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• The Staggered Lattice Boltzmann Method approximates numerically the solutions of
the Radiative Transfer Equation.

• Like the Lattice Boltzmann Method, it uses a regular grid in space and a quadrature
in the propagation directions.

• Unlike the Lattice Boltzmann Method, it uses different discretizations in time to exactly
stream energy along the different directions.

• A traversal algorithm allows to scatter energy between directions that have different
time discretizations.
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Abstract

This paper introduces a method for the numerical approximation of solutions of the mono-
kinetic Radiative Transfer Equation, adapting some of the features of the Lattice Boltzmann
Method. The main difference between the Radiative Transfer Equation and the Boltzmann
Equation used in the classical Lattice Boltzmann Method framework lies in the constrained
norm of the velocity field appearing in the advection operator. This small difference leads to
off-grid propagation if one uses a regular lattice, as classically done for efficiency reasons. To
recover on-grid propagation, this paper introduces a specific time discretization along each
propagation directions and an original traversal algorithm to allow for scattering between
different directions at common times. The algorithm involves only linear time interpolations
so as to preserve the local nature of the Lattice Boltzmann Method. The direction quadrature
follows the principles of the Discrete Ordinate Method. The relevance of the approach is
illustrated on different two-dimensional problems and the results are compared to previously
published numerical test-cases.

Keywords: Radiative Transfer, Lattice Boltzmann Method, Staggered time discretizations.

1. Introduction

The Radiative Transfer Equation (RTE) is a complex integro-differential equation de-
scribing the evolution of the radiation intensity in absorbing, emitting and scattering media
[1, 2]. It appears in many other areas of physics. For example in the kinetic theory of gases,
under Boltzmann Equation (BE), it describes the statistical evolution of a system of moving
and colliding particles (see e.g. [3] and the historical references therein). It also appears
in the context of large-scale wave propagation modeling, where it describes the transport of
energy density in the high frequency regime and when the environment has heterogeneous
material parameters that fluctuate rapidly [4–6]. Its analytical solution is not generally pos-
sible, except in certain simple cases [7]. Therefore the use of numerical methods to obtain
approximated solutions is necessary. Many different numerical methods have been devel-
oped to this end. They are generally categorized in literature into two groups (see e.g. [8]).
The first group of methods is based on ray tracing, such as the zonal method [9, 10], the
Ray Tracing Method [11, 12], the Discrete Transfer Method [13, 14] or the Monte Carlo
Method (MCM) [15, 16]. However methods of MCM type are sometimes difficult to apply
because of their slow convergence rate (1{

?
N with N the number of sampled points), even
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if it is independent of the problem dimensionality. The second group of methods is based
on discretizing partial differential equations. They usually combine several approaches to
discretize the different problem dimensions such as the Finite Difference Method [17], the
Finite Volume Method [18, 19], the Finite Element Method [20, 21], the Discrete Ordinate
Method (DOM) [22–25], the Meshless Method [26], the Radial Basis Functions Method [27]
or recently Reduced Order Models [28]. Nevertheless, because the problem dimensionality
is large (seven dimensions in three-dimensional space), these approaches become expensive
from computational time and memory consumption points of view. Recently, new methods
have emerged, based on the Lattice Boltzmann Method (LBM).

The LBM has been historically developed in the field of fluid mechanics to solve the
Navier-Stokes Equations (NSE). It has demonstrated a great efficiency for the simulation of
compressible flows at low-Mach number and is still the object of numerous developments,
notably for high speed flows (see e.g. [29, 30]). Its principle is to solve a problem based on a
modified/simplified BE and whose solution macroscopically satisfies the NSE. This strategy
has been generalized to other types of equations than the NSE, and the LBM can today
be seen as a set of numerical methods to solve coupled conservation equations [31–34]. The
different works using the LBM can be categorised into three groups.
A first set of approaches, which is historically the first one developed with the paper [35],
adapts the LBM to solve the macroscopic steady diffusion equation which approximates the
RTE in highly scattering regimes, see e.g. [36–39] and [40] for a rigorous established link
between the adapted LBM and the macroscopic target diffusion equation.
A second set, initially developed by [41] for the steady RTE and later in [42] and [8] for
the unsteady RTE, aims to solve the system of coupled convection equations arising from
the discretization in direction of the RTE. To solve this equation system, the developments
realized for the general case of convection-diffusion equations, as for example in the paper
[43] (which extends those in [44]), are adapted and a LBM scheme is used for each system
equation. The major drawback of this approach is that it becomes very heavy from a memory
point of view.
Finally, the work of [45] recently proposed to adapt some of the LBM ingredients used to
discretize the BE to the RTE. The main difference between the RTE and the BE lies in
the constrained norm of the velocity field appearing in the advection operator. This small
difference leads to off-grid propagation if one uses a regular lattice as done classically in the
LBM. To overcome this difficulty, the authors propose to use a space interpolation scheme.
However, a drawback of this approach is that space interpolation is numerically expensive
and may introduce spatial diffusion.
In this work, we introduce a new numerical approach, called the Staggered Lattice Boltzmann
Method (SLBM), which in the vein of [45] adapts also some of the LBM features to the RTE,
but with the advantage to recover the on-grid property of LBM.
Our paper is structured as follows. In the following section 2, we summarize the classical
LBM features when used to solve the NSE. In the section 3, after recalling the continuous
RTE and the main differences it has with BE, we briefly detail the main existing strategies,
based on LBM, for its numerical solution and we finish by introducing the principle of the
SLBM approach we propose and the advantages it brings. We then present, in the section 4,
its different ingredients: the construction of special discrete sets of directions with associated
time lattices and quadratures, the introduction of a new fully discrete formulation of the RTE
and the use of a particular solution algorithm. In section 5 the relevance of our approach is
enlightened by two-dimensional tests and the solution we obtain are compared with others
taken from literature. Conclusions are given in section 6.
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2. Brief summary of the Lattice Boltzmann Method for Navier-Stokes Equations
solution

In this section we briefly introduce the LBM features for the Navier-Stokes Equations
solution.

2.1. The macroscopic model

We consider a flowing fluid F passing through the closure of a bounded and sufficiently
regular open domain Ω Ă Rd (with d “ 1, 2 or 3), which boundary is denoted BΩ, over a
time interval I “ s0, T s (with T P R‹`). We equip Rd with an Euclidian orthonormal frame
pO, e1, . . . , edq. The fluid motion is described, at macroscopic scale, by the Navier-Stokes
Equations (NSE) which form a system of partial differential equations formulated in terms
of its velocity u, pressure p and density ρ fields. All these fields are functions of time t and
position x in the time-space domain I ˆ Ω. These equations read, @ pt,xq P I ˆ Ω:

Bρ

Bt
pt,xq `∇ ¨ pρuq pt,xq “ 0 (Mass conservation) (1)

Bρu

Bt
pt,xq `∇ ¨ pρub u´ σ pp,uqq pt,xq “ ρfpt,xq (Momentum conservation) (2)

where, b is the tensor product, f is a density of body forces to which the fluid is submitted
and where we have assumed that the flow is isothermal:

p “ ρc2
s, (3)

where cs is the sound speed. We further assume that the fluid is Newtonian, homogeneous
and weakly compressible, such that, its constitutive relation, relating its stress tensor field σ
to its pressure and strain tensor field ε, reads (see e.g. [46]):

σ pp,uq “ 2µε puq ´

ˆ

2

3
µTr pε puqq ` p

˙

I (4)

where µ is the fluid shear viscosity, I the identity tensor and where we have neglected the
bulk viscosity. The strain tensor field is defined as:

ε puq “
1

2

´

∇u` p∇uqT
¯

. (5)

We add to equations (1)-(5), initial conditions, that read:

ρp0,xq “ ρ0pxq, and up0,xq “ u0pxq, @x P Ω, (6)

where ρ0 and u0 are given fields, as well as Dirichlet boundary conditions:

ρpt,xq “ ρdpt,xq, and ρupt,xq “ ρudpt,xq, @ pt,xq P I ˆ ΓD, (7)

and Neumann boundary conditions:

ρupt,xq ¨ n “ φρpt,xq and pρub u´ σ pp,uqqn “ φρupt,xq, @ pt,xq P I ˆ ΓN , (8)

where ΓD and ΓN form a partition of BΩ without overlapping (ΓDYΓN “ BΩ and ΓDXΓN “
H) and ρd, ρud, φ

ρ, φρu are given fields.
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2.2. The simplified Mesoscopic model

In kinetic theory, the motion of a fluid is described, at mesoscopic scale, by the BE. It
is an integro-differential equation formulated in terms of a distribution function a. It is a
function of pt,xq but also of velocity v in the phase domain IˆΩˆRd. It gives the density of
particles which, at t and located at x, have a velocity v. The BE reads, @ pt,x,vq P IˆΩˆRd:

Ba

Bt
pt,x,vq ` v ¨∇xapt,x,vq “ Kraspt,x,vq (9)

where Kras is the integral collision operator modeling the particle collisions. In the context
of the LBM, this integral collision operator is classically approximated by a local one, the
simplest and best known being the Bhatnagar-Gross-Krook [47]:

Kras « KBGKras “ ´
1

τ
pa´ aeq

q , (10)

where τ ą 0 is the relaxation parameter related to the viscosity of the fluid (see e.g. the
books [48, 49] for discussions on the link between τ and the LBM precision and stability).
The equilibrium state is described by aeq the equilibrium distribution function which, for
classical fluid, is equal to the Maxwell-Boltzmann distribution [50]:

aeq
pt,x,vq “

ρpt,xq

p2πc2
sq

d
2

exp

˜

´
}v ´ upt,xq}2

2c2
s

¸

. (11)

The fluid density ρ and velocity u can be computed as the zeroth and first moment of the
distribution function, respectively:

ρpt,xq “

ż

Rd

apt,x,v1q dv1 and ρupt,xq “

ż

Rd

v1apt,x,v1q dv1. (12)

Other collision operators with more degrees of freedom exist as the Two-Relaxation-Time
(TRT) or the Multiple-Relaxation-Time (MRT) (see [49] and the references therein). Sub-
stituting the BGK collision operator from equation (10) into the equation (9) gives the BGK
BE, the central element of LBM.

2.3. Speed discretization of the BGK Boltzmann Equation

An important feature of the LBM, giving it some of its effectiveness, is the idea to con-
struct an approximation of the distribution function, following the steps of a collocation
method, with respect to its dependence with v. Starting from the equilibrium distribution
function aeq, the method consists in projecting aeq onto the Hermite polynomials basis. In d
dimensions, this projection takes the following form:

aeq
pt,x,vq “ ωpvq

8
ÿ

k“0

1

k!
aeq,pkq

pt,xq : Hpkq
pvq (13)

where : is the k-contraction product, aeq,pkqpt,xq is defined as:

aeq,pkq
pt,xq “

ż

Rd

aeq
pt,x,v1qHpkq

pv1q dv1 (14)

with Hk the Hermite polynomials and ω the weighting function. These are defined as:

Hpkq
pvq “

p´1qk

ωpvq
∇kωpvq and ωpvq “

1

p2πq
d
2

exp

˜

´
}v}2

2

¸

(15)

4



where ∇k is a tensor of order k defined as:

∇kωpvq “
ÿ

|α|“k

B|α|ω

Bvα1
1 ¨ ¨ ¨ Bvαd

d

pvqebα1
1 b ¨ ¨ ¨ b ebαd

d , @k P N, (16)

with α P Nd, |α| “ α1 ` ¨ ¨ ¨ ` αd and ebαi
i the αi tensor product of ei, i.e.:

ebαi
i “ ei b ¨ ¨ ¨ b ei

loooooomoooooon

αi

where by convention we choose that eb0
i “ 1. (17)

In fact, the first expansion coefficients aeq,pkq are directly connected to the first moments of aeq

(see [49] for details), for example: aeq,p0q “ ρ and aeq,p1q “ ρu. Thus, truncating the expansion
given by equation (14) at a low order: N , provides a cheap and compact approximation of aeq

while conserving its first moments - the only ones included in the NSE. Also, since the collision
operators classically used (e.g as the BGK operator given in equation (10)) conserve the first
moments (mass and momentum – collisions are assumed to be elastic), the distribution
function a can be approximated by the same Hermite decomposition, while preserving the
macroscopic behavior. Moreover, because the distribution functions are decomposed on the
Hermite basis, their moments can be exactly computed by the use of the Gauss-Hermite
quadrature rule:

ż

Rd

ωpv1qP pNqpv1q dv1 “
q´1
ÿ

i“0

wiP
pNq
pviq (18)

where the vi are the q roots of the Hermite polynomials, wi the associated weight and P pNq a
polynomial function of degree N defined on Rd (for the quadrature to be exact we must have
N ď 2q ´ 1). The usual velocity and weight sets, used for the Gauss-Hermite quadrature
rule, are generally denoted DdQq, with q the number of discrete velocities (see [49]). See
for example the D2Q9 and D2Q13 speed sets represented in Figure 4 and whose associated
weights are given by:

w0 “
4

9
, wi “

1

9
i P v1, 4w and wi “

1

36
i P v5, 8w , (19)

for the the D2Q9 set and:

w0 “
3

8
, wi “

1

12
i P v1, 4w , wi “

1

36
i P v5, 8w and wi “

1

96
i P v9, 12w , (20)

for the the D2Q13 one. Afterwards, the BGK BE is imposed at the collocation points which
are taken as the vi and we define:

aeq
i pt,xq “

wi
ωpviq

aeq
pt,x,viq and aipt,xq “

wi
ωpviq

apt,x,viq. (21)

If the discrete velocity set is well chosen, the distribution functions moments can be computed
exactly as follows:

ρpt,xq “
q´1
ÿ

i“0

aipt,xq and ρupt,xq “
q´1
ÿ

i“0

viaipt,xq, (22)
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2.4. Link between the mesoscopic model and the macroscopic one

The interest in LBM comes from the link that can be made between the numerically solved
mesoscopic modified/simplified model and the resulting macroscopic equations simulated.
The most widely used method to establish this link is the Chapman-Enskog expansion. It
is used in [49, Chapter 4] to show that a mesoscopic model with an equilibrium distribution
function approximation truncated at the order N “ 2, allows to verify the macroscopic model
presented in subsection 2.1. The approximation reads:

aeq
pt,x,vq « ωpvqρpt,xq

„

1`
v ¨ upt,xq

c2
s

`
pupt,xq b upt,xqq : pv b v ´ c2

sIq

2c4
s



(23)

Other approaches than the Chapman-Enskog one exist, see for example [31, 34, 49] and the
reference therein.
To extend the use of the LBM to other macroscopic models, it is possible to define gen-
eral equilibrium distribution functions under a form closed to equation (23), unrelated to a
Maxwell-Boltzmann distribution. Thus the LBM can be seen as a numerical solver losing its
link with to kinetic theory of gases [31–34].

2.5. Fully discretized Boltzmann Equation

Classically, Rd is discretized in a d-dimensional lattice denoted Lx “ ∆xˆZd of constant
step ∆x ą 0 in the d directions (we implicitly impose that the basis vectors of Rd frame
we have introduced, i.e. e1, . . . , ed, are the principal axes of Lx) and the time interval I is
discretized in a 1-dimensional lattice Lt “ ∆tˆ w0, Ntw of constant step ∆t ą 0. To pose the
discrete problem the nodes of Lx are separated into several groups, see Figure 2:

• the internal nodes: Iin “ tx P Lx | x P Ω and @i P v0, q ´ 1w , x` vi P Ωu,

• the boundary nodes: Ibd “ tx P Lx | x P Ω and Di P v0, q ´ 1w , x` vi P Ωcu,

and the other nodes are not considered. We detail in the following the treatment of nodes
belonging to Iin. For the boundary nodes in Ibd

in , many approaches exist depending on the
type of boundary condition imposed to the macroscopic fields ρ or u, see [49]. The speed
discretized BGK BE (9), written on the space and time lattices reads, for i P v0, q ´ 1w, t P Lt
and x P Iin:

Bai
Bt
pt,xq ` vi ¨∇xaipt,xq “ KBGKraispt,xq. (24)

By using the characteristic method, the equation (24) can be put in the form:

aipt`∆t,x` vi∆tq ´ aipt,xq “

ż t`∆t

t

KBGK rais pt
1,x` vit

1
q dt1, (25)

and by approximating the integral term using the rectangular rule, the equation (24) takes
the following final form, called the discrete Lattice Boltzmann Equations (LBE):

aipt`∆t,x` vi∆tq “ aipt,xq `∆tKBGK rais pt,xq, (26)
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(a) D2Q9 (b) D2Q13

Figure 1: The speed sets D2Q9 in (a) and D2Q13 in (b).

2.6. Solution numerical algorithm

This problem is then solved at each time step following the classical so-called collide-and-
stream paradigm:

i- the collide step, where each population aipt,xq is updated by receiving a local collisional
contribution:

a˚i pt,xq “ aipt,xq ´
∆t

τ
paipt,xq ´ a

eq
i pt,xqq , for i P v0, q ´ 1w , (27)

ii- the streaming step, where the post collision populations a˚i pt,xq stream along their as-
sociated direction vi, landing on the corresponding neighbouring lattice site (no particle
can fly off-grid):

aipt`∆t,x` vi∆tq “ a˚i pt,xq, for i P v0, q ´ 1w . (28)

If any, the main trick of the LBM lies in the velocity discretization. The advection velocity
of BE is the molecules’ velocity rather than a mean flow velocity, which leads to constant
propagation velocity for each ai. Through a smart choice of dimensions, each constant vi is
chosen as to correspond to the grid-spacing to ∆t ratio. This yields exact linear advection
properties: a˚i are only moved from one grid point to the next (in the direction of the
corresponding discrete velocity) during the streaming step, which is therefore exact and
equivalent to only a shift in data tables. Also, as one can see, the collide step is local in
space, what ease the use of domain decomposition techniques.

3. The Lattice Boltzmann Method for Radiative Transfer Equation solution

In the previous section we have recalled the main ingredients of the LBM for the NSE. In
the following one, we discuss about the LBM adaptation for the RTE. We start by introducing
the continuous RTE and the main differences it has with BE. Then we briefly develop the main
existing strategies, based on LBM, for its numerical solution and we finish by introducing
the principle of the new approach we propose and the advantages it brings.
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Figure 2: Lattice nodes classification, for d “ 2, with in blue the nodes of Iin, in red the nodes of Ibd and in
white the nodes that are not considered.

3.1. The Radiative Transfer problem

In this paper, we consider the RTE describing the transport of radiation through a
medium, affected only by scattering process. It is an integro-differential equation formu-
lated in terms of an energy density function a. The energy density is a function of pt,xq and
also of direction k̂ in the phase domain I ˆΩˆSd´1. It gives the density of energy which, at
t and located at x, has a propagation direction k̂. The RTE reads, @pt,x, k̂q P I ˆΩˆ Sd´1:

Ba

Bt
pt,x, k̂q ` vk̂ ¨∇xapt,x, k̂q “ vKraspt,x, k̂q, (29)

where v P R˚ is the constant radiation speed propagation. The energy scattering is modelled
by Kras, the integral scattering operator, defined as:

Kraspt,x, k̂q “ ´Σtpxqapt,x, k̂q ` Σspxq

ż

Sd´1

σpk̂ ¨ k̂1qapt,x, k̂1q dk̂1 (30)

where Σt is the total scattering coefficient, equal to the sum of Σs, the scattering cross section
and Σathe absorption coefficient which are physical parameters of the medium (Σt “ Σs`Σa).
The scattering phase function σ gives the energy fraction propagating in direction k̂1 deviated
in the direction k̂. For the sake of clarity, we omit to write the dependence of σ on x, as it
has no influence on the development of the method. It is normalized as:

ż

Sd´1

σpk̂ ¨ k̂1q dk̂1 “ 1. (31)

We also define the total energy E and the radiative flux F as the zeroth and first order
moments of a, respectively, i.e.:

Ept,xq “

ż

Sd´1

apt,x,k1q dk1, and Fpt,xq “

ż

Sd´1

k1apt,x,k1q dk1. (32)

In order to formulate a complete RT problem, we add to equation (29) an initial condition
that reads:

ap0,x, k̂q “ a0px, k̂q, @px, k̂q P Ωˆ Sd´1, (33)
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where a0 is a given field, as well as a Dirichlet boundary condition:

apt,x, k̂q “ adpt,x, k̂q, @pt,x, k̂q P I ˆ Γ´
k̂
ˆ Sd´1, (34)

where ad a given field and Γ´
k̂

is the incoming boundary for a given direction k̂. It is a portion
of BΩ, defined as:

Γ´
k̂
“

!

x P BΩ | npxq ¨ k̂ ă 0
)

, (35)

with n the unit outward normal vector to BΩ. This boundary condition corresponds to totally
transparent wall, see [2] for other types of boundary conditions.
As one can see, the following formulation of the RTE (equation (29)) differs from the BE
(equation (9)) used in the LBM mainly by the fact that the velocity field in the advection
operator is not the distribution function speed variable v, which lives in Rd, but a field vk̂,
depending on the direction of energy propagation, which lives on a pd´1q-sphere. In fact, the
RTE we use is equivalent to a mono-kinetic BE, i.e. where particles move at speed v “ vk̂
and then where the particle density function a depends only on pt,x, k̂q. This small difference
leads, if one uses the characteristic method with a regular space and time lattices, as done
in the LBM and recalled in subsections 2.3 and 2.6, to off-grid propagation.

3.2. Brief overview of existing strategies based on LBM

Several approaches have been developed to use or adapt the LBM for the RTE solution
to take advantage of its effectiveness, we classify them into three categories.
A first category of approaches aims to solve an approximated version of the RTE, called the
P1 approximation (see the book [2, Chapter 16] for more details on the PN approximation of
the RTE). In this case, the energy density takes the following form:

apt,x, k̂q «
1

4π
Ept,xq `

3

4π
Fpt,xq ¨ k̂. (36)

Also, considering the highly scattering regime, i.e. Σa ! Σs, homogeneous Σa and Σs coef-
ficients and assuming the steady state is reached instantaneously, the following macroscopic
steady diffusion equation is classically used (see e.g. [51]):

1

3pΣa ` Σsq
∆E “ ΣaE. (37)

Many works have used the LBM to solve equation (37), considering it as the macroscopic
targeted model, see [36–38] or [39] and the references therein and [40] for a rigorous established
link between the adapted LBM and the macroscopic model, using the Chapman-Enskog
expansion mentioned in subsection 2.4.
A second category, initially developed by [41] for the steady RTE and later in [42] and [8]
for the unsteady RTE aims to solve the system of coupled convection equations arising from
the discretization in direction of the RTE by means of the DOM (or SN -approximation).
The DOM relies on the discretization of the angular domain Sd´1 by the introduction of N
discrete directions and the construction of an associated quadrature method to approximate
the integral terms. Several sets of directions k̂i and weights wi exist, constructed from
different constrains (see e.g. [2, Chapter 17] of [52, 53] for more details). Then the integral
scattering term is approximated using the quadrature and the equation (29) is replaced
by a system of N coupled equations of N unknowns, corresponding to the energy density
evaluation at the discrete directions. To solve this system of equations, the authors use the
LBM as a direct numerical solver by adapting the developments realized for the general case
of convection-diffusion equations, as for example the works of the paper [43] (which extends
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those of [44]), to their particular case. It consists in solving the system of N coupled equations
by introducing for each unknown ai a set of q distribution functions and using a LBM scheme.
The major drawback of this approach is that it becomes very heavy from a memory point of
view because N ˆ q unknown fields, depending on time and space, are introduced.
The last category of method is the one recently proposed by [45]. In their approach the
authors start by approximating the energy density with respect to its dependence on the
direction by projecting it on the spherical harmonics (see e.g. the book [54, Chapter 4] for
more information about spherical harmonics approximation theory). They consider several
quadratures, constructed such that it integrates exactly all the spherical harmonics up to
a given degree. In Figure 3 is depicted an example of a uniformly spaced direction set the
authors used, for the case d “ 2, with N “ 12 directions given by k̂i “ pcospψiq, sinpψiqq
with ψi “ 2πpi ´ 1q{N and with the associate weights wi “ 1{N . Then, the authors fully
discretized the RTE by using the same classical procedure used for the BE in the LBM
framework we detailed in subsection 2.5. As the Figure 3 shows, even if we set ∆x “ v∆t,
the energy density will propagate off-grid in some directions. To overcome this difficulty, the
authors propose to use a spatial d-interpolation scheme. A drawback of this approach is that
d-interpolation is numerically expensive and may introduce spatial diffusion of the energy.

directly the steady or unsteady RTE, with principally two types of methods. A first type
of methods, starts by approximating the RTE

Figure 3: Example of a uniformly spaced direction set used in [45] in the case where d “ 2, N “ 12 and
∆x “ v∆t.

3.3. Interest of multiple time steps for LBM-based RTE

In this work, we propose an alternative approach to the spatial d-interpolation scheme
proposed by [45], aiming to conserve an on-grid streaming. It is based on the use of a
particular pd´ 1q-sphere discretization, considering only directions which link lattice nodes,
i.e. directions of space D defined as:

D “

"

z

}z}
P Sd´1

| z P Zdz
 

0d
(

*

(38)

(where 0d is the null vector of Zd), as well as the construction of a quadrature. This dis-
cretization, by defining for each directions a particular time discretization with a specific
step, allows to recover an on-grid streaming. The difficulty arising with this approach is to
manage the several time discretizations introduced which may be incompatible. To overcome
it, we propose to treat the incompatibilities by a time linear interpolation. We detail in what
follows the whole procedure.
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4. A Staggered Lattice Boltzmann Method for the Radiative Transfer problem

In the previous sections we have recalled the main ingredients of the LBM, introduced the
continuous RTE and discussed its main differences with the BE. We have briefly presented
the different existing strategies which are based on LBM to solve the RTE.
In this section we present in details the Staggered Lattice Boltzmann Method for the RTE we
propose. This method aims at conserving an on-grid streaming while using some of the LBM
ingredients. The on-grid property being relative to a spatial discretization, we discretize the
space Rd by introducing a d-dimensional lattice denoted Lx “ ∆x ˆ Zd of constant step
∆x ą 0 in the d directions.

4.1. Discretization in direction space

As done classically for the numerical solution of the RTE (see subsection 3.2), we discretize
the directions space Sd´1. However, to ensure on-grid streaming, not all points from Sd´1

can be considered but only those that belong to D (see equation (38)). We group all the
vectors of Zdz

 

0d
(

by their euclidian norms in an infinite collection of sets tZi, i P N‹u and
normalize them. These sets are indexed on N˚ in ascending order of norm:

Zi “

"

z

}z}
P Sd´1

| z P Zd and }z} “ ci

*

Ă D @i P N‹, (39)

with ci P R‹` the Zi associated norm (with ci ď cj if i ď j). Then we proceed recursively as
follows:

• Initialization pk “ 1q: we define the first set of directions S1:

S1 “ tvi “ ei for i P v1, dwu p“ Z1q . (40)

• Inductive step pk ą 1q: we define the k-th set of directions Sk:

Sk “ Zkz pS1 Y ¨ ¨ ¨ Y Sk´1q (41)

to ensure that no direction is considered several times. The number of direction of Sk
will be denoted Nk.

As an example, the first four sets for the case d “ 2 are given in Table 1 and represented in
Figure 4.
Then, we choose NS directions sets, whose set of indexes is denoted I Ă N‹. In the follow-
ing, we will denote by In, with n P v1, NSw, an element of I and k̂ni , with i P

0

1, N In
8

the
directions of SIn .
Now we have constructed a direction discretization, we use specific quadratures to approxi-
mate the integral terms. Thus, for each discrete direction k̂mj with n P v1, NSw and i P

0

1, N In
8

we write:

ż

Sd´1

σpk̂ni ¨ k̂
1
qapt,x, k̂1q dk̂1 «

NS
ÿ

m“1

NIm
ÿ

j“1

wnmij apt,x, k̂
m
j q, (42)

with wnmij ą 0 the weight associated to the direction k̂mj . The way we define the weights,
following the principle of the DOM, is explained in the Appendix A. We define the approx-
imated integral scattering operator by:
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k ck Sk Nk Color on Fig. 4
1 1 tp1, 0q , p0, 1q , p´1, 0q , p0,´1qu 4 Blue

2
?

2 tp1, 1q , p´1, 1q , p´1,´1q , p1,´1qu 4 Red

3
?

5
tp2, 1q , p´1, 2q , p´2,´1q , p1,´2q , 8

Green
p1, 2q , p´2, 1q , p´1,´2q , p2,´1qu

4
?

10
tp3, 1q , p´1, 3q , p´3,´1q , p1,´3q , 8

Black
p1, 3q , p´3, 1q , p´1,´3q , p3,´1qu

Table 1: The first four directions sets Sk in the case of d “ 2.

K̃raspt,x, k̂ni q “ ´Σtpxqapt,x, k̂
n
i q ` Σspxq

NS
ÿ

m“1

NIm
ÿ

j“1

wnmij apt,x, k̂
m
j q. (43)

We construct also a quadrature to approximate the energy density zeroth and first order
moments by following the same approach:

Ept,xq «
NS
ÿ

n“1

NIn
ÿ

i“1

wni apt,x, k̂
n
i q and Fpt,xq «

NIn
ÿ

i“1

wni k̂
n
i apt,x, k̂

n
i q (44)

with wni ą 0 the weight associated to the direction k̂ni .
Before to give the discrete in space-direction RT problem, we separate the nodes of the
spatial lattice I into two sets, the internal nodes and border ones. However this two sets
definition will depend on the considered direction propagation. Thus, for each n P v1, NSw

and i P
0

1, N In
8

, we define:

• the internal nodes: In,iin “

!

x P Lx | x P Ω and x´ vk̂ni ∆tn P Ω
)

,

• the boundary nodes: In,ibd “

!

x P Lx | x P Ω and x´ vk̂ni ∆tn P Ωc
)

,

and the other nodes are not considered. The discrete in space-direction RT problem reads:

For each n P v1, NSw, i P
0

1, N In
8

, find ani such that, @t P I we have:

Bani
Bt
pt,xq ` vk̂ni ¨∇xa

n
i pt,xq “ vK̃raspt,x, k̂ni q, @x P In,iin , (45)

ani p0,xq “
1

wni
a0px, k̂

n
i q, @x P Ω, (46)

ani pt,xq “

$

&

%

1

wni
adpt,x, k̂

n
i q if k̂ni ¨ n ď 0,

0 else,

@x P In,ibd (47)

where, for the sake of clarity, ani pt,xq “ apt,x, k̂ni q.

4.2. Time discretization

We introduce, for each chosen direction set Sn (n P v1, NSw), a 1-dimensional time lattice
Lnt “ ∆tnˆw0, N

n
t w of constant step ∆tn ą 0 such that: ∆tn “ ∆tˆ cn with ∆t “ ∆x{v and

Lnt fully overlaps I, see Figure 5. In the following we will denote the discrete instant of each

12



Figure 4: The first four direction sets Sk in the case of d “ 2.

time lattice: tnl “ l ˆ∆tn for l P w0, Nn
t w.

We use for each equation of the system (45), as done in LBM, the characteristic method
as well as the rectangular rule with the associated time discretization. We then obtain the
following fully discrete RT problem:

For each n P v1, NSw, i P
0

1, N In
8

, find ani such that, @tnl P Lnt we have:

ani pt
n
l`1,x` vk̂

n
i ∆tnq “ ani pt

n
l ,xq ` v∆tnK̃raspt

n
l ,x, k̂

n
i q, for x P In,iin , (48)

ani p0,xq “
1

wni
a0px, k̂

n
i q, @x P Ω, (49)

ani pt
n
l`1,xq “

$

&

%

1

wni
adpt

n
l`1,x, k̂

n
i q if k̂ni ¨ n ď 0,

0 else,

for x P In,ibd . (50)

As one can see, according to equation (48), we need to compute the term K̃rasptnl ,x, k̂
n
i q

at tnl to obtain the ani at tnl`1. To do so, all ani need to be known at the considered instant,
which is not a priori the case because the different time lattices are not necessary compatible.
We detail in the following subsection how we numerically overcome this difficulty.

Figure 5: Diagram representing three different time lattices. The three circles indicate the traversal position
of each time lattice.

4.3. Solution numerical algorithm

To overcome the difficulty coming from the time lattices incompatibilities and to avoid a
long and memory consuming construction of a global time lattice, obtained by the computing
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of all the intersections between the different time lattices, we introduce a traversal algorithm.
It consists in the following steps:

1. Initialization:

(a) We introduce a vector of NS components, denoted by s, giving the traversal posi-
tion of each time lattice. We initialize it full of zeros: sn “ 0 for n P v1, NSw.

(b) We initialize the
řNs

n“1N
In distribution functions: ani p0,xq “ a0px, k̂

n
i q, @x P I

n,i
in .

(c) We compute K̃rasp0,x, k̂ni q using equation (43).

(d) For all direction sets, i.e. n P v1, NSw, we solve the problem (48) using the collide-
and-stream paradigm of the LBM and obtain the value of all energy densities:
ani pt

n
1 ,xq, @x P I

n,i
in .

2. Current step: while all the time lattices have not been traversed, i.e. while sn ă Nn
t

for n P v1, NSw.

(a) We search which time lattices have the least advances traversing, by determining
tc the lowest time such that: tc “ min

` 

tnsn , n P v1, NSw
(˘

and regrouping the
number of these lattices in a set C “

 

n | tnsn “ tc
(

. We denote Cc “ v1, NSw zC.
For example on Figure 5, where three direction sets are considered, tc “ t32 and
only the third time lattice has been traveled exactly up to this point so C “ t3u
and Cc “ t1, 2u.

(b) To compute Krasptc,x, k̂
n
i q we need to know the energy distribution values of time

lattices which belong to Cc at tc. Since their values are known at times tnsn ą tc
and tnsn´1 ă tc, we do a linear interpolation:

ani ptc,xq “
tnsn ´ tc

∆tn
ani pt

n
sn´1,xq `

tc ´ t
n
sn´1

∆tn
ani pt

n
sn ,xq,

for n P Cc, i P
0

1, N In
8

and x P In,iin .

(51)

(c) We compute Krasptc,x, k̂
In
i q using equation (43).

(d) For each n P C, we solve the problem (48) using the collide-and-stream paradigm
of the LBM and obtain the value of all energy densities: ani pt

n
j`1,xq, @x P I

n,i
in .

(e) We update the state vector by incrementing each component belonging to C (sn “
sn ` 1 with a computer writing).

The treatment of the boundary nodes is realized at the step (1d) of initialization and step
(2d) of the loop, during the streaming step. As discussed in subsubsection 4.1, the boundary
nodes depend on the considered propagating direction with the definition of In,ibd . To verify the
boundary condition given by equation (34), we impose, for each n P v1, NSw and i P

0

1, N In
8

during initialization and for each n P C and i P
0

1, N In
8

during the loop the equation (50).
As one can see, the fact of using a time interpolation instead of a space one has the advantage
to only use data at the same node and therefore recovers the local aspect of the LBM. On
the other hand this is paid by an increase in the total number of time steps compared to
an approach with one time discretization and also the need to keep the ai values at two
consecutive time steps. Thus, the memory footprint is (only) double (so same order of
magnitude) that for the classical LBM.
Now we have presented the different ingredients of the Staggered Lattice Boltzmann Method
we propose for the RTE, we demonstrate its relevance and potential, in the next section,
through several two-dimensional numerical tests.
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5. Numerical examples

In this section we apply our approach to several two-dimensional (d “ 2) problems taken
from literature. We consider only direction sets of the form: DNS “

ŤNS
k“1 Sk, i.e. the set

containing the indexes of chosen sets Sk is of the form: I “ v1, NSw. The implementation
of the SLBM described in the previous section and used for the examples of the present is
freely available at https://github.com/Romain-Ruyssen/SLBM-for-RTE.

5.1. A laser problem

The first problem we consider is extracted from [45]. It consists in the modeling of the
streaming of a radiation beam, injected from a part of the boundary, denoted Γi, of a square-
shaped domain of side l: Ω “ s0, lr ˆ s0, lr, in a direction elas (assuming that elas ¨ n ď 0
on Γi), over I (see Figure 6). We assume that the medium in which the laser streams does
not absorb neither scatter radiations, i.e. Σa “ Σs “ 0, so that the RTE simplifies to a free
transport equation. We then consider two different cases. In both the function ad of the
boundary condition is given by:

adpt,xd, k̂q “ 1Γi
pxdqδpk̂´ elasq (52)

with 1Γi
the indicator function of Γi and δ the Dirac distribution. For the numerical appli-

cation we have considered the following parameters without dimension: v “ 1, l “ 1 and
T “ 1. To make comparisons, we have used the space interpolation approach proposed in
[45] with:

• a 2-dimensional lattice Lx, covering Ω with a constant step ∆x “ 1{200,

• a 1-dimensional lattice Lt, covering I with a constant step ∆t “ ∆x{v “ 1{200,

• a set of 8 uniformly spaced directions:
!

k̂i “ rcospφiq, sinpφiqs | φi “ 2πi{8, i P v1, 8w
)

all with the same quadrature weight wi “ 1{8,

and the SLBM approach with:

• the same 2-dimensional lattice Lx,

• a direction set D2 (“ S1 Y S2 as defined in subsubsection 4.1), with also 8 directions
and quadrature weights as constructed in Appendix A,

• the 1-dimensional lattices associated to each direction sets (L1
t “ Lt with ∆t1 “ ∆t,

for S1 and L2
t with ∆t2 “

?
2∆t for S2).

Because the problem does not consider scattering and only energy in one direction, the set
of directions we have chosen is unnecessarily large but, it allows us to illustrate the effect of
the space and time interpolations.

5.1.1. First case

In this case Γi “ t0u ˆ spl ´ liq{2, pl ` liq{2r with li “ 0.5, elas “ e1 and we assume that
no energy is initially present in the domain. The geometry of this case is depicted in Figure
6 (a). The initial energy distribution a0 reads:

a0px, k̂q “ 0. (53)
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(a) first case. (b) second case.

Figure 6: Geometry of the laser problem for the first case in (a) and the second case in (b).

The results for the space interpolation approach at two consecutive time steps are given
in Figure 7. As expected, the streaming in this case is always on-grid and at each time step,
the energy value at each point is either 0 or 1. For our SLBM approach, if we only consider
time belonging to L1

t , we find back the on-grid streaming, as shown by Figures 8 (a), (b)
and (d). On the other hand as shown by Figure 8 (c), for time steps belonging to L2

t , we do
not have only values of either 0 or 1, but interpolated values at some lattice nodes. This is
best represented in Figure 9. As one can see, because the energy density, propagating in the
laser direction, pass from 0 at t “ 0.50 to 1 at t “ 0.505 at the nodes in front of the laser,
their energy density values are interpolated at t “ 0.502 to compute the energy density the
next time step of L2

t at t “ 0.502`∆t2.

5.1.2. Second case

In this case Γi “ t0uˆsl ´ li, lrYs0, lirˆtlu with li “ 0.125, elas “ pe1´e2q{
?

2 and we as-
sume that initially energy is only present in a sub-domain Ωi “ tx P Ω | x ¨ e2 ą x ¨ e1 ` l ´ liu
propagating in the direction elas. The geometry of this case is depicted in Figure 6 (b). The
initial energy distribution a0 reads:

a0px, k̂q “ 1Ωi
pxqδpk̂´ elasq. (54)

The results are illustrated in Figure 10. As one can see on Figure 10 (a), because the
propagating direction fall off lattice nodes, energy density space interpolations are carried
out, leading to numerical diffusion. This drawback disappears with our approach as Figure
10 (b) show. This illustrate the main advantage of our approach compared to the space
interpolation one. We find of course the same behavior with time interpolations in front of
the laser beam as observed with the first case, but at time steps belonging to L1

t .

5.2. A pulse problem

The third problem is adapted from [8], it consists in studying, over I, a transient ra-
diative transfer in a two-dimensional rectangular-shaped domain of length l1 and width l2:
Ω “ s0, l1r ˆ s0, l2r, induced by submitting its left border, denoted Γi, to a short pulse laser
irradiation propagating in the direction e1, see Figure 11. The domain is occupied by an ab-
sorbing and isotropically scattering medium, i.e. σ “ 1{2π with a total scattering coefficient
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(a) space interpolation, t “ 0.50. (b) zoom on A, t “ 0.50.

(c) zoom on A, t “ 0.505.

Figure 7: Evolution of the total energy E for the first case with the space interpolation approach at t “ 0.50
in (a) with a zoom on the area A “ r0.49, 0.51s ˆ r0.74, 0.76s (represented by a small white contour in (a))
in (b) and the same zoom at t “ 0.50`∆t “ 0.505 in (c).

Σt “ 1. We introduce the scattering albedo ω such that, Σs “ ω ˆ Σt. Initially, the domain
contains no energy, i.e. the initial energy distribution reads:

a0px, k̂q “ 0 (55)

The square pulse beam is given by:

sptq “ s0 rHptq ´Hpt´ tpqs (56)

where H denotes the Heaviside distribution. The medium boundaries are assumed transpar-
ent, then the function ad of the border condition is defined as:

adpt,xd, k̂q “ sptq1Γi
pxdqδpk̂´ e1q, @xd P Γi Y Γo. (57)

To simulate an infinite domain in direction e2, we impose periodic conditions on Γp such
that:

apt, rx1, 0s , k̂q “ apt, rx1, l2s , k̂q, @px1, k̂q P r0, l1s ˆ S1. (58)

To compare our results with the space interpolation approach, we measure two quantities, the
reflectance qr, at point Pr whose coordinates are xr “ p0, l2{2q, defined by equation (59) and
the transmittance qt, at point Pt whose coordinates are xt “ pl1, l2{2q, defined by equation
(60).
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(a) SLBM, t “ 0.50. (b) zoom on A, t “ 0.50.

(c) zoom on A, t “ 0.502. (d) zoom on A, t “ 0.505.

Figure 8: Evolution of the total energy E for the first case with the SLBM approach at t “ 0.50 P L1
t in (a)

with a zoom on the area A “ r0.49, 0.51sˆ r0.74, 0.76s in (b) and the same zoom at t “ 0.502 P L2
t in (c) and

at t “ 0.50`∆t1 “ 0.505 P L1
t in (d).

qrptq “
1

s0

NS
ÿ

n“1

ÿ

n¨k̂In
i ą0

wni n ¨ k̂
In
i a

n
i pt,xrq (59)

qtptq “
1

s0

NS
ÿ

n“1

ÿ

n¨k̂In
i ă0

wni |n ¨ k̂
In
i |a

n
i pt,xtq (60)

For the numerical application we have considered the following parameters without dimen-
sions: v “ 1, l1 “ 1, l2 “ 0.2, T “ 6, tp “ 1 and s0 “ 1. We have used the space interpolation
approach with:

• a 2-dimensional lattice Lx, covering Ω with a constant step ∆x “ 1{500,

• a 1-dimensional lattice Lt, covering I with a constant step ∆t “ ∆x{v “ 1{500,

• a set of 8 uniformly spaced directions
!

k̂i “ rcospφiq, sinpφiqs | φi “ 2πi{8, with i “ 1 . . . 8
)

all with the same quadrature weight wi “ 1{8,

and the SLBM approach with:

• the same 2-dimensional lattice Lx,
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Figure 9: Evolution of the exact total energy E and the one obtained with the SLBM approach, for the first
case, at nodes of Lx belonging to the segment r0.49, 0.52s ˆ t0u at t “ 0.50, t “ 0.502 and t “ 0.505.

(a) space interpolation, t “ 0.9970. (b) SLBM, t “ 0.997.

Figure 10: Evolution of the total energy E for the second case with the space interpolation approach at
t “ 0.9970 in (a) and with the SLBM approach at t “ 0.9970 in (b). The exactly streamed beam is
represented by a white contour in (a) and (b).

• the direction set D2 and quadrature weights as construted in Appendix A.

• the 1-dimensional lattices associated to each subsets of D2.

The reflectance and transmittance evolution over I we obtain, with an albedo ω “ 1.0,
are depicted in Figure 12. As one can see, the SLBM and space interpolation approaches
give really close results. On Figure 12 (c), we can see that the space interpolation approach,
because of the numerical space diffusion, the transmittance evolution is slightly smoothed
and its values in the upper part are moderately lower. Of course none of these solutions can
be considered as the problem exact solution.
The results we obtain with others albedo values are depicted in Figure 13. As observed in
[8], we see that an increase of scattering albedo leads to an increase in both the reflectance
and transmittance.
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Figure 11: Geometry of the pulse problem.

5.3. Anisotropic and inhomogeneous problem

The last problem we consider is taken form [27]. It consists in the streaming of a radiation
beam, injected from a part of the boundary, denoted Γi, of a square-shaped domain of length l:
Ω “ s´l{2, l{2rˆs´l{2, l{2r, in the direction e1, over I, see Figure 14. The domain is occupied
by an heterogeneous, absorbing and anisotropically scattering medium with Σa “ 0.01, a
scattering coefficient Σs which is equal to 1 throughout the domain, except in the interior of
a circle of radius 0.3 centered at Pc whose coordinates are xc “ p1, 1.5q where Σs is equal to
5. Thus:

Σspxq “

#

1 if }x´ xc} ą 0.3,

5 if }x´ xc} ď 0.3.
(61)

The anisotropic scattering is represented by the Henyey–Greenstein phase function (see [55])
which in two dimension is given by:

fpk̂ ¨ k̂1q “
1

2π

1´ g2

1` g2 ´ 2g cospk̂ ¨ k̂1q
(62)

where g is the mean cosine scattering angle or anisotropy factor (the scattering is isotropic
for g “ 0, and becomes more and more sharply peaked in the forward direction as g tend to
1). For this application we take g “ 0.7. Initially, the domain contains no energy, i.e. the
initial energy distribution reads:

a0px, k̂q “ 0 @px, k̂q P Ωˆ S1. (63)

The beam profile is given by:

sppt,xdq “ fptqfpxdq @xd P Γi (64)

where:

fptq “
2

π
exp

«

´

ˆ

t´ t0
σt

˙2
ff

and fpxdq “ exp

«

´

ˆ

}xd ´ xl}

σs

˙2
ff

(65)

with the standard deviation σt “ 1{
?

2, σs “ 1{
?

10, t0 “ 1 and xl “ p´2.5, 1.5q. The
medium boundaries are assumed transparent, then the function ad of the border condition is
defined as: @xd P Γi Y Γo

adpt,xd, k̂q “ sppt,xdq1Γi
pxdqδpk̂´ e1q (66)

For the numerical application, we have considered the following parameters without di-
mensions: v “ 1, l “ 5, T “ 15. We have used the SLBM approach with:
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Figure 12: Evolution of the reflectance qr in (a) and transmittance qt in (b) with a zoom on the upper part
in (c), computed with the SLBM and space interpolation approaches with an albedo ω “ 1.0.

• a 2-dimensional lattice Lx, covering Ω with a constant step ∆x “ 5{800,

• a direction set D9 composed of 64 discrete directions,

• the 1-dimensional lattices associated to each subsets of D9.

The total energy we obtain is depicted by Figure 15 (a) at t “ 2.0, (b) at t “ 4.0 and
(c) at t “ 6.0. We also measure the backscattered flux qa at point Pa whose coordinates are
xa “ p´2.5,´0.5q defined as:

qaptq “
NS
ÿ

n“1

NIn
ÿ

i“1

wni |e1 ¨ k̂
In
i |a

n
i pt,xaq. (67)

The results we obtain for the case of a homogeneous medium (without the disc) and the
heterogeneous one as well as those obtained in [27] are depicted by Figure 15 (d). In [27], the
authors developed a radial basis function mesh-less method to numerically solve the spatial
dependence. As one can observed, the two homogeneous solutions correspond well. For the
heterogeneous case, we find the bump generated by the obstacle but less high compared to
[27]. It is difficult to explain this difference, especially since neither solution can be considered
an exact solution to the problem. However, we made sure to achieve convergence of our results
as shown in Figure 16 where the evolutions of qa at Pa for three increasingly large direction
sets: D2, D5 and D9 are depicted for the homogeneous and heterogeneous medium cases
(with ∆x “ 5{800).
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Figure 13: Evolution of the reflectance qr in (a) and transmittance qt in (b) with a zoom on the upper part
in (c), computed with the SLBM and interpolation approaches with different albedo values: ω “ 0.9, 0.5 and
0.1.

6. Conclusion

In this article, we proposed a new numerical approach, called the Staggered Lattice Boltz-
mann Method, which adapts some of the LBM features to the Radiative Transfer Equation
solution. Its main highlights are:

• The definition of a SLBM formulation of the RTE, adapting some features of the LBM
with different discretizations in time. The time incompatibilities being treated by a
linear time interpolation.

• The construction of a particular discretization and quadrature for the unit sphere Sd´1

following the DOM. This quadrature combine with the different time discretizations,
allows to recover the particles on-grid streaming aspect of LBM.

• A traversal algorithm which allows to manage the incompatible time discretizations
during the numerical resolution of the discrete RT problem. Each step of the algorithm
starts by the determination of which direction the energy density is known and unknown
at the considered time step. Then the algorithm imprints a second aspect of the LBM:
the collide-and-stream paradigm, to solve the radiative transfer problem. The linear
temporal interpolation step which precedes the collide one, shares the same local nature
as this one. Indeed, it only involves data at the same space lattice node. It is this local
nature which allows for massive parallelization.
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Figure 14: Geometry of the anisotropic and heterogeneous problem.

We consider that the Staggered Lattice Boltzmann Method approach, by all the common
aspects it shares with the LBM, should reach the same efficiency level and then constitute a
promising numerical method for the solution of the RTE.
We have successfully implemented our approach for the resolution of different two-dimensional
problems and compare the solutions we obtained to the ones obtained with other approaches,
found in literature. The comparison shows good agreement between the results.

Appendix A. Construction of a particular quadrature with prescribed nodes

We detail here how we proceeded to construct the quadratures we used to approximate
the integral terms in the two-dimensional numerical tests (d “ 2) presented in section 5,
following the principle of the DOM. To do so, we assume that NS direction sets, whose set
of indexes is denoted I Ă N‹, have been chosen a priori. To conserve some symmetry in the
quadrature, we chose to keep all the directions of each SIn (n P v1, NSw) set. We consider
the set of chosen discrete directions constitute as a 1-dimensional lattice, denoted Lθ, of the
1-sphere and denote θni the polar angle associated to the direction k̂ni .
As mentioned in subsubsection 4.1, the quadrature we want to construct, for each discrete
direction k̂ni , is given by equation (42), we recall here:

ż

S1
σpk̂ni ¨ k̂

1
qapt,x, k̂1q dk̂1 «

NS
ÿ

m“1

NIm
ÿ

j“1

wnmij apt,x, k̂
m
j q, (A.1)

with wnmij the weight associated to the direction k̂ni . By decomposing the integral on each
segment of Lθ and approximating each term by the trapezoidal rule we obtain the following
equation for the weights:

wnmij “
θ` ´ θ´

2
σpcospθni ´ θ

m
j qq (A.2)

where θ´ and θ` are the polar angles associated to the directions surrounding k̂mj in Lθ such
that: θ´ ă θmj ă θ`. We use exactly the same approach to approximate the energy density
zeroth and first order moments (corresponding to the case σ “ 1), giving:
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(a) E at t “ 2.0. (b) E at t “ 4.0.

(c) E at t “ 6.0.
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Figure 15: Evolution of the total energy E at t “ 2.0 in (a), 4.0 in (b) and t “ 6.0 in (c) for the heterogeneous
medium case. Evolutions of the back-scattered flux qa at point Pa for the homogeneous and heterogeneous
medium cases one as well as those obtained in [27].

wni “
θ` ´ θ´

2
. (A.3)
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[40] A. Mink, G. Thäter, H. Nirschl, M. J. Krause, A 3d lattice Boltzmann method for light
simulation in participating media, Journal of Computational Science 17 (2016) 431–437.

[41] H.-L. Yi, F.-J. Yao, H.-P. Tan, Lattice Boltzmann model for a steady radiative transfer
equation, Phys. Rev. E 94 (2016) 023312.

[42] Y. Wang, L. Yan, Y. Ma, Lattice Boltzmann solution of the transient Boltzmann trans-
port equation in radiative and neutron transport, Phys. Rev. E 95 (2017) 063313.

[43] M. Zhang, W. Zhao, P. Lin, Lattice Boltzmann method for general convection-diffusion
equations: Mrt model and boundary schemes, Journal of Computational Physics 389
(2019) 147–163.

[44] B. Shi, Z. Guo, Lattice Boltzmann model for nonlinear convection-diffusion equations,
Phys. Rev. E 79 (2009) 016701.

[45] L. Weih, A. Gabbana, D. Simeoni, L. Rezzolla, S. Succi, R. Tripiccione, Beyond mo-
ments: relativistic lattice Boltzmann methods for radiative transport in computational
astrophysics, Monthly Notices of the Royal Astronomical Society 498 (3) (2020) 3374–
3394.

27



[46] B. J. Cantwell, Fundamentals of compressible flow (January 2022).

[47] P. L. Bhatnagar, E. P. Gross, M. Krook, A model for collision processes in gases. i.
small amplitude processes in charged and neutral one-component systems, Phys. Rev.
94 (1954) 511–525.

[48] S. Succi, The lattice Boltzmann equation: for fluid dynamics and beyond, Oxford uni-
versity press, 2001.
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