functions that have been either merged or split across
different versions of the same software. Di Penta et al. [15] proposed a code-
search approach, using filenames and class names, to identify software licenses.
Ossher et al. [36] analyzed file-level clones in open source Java projects using
several trivial methods: exact file matching, filename matching, identifier name
fingerprint matching, and directory matching.

Rousseau et al. [41] introduced a compact storage model that allows to
capture the provenance information of source code files in commits, and com-
mits in software repositories, at the scale of the Software Heritage archive [10,
39], which is the largest public archive of software source code (≈10 billion
files). Their approach is at much larger scale than what we experimented with
for this paper, but the supported granularity is different. Also, identifier-based
search is robust against file changes (as long as identifiers remain unmodified),
whereas any file change makes files no longer recognizable within Software
Heritage due to the use of strong cryptographic hashes as artifact identifiers.

Data model, ontologies, and document standards for capturing provenance
in a broader context than software (but with applications to software artifacts)
have also been developed [33,32,6,31], together with accompanying tools [11],
and techniques [30,52]. For software, Bose [4] recently proposed a blockchain-
enabled framework based on a standard model to manage provenance data at
granularities ranging from releases to individual source files.

2.2 Code clone detection

In the architectural view advocated by this paper, code clone detection is useful
to precisely pinpoint the origin of an artifact, after a small set of candidates
has been obtaining using identifier-based narrowing down. Since applicable
code clone detection techniques abound, rather than detailing all possibilities
we refer the reader to consolidated surveys in the field [21,17,46,42].

The most relevant code clone detection approaches for our work are token-
based approaches, since we also rely on source code lexical tokens (identifiers).
In these approaches source code is first tokenized, then tokens are scanned to
identify code clones [25], e.g., by relying on sub-sequence similarity. One of
the major challenges of using these clone detection techniques for provenance
identification is that they are prone to false positives.

CCFinder [24] is a multilingual token-based code clone detection system.
The lexical analyzer processes a source file producing a stream of token, in
which all identifiers are normalized to a special token. Then, a suffix tree
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matching algorithm is used to find similar token sub-sequences. CP-Miner [27]
is CCFinder successor and searches for copy-pasted code blocks and copy-
paste-related bugs. To that end CP-Miner uses a threshold to detect code
similarity as a percentage of unchanged identifiers. Yang et al. [53] created
Boreas, an accurate and scalable token-based code clone detection tool, which
introduced a metric-based system to capture identifiable characteristics of pro-
gram segments.

Gabel et al. [16] conducted one of the first studies on source code unique-
ness. They used a token-based approach for finding cloned fragments within a
corpus. They defined the uniqueness of a unit of source code within the corpus
as the degree to which each project can be “assembled” solely from portions of
the corpus. They asked research questions similar to ours including: “at which
granularity is software unique?” and “at a given granularity, how unique is
software?”. In their study, the possible granularities are defined in terms of
the length of considered token sequences rather than logical units (package,
version, file, snippet) as we do. Perez et al. [37] proposed tree-based machine
learning approach to detect cross-language clones, preserving identifier names
in their abstract syntax trees.

A particularly relevant approach (and accompanying tool) for detecting
code clones is SourcererCC [44], which was introduced to scale code clone de-
tection to large code repositories—25 K projects for a total of 250 MLOC in
the original experimental evaluation. On the one hand, SourcererCC follows
an approach similar to ours, in particular it relies on an external code index
based on tokens extracted from code, but it addresses a different (and more
complex) problem than ours: identifying all code clone pairs, in the code base
under analysis, e.g., to inform and support large-scale code refactoring. On
the other hand we consider our code index to be a trusted knowledge base or
preexisting open source code and use it to find where (if at all) code in the code
base under audit comes from. At the code clone detection problem Sourcer-
erCC outperforms, in terms of scalability, all competitors at the time, losing
in accuracy only to NiCad [9]. We did not conduct a comparative benchmark
to any of those tools, because we solve a different problem. We observe that in
terms of ballpark lookup times we outperform SourcererCC—our lookups are
almost instantaneous and building the index takes hours rather than days—but
that is not a fair benchmark due to the difference in the addressed problem.

Other differences w.r.t. our approach and SourcererCC are worth noting.
First, SourcererCC uses as tokens almost all code lexemes, including language
keywords, whereas we only considered identifiers. Given the effectiveness we
notice in our experiments it would be worth trying to use only identifiers also
in the case of SourcererCC, to further speed up clone detection. It is unclear
however how doing so would impact accuracy. Relying only on identifiers could
also make SourcererCC more robust and language-agnostic, because identifier
extraction is something that could be performed without having to fully parse
(or even just lex) source code, as developer tools like Ctags2 do.

2 http://ctags.sourceforge.net/, retrieved 2022-09-22

http://ctags.sourceforge.net/
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Second, SourcererCC relies on a bag-of-words (multiset) representation,
whereas we limit ourselves to the single presence/absence of identifier tokens
(set), not counting how many of each of them are encountered. Furthermore,
SourcererCC use token frequency as a natural ordering of tokens as the basis
for its heuristic for reducing the number of clone pair candidates to consider.
Having to solve a simpler problem we did not need to resort to multiset rep-
resentations to achieve good accuracy results. Exploring whether they could
become even better using a bag-of-words representation remains to be explored
as future work.

SourcererCC stands out w.r.t. most of its competitors due to its ability to
handle Type-3 clones, where cloned fragments might have been modified upon
reuse. By construction our approach deals well with detecting the provenance
of code reused and subjected to Type-3 changes, as long as the modifications
do not affect function and class identifiers (this is generally the case, due to the
fact that those identifiers constitute APIs/ABIs which could induce breakages
on unrelated software components, and renaming identifiers in a system is an
expensive and potentially buggy operation); there are, however, exceptions
(e.g., in the case of plagiarism where malicious actors actively try to avoid
provenance/clone detection).

Finally, we would like to stress that SourcerCC (and other clone detection
methods) and our approach are complementary. Once the corpus has been
created, our approach can be used to find a small set of potential candidates
(true origin or copies of the subject system being analyzed) in a matter of
seconds; at this point, a clone detector can be used between the potential
candidates and the subject to properly identify the origin of the subject, thus
reducing the computational requirements of the clone detection analysis.

2.3 Identifier names

Finally, we review research findings on identifier names, independently from
their use in connection with software provenance. Although not strictly rel-
evant for our use case, this body of work sheds light on certain characteris-
tics of identifiers, such as their distinctiveness, that can inform the design of
identifier-based solutions for software provenance.

Deissenboeck and Pizka [14] observed that identifier tokens account for ap-
proximately 33% of the tokens and 72% of the characters in the source code
of Eclipse, making identifiers a quantitatively relevant part of the informa-
tive code of source code. Caprile and Tonella agree [8], further claiming that
identifier names are one of the most important sources of information about
program entities. Interestingly, back in the 90’s Sneed [47] conversely found
that “in many legacy systems, procedures and data are named arbitrarily [. . . ]
programmers often choose to name procedures after their girlfriends or favorite
sportsmen”.

A more convincing explanation for the distinctiveness of identifiers comes
from the fact that, with a very high probability, different programmers would
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name the same entity differently, as Butler et al. [5]: “the probability of having
two people apply the same name to an object (in general not just in code) is
between 7 and 18%, depending on the object”.

It is also commonly believed that the quality of identifier names has high
correlation with software quality. For example, Binkley et al. [3] stated that
identifier names are at the core of program comprehension, and the style of
identifiers (e.g., abbreviation and camelCase) has a tremendous impact on
program understanding, quality, and development cost. Similarly, Lawrie et
al. [26] showed that both actual words and abbreviations in identifiers lead
to better program comprehension, while excessively long identifiers overload
short-term memory and negatively impact program comprehension, therefore a
balance between information content and recall ability in identifiers is required.
Yet, Hofmeister et al. [23] found that shorter identifier names take longer
to comprehend, and that using words as identifier names helps to improve
software quality and save costs.

Deissenboeck and Pizka [14] also proposed rules for consistent and concise
identifier naming by curating an identifier dictionary during software develop-
ment. Along similar lines, recent studies have shown how to manage identifier
naming with automatic approaches. For example, Arnaoudova et al. [1] con-
ducted empirical research on the programmer activity of renaming identifiers
and developed a tool to automatically document, detect and apply renames
in source code. Similarly, Warintarawej et al. [51] proposed an approach to
automatically classify software identifiers.

Nguyen et al. [34] proposed MNire, a machine learning approach to check
the consistency between the name of a given Java method and its implemen-
tation. They also looked into the distinctiveness of method names, discovering
that in a selected set of high-quality Java open source projects 62.9% of method
names are unique, 35.9% of them can be tokenized into separate words, and
78.1% of obtained tokens are shared among method names. We conjecture that
the difference between the distinctiveness of Java method names and Python
function names is due to primarily the size difference of the corpora (their Java
dataset includes only 14 K products, while our PyPI dataset includes 244 K)
since the probability of a collision of names is significantly impacted by the
size of the population.

Identifiers, and specifically public identifiers that appear in exported func-
tions and classes like the ones we use in the present work, can also be leveraged
to improve code search results. Exemplar [29] is a seminal approach on this,
translating developer searches expressed in natural language into API docu-
mentation searches (e.g., docstrings) and then searching a code corpus indexed
by public identifiers. The indexing approach is analogous to what we use in
this paper, but the problem solved very different: we aim at detecting where
code at hand comes from and we do not use as input natural language queries,
but directly the source code under audit instead.

In previous work by two of the authors [7], a large open dataset of identifiers
was produced, by mining using Ctags (the same tool used in this paper) the
entire source code of historical releases of the Debian distribution. It is a
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larger and more diverse dataset of the one produced in this paper, but no
distinctiveness analyses were conducted at the time.

3 Conceptual model

We briefly describe our provenance recovery approach as: given a source code
entity whose provenance one wants to identify (the subject), we sample some
of the global identifiers contained in the entity, match them against a corpus
(a curated collection of software artifacts), and return a small set of entities
that also contain all of the sampled identifiers. Common types of source code
entities that we will consider in the following are: individual source code files,
entire source code products (or “packages”, e.g., Apache Spark, which is re-
leased multiple times over time), and product releases (e.g., Apache Spark 3.0,
containing several source code files). We will refer to the set of source code en-
tities returned by a provenance recovery mechanism as the candidates. Ideally
the subject should be in the set of candidates, (and this set be of size of one,
ie. containing the subject and the candidate be the same).

3.1 Uniqueness of global identifiers

Any provenance discovery requires a reference corpus. A corpus is a collection
of software entities that is curated (harvested, preprocessed and cleaned-up) to
serve as a reference for provenance discovery. Finding the origin of a software
entity (the subject) means finding the entity in the corpus from which the
subject was copied from.3

A corpus can be created by scanning and downloading the source code of
products from any repository from which there is some confidence that the
product comes from its true creator/maintainer. For example, a corpus can
be created from version control repositories (such as GitHub and GitLab), or
from repositories of components used for dependency management (as long as
they include source code, such as Maven Central, NPM, PyPI, CRAN, etc).
Ideally a repository should be as comprehensive as possible.

To be able to precisely assert that a subject entity is a copy of a specific
candidate entity in the corpus would require having information that docu-
ments how the subject entity was copied from the corresponding candidate
entity in the corpus. Even if this was possible, there will still be instances
where identical entities might have been created independently of each other
(for example, the identifier main is created in every single C program, some-
times it might be a copy from another program, sometimes it will be typed
in—created from scratch—by the programmer). Thus a given subject entity
might have different potential matches (candidates entities).

3 Note that this copy might not have been done directly from the corpus; it is, however,
a copy of the same entity that exists in the corpus.
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Another aspect to consider when designing the corpus is how the location
of the candidate is reported. Software entities exist in a hierarchical structure
(recursively, an entity is composed of other entities). If there is a match for a
given subject entity in the corpus, this result can be reported at any level of
containment. For example, if the corpus was built from releases of products,
the candidates’ location can be reported as: the product (e.g., Apache Spark),
a release of the component (Apache Spark 3.0) a file in a specific release, and
even the specific location in the source code file where entity is defined. If the
corpus was built from version control systems, it can be reported as a URL of
the GitHub repository, as a revision/tag in this repository and a specific file
in a specific revision.

In the context of this research, we are concerned with matching source
code global identifiers defined inside an entity (e.g., software product, one of
its releases, or one of the files in one of its releases). We use the notation
Defs(e) to denote the set of identifiers defined in the entity e, where e can
be a product P , a release R or a file F . This function is computed taking into
consideration the containment relationship of the entities. For instance, the
identifiers defined in a product are the union of the identifiers in its releases:

Defs(P ) =
⋃

Ri∈P

Defs(Ri)

and the identifiers in a release are the union of the identifiers of its files:

Defs(R) =
⋃

Fi∈R

Defs(Fi)

A corpus is created by defining the entity of interest (in particular, for
the purpose of this research, an entity is the set of all releases of a software
product). Such entity corresponds to a document in the information retrieval
nomenclature[28], thus, an identifier id is in a document e (entity e) iff id ∈
Defs(e). Thus, in this research, the document frequency of an identifier in the
corpus is the number of software products in the corpus in which the identifier
is defined.

For the sake of readability, in the rest of this document, we will refer to the
document frequency of an identifier as the frequency of such identifier (within
a given corpus).

4 On the uniqueness of identifiers

The first research question we address is:

RQ1 How frequent are global identifiers among open source Python packages?

For the purpose of provenance and origin analysis, we only consider global
identifiers. That is, identifiers that can either be referenced from other pro-
grams, or that identify entities that could potentially be copy-pasted to other
software.
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We have chosen Python for our empirical experiments, and more specifi-
cally PyPI (the Python Package Index) for several reasons. First, Python is
one of the most popular programming languages today with an active and
vibrant ecosystem. Second, PyPI is an authoritative index of Python prod-
ucts and as such, it can be considered the canonical directory of most Python
projects.4 And third, it is comprehensive: as of Sept. 2021, PyPI lists 331 K
Python projects and 2.9 M releases of them.

The Python language does not have access modifiers; all identifiers defined
at the top-level are publicly available (this is in contrast to languages like
Java and C where the programmer can decide if an identifier is public, private
or protected). We build our corpus with global functions and global classes
(and their methods) as they are the most likely types of identifiers that are
referenced (both internally within a product, and across products). For the
rest of this paper, we will use the term function to refer to both functions or
methods. We use identifiers that are not qualified by the class (in the case of
methods) or module they belong to. In Python filenames correspond to names
in the module hierarchy—e.g., a file named foo.py can be imported as import
foo—the (path-less) name of a source code file is another identifier that can
be used for provenance discovery.

Most Python products have many releases, and most of their identifiers
will appear in multiple releases. For the purpose of answering RQ1, we will
focus on identifying the product where identifiers are defined in, rather then
the specific releases of such products. With respect to the conceptual model of
Section 3, the scope of an entity will be a product, a document is a product,
and the document frequency of an identifier corresponds to the number of
PyPI products in which such identifier is defined (in at least one release).

4.1 Methodology

Our methodology for answering RQ1 consists of three main steps:

1. Source code retrieval: Crawling and downloading each release of every
package in PyPI

2. Identifier extraction: For each package: extract all the identifiers defined
in all its releases

3. Frequency measurement: Measure the frequency of every identifier found,
at product granularity

We further detail each step below.

4.1.1 Source code retrieval

We performed the source code retrieval on August 20, 2020, using the following
method:

4 Projects do not reside in PyPI, but PyPI links to their actual location.
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Table 1 Descriptive statistics of PyPI products and their releases

# products: 244 084
# releases: 1 831 172
# products with only 1 release: 69 306 (28.4%)
# products with more than 100 releases: 1451 (0.6%)
# products without Python source files: 13 739 (5.6%)

Median / Mean / Stdev
# releases per product: 3 / 7.5 / 13.0
# files per release: 6 / 24.9 / 137.7

# files: 45 239 359
# different base filenames: 1 117 588

First, we retrieved the list of products with PyPI-simple (the official PyPI
API.5 PyPI-simple returned 244 084 products (same as the number displayed
on https://pypi.org) with a total of 1.83 million releases.

Next, for each product we downloaded its metadata and list of releases
(using PyPI JSON’s API6). Some products had been retired and had no further
information available on PyPI, other were not associated to any downloadable
files; in total 13 379 products did not contribute any downloaded release to
our corpus for these reasons.

The next step was to download, for each of the products, their releases. We
observed that most products had few releases (the median number of releases
per product was 7.5, with a standard deviation of 13). However, few products
had an unusually high number of releases (for example, CCXT , a real-time
cryptocurrency trading library, had over 7400 releases in 3 years). For this
reason we decided to only download the 100 most recent releases of a product.
Only 0.6% of products had more than 100 releases.

To download a release we retrieved one of its source distribution archive
files (PyPI packagetype = "sdist"). These types of files contain the com-
plete source code of the release. A release can be offered in several formats, all
with the same contents (such as .zip, .bz2, .tgz, etc.); therefore, we down-
loaded the first one that was listed. If the release did not provide a source
distribution, we downloaded one of the binary distribution files (packagetype
= "bdist wheel" or "bdist egg"). Being Python an interpreted languages,
“binary” distributions can still contain Python source code files, but only those
source files necessary to run the software; it is likely that they do not contain
certain types of files, such as those used during testing or building. We ignored
132 releases that did not have source distributions nor binary distributions,
but only installer files such as .exe and .rpm. 17 products did not include any
files for download. Table 1 summarizes results of this step.

The downloaded compressed releases occupied 1.6 TBytes of disk space.

5 https://pypi.org/project/pypi-simple/, accessed 2021-10-25
6 https://warehouse.pypa.io/api-reference/json.html, accessed 2021-10-25

https://pypi.org
https://pypi.org/project/pypi-simple/
https://warehouse.pypa.io/api-reference/json.html
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Table 2 Descriptive statistics for the identifier corpus. All numbers correspond to unique
names.

# class names: 2 665 927
# function names: 8 598 979
# filenames: 1 117 588

Median / Mean / Stdev
# function names per product: 21 / 92.0 / 471.8
# function names per release: 40 / 155.0 / 629.5
# class names per product: 6 / 29.1 / 184.3
# class names per release: 10 / 46.3 / 210.6
# filenames per product: 4 / 12.81 /65.6

4.1.2 Identifier extraction

We used Universal Ctags7 to extract class and function identifiers from
Python source code. We did not transform the identifiers in any way (we
did not normalize capitalization, nor split compound tokens in CamelCase or
snake case conventions).

For each release, we uncompressed its files into a temporary directory and
ran ctags recursively on all files of the release with extension .py (case insen-
sitive). We discarded all identifiers except classes (type class in ctags results)
and functions (types function and member). For filenames, we discarded their
path. For each identifier we recorded a tuple 〈product name, identifier name,
identifier type〉 in a sqlite3 database. Our database is 66 Gbytes (including
indexes).

We identified that 13 739 products (5.6%) did not include any Python files,
and therefore did not contribute any identifiers to our corpus. Many of these
products were written in languages other than Python.

Table 2 summarizes the main statistics of the extracted identifiers. We
found 2.6 million different class names, 8.6 million function names, and 1.1
million different filenames in the PyPI corpus. As it can be seen, most products
have very few filenames (median 4 different filenames), and define a relatively
small number of identifiers (median: 6 different class names and 21 different
functions names).

Using a SQLite database, for each identifier (function, class or filename),
we computed its distinctiveness (the number of different products where it was
found).

4.2 Results

4.2.1 Frequency measurement

Table 3 summarizes the results for each type of identifier. 75.8% of class names,
76.7% of function names, and 79.3% of filenames exist in only one product.

7 https://ctags.io/, accessed 2021-10-25. Universal Ctags 0.0.0 (2015) derived from Ex-
uberant Ctags 5.8.

https://ctags.io/
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Table 3 Distribution of frequency of identifiers at product level

Class names Function names Filenames

frequency # Prop Cum # Prop Cum # Prop Cum
Idents (%) (%) Idents (%) (%) Filenames (%) (%)

1 2 020 027 75.8 75.8 6 595 770 76.7 76.7 886 236 79.3 79.3
2 343 195 12.8 88.6 1 048 985 12.2 88.9 122 929 11.0 90.3
3 117 016 4.4 93.0 335 572 3.9 92.8 43 064 3.9 94.2
4 52 326 2.0 95.0 164 056 1.9 94.7 17 234 1.5 95.7
5 30 224 1.1 96.1 101 079 1.2 95.9 10 038 0.9 96.6
6 20 528 0.8 96.9 60 735 0.7 96.6 6458 0.6 97.2
7 12 829 0.5 97.4 44 863 0.5 97.1 4638 0.4 97.6
8 9786 0.3 97.7 35 849 0.4 97.5 3273 0.3 97.9
9 8622 0.4 98.1 28 282 0.2 97.9 3004 0.3 98.1
10 6623 0.3 98.3 22 702 0.2 98.1 2886 0.3 98.4
11-100 42 241 1.6 99.9 150 015 1.7 99.9 15 885 1.4 99.8
101-1000 2385 0.1 100 10 308 0.1 100 1795 0.2 100
1001- 125 0.0 100 763 0.0 100 148 0.0 100

Table 4 Distribution of frequency at product level of source code identifiers combined

Source code identifiers
classes and methods

combined
frequency # Idents (%) Cum (%)

1 8 561 214 76.4 76.4
2 1 385 535 12.4 88.8
3 451 270 4.0 92.8
4 215 288 1.9 94.8
5 130 731 1.2 95.9
6 81 036 0.7 96.7
7 57 359 0.5 97.2
8 45 546 0.4 97.6
9 36 750 0.3 97.9
10 221 186 0.3 98.2
10–100 191 844 1.7 99.9
101-1000 12 778 0.1 100.0
1001 - 902 0.01 100.0

Class and function identifiers have almost identical distributions: in both cases,
93% of identifiers have a frequency of at most 3. The distribution for filenames
is very similar but with two notable differences: it has slightly more unique
filenames, and almost twice as many very common filenames (frequency >100)
than both class and function names.

4.2.2 Identifiers used for both: classes and function names

The intersection between the names of classes and names of functions is very
small: only 65 982 identifiers (out of 11.2 million identifiers, 0.59%) are used
for both classes and functions. In other words, in 99.41% cases, the name of
the identifier is sufficient to know if it is a class name or a function name.
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Table 4 shows the frequency of the combined source code identifiers. While
comparing this table to Table 3, note how the distributions of class names,
functions names, and the combined identifiers (both class names and function
names) are virtually identical.

These results allow to conclude that we do not need to use the type of
identifier to determine the product where it is declared. Thus, for the rest of
the paper we will use the term identifier to refer to both a function or class
name identifier.

Filenames have a significantly larger intersection with other types of iden-
tifiers: 12% of filenames are also a class name, and 17% a function name.

4.2.3 Probability of sampling a unique identifier or filename

The results of the previous section indicate that more than 75% of identi-
fiers and filenames are unique. However, some identifiers are very common.
Frequent identifiers might be much more common than all the unique identi-
fiers combined. For this reason, it is important to calculate the proportion of
instances corresponding to each frequency. This is similar to conducting the
following experiment: if we had a set of all instances of all identifiers defined
in the corpus (name of product, identifier), and were to randomly choose an
identifier from this set, how many products would have the same identifier?
(i.e. what would be the frequency of this identifier). We repeat this experiment
for filenames too.

In the PyPI corpus there are 26.8 Million instances of identifiers, but only
11.2 M different ones (e.g., the identifier main was declared in 53 413 products).
For filenames there are 2.9 M instances, 1.1 M different ones. Table 5 shows
the proportion of total instances of identifiers that have a given frequency. For
instance, at frequency 2 (i.e., identifiers that occur in two different products),
there are 1 390 971 different identifiers that occur in 2 781 942 products, which
correspond to 10.4% of all identifier instances in the corpus.

Even though the frequency of files and identifiers is not that different, those
differences compound. As shown in table 5 only 32.1% of identifier instances
are unique, and 50% of identifiers instances have a frequency of 4 or less. If
we were to randomly choose an identifier within a randomly chosen product,
the probability that this identifier is unique is 32.1%; and in 50% of the cases,
its frequency would be 4 or less. For filenames, the probability of randomly
choosing a unique one is 30%; and in 50% of the cases, it would have a fre-
quency of 8 or less. The most common identifiers (frequency > 1000), even
though only 888, account for 10.9% of all instances. In the case of files, 148
filenames account for 18.4% of all instances.

4.2.4 Frequent identifiers

The last row of Table 5 shows that there are only 888 identifiers (0.01%)
with frequency larger than 1000, but they are very frequent and correspond to
10.9% of all instances. For filenames, there are 148 files that account for 18.4%
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Table 5 Distribution of distinctiveness of instances of identifiers and filenames at product
level. For example, identifiers of distinctiveness equal to 4 correspond to 3.2% of all identifier
instances, and 50.8% of instances have a distinctiveness of at most 4.

Source code identifiers Filenames
(classes and methods)

# Ids Instances # Ids Instances
Frequency # Prop Cum # Prop Cum

(%) (%) (%) (%)

1 8 600 252 8 600 252 32.1 32.1 886 236 886 236 30.0 30.0
2 1 390 971 2 781 942 10.4 42.5 122 929 245 858 8.3 38.3
3 452 285 1 356 855 5.1 47.6 43 064 129 192 4.4 42.7
4 216 279 865 116 3.2 50.8 17 234 68 936 2.3 45.1
5 131 248 656 240 2.5 53.3 10 038 50 190 1.7 46.8
6 81 232 487 392 1.8 55.1 6458 38 748 1.3 48.1
7 57 686 403 802 1.5 56.6 4638 32 466 1.1 49.2
8 45 620 364 960 1.4 58.0 3273 26 184 0.9 50.1
9 36 885 331 965 1.2 59.2 3004 27 036 0.9 51.0
10 29 308 293 080 1.1 60.3 2886 28 860 1.0 51.9
11-100 192 252 4 682 191 17.5 77.8 15 885 421 320 14.3 66.2
101-1000 12 695 3 030 540 11.3 89.1 1795 453 591 15.4 81.6
1001- 888 2 913 499 10.9 100.0 148 543 811 18.4 100.0

Table 6 The 10 most frequent identifier names in functions and classes. #Prs is the number
of products where that identifier is defined (its distinctiveness).

Classes Functions Filenames

Products Products Name Products
Name Freq % Freq % Freq %

Meta 9771 4.0 init 159 528 65.3 init 60 482 26.3
Command 6246 2.6 main 53 368 21.9 setup 54 462 23.6
Config 6113 2.5 run 46 158 18.9 utils 31 149 13.5
Migration 6062 2.5 str 44 664 18.3 cli 15 600 6.8
Client 5520 2.3 repr 41 796 17.1 exceptions 14 888 6.5
PostInstallCommand 5100 2.1 get 33 024 13.5 models 13 816 6.0
PostDevelopCommand 4737 1.9 call 31 053 12.7 base 13 048 5.7
EggInfoCommand 4598 1.9 setUp 30 205 12.3 config 9925 4.3
User 4291 1.8 read 25 981 10.6 main 9658 4.2
Error 4094 1.7 getitem 25 714 10.5 util 9317 4.0

of all instances. This result suggests the possibility of creating a small list of
most frequent identifiers that can be excluded from any method to determine
their origin (similar to stop words in natural language processing).

The top 10 of each identifier type are presented in Table 6. As it can be seen,
most of class identifiers are installation- and configuration-related. They are
required to be defined by a product that uses Python distribution mechanism
(used by setuptools). Regarding the most common functions, many are prefixed
and suffixed with (e.g. getitem ). Python uses such identifiers—called
“dunders” or “magic methods”—to modify its run-time behaviour (e.g., the
method getitem of a class is used to redefine the behaviour of [ ] indexing).
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Regarding files, they also correspond to common naming conventions (e.g.,
setup, main, config, and exceptions).

To summarize: in PyPI 75.8% of class identifiers, 76.7% of function identifiers
and 79.3% of filenames are defined in only one product. The set of identifiers
for functions and the set of identifiers for classes are almost mutually exclusive
(0.59% of identifiers are used for both). While 95% of identifiers (and 96% of
filenames) are defined in at most 4 products, these identifiers correspond to
only 50.8% of all instances of identifiers (45.1% for filenames).

5 Using identifiers to determine software provenance

We have determined that most of the identifiers in PyPI are very distinct
at product level. This fact makes identifiers a promising building block for
a lightweight approach to determine the provenance of a file or set of files
within a software corpus (like PyPI). In order to move from this potential to
a working approach, however, we need to turn this intuition into a practical
heuristic.

Consider the following scenario: we have a set of files (we will refer to them
as the subject files) from a release of an unknown product, and we would like to
determine which product they belong to. This problem can be answered with
many different methods. For example, one can create a database of hashes of
every file of every release of every product in the database. If the subject files
have not been modified, their hashes can be quickly compared to this database.
However, if the files have been modified (even by a single byte), this method
would not work. Alternatively, we can use diff tools or clone detection tools;
these methods will be more expensive methods.

Answering RQ1 we established that the identifiers defined in products in
the PyPI corpus are relatively unique. We can use this information to create a
“fingerprint” that can be used to reduce the search space of potential products
from which the subject files might have originated. If this set is small, other
time-consuming methods can then be used to match the subject files to the
products in this set.

This fingerprint is a set of N globally declared identifiers in the subject
files; if we randomly extract N globally declared identifiers from subject files,
we expect that very few projects (potentially only one) will have declared all
these identifiers. Thus, we can quantify the effectiveness of this method by
answering RQ2:

RQ2 How many global identifiers are needed to narrow down the origin of a
given source code artifact to a small set of candidates, within the open
source Python ecosystem?



Title Suppressed Due to Excessive Length 19

5.1 Methodology

For this experiment we used the PyPI corpus described in Section 4. The main
parameter to this experiment is the number of distinct identifiers extracted
from the subject files (the size of the fingerprint). We use N to refer to this
parameter. We want to find the minimum number of identifiers needed. As
we observed in the previous section, most identifiers are unique, but there are
more instances of non-unique identifiers than instances of unique identifiers.
If we randomly choose one identifier from a package, we have a 32% chance
of finding a unique identifier (and 50% that it has a frequency of at most
4 packages). Thus, we are likely to need to sample more than one identifier
from the subject package to increase this probability. Our goal is to identify
the ideal number of identifiers we need. Thus, we repeat the experiment for
N ∈ [1, . . . , 5] and compare the results. The methodology for each value of N
consists of 3 parts: sampling, fingerprinting, and matching.

Sampling. We start by randomly selecting a sample of 1000 different product
releases from the corpus, making sure they all belong to difference products.
From each chosen release we extract a fingerprint (discussed below) composed
of N distinct identifiers. Note that it is not always possible to do so (e.g., in
extreme cases a release might contain less than N distinct identifiers); in those
cases the release will be discarded and another one will be chosen at random
until success.

Fingerprinting. We tested two different strategies to create the fingerprint
that depend on how many different files the identifiers are sampled from. In-
tuitively, extracting the identifiers from a single file will result in more candi-
dates than extracting them from different files. Nonetheless, we are interesting
to quantify how much better one method is that the other.

Single-file strategy: this method requires that all N fingerprint identifiers
come from a single file. To that end we randomly select one source code file
from the input release and then randomly select from it N distinct iden-
tifiers. If the file does not contain enough distinct identifiers we backtrack
and pick another file. If no files allow to satisfy the criteria the release is
discarded and another one chosen at random until success.

Disjoint-files strategy: this method requires that the N fingerprint iden-
tifiers be different and come from N different files in the input release
(i.e., one per file). To achieve this we randomly sample N files without
replacement and randomly select from each file one identifier that has not
been selected yet. In case a file does not contain any (new) identifier, we
backtrack and select another file at random until success. As before, if the
release does not have enough files or enough identifiers to create the fin-
gerprint , it is discarded and another one is chosen at random until success.

In term of fingerprint sizes we make N vary in the n ∈ [1, . . . , 5] closed
interval; while even the maximum size allowed by this choice (5 identifiers)
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appears small, our results show that it is more than enough in practice in
most cases.

Note that there is no need to redo the sampling step for each possible value
of N . One can perform a single sampling with n = 5 and then use fingerprint
prefixes of length n ∈ [1, . . . , 5] for the matching phase. Similarly, in order
to speed up sampling, we have excluded all releases that do not have either
enough identifiers or enough files as a whole to potentially permit sampling 5
identifiers. This introduced some bias in the experiment, but we believe that
a useful real-world Python product will contain at least 5 identifiers.

Matching. For matching input releases to the corpus, the approach is straight-
forward: given a fingerprint of N identifiers find the set of all PyPI products
that contain all identifiers in the fingerprint. These products constitute the
candidate products from where the input release originate from and it is very
efficient to determine. We will analyze and discuss the number of products
returned using different fingerprint sizes and sampling techniques.

Dealing with stop words. As discussed in Section 4.2.4, some identifiers are very
common and correspond to a large proportion of the occurrences (e.g., the top
888 most frequent identifiers account for 10.9% of all occurrences, and the
top 148 filenames for 18.4%). Very common identifiers will not be very useful
for provenance discovery. Examples of such identifiers for Python are init

(the prescribed name of class constructor methods) or main (a common name
for the entry point function in an executable). As it is common practice in
language-based searches, we establish a blocklist : a list of the most frequent
stop “words” (identifiers in this case) that are excluded from sampling, and
therefore cannot appear in fingerprints. An important question is how large
should the blocklist be. Intuitively, the larger the list the better (e.g., if our
blocklist is composed of any identifier that exists in two or more products,
then any identifier not in the blocklist would uniquely identify a product in
PyPI—assuming the identifier exists in the corpus). However, a large list has
two disadvantages: a) the larger the list the more expensive it is to use it; and,
more importantly b) if the list is too big, it might not be possible to extract
sufficient identifiers from the subject file to create the fingerprint .

Figure 1 shows the impact of the size blocklist with respect to the pro-
portion of identifiers removed from the corpus (for example, the identifiers in
a blocklist of size 100 account for 5.2% of the occurrences of identifiers; for
filenames, a size of 100 corresponds to 17% of occurrences). We empirically
verified the impact of the blocklist by running the following experiment: we
randomly sampled 5000 products from the corpus, using the single file strat-
egy, with a fingerprint size of 3—that is, an eligible product must have at least
one file with at least 3 different identifiers not in the blocklist being tested;
we then counted the number of products that match such fingerprint. As for
the blocklist itself, we experimented with different sizes of it, each time corre-
sponding to the top-N identifiers in the entire corpus. We made N (the size
of the blocklist) vary from 0 to 10 000.
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Fig. 1 Impact of the size of the blocklist in the proportion of occurrences that would be
removed from the corpus.

Fig. 2 For each size of the blocklist, 5000 random fingerprints were matched. Thus, each
column represents a violin-plot of the number of products match. We chose a size of 300
because it shows the last significant drop in the median number of matched products.

Results are shown in Figure 2. As expected, increasing the size of the block-
list reduces the number of candidates. There is a significant drop at 300, which
is also observable in Figure 1. For these reasons we decided to use a blocklist
of 300 for the following experiments. It is worth noting that by removing the
top-300 identifiers, only 0.27% of all unique identifiers are removed; yet, this
list removes 7.6% of all identifier occurrences in the PyPI corpus. For file-
names, 300 correspond to 0.27% of distinct filenames, and removes 22% of all
filename occurrences.

Note that a blocklist can be implemented by keeping the frequency of each
identifier (or its inverse document frequency idf ) in the corpus database. An
identifier will be part of the blocklist if its frequency is above a certain thresh-
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old. In this corpus, that threshold is at least 2230 (idf 2.039) for identifiers
and 551 for files (idf 2.645).

To summarize, we performed the experiments described using:

– two sampling strategies: single-file v. disjoint-files;
– fingerprint size varying from 1 to 5;
– a blocklist size composed of the 300 most popular identifiers.

5.2 Results

Our goal is to understand how the size of the fingerprint impacts the number
of products matched in the corpus. In terms of information retrieval metrics,
this experiment will always have a recall of 100% since the project from where
the identifiers are extracted is always in the result. The precision would be the
inverse of the number of matched projects.

In Figures 3 and 4 we show the cumulative distributions of the number
of candidates selected, respectively, by the single file and disjoint files finger-
printing strategies. Results are shown for varying fingerprint size from 1 to 5.
To account for randomness in fingerprint selection, each experiment was run
5 times. For each fingerprint size the figures show a box plot of 5 points. Each
box plot value shows the accumulated proportion of searches in which the
number of products matched was less of equal to a certain number of different
products (from 1 to 5). For example, in the 5 experiments using single-file
sampling and fingerprint size equal to 1, the proportion of times that the fin-
gerprint matched three or less product was 44.1%, 46.7%, 46.9%, 47.2%, and
47.5%; in other words in a median of 46.9% cases, the number of products
matched was less or equal to 3 (34.6% returned 1, 7.8% returned 2, and 4.5%
returned 3). As it can be seen, in all cases the 5 runs returned very similar
results—suggesting that the method is very stable.

For both strategies, there is a significant reduction in number of matches
from a fingerprint of size 1 to 3. After 3 we reach a point of diminishing returns.
For a fingerprint of size 3, the single file strategy finds 5 or less matched
products in a median of 93.1% of cases, while the disjoint file strategy finds
5 or less matches in a median of 96.7% of cases. Equally important is that
with a fingerprint of size 3, 76.7% of cases returned exactly one match for
the single file strategy, and 81.3% for the disjoint file one. The disjoint files
sampling strategy performs best, likely because sampling from different files
provides more information regarding the project the identifiers belong to.

When three non-common (after blocklist exclusion) identifiers are sampled
from different files of a project, the number of projects with those identifiers
is 1 in 80% of cases (precision 100%), and at most 5 in 98% of cases (precision
20%). For the single-file method, the number of results of size 1 is in 74% of
cases, and at most 5 in 89.2% (the recall is always 100%).
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Fig. 3 Distribution of the number of candidates: single file strategy

Fig. 4 Distribution of the number of candidates: disjoint files strategy

6 Evaluation

In this section we empirically evaluate the effectiveness of our approach for
software provenance identification based on identifiers. To that end, we use as
subjects a set of software packages that were not extracted directly from our
PyPI corpus (compared to what we did in Section 5), but that we expect to
be present in this corpus. Specifically, we consider version 10 “Buster” of the
Debian GNU/Linux distribution and assume that Python software shipped
by Debian is also present in PyPI. This is a reasonable assumption, because
Debian is fairly selective in what it ships in its stable releases and PyPI is the
most comprehensive listing of Python packages. Thus, we expect PyPI to be a
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superset of the Python packages shipped in Debian stable release like Buster
and, conversely, Debian Python packages to be a “golden (sub)set” of PyPI.

6.1 Creating a golden set from Debian

We started by listing all Debian source packages shipped by Debian Buster as
of August 2020,8 at the same time we built our PyPI corpus (see Section 4.1).
The initial list includes over 28 000 Debian source packages. We first deter-
mined the list of Python packages using a coarse heuristic based on package
names: we selected the source packages that contain any of the following sub-
strings in either their name or in the name of any of the binary packages they
generate: "py" and "python". We identified 3155 Debian source packages re-
lated to Python this way. We downloaded the full source code of each package
running the command apt-get source PACKAGE NAME on a Debian Buster
machine.

One major challenge to create a ground truth is to match a package in
Debian to its corresponding package in PyPI, as they might have different
names. PyPI requires packages to include a setup.py file which, in its imple-
mentation, should eventually call the distutils.setup() function passing a
name parameter that matches the PyPI package name. We used two best-effort
methods to identify PyPI product names based on this.

First, we ran python setup.py --name, with both versions 2 and 3 of
the Python interpreter (because Debian source packages can be implemented
in either version of the language, and there are subtle syntactic differences
between the two language versions). If this script failed, we inspected manually
the package to find its PyPI origin. We were able to match 2221 Debian package
names to PyPI projects in our corpus. 40 packages did not have any identifiers
and were ignored (e.g., the Debian package python-xstatic-ds3 originates
from the PyPI package xstatic-ds3, but it only contains __init__.py and
setup.py files that do not declare any global identifier).

In the end, our golden dataset was composed of 2181 pairs. Each pair was
a Debian source package and its corresponding PyPI project.

6.2 Ranking candidates

Our provenance detection method returns a set of candidates for further in-
spection. Ideally we would like this set to be a singleton. However, we expect
that more than one package will be returned in the general case. Thus, it will
be beneficial to rank the candidates in such a manner that the most likely can-
didates appear first. This way candidates with a higher probability of being
the correct answer will be examined sooner.

8 At that time Debian Buster was already shipped as a “stable” release, so while it is pos-
sible that its content has changed since, modifications are expected to be minimal according
to Debian release processes.
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Document term frequency is used in several methods for ranking result
candidates (such as tf-idf-weighting). Unfortunately it is not applicable for
this purpose because if an identifier is declared two or more times in package
A more than in package B, A is still equally relevant as a source of the identifier
than package B. Other methods rely on partial matches to rank the results;
these methods cannot be used in our experiments because we are interested
only in documents that match all identifiers in the fingerprint.

Instead, for ranking results we leverage SourceRank [43], a well-established
ranking metric for open source software packages developed by the Libraries.io
project.9 Roughly speaking, SourceRank is a compound metric that takes into
account both package popularity (based on GitHub “stars”, for example) and
several quality metrics such as the presence of metadata, license information,
README, etc.

We conjecture that if a package is popular (as SourceRank indicates), it is
more likely to be the origin of an entity than one that is less popular. In these
evaluation experiments, when a set of N candidate PyPI packages is returned,
we then order them by their SourceRank in descending order, thus returning
a list (where position 1 is the package with the highest Source Rank, i.e., the
most relevant package).

6.3 Methodology

In this experiment we want to evaluate the single-file and disjoint-files strate-
gies for provenance identification with a fingerprint of size 3 and a blocklist of
300. Because these methods are randomized, we perform 5 trials for each of
the strategies.

For the single-file strategy, one file is sampled per trial. From this file, 3
identifiers (not in the blocklist) are randomly sampled.

For the disjoint-files strategy, in each trial 3 different files are randomly
sampled (without replacement), and from each file one identifier (not in the
blocklist) is randomly sampled. At each trial level, all source code files are
considered (thus, it is possible that two or more trials use the same files).

Except for the randomly extracted identifiers, no other information is used
in these trials. To evaluate the effectiveness of the proposed method we com-
puted the following metrics:

– The size of the candidate set C obtained with each sampling strategy. The
smaller, the better: a size of 1 is ideal.

– Given that our results are ranked, we computed the recall and precision for
the top k-results. In general, as k increases, precision is expected to drop
and recall to increase. For this method to be successful we expect that, for
small values of k both precision and recall to be high.

9 https://docs.libraries.io/overview.html#sourcerank, accessed 2021-12-07

https://docs.libraries.io/overview.html#sourcerank
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Table 7 Overall results when matching Debian python packages to the PyPI corpus.

Single-file Disjoint-files
Subjects 2147 1631
Outcomes 10 735 8155

Empty (no candidates) 619 ( 5.8%) 900 (11.0%)
Non-empty candidates

Successful (i.e. overall recall) 9982 (93.0%) 7145 (87.6%)
Failed 134 ( 1.2%) 110 ( 1.3%)

Size of result per outcome
Median 1 1
Avg 14.5 2.4
Max 2104 175

6.4 Results

Table 7 summarizes the obtained evaluation results for the single-file and
disjoint-files strategies. As it can be seen, a number of outcomes did not yield
any candidate (no file was found in our corpus): 5.8% for single-file method,
and 11.0% for the disjoint method; we will revisit this result in Section 6.5.

The overall recall of the experiments (i.e. the number of outcomes that
included the correct origin of the product) was 93% for single-file and 87.6% for
disjoint-files. The proportion of outcomes that yielded at least one candidate,
but none was the true origin of the package, was 1.2% and 1.3% for each
method, respectively.

We computed the precision, recall and F-score of the top k-results. This
method of using precision and recall is widely used to evaluate the quality of
search results. For a specific search, its precision at k is defined as number of
relevant items in the first k-results; while recall is defined (as usual) as the
number of retrieved items in the first k-results divided by the number of all
possible relevant items.

In our experiment there is only one relevant item for any search, therefore
the search has a binary outcome: either the correct product is part of the
results or not. The recall at k is either 1 if the correct product is found in the
first k-results, or zero otherwise. Therefore, the average recall at k is equal to
the proportion of successful outcomes when the subject is found in the first k
results of each search.

For a given search, the precision at k is 1/min(k, n) if the correct product
is in the first k-results and zero otherwise (where n is the overall number of
items in the result of the search). Because there is only one potential correct
item, the precision at k drops rapidly as k increases and the query returns
at least k elements. We compute the average precision at k over all outcomes
ignoring the cases where the result returns zero results (precision is undefined;
approximately 10% of results fell into this category).

For the sake of readability, for the rest of this paper we will refer to average
recall at k and average precision at k simply as recall at k and precision at k.
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Fig. 5 Average recall and precision at k for both strategies. The small numbers to the left
correspond to k. For exampple, for the single-file strategy, the top result (k=1) has a recall
of 75%, and a precision of 80%.

Figure 5 shows these values for the single-file strategy, which are also shown
in Table 8. As it can be seen, for k = 1, the precision is 80% and the recall is
75% (this is because 7.6% of outcomes did not return any result). With k > 5,
the gains in recall are very marginal; yet, at k = 10, the precision is almost 1

3 .
The table also includes the number and proportion of outcomes that yielded a
result of size k or larger; for example 89.0% of outcomes returned one or more
candidates (31.1% returned exactly one candidate), and 16.4% returned more
than 6 or more candidates.

Table 8 Average recall, precision and F-score at k for single-file strategy. The number and
proportion of relevant outcomes corresponds to those that had at least k candidates; e.g.
only 31% of outcomes had 3 or more candidates.

k Relevant Outcomes Recall Precision F-score
Count Prop.

1 10116 94.2% 0.75 0.80 0.78
2 5059 47.1% 0.84 0.60 0.70
3 3337 31.1% 0.87 0.50 0.64
4 2523 23.5% 0.88 0.45 0.59
5 2069 19.2% 0.89 0.41 0.56
6 1756 16.4% 0.90 0.39 0.54
7 1504 14.0% 0.90 0.37 0.52
8 1334 12.4% 0.90 0.35 0.50
9 1228 11.4% 0.90 0.34 0.49

10 1111 10.3% 0.91 0.32 0.48
100 169 1.6% 0.93 0.16 0.27

1000 34 0.3% 0.93 0.08 0.15
2104 2 0.0% 0.93 0.06 0.12

For the disjoint-files strategy, the precision and recall at k is shown in
Figure 5 and Table 9. For this strategy 11% of outcomes did not generate any
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Table 9 Average recall, precision and F-score at k for disjoint-files strategy.

k Relevant Outcomes Recall Precision F-score
Count Prop.

1 7255 89.0% 0.80 0.90 0.85
2 2552 31.3% 0.86 0.71 0.78
3 1322 16.2% 0.86 0.63 0.73
4 858 10.5% 0.87 0.59 0.70
5 563 6.9% 0.87 0.57 0.69
6 428 5.3% 0.87 0.55 0.67
7 353 4.3% 0.87 0.54 0.66
8 282 3.5% 0.88 0.52 0.66
9 245 3.0% 0.88 0.52 0.65

10 207 2.5% 0.88 0.51 0.64
100 11 0.1% 0.88 0.37 0.52
175 1 0.0% 0.88 0.37 0.52

result. As it can be seen, the recall and precision is very high for k = 1 (0.8
and 0.9 respectively), and for k > 2 there is no significant gain in recall. Thus,
in most cases, it suffices to inspect only the top 2 results, with a recall of
86% and a precision of 71%. Inspecting results beyond the second candidate
only yielded a successful result in 2% of the outcomes. Also, only 16.2% of
all searches return more than 2 candidates, and 5.3% more than 6 or more
candidates.

Comparing the two methods we observe that:

– For k = 1, the disjoint strategy has better recall (0.80 vs 0.75).
– The single-file strategy returned larger lists of candidates than the disjoint

one. As a consequence, the precision of the single-file strategy drops much
more as k increases,

– For k ≥ 4, the single-file strategy has better recall than the disjoint strat-
egy.

While the precision of the disjoint-files strategy is higher than the single-
file one, not all packages had 3 files and after k > 2 the recall of the single-file
strategy is higher.

Both strategies (single-file and disjoint-files) are effective at finding the origin
of a Debian Python package in PyPI without the need to inspect many candi-
dates. At k=1, the recall and precision of the single-file strategy were 0.75 and
0.8; while for the disjoint-files strategy, they were 0.8 and 0.9, respectively.

6.5 False negatives

Since we manually curated the dataset we expected to have no false negatives
(i.e. we know the Debian package exist in PyPI), yet the proposed method is
unable to identify the origin of several packages. As shown in table Table 7,
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the single-file strategy did not return any results in 5.8% of the outcomes and
in 1.2% of the outcomes the results did not include its true origin. For the
disjoint-files strategy, the number of outcomes with empty results was almost
twice (11.0%) and the number of outcomes that did not include its true origin
was almost the same (1.3%).

There were 21 packages that were never matched to a package in PyPI by
either strategy. We manually inspected each of them. We observed that the
reason these packages resulted in false negatives was that their corresponding
packages in PyPI did not contained all the original source files of the packages
(which the Debian package included). We observed two cases:

– Some PyPI packages did not include testing or examples source code. 19
of the 21 packages did not include Python files located in the test, ex-
amples, or documentation folders. Many packages in PyPI were binary
distributions (called distribution archives by the Python Packaging Au-
thority). These distribution packages were a subset of the original source
code and contain the files necessary to use the package, not to build it [2].
Some of these 19 packages had very few source files in PyPI and many
more test source files in Debian. For example, pyfaidx had 3 Python files
(setup.py, __init__, cli.py) in PyPI, and 21 in Debian (the other 18
files were inside the test folder).

– Some PyPI packages contained only installation scripts. The remaining two
packages (egenix-mx-base and QuantLib) only included installation scripts
in PyPI without most of its source code. For example, egenix-mx-base had
85 files in Debian and only 2 in PyPI. In the case of QuantLib, the numbers
were 23 and 1 respectively.

Given the first point above, we hypothesized that false positive outcomes
would include files in test of example paths and that Debian packages would
be more likely to include files in test or example folders. We checked each of
the false negatives outcomes to see if the sample file had test or example in the
name of a folder in the path of the file (checking if the full filename matched the
regular expression (text|example).*/)); for disjoint-files strategy we check
if at least one file in the outcome satisfied this condition). The results are
presented in Table 10. As it can be seen, for outcomes that had an empty
result (no candidates), 75% of files were in test or example folders for the
single-file strategy; for the disjoint-files strategy it was 89.2%. In total, 70%
of the false negative outcomes in the single-file strategy were in folders named
test or example, and for the disjoint-files strategy they were 87%.

We checked the number of packages with tests or example files in our
experiment. Out of the 2147 Debian packages used in our experiment, 1461
had at least one of these types of files. In contrast, of the corresponding 2147
PyPI packages, 1461 had one or more test of example files. Therefore, the
problem of missing test files seems to be restricted to a small proportion of
packages. In fact, in the single-file strategy experiment, 3,198 trials that used
a test or example file were successful (out of 3,709, 86.2%). Thus test and
example files contain identifiers that are useful for provenance discovery.
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Table 10 Most of the false negatives used one or more files placed in folders called test or
example. We manually inspected 19 out of 21 that only had false positives and discovered
that such files were present in the Debian package and its source code repository, but not
in the PyPI packages.

Single-file Disjoint-files
Outcomes 753 1010

Had file(s) in test or example folder 525 69.8% 880 87.1%
No candidates 619 900

Had file(s) in test or example folder 456 73.7% 803 89.2%
Non-empty candidates 134 110

Had file(s) in test or example folder 69 51.5% 77 70.0%

Table 11 Results for best outcome (out of 5 trials per project) for the single-file sampling
strategy: 2147 subjects; and for disjoint-files: 1631 subjects.

Single-file Disjoint-files
Subjects 2147 1631
Outcomes 2147 1631

Empty (no candidates) 38 ( 1.8%) 116 (7.1%)
Non-empty candidates

Successful (overall recall) 2099 (97.8%) 1501 (92.0%)
Failed 10 ( 0.5%) 14 ( 0.9%)

Size of result per outcome
Median 1 1
Avg 4.5 2.2
Max 2031 175

These results imply that our experiments yielded false positives and empty
results because, when a file is picked at random, the chosen file is not included
in the PyPI package (such as the files in test and example folders as described
above). In the design of our experiment we took into account some of the effects
of this randomness, and repeated the search 5 times per project. Table 11 shows
the summary of the results when we pick the best outcome per project. When
these results are compared with Table 7 we can observe that the overall recall
jumps from 93.0% to 97.8% for the single-file strategy, and from 87.6% to
92.0% for the disjoint-files strategy; the best outcome did not find the origin
of a package in 2.2% (48) projects for the single-file strategy and 8% (130) for
the disjoint-strategy.

Table 12 shows the recall and precision at k for best outcome for single-
file strategy; and Table 13 for best outcome for disjoint-files strategy (out of
5 trials in both cases). As it can be seen, for k=1, the F-score of single-file
strategy is 0.91, and 0.92 for the disjoint-files strategy. Note that the numbers
for disjoint-files strategy are (with the exception of precision and F-score at
k=1) worse than the single-file strategy, implying that, when we take the best
of various trials, it is best to use the single-file strategy.
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Table 12 Best outcome (out of 5 trials per project), single-file strategy.

k Relevant Outcomes Recall Precision F-score
Count Prop.

1 2109 98.23 0.90 0.92 0.91
2 924 43.04 0.95 0.67 0.79
3 559 26.04 0.96 0.57 0.72
4 388 18.07 0.96 0.52 0.68
5 290 13.51 0.97 0.49 0.65
6 218 10.15 0.97 0.46 0.63
7 177 8.24 0.97 0.45 0.61
8 140 6.52 0.97 0.43 0.60
9 123 5.73 0.97 0.42 0.59

10 101 4.70 0.97 0.41 0.58
100 5 0.23 0.98 0.30 0.46

1000 1 0.05 0.98 0.25 0.39
2031 1 0.05 0.98 0.22 0.36

Table 13 Best outcome (out of 5), disjoint-files strategy.

k Relevant Outcomes Recall Precision F-score
Count Prop.

1 1515 92.89 0.88 0.95 0.92
2 494 30.29 0.91 0.74 0.82
3 245 15.02 0.91 0.66 0.77
4 150 9.20 0.92 0.62 0.74
5 94 5.76 0.92 0.60 0.72
6 66 4.05 0.92 0.59 0.72
7 56 3.43 0.92 0.57 0.71
8 40 2.45 0.92 0.56 0.70
9 38 2.33 0.92 0.56 0.69

10 32 1.96 0.92 0.55 0.69
100 1 0.06 0.92 0.41 0.57
123 1 0.06 0.92 0.41 0.57

Manual inspection of the false positives appears to indicate that several pack-
ages in PyPI do not have all the source code of their corresponding packages.
This problem can be alleviated by repeating the search several times. In our
experiments, when using the best of 5 trials result, the average precision and
recall at k=1 of the single-file method improves to 0.90 and 0.92, and to 0.88
and 0.95 for the disjoint-files method (i.e. when only inspecting the top result).

6.6 An improved algorithm for provenance discovery using identifiers

Overall, these results suggest the following algorithm that will only inspect 5
candidates at most, and uses the single-file strategy:
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– Repeat at most 5 times:
1. Pick one file at random with replacement.
2. From this file, extract 3 random identifiers not in the blocklist.
3. Search the corpus for candidates.
4. Inspect only the top-candidate:

If it is the origin of the package stop.

In our experiments, this algorithm has a recall of 0.90 and pre-
cision of 0.77 (it would have required to inspect 2731 candidates, of which
2099 were correct). Equally important, it would have been applicable to 30%
more packages than the disjoint method. The processing time of querying an
identifier is negligible, thus most of the CPU time will be consumed extracting
the random identifiers from a given file. The inspection of each top candidate
can be assisted with a clone detector that compares the subject against the
candidate.

Using the single-file strategy and repeating the search at most 5 times and
only inspecting the top result has a recall of 0.90 and precision of 0.77.

6.7 Low precision in few outcomes

Most outcomes had a very small set of candidates (the median was 1). However,
in some cases the number of candidates was very large. We manually inspected
the results of outcomes with the most candidates. What we observed is that
there is a significant amount of cloning in PyPI packages. We queried the PyPI
corpus to identify packages that had a large number of common identifiers and
manually inspected several of them (further research should conduct a proper
study of the existence and frequency of these common identifiers in PyPI).
We identified the following reasons why some identifiers are used in different
packages:

1. Commonly used identifiers. This case corresponds to functions/classes that
are frequently used, yet have very different source code. We have already
discussed them in the creation of the blocklist (see Section 4.2.4).

2. Different variants of the same package. Some packages are specialized ver-
sions of others. These packages appear to be different binary distribu-
tions of the same source code, yet each appears as a different PyPI pack-
age. For example, the following packages share the majority of their code
with tensorflow : tensorflow-cpu, tensorflow-directml, tensorflow-fedora20,
tensorflow-gpu, tensorflow-gpu-macos, tensorflow-rocm, tensorflow-rocm-
enhanced, tensorflow-tflex ; these packages share between 3801 and 11,802
functions with tensorflow.

3. Embedding dependencies. We found that a significant number of packages
embed their dependencies. Usually this is done during the build process,
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where the dependencies are located in a folder named thirparty. We iden-
tified 131 packages that have python files in the folder thirparty and 112
in third party. For example, sqlmap had twenty different packages under
thirparty; these dependencies did not have any information that docu-
mented the version or origin of each of them.

4. Embedding a dependency into its own source code. In this case, the depen-
dency is copied inside the source code tree of the package (usually inside
the folder src) and becomes part of the source code of the package. For
example, nplab embedded the project lucam (a single Python file).

5. Copied functions. Sometimes code is cloned among different projects. For
example, we found one common class (ColorizingStreamHandler) in sqlmap
and Mopidy that originated from a gist in github. Both packages properly
attributed the origin of this class. In another case, the packages imgserve
and Amara shared only one identical function (get filename parts -

from url) with no attribution.
6. Same package, different names. We found one package that was uploaded

under different names by different maintainers (hd-llz and hand-detector-
test). Furthermore, the source code of the packages was slightly different
(one had 940 files, the other 895).

7. Subclassing. Some libraries expect to be reused via subclassing and dy-
namic dispatch. In this case, the new code will reuse the same identifiers
for some of the method’s functions. For example, the meta-blocks defines
a class MetaBlocksExperimentSearchPathPlugin derived from the class
SearchPathPlugin in package hydra-core. In this class, meta-blocks rede-
fines the method manipulate search path, that is originally defined in
hydra-core.

8. Code generation. Some packages shared names of classes and functions that
had been generated by the same tool. For example, yuuki-core, AsyncLine
and LineService had several classes in common, all in files that included
the header Autogenerated by Thrift Compiler.

These points emphasize the difficulties of curating a corpus for provenance
discovery. During the creation of the corpus, provenance analysis of each pack-
age could be done in order to identify cases such as the ones above towards
the goal of improving the quality of the corpus.

7 Discussion

Developers of PyPI products seem to, consciously or not, choose identifiers
that are either unique or very distinctive throughout the entire PyPI ecosys-
tem. Out of 11.2 million different identifiers for classes and functions/methods
(in 244k different products), 76% are unique (and 95% appear in at most 4
different products). Equally remarkable is that the intersection of the names
of classes and functions was negligible (less than 0.6%).

Python has a strict module namespace mechanism. By default, the user
of a library should prefix any of its identifiers with the name of the library
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Fig. 6 Example of a Stack Overflow question that does not indicate which Python library
it is using. The identifiers used in it narrow it to 3 candidate: selene, selene-kentastik
and django-cloud-reploy, of which selene is the highest ranked by Libraries.io.

(e.g., pandas.DataFrame); this implies that identifiers only need to be unique
within the project. At the same time there is an implicit expectation grounded
in Python practices and coding guidelines that developers will import library
identifiers in such a way that they do not require the full qualified name (e.g.,
from pandas import DataFrame) and this might be a motivating reason why
identifiers tend to be unique. Nonetheless, universally unique identifiers seem
to also naturally emerge in the corpus.

The median length of identifiers in PyPI is 16 characters for classes and 19
for function names. This means that developers of PyPI packages are willing
to name their identifiers with descriptive names. Future research should look
into the composition of identifiers in terms of its components (e.g., by split-
ting at underscores or case changes) and abbreviations used. Filenames, which
correspond to module names in Python, are also quite long with a length of
15 characters.

The fact that most identifiers are unique to a package can be leveraged
for applications other than software provenance identification. For instance, it
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might be possible to scan a Python source code snippet and determine with
little or no ambiguity the libraries it uses, even when import statements are
omitted. Consider questions on the Stack Overflow Q&A website, where only
very popular libraries (such as pandas, numpy, etc.) tend to have dedicated
classification tags on the website; it is not trivial to identify postings that
use other libraries, unless library names are explicitly mentioned in the ques-
tion title. Identifiers can be automatically extracted from the code snippet
and matched to the corresponding packages. Take for example Stack Over-
flow question n. 68 878 85710 depicted in Figure 6, which does not mention
which library the snippet is using. The identifiers find_element_by_xpath,
get, execute_script, and the filename driver.py only exist in 3 different
packages (django-cloud-deploy, selene, and selene-kentastik), selene (Python
bindings for selenium) being the highest ranked package among them accord-
ing to SourceRank (selene-kentastic is a different set of selenium bindings for
Python—thus using some identifiers with selene).

The Debian experiment demonstrated the effectiveness of a method of
provenance discovery that uses identifiers. Specifically, that by simply con-
ducting at most five trials, and only inspecting the first result returned, the
single-file strategy can achieve a recall of 0.9 and precision of 0.77.

We must emphasize that the effectiveness of any method of software prove-
nance identification depends primarily on how comprehensive the corpus is,
and the corpus needs to be maintained current as time passes by. New product
versions tend to keep most previous identifiers, can introduce new ones, but
can also remove some. Thus using only global identifiers (and in particular
with methods that rely on random sampling, as in our Debian experiment)
is insufficient to correctly pinpoint the release of a product. However, once a
product has been identified, it is possible to use set distance metrics (such as
Jaccard) or clone detection methods to determine the best candidate release
that matches the candidate.

There are also other potential uses for a corpus of identifiers. For example,
it might be possible to identify products that have evolved from others (i.e.,
forks) or that have changed name. It might also be possible to identify func-
tions and classes that are copied from one product to another. Finally, IDEs
can benefit from such a corpus of identifiers to suggest (or automatically add)
include/import statements.

The goal of the propose approach to provenance identification is not to
replace clone detection tools. On the contrary, the goal is to narrow the po-
tential search space such that more time consuming methods (including, but
not limited to clone detection ones) can be applied more selectively.

10 Titled: “Scraping tripadvisor review, len container change, no such element Unable to
locate element”, https://stackoverflow.com/questions/68878857, accessed 2022-01-16

https://stackoverflow.com/questions/68878857
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7.1 Threats to validity

Construct validity. We have conducted several integrity tests to verify that our
processing is accurate. We entirely relied on Universal Ctags for the extraction
of classes and function names in Python, hence we depend on its reliability. At
the same time it is the state-of-the-art open source tool for identifier indexing
and is actively maintained, so we are confident in its quality.

We note that we only processed the most recent 100 releases of each PyPI
product. However, the impact of this decision is probably negligible, since we
expect any recent releases to have a large identifier overlap with older releases
(we have observed that most releases are a superset of previous releases, only
rarely identifiers are removed).

Internal validity. In our experiments we assume that PyPI is a trustworthy ref-
erence corpus for Python products. However, PyPI relies on the developers to
make sure they upload correct code. We observed that in some cases, develop-
ers might upload releases with embedded dependencies, a phenomenon known
as “dependency vendoring” [54]. This is often addressed in future releases by
removing from them the source code of previously embedded dependencies,
but the older bloated releases remain in PyPI. Since Python does not have a
way to restrict the visibility of an identifier, any global identifier in a product is
thus available outside it. It is very likely that developers use different naming
mechanisms for identifiers that are expected to be used by others from those
that they are only to be used locally.

External validity. Our results only apply to the ecosystem of packages in PyPI
and written in Python. We do not claim that these results apply to other
programming languages or ecosystems. In fact, we believe that an empiri-
cal evaluation similar to the one we have conducted in this work should be
conducted on each major programming language ecosystems, to document and
compare the level of uniqueness/distinctiveness across languages. It would also
be interesting to analyze identifier distinctiveness when considering multiple
programming languages together. While there are identifiers that will be ex-
pected to be shared across languages (such as the case of language bindings
that we have identified and discussed) it is possible that identifiers will be
fairly unique across languages, helping with software provenance tracking in
contexts where the programming language of the code under audit has not
been determined, for whatever reason.

8 Conclusions

In this paper we have determined that in the Python ecosystem of libraries
approximately 75% of global identifiers are unique. Furthermore we have also
identified a set of identifiers that are too common to use, and therefore, can
be considered as “stop words” in identifier analyses.
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We have then used this property to developed a randomized approach
to identify the provenance of a Python library that uses a very small set of
globally defined identifiers to identify the origin of a product. The approach
is straightforward to implement, fast, and had a recall of 0.9 and precision of
0.77. experiments, when inspecting only the top result in each of the five trials
for the single-file strategy. In spite of its high accuracy the proposed approach
is not meant to be used in isolation, but rather as a preliminary filtering step
before applying more expensive identification techniques (if and when multiple
candidates are identified), such as code clone detection.

8.1 Future work

Several research directions, including several empirical studies, remain to be
pursued as future work. A promising one is further increasing the granularity
of detection, reaching down to the level of code snippets–such as individual
functions or classes extracted from complete source code files, or snippets
posted in isolation on social coding websites and platforms. In principle, the
proposed approach is completely agnostic to granularity: it would work at the
level of snippets as it does as that of products and releases. In practical terms,
however, two challenges exist: 1) when an entity is duplicated in the corpus,
which copy should be considered the canonical origin, and 2) accuracy would
be different at the snippet level, although it is not clear if for the better or
worse. A large-scale empirical experiment is needed, either by splitting up
functions/classes from corpora like the one we have already investigated in
this work (PyPI) or relying on snippet-first datasets such as GitHub gists or
Stack Overflow snippets.

The proposed approach is also agnostic to programming languages. The
only requirement being the ability to create a comprehensive corpus of iden-
tifiers for the desired programming language. Large-scale empirical experi-
ments targeting different programming languages and/or package ecosystems
are needed to verify if the language independence of the model translates to
good accuracy in other contexts. It is possible that programming convention
in different communities would result in different levels of identifier uniqueness
that could in turn impact accuracy, for better or worse.

The potential synergies between the introduced method and traditional
clone detection techniques also deserves further exploration. With few excep-
tions, scaling clone detection to large software repositories remains an open
challenge. This is particularly true when one considers that, for provenance
discovery, clones of a source code snippet are not necessarily copies, thus in-
creasing –from the point of view of provenance discovery– the number of false
positives. Future work should evaluate a hybrid approach, where identifiers
are used to narrow the potential number of candidates, and then using clone
detection tools to finally identify the provenance of source code. Also, future
work should explore methods to improve the qualify of a corpus (such as re-
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moving instances of copies of dependencies or identifying variants of the same
product). This is another area where such a hybrid approach can help.

Data availability

A replication package for this paper is available at https://doi.org/10.

5281/zenodo.7637703 [49]. This replication package contains all pairs (iden-
tifier, product) found in PyPI.
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