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Abstract This paper introduces an optimized orbit jump strategy for nonlinear
Vibration Energy Harvesters (VEHs). Nonlinear VEHs are a promising alternative
to linear VEHs due to their broadband characteristics. However, they exhibit com-
plex dynamical behaviors, including not only high-power inter-well orbits but also
low-power intra-well orbits and chaos. The existence of low-power orbits in their
dynamics can restrict their energy harvesting performance. In order to overcome
this issue, this study investigates an orbit jump strategy that allows the VEH to
transition from low-power intra-well orbits to high-power inter-well orbits. This
strategy, based on varying the buckling level of a bistable VEH, has been pre-
viously studied but not yet optimized. In this study, we define an optimization
criterion that maximizes both the effectiveness and robustness of the orbit jump
strategy. We developed a Python CUDA code using GPU parallel computing to
handle the large number of numerical resolutions of the nonlinear VEH model.
Experimental tests were performed on a bistable VEH over a frequency range of
30 Hz, validating the numerical results obtained with the optimized orbit jump
strategy. The results indicate that the energy consumption required for a success-
ful orbit jump ranges between 0.2 mJ and 1 mJ, and can be restored within 0.2 s in
the worst case. Experimental results show an average success rate of 48%, despite
a variation of ±15% in the starting and ending times of the jump, leading to a
robust and optimized orbit jump strategy. The proposed optimization procedure
can be applied to other orbit jump strategies, and other types of nonlinear VEHs.

Keywords Orbit jump, Optimization, GPU parallel computing, Buckling
adjustments, Bistability, Nonlinear dynamics, Energy harvesting.
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1 Introduction

Energy harvesting is seen as a viable alternative to the use of batteries for sup-
plying low-power electronic systems. The sources of energy that can be harvested
are diverse and numerous, including solar radiations, fluid flows, electromagnetic
waves, and mechanical vibrations. In particular, vibration energy is naturally ubiq-
uitous even in confined environments with little solar and thermal energies avail-
able. This study focuses on energy harvesters that convert vibrational energy from
ambient sources into electricity [1].

Vibration Energy Harvesters (VEHs) can be divided into two categories: linear
VEHs, which rely on linear oscillators, and nonlinear VEHs that exploit nonlinear
oscillators. Historically, linear VEHs have been studied because their behavior is
easier to predict and because they can be more easily manufactured. However,
linear VEHs have a narrow frequency bandwidth, and as a result, their energy
harvesting performance drastically decreases when there is a mismatch between
the driving frequency and their natural frequency [2, 3]. This makes linear VEHs
unsuitable for applications with a time-varying spectrum, limiting their use in
most environments. This has led to an increased interest in the development of
nonlinear VEHs, especially bistable VEHs.

Fig. 1: Orbit jump strategy using buckling level adjustments of bistable VEH to
switch from intra-well to inter-well orbits. Illustration inspired from [4].

The study of bistable VEHs started in 2008–2009 with the works of Shahruz et

al. [5] and Cottone et al. [6]. Nonlinear VEHs have the advantage of exhibiting
broadband behavior [7, 8], but their complex dynamics with multiple orbits can
result in a drastic difference in power for a given driving frequency, as shown in
Fig.1. Many studies have aimed to better understand the underlying dynamics
of multi-stable energy harvesters [9–11] (for reviews, see [12–14]). In particular,
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low-power intra-well orbits can lead to poor energy harvesting performance, which
hinders the advantages of nonlinear VEHs, and is a major limitation of this type
of energy harvester.

To enhance the performance of nonlinear VEHs, researchers have developed meth-
ods called orbit jump strategies. Orbit jump strategies enable nonlinear VEHs to
transition from low-power orbits to higher power orbits, maximizing energy har-
vesting performance and exploiting their full potential (for review in multi-stable
VEHs control, see [13] and for broader review of nonlinear dynamical system con-
trol, see [15]). The concept of orbit jump strategies in energy harvesting was first
introduced a decade ago, with early studies conducted by Erturk et al. [16], Sebald
et al. [7, 17] and Masuda et al. [18]. Erturk et al. [16] applied a “hand impulse”
to impart enough velocity to a piezomagnetoelastic energy harvester, causing the
nonlinear VEH to transition to the high-power orbit. To the best of our knowledge,
this is the first experimentally and numerically demonstrated orbit jump strategy
in the literature, using an additional velocity input to enhance the performance of
nonlinear VEH. Sebald et al. [7] proposed a method, Fast Burst Perturbation (FBP),
which consists in adding an external sinusoidal excitation during a few cycles. This
perturbation is added to either the ambient excitation or the voltage of the elec-
tromechanical transducer in order to use the latter as an actuator (which is limited
by the maximum amplitude that can be injected into the electromechanical trans-
ducer before it undergoes a dielectric breakdown). The authors validated the FBP
method through numerical simulations [7] and experimental measurements [17].
Thereafter, Masuda et al. [18] investigated an orbit jump strategy by theoretically
and numerically analyzing the variations in the load resistance value as a function
of the displacement amplitude. They implemented negative resistance, acting as a
negative damping, to destabilize low-power orbits during periods of low displace-
ment amplitude. Once the nonlinear VEH stabilizes on a high-power orbit, with a
large amplitude of displacement, the load resistance returns to its initial positive
value. However, the study is limited to numerical simulations and requires further
experimental validation. Moreover, this orbit jump strategy is only valid for a spe-
cific range of accelerations and frequencies.

Subsequently, as illustrated in Table 1, the manner in which the nonlinear VEH
is perturbed permits the classification of orbit jump strategies into two distinct
categories:

(i) orbit jump strategies that add a temporary external force to the nonlinear VEH
(e.g., a pulse on the voltage across the electromechanical transducer) [7,16,17];

(ii) orbit jump strategies which involve temporarily modifying the dynamic charac-

teristics of the nonlinear VEH (e.g., its damping or stiffness) [18].

Furthermore, subsequent studies have placed increased emphasis on analyzing the
energy expenditure associated with orbit jump strategies, which is a critical factor
to consider. Indeed, if the energy required to realize the orbit jump is not quickly
recovered, the effectiveness of this approach is questionable. With regard to orbit
jump strategies which introduce an external signal to disturb the system, Mallick et

al. [19] used the FBP technique by superimposing a sinusoidal signal on the voltage
across the electromechanical transducer over 15 cycles to use the transducer as an
actuator.
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External Forcing Authors
Parameter or

variable modified

Perturbation

waveform

Validity

range

Energy

cost

Recovery

time
Optimality

Hand

impulse

Erturk et al.

[16]
Velocity

0.25 s∗
Multiple freq.

6 – 8 Hz
N/A N/A 7

Fast Burst

Perturbation

Sebald et al.

[17]
Voltage

0.7 s∗
Multiple freq.

27.3 – 29.8 Hz
N/A 1.5 s∗ 7

Impact-

induced

Zhou et al.

[20]
Velocity

0.1 s∗
Multiple freq.

4 – 23 Hz
N/A N/A 7

Electrical

switching

Mallick et al.

[19]
Voltage

0.2 s

Single freq.

70 Hz
0.563 mJ∗ 1 s∗ 7

Attractor

selection

Udani et al.

[4]
Voltage

2 s

Single freq.

19.8 Hz
1.21 mJ 5.66 s 3

Characteristic

Modulation
Authors

Parameter or

variable modified

Perturbation

waveform

Validity

range

Energy

cost

Recovery

time
Optimality

Negative

resistance

Lan et al.

[21]
Resistance

0.1 s

Multiple freq.

9 – 11 Hz
0.2 mJ∗ 0.535 s 7

Load

perturbation

Wang et al.

[22]

Stiffness

and damping 4 s

Single freq.

5.2 Hz
N/A N/A 7

Negative

resistance

Ushiki et al.

[23]
Resistance

0.9 s∗
Single freq.

70 Hz
35 mJ∗ 20 s 7

Bidirectional Energy

Conversion Circuit

Wang et al.

[24]

Stiffness

and damping 10.9 s

Single freq.

7.6 Hz
22 mJ 120 s 7

Buckling

modification

Huguet et al.

[25]
Buckling level

20 ms∗
Multiple freq.

30 – 70 Hz
1 mJ∗ 1 s ∼∼∼

Voltage Inversion

Excitation

Yan et al.

[26]
Stiffness

1.5 s.

Multiple freq.

48.6 – 49.5 Hz
1.43 mJ 23 s 7

Adjustment

strategy

Huang et al.

[27]

Buckling level

and voltage
90 s∗

Multiple freq.

35 – 40 Hz
2.8 mJ 120 s 7

Table 1: Main properties associated to the both groups of orbit jump strategies
defined in the current state of literature. ∗ indicates that the values have been
estimated based on the given papers. N/A denotes the absence of data.

They pointed out the effect of the phase shift between the ambient excitation
and the resulting excitation1 on the success of the orbit jump. That means, the
success of the orbit jump strategy depends both on the nature of the perturbation
and on the control of its timing. Their work is also among the first to consider the
energy cost of the orbit jump strategy and gives the time needed to recover the
energy consumed during the orbit jump (2 s), as shown in Table 1.

Udani et al. [4] added an artificial excitation to the ambient excitation creating a
new excitation phase-shifted from the original ambient excitation. They demon-
strated that the resulting modification of the dynamics and the basins of attraction
of the orbits could facilitate escaping from the potential well. However, modifying
the ambient excitation is not easy to implement in practice, limiting the applica-
bility of their study. In a previous study [28], they developed a search algorithm
in order to design an efficient attractor selection strategy. Notably, their approach
was the first to search for the parameters of the perturbing signal that make their

1 which is the effective excitation during the orbit jump, i.e., the FBP application on the
ambient excitation (which is harmonic in this study).
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strategy efficient.

On the other hand, a number of orbit jump strategies that involve temporarily
modifying the nonlinear VEH’s dynamic characteristics have been developed. Lan
et al. [21] employed a method that emulates negative resistance using a nega-
tive impedance converter, similar to the approach taken by Masuda et al. [18].
They highlighted that the primary factor that disrupts the system is the increase
in piezoelectric voltage resulting from negative resistance emulation, rather than
damping modification, since the duration of orbit jump is brief.
Similarly, Ushiki et al. [23] defined a self-powered stabilization method using a nega-
tive impedance converter. Although they successfully destabilized low-power orbits
across a frequency band of 23 Hz, the process of achieving positive energetic bal-
ance takes between 10 and 100 s, indicating that there is room for improvement
in this aspect of the study.
Wang et al. [22] defined a load perturbation method based on the electrical load
effects on the dynamics to attain high-power orbits. They disconnected the elec-
trical load by opening a switch that was in series connection with the load and
driven by an integrated circuit chip. This resulted in a reduction of the total damp-
ing rate of the VEH. However, this orbit jump strategy is only applicable for a
specific combination of driving frequencies and amplitudes, making it non-robust
and non-reproducible. Later, in order to decrease the energy injection of the orbit
jump, Wang et al. [24] used a Bidirectional Energy Conversion Circuit (BECC)
that includes the energy extraction circuit. The experimental test shows a jump
duration of 10.9 s, which requires an energy of 22 mJ. The corresponding recovery
time of 2 min suggests that the strategy could benefit from optimization.
Several recent studies have investigated the modification of the buckling level in
nonlinear VEHs as illustrated in Fig.1. Huguet et al. [25] introduced the buckling

level modification technique, using an additional electromechanical transducer2 to
alter the buckling level of the VEH. Their study demonstrated the effectiveness
and reproducibility of the method through numerous experimental tests, comput-
ing jumping probabilities across six tested driving frequencies. Notably, this study
also reported the first experimental jumps on sub-harmonic orbits in the litera-
ture. Furthermore, the study demonstrated that the energy consumed by the orbit
jump strategy was quickly restored (in approximately 1 s), as shown in Table 1.
Although this strategy has been partially empirically optimized, a complete opti-
mization has not yet been conducted, which could further enhance its robustness
and effectiveness.
Huang et al. [27] introduced a new Voltage Inversion Excitation (VIE) method,
which reverses the voltage of the piezoelectric actuator at specific times to provide
additional excitation to nonlinear VEH. However, this method consumes a sig-
nificant amount of energy. To address this issue, they developed a more complex
combination of two orbit jump strategies, which generally involve longer jump du-
rations, as depicted in Table 1.
Yan et al. [26] used a stiffness modulation circuit to temporarily adjust the stiff-
ness of a monostable softening VEH and experimentally demonstrated the VIE
technique at 3 frequencies, which can be expanded to more frequencies.
Although there is a large pool of research on designing orbit jump strategies, in

2 There are two electromechanical transducers, one for energy harvesting and the other for
buckling level tuning.
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general, very few strategies are optimized (i.e., a comprehensive optimization of
the orbit jump parameters) in the literature as can be seen from Table 1. In most
articles, the orbit jump parameters are determined through a preliminary numer-
ical study or intuitive reasoning, rather than effective optimization. Furthermore,
among these strategies, many have been experimentally validated over a limited
frequency range (see Table 1), while they deserve to be tested over a wider fre-
quency range in order to prove their reproducibility and robustness.
In this paper, we focus our analysis on the orbit jump strategy based on buckling
level modification, as introduced in [25]. This orbit jump strategy stands out as
one of the most promising strategies due to its short duration to achieve positive
energy balance after the orbit jump (as shown in Table 1) and its ease of imple-
mentation, even though it has only been partially optimized experimentally. This
paper presents the associated optimized orbit jump strategy and experimentally
verifies its performance on a nonlinear VEH. To evaluate the performance of the
orbit jump strategy, we performed experimental tests at starting and ending times
of the jump with a variation of ±15% from 30 to 60 Hz. Specifically, we evalu-
ate the strategy’s robustness in terms of its average success rate, as well as its
energy consumption during the jump. The proposed optimization method can be
applied to any bistable VEH regardless of its energy conversion mechanism (e.g.,
with electromagnetic or electrostatic conversions). Figure 1 provides a summary
of the orbit jump strategy process of this article and the motivations for applying
an orbit jump strategy to nonlinear VEHs. This article is organized as follows:
section 2 gives the electromechanical model of the bistable VEH and an overview
of its dynamics. Then, section 3 presents the orbit jump strategy and its opti-
mization based on a criterion which takes into account both the effectiveness and
the robustness of the orbit jump strategy. Finally, section 4 presents experimental
validation of the optimized strategy.

2 Electromechanical dynamics of bistable VEH

This section introduces the electromechanical model of a bistable VEH, along with
a summary of the underlying dynamics with multiple behaviors, highlighting the
interest of introducing orbit jump strategies.

2.1 Bistable VEH model

This paper studies a Duffing-type bistable VEH shown in Fig.2. This VEH (for
more details on its design, see [29]) consists of buckled steel beams of length L to
which a proof mass M is attached that can oscillate between two stable equilib-
rium positions, −xw and xw. The VEH is driven by a sinusoidal excitation with
a driving frequency fd = ωd/2π and a constant acceleration amplitude A. Two
Amplified Piezoelectric Actuators (APA) are employed, with the smaller – Energy

harvesting APA – having a force factor α, a clamped capacitance Cp, and the ca-
pacity to extract energy from the mechanical oscillator.
The electrodes of the energy harvesting APA are connected to a resistance R. The
second and stiffer APA – Tuning APA – acts as an actuator to implement the orbit
jump strategy by temporarily modifying the buckling level of the nonlinear VEH.
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(a) Schematic representation of the bistable VEH.

(b) Experimental prototype from [29] with dynamics described by
(1).

Fig. 2: (a) Schematic structure of the bistable VEH. (b) Experimental bistable
VEH studied in this article from [29].

Therefore, this orbit jump strategy is classified as a type of nonlinear VEH char-
acteristic modulation strategy. The energy harvesting APA is the APA120S, and
the tuning APA is the APA100M manufactured by Cedrat Technologies (France).
The model of bistable VEH [25] is given in equation (1),

ẍ+
ω2
0

2

(
x2

x2w
− 1

)
x+

ω0

Q
ẋ+ 2

α

ML
xv = A sin(ωdt)

2α

L
xẋ = Cpv̇ +

1

R
v

(1a)

(1b)

Where x denotes the mass displacement, ẋ its velocity and ẍ its acceleration. The
voltage in the the energy harvesting APA is noted v. Note that the equations of
the model (1) do not contain any term related to the tuning APA due to its higher
stiffness compared to the harvesting APA, and thus does not have any significant
influence on the dynamics of the VEH. The natural angular frequency ω0 and
the quality factor Q of the considered symmetrical bistable VEH are determined
by the underlying equivalent linear model [30], which is obtained by considering
small oscillations of the mass around one of its two stable equilibrium positions.
The tuning APA voltage, denoted vw, is used to modulate the buckling level of
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the bistable VEH and facilitate transitions from low-power to high-power orbits.
Table 2 shows the parameter values of the bistable VEH studied in this paper,
which were determined experimentally through low-power orbit characterizations
using weak sinusoidal vibrations. Note that for simplicity, we assumed that the
force factor of the bistable VEH was the same as that of the energy harvesting
APA.

Parameters Values Units

xw 0.71 mm

M 6 g

ω0 295 rad/s

Q 160

α 0.139 N/V

Cp 1 µF

Table 2: Parameter values for the buckled-beam nonlinear VEH [29].

2.2 Bistable VEH behaviors

The dynamics of a bistable VEH may exhibit multiple behaviors for a given driv-
ing frequency, including low-power intra-well orbits, high-power inter-well orbits,
and chaotic orbits. In this study, we define an orbit as robust if it is less sensitive
to perturbations and easily attainable. In order to detect all possible behaviors
in the frequency range of [20 Hz, 100 Hz] and A = 4 m/s2, the nonlinear Ordinary
Differential Equations (ODEs) system (1) was solved for a large number of initial
conditions using the Dormand-Prince method [31].
Since the nonlinear ODEs (1) can be solved independently across multiple resolu-
tions, this problem is well-suited to parallel computing, that can greatly enhance
computational performance. For this task, a custom Python CUDA code was exe-
cuted on an NVIDIA RTX A5000 GPU featuring 8 192 CUDA cores, enabling the
resolution of (1) with 80 000 distinct initial conditions for each driving frequency.
In symmetric bistable VEH, the elastic potential energy is a quartic function of
(t, x) whose expression is given in (2). Note that the natural angular frequency ω0

depends on the value of xw and will therefore be influenced during the orbit jump.
The mean harvested power (for a given orbit) of the bistable VEH is the mean
power dissipated in R and is expressed by (3),

Ep(t) =
Mω2

0

8x2w
(x+ xw)2 (x− xw)2 (2)

Ph =
1

T

∫ T

0

v2

R
dt (3)
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where T is the period of the displacement x. Figure 3(a) shows the mean har-
vested power associated with existing orbits as a function of driving frequency fd in
[20 Hz, 100 Hz] when R = 1/2Cpωd for each driving frequency (which corresponds
to the resistance value maximizing electrically induced damping [32] whose formula
is valid for a harmonic excitation). Note that “Other” gathers sub-harmonic orbits
and chaos [8,33]. Producing Fig.3(a) requires 80 × 80 000 numerical computations,
which can be completed in just a few minutes using parallel computing instead of
the several hours required for sequential computing on CPU. It is worth mention-
ing that both power and existence of orbits vary with the driving frequency.

Fig. 3: (a) Mean harvested power Ph as a function of the driving frequency fd,
(b) inter-well (in dark blue) and intra-well (in light blue) orbits trajectories, their
associated basins of attraction and attractor in the dimensionless phase plane
(x/xw, ẋ/xw ω0) for fd = 50 Hz. The denomination “Other” (in gray) regroups
all the orbits not indicated in the legend (i.e., sub-harmonic orbits and chaos).
The basins of attraction in (b) were obtained after 80 000 resolutions of the ODE
system (1).

As seen in Fig. 3(a), there exist multiple orbits for a given driving frequency with
various power in the bistable VEH dynamics. As a matter of example, the high-
power inter-well orbit allows to harvest 102 times more power than low-power
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intra-well orbits for fd = 30 Hz.
The high-power inter-well orbits see their power increases with the driving fre-
quency while they stop existing beyond a particular frequency (the cutoff fre-
quency). As given in Fig.3(a), the cutoff frequency of high-power inter-well orbits
occurs at 55 Hz. The yellowish window in Fig.3(a) highlights the driving frequency
fd = 50 Hz whose basins of attraction3, orbits and attractors4 are plotted in the di-
mensionless phase plane (x/xw, ẋ/xw ω0) in Fig.3(b). The surfaces of the basins
vary with the driving frequency [33]: the high-power inter-well orbits see their
basins surface decrease with the driving frequency. Figure 3(b) shows respectively
basins of attraction of the intra-well (in light blue) and inter-well (in dark blue)
orbits at fd = 50 Hz. It is worth noting that the basin of attraction of the inter-
well orbits becomes thinner as they approach their cutoff frequency. On the other
hand, the power gap between intra-well and inter-well orbits becomes larger for
frequencies near the cutoff-frequency of the inter-well orbit, as seen in Fig.3(a).
Hence, as the driving frequency approaches the cutoff frequency of the inter-well
orbits, it becomes increasingly difficult to attain inter-well orbits.
Thus, the primary challenges stem from:

1. there are multiple orbits with different harvested power for a given driving
frequency;

2. the harvesting power gap between intra-well and inter-well orbits tends to in-
crease with the driving frequency (particularly when ωd > ω0);

3. the inter-well orbits are less robust with larger driving frequencies (resulting
in a narrowing of their basin of attraction).

The larger the power gap between intra-well and inter-well orbits, the greater
the benefit in defining an orbit jump strategy. However, as the inter-well orbits
become less robust with frequency, this task becomes increasingly difficult. All
of these aforementioned difficulties are challenging to overcome and motivate the
design of a robust orbit jump strategy in order to facilitate nonlinear VEHs to
operate on high-power inter-well orbit as often as possible.

3 Orbit jump strategy: numerical modeling and optimization

This section introduces the orbit jump strategy [25] studied in this paper and its
optimization using an evolutionary strategy algorithm.

3.1 Strategy description

The considered orbit jump strategy is based on the modification of the buckling
level of bistable VEH. This strategy has already been studied and experimen-
tally validated in multiple studies [25,34], with promising results. In most of these
studies, the ending time of the jump has been fixed to the instant when the mass
reaches its maximum displacement which may not be the optimal time to minimize

3 which correspond to the initial conditions converging toward the considered orbit.
4 which correspond to the states (when t = k Td, for k ∈ Z) into which the bistable VEH

converges when stabilized.
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the energy cost of the orbit jump and maximize its robustness. Therefore, in this
study, we chose to optimize this ending time. The orbit jump strategy adjusts the
buckling level of the bistable VEH from xw to kw xw at a starting time t0 for a
(relatively short) duration ∆t.

Fig. 4: Different steps of the aforementioned orbit jump strategy using buckling
level modifications. From the left to the right: potential wells, the APA-mass sys-
tem, and the displacement of the mechanical oscillator. Colored frames give corre-
sponding equilibrium position and instant in the orbit jump strategy. It is worth
noting that the motions in the central diagram are deliberately large in order to
highlight the consequences of the variation of the buckling level on the mass.

Figure 4 illustrates the important steps of the aforementioned orbit jump strat-
egy. For each step (before, during and after the orbit jump), the potential wells,
the evolution of the tuning APA-mass system, and the displacement waveform
of the mass are shown. As seen in Fig.4(a), at the beginning of the orbit jump
process (when t < t0, denoted t−0 in Fig.4(a)) the mass oscillates around one of
the two stable equilibrium positions at x = xw (low-power intra-well orbit oscilla-
tions). The gray point in Fig.4 illustrates the mass position in the potential well
curve. Thereafter, between t0 and t0 + ∆t (when t0 ≤ t ≤ t0 + ∆t, denoted t+0
in Fig.4(b)), the voltage of the tuning APA vw changes and the buckling level
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increases5 to kw xw (with kw > 1). It is worth noting that, while the buckling
level theoretically increases instantaneously, a certain amount of time is required
in practice. As seen in Fig.4(b), the potential well changes: equilibrium positions
are greater (x = ±kw xw) and the potential energy barrier is also larger. Thus, the
gray point which was in the previous potential well (in gray dashed line) is now in
a higher position, meaning that the inertial mass received potential energy during
the buckling level modification. Finally, at (t0 +∆t)+ (that is, when t > t0 +∆t),
the initial buckling level is restored, reintroducing potential energy to the mass
and setting both equilibrium positions back to x = ±xw. As illustrated in Fig.4, if
the values of the orbit jump parameters (t0,∆t, kw) are properly set, the bistable
VEH should operate in its high-power inter-well orbit. For the sake of generality,
we considered t0 and ∆t multiples of the driving period Td and used the both
following dimensionless times:

• τ0 = t0/Td, the dimensionless starting time;

• ∆τ = ∆t/Td, the dimensionless orbit jump duration.

Figure 5 shows an example of application of this orbit jump strategy for fd = 50 Hz
(we intentionally chose orbit jump parameters that make possible to jump on high-
power inter-well orbit in order to illustrate the approach). Figure 5(c,d) shows the
impact of orbit jump parameters (τ0,∆τ, kw) on stable equilibrium positions and
potential wells during the orbit jump strategy. Blue points in Fig.5(a,b,d) represent
the instant when starting the orbit jump process, denoted by tref. Triangle up (resp.
down) markers represent the instants when the buckling level of the bistable VEH
increases (resp. decreases) at t− tref = t0 (resp. t− tref = t0 +∆t ). As illustrated
in Fig.5(d), when the buckling level is increased, then decreased, the inertial mass
acquires potential energy that comes from the APA actuating system. This energy,
called invested energy Einv, consists in the potential energy (2) difference between
t0 and t0 +∆t. As shown by (4), Einv can be computed from the potential energy
expression given by (2). The total harvested energy Etot (5) is the invested energy
subtracted from the harvested energy over a duration of 100 Td from the instant
tref. Note that we arbitrary take a duration of 100 Td for the evaluation of the orbit
jump strategy in the rest of the paper, as it is long enough to yield significant total
energy if we successfully jump to a high orbit, while also being short enough to
account for the invested energy during the orbit jump.

Einv(t0,∆t, kw) = Ep
[
t+0
]
− Ep

[
t−0

]
+ Ep

[
(t0 +∆t)+

]
− Ep

[
(t0 +∆t)−

]
(4)

= ∆E0 +∆E1

Etot(t0,∆t, kw) =

∫ tref+100Td

tref

v2

R
dt− Einv(t0,∆t, kw) (5)

As a matter of example, (4) and (5) allow to estimate the invested energy (Einv '
1.27 mJ) and the total harvested energy over a duration of 100 Td (Etot ' 5.54 mJ)
in the orbit jump shown in Fig.5. The harvested power in high orbit (after the
jump) is about 45 times larger than the power in low orbit (before the jump), for
this driving frequency.

5 The elongation of the tuning APA leads to a higher level of buckling, resulting in the two
equilibrium positions moving further apart from each other.
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Fig. 5: Example of a successful orbit jump strategy for fd = 50 Hz with
(τ0,∆τ, kw) = (0.46, 1.01, 2.00): (a) time displacement signal, (b) trajectories in
the phase plane (x, ẋ/xw ω0), (c) evolution of the left stable equilibrium position
before (in blue), during (in orange) and after (in green) the application of the orbit
jump strategy and (d) the both elastic potential energy curves associated to the
both buckling levels.

On the other hand, inherent experimental imprecision exists due to the non-ideal
experimental setup (such as delays and parasitics effects) and imperfect experi-
mental identification (with uncertainties regarding the values of ω0 or xw). All of
these possible variations in parameters must be considered, which emphasizes the
need to optimize the orbit jump strategy to reduce its sensitivity to parameter
variations (i.e., its robustness) and enhance its performance. In the rest of the
paper, we will investigate the optimization of the orbit jump strategy (for several
driving frequencies) that can enhance its effectiveness based on its energy cost and
its robustness against variations.

3.2 Optimization of the orbit jump strategy

As noticed in the previous subsection, the success of an orbit jump strategy de-
pends drastically on the values of its parameters (τ0,∆t, kw) (which then depend
on the driving frequency or the starting intra-well orbit for example). Properly
defining both time parameters (τ0,∆τ ) is crucial to the success of the orbit jump,
regardless of the buckling factor (kw). For example, setting the starting time of the
orbit jump τ0 to 0.9 renders the orbit jump strategy in Fig.5 ineffective, meaning
that the VEH remains in low-power intra-well orbit even after the orbit jump. To
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ensure an effective orbit jump strategy, we conduct a numerical investigation of
the optimal values of the orbit jump parameters which:

(C1) maximize the total harvested energy over 100 cycles, Etot;

(C2) maximize the success rate of the orbit jump within a neighborhood of the orbit
jump parameter values, with a variation of ±15%.

The criterion (C1) allows to select orbit jump parameters that maximize the har-
vested energy while minimizing the invested energy. This criterion allows to eval-
uate effectiveness of the orbit jump strategy. While the criterion (C2) makes it
possible to anticipate potential experimental deviations in the characteristics of
the VEH or in the parameters of the orbit jump strategy. This criterion allows to
evaluate robustness of the orbit jump strategy. Then, the optimization of the orbit
jump parameters according both (C1) and (C2) criteria is performed by means of an
evolutionary strategy algorithm [35] implemented in our in-house Python CUDA
code. Evolutionary strategy algorithm has been selected due to its robustness in
handling multi-extremal and discontinuous fitness functions, as well as its abil-
ity to benefit from GPU parallel computing. For that we define the average total

harvested energy in (6) which is the fitness function6 to maximize,

Etot(τ0,∆τ, kw) =
N−1∑
i=0

Etot(τ
i
0,∆τ

i, kiw)
/
N, ∀N > 1, N ∈ N (6)

where N > 1 is the number of parameter combinations tested (e.g., N = 8 000)
and for all i ∈ J0, N − 1K, (τ i0,∆τ

i, kiw) ∈ V(τ0,∆τ, kw), the neighborhood of a
given parameters combination (τ0,∆τ, kw) with a variation of ±15%. Therefore,
the optimization problem to solve is formulated as (7).

S : max
{
Etot(τ0,∆τ, kw)

∣∣∣ (τ0,∆τ, kw) ∈ D
}

where D = [0.2, 1.2]× [0.2, 1.5]× [1, 2]

(7)

Note that we only consider τ0 and ∆τ larger than 0.2 for the ease of experimen-
tal implementations. Moreover, the maximum mechanical constraints that can be
supported by the considered prototype of bistable VEH have been taken into ac-
count by limiting the kw to 2. kw > 1 was chosen due to the prototype’s reference
buckling level xw being close to the estimated minimum value, and optimization
results showed no interesting solutions for kw < 1.
The detailed optimization procedure is described in Appendix A. Figure 6 presents
a comparison between the optimized and suboptimized 50 Hz orbit jump strategy
(as shown previously in Fig.5). The optimized orbit jump strategy requires an
invested energy of 0.49 mJ and yields a total harvested energy of 6.06 mJ over 100
oscillation cycles. It is worth noting that the end of the optimized orbit jump is
defined slightly after the maximum displacement of the mass, in contrast to previ-
ous studies where the end time was generally defined at the instant of maximum
displacement. The next section will investigate optimal orbit jump parameters
combination (τ0,∆τ, kw) satisfying (7) for [30 Hz, 60 Hz], and the optimization re-
sults will be presented jointly with the experimental results.

6 which is used for evaluating how close a given solution is to the optimum solution.
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Fig. 6: Comparison between optimal (a,c) and suboptimal (b,d) of time displace-
ment signals and trajectories in the phase plane (x, ẋ/xw ω0) for fd = 50 Hz before
(in blue), during (in orange) and after (in green) the application of the orbit
jump strategy. Blue points correspond to the beginning of the orbit jump process,
triangle up (resp. down) markers refer to the instant when the buckling level in-
creased (resp. returned to its initial value). Optimal orbit jump parameter values
(τopt0 ,∆τopt, koptw ) = (0.23, 0.46, 1.81). Suboptimal orbit jump parameter values
(τ sub0 ,∆τ sub, ksubw ) = (0.46, 1.01, 2.00).

4 Optimized orbit jump strategy: experimental validation and energy

analysis

This section compares experimental and numerical results of the optimized orbit
jump strategy.

4.1 Experimental validation

In order to experimentally validate the aforementioned optimized orbit jump strat-
egy, experimental tests have been made around each optimal orbit jump param-
eters combination for driving frequency in [30 Hz, 60 Hz]. Figure 7 shows the ex-
perimental setup. The bistable VEH prototype shown in Fig.2(b) is fixed on an
electromagnetic shaker driven by a power amplifier. The acceleration amplitude A
of the shaker is measured by an accelerometer and sent to the control board. As
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illustrated in Fig.7(b), the amplitude of the signal driving the power amplifier (vA)
is regulated in order to maintain a constant acceleration amplitude A = 4 m/s2

by means of an internal Proportional Integral (PI) controller. The piezoelectric
electrodes of the energy harvesting APA (in blue) are connected to:

– a voltage follower in order to prevent the control board’s impedance impacting
the piezoelectric element and to avoid the control board to be exposed to a
voltage stricly higher than 10 V which could damage it;

– a resistive decade box whose resistive value can be adjusted with a signal sent
from the control board.

Displacement and velocity (x, ẋ) of the inertial mass are sensed with a laser dif-
ferential vibrometer. At given times, when modifying the buckling level of the
bistable VEH, the control board sends a signal to the high speed bipolar amplifier
which controls the voltage across the tuning APA, vw.

Oscilloscope
Laptop

Power supply of 
the voltage follower

Control board
(dSpace) High speed

bipolar amplifier

Differential
vibrometer

Resistive
decade box

Voltage
follower

Accelerometer

Control board (dSpace)

Power amplifier

High speed
bipolar amplifier

Resistive
decade boxBuffer

Differential
vibrometer

Accelerometer

Electromagnetic
shaker

Fig. 7: (a) Experimental setup used to test the optimized orbit jump strategy and
(b) its schematic representation.

In order to smooth the variation of the buckling level and avoid to damage the
VEH prototype, we implemented in the control board a second-order filter that
reduces the sharpness of vw variations. The rise time of the buckling level is ap-
proximately one twentieth of a cycle, which is acceptable. Before any runs, the
acceleration amplitude is gradually increased to A = 4 m/s2 and the buckling
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level is decreased to obtain xw = 0.71 mm. It is worth noting that the parameters
of the VEH prototype have been identified in low-power orbit characterization and
given in Table 2.
In order to experimentally validate the model described in equation (1) and the
numerical orbit jump modeling, 2 000 experimental results are launched with sev-
eral values7 of τ0 and ∆τ (kw = 1.5, τ0 ∈ [0.2, 1.2],∆τ ∈ [0.2, 1.5]) for fd = 40 Hz
and arbitrary resistor R = 20 kΩ. Identical simulations are performed with 8 000
parameters combinations.
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Fig. 8: Experimentally (a) and numerically (b) maps (τ0,∆τ) with kw = 1.5,
fd = 40 Hz and R = 20 kΩ.

Figure 8 shows corresponding experimental and numerical scatter plots (τ0,∆τ)
with each point associated to its final orbit after the jump and gives compari-
son between experimental and numerical structures of the basins for fd = 40 Hz
and R = 20 kΩ. As shown in Fig.8, there are three possible behaviors: low-power
intra-well orbit (in light blue), high-power inter-well orbit (in dark blue) and chaos
(in dark salmon). As an example, for experimental data in Fig.8(a), increasing the
buckling level from xw to 1.5xw over a duration of 0.3Td starting at t−tref = 0.7Td
will result in the bistable VEH operating on the high-power inter-well orbit. The
ranges of parameter values where the VEH jumps are approximately the same,
although more chaos is observed experimentally. This may be attributed to an
insufficient waiting time for the nonlinear VEH to reach steady-state conditions in
the experimental setup. However, the experimental and numerical basins’ struc-
tures given in Fig.8 are almost identical which validates the numerical model of the
bistable VEH and numerical model of the orbit jump application. Additionally,
Fig.8 shows the pseudo-periodicity of the inter-well orbit’s basin in τ0 (described
with the two basins in the middle of Fig.8(a,b)). Therefore, since the starting orbit
is Td–periodic, the values of τ0 can be restricted to a semi-open interval of length
1 without loss of information and justifies the values of τ0.

7 Note that we opted to fix kw and to vary τ0 and ∆τ because the times are more susceptible
to experimental variations due to the time delay of the board and the amplifier.
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1Fig. 9: Comparison between experimental (a,c) and numerical (b,d) of time dis-
placement signals and trajectories in the phase plane (x, ẋ/xw ω0) for fd = 50 Hz
before (in blue), during (in orange) and after (in green) the application of the
orbit jump strategy. Blue points correspond to the beginning of the orbit jump
process, triangle up (resp. down) markers refer to the instant when the buckling
level increased (resp. returned to its initial value). Experimental orbit jump param-
eter values (τexp0 ,∆τexp, kexpw ) = (0.26, 0.44, 1.81). Numerical orbit jump parameter
values (τnum0 ,∆τnum, knumw ) = (0.23, 0.46, 1.81).

In order to validate the model of the bistable VEH and the orbit jump strategy
effect, we perform experimental tests around the optimized orbit jump param-
eters (obtained with the evolutionary strategy algorithm introduced in section
3.2) for fd = 50 Hz. Figure 9 compares experimental (Fig.9(a,c)) and numerical
(Fig.9(b,d)) time displacement signals and trajectories in the phase plane respec-
tively before, during, and after the application of the orbit jump strategy. As seen
in Fig.9, experimental results are consistent with the numerical results. Experi-
mental orbits are asymmetric, as shown in Fig.9(a,c), which can be attributed to
mechanical irregularities resulting from the manufacturing process of the bistable
VEH. Moreover, the experimental transient just after the jump in Fig.9(a,c) (in
green) shows excitation from higher modes of the VEH prototype due to the
quick buckling level variation. The corresponding experimental trajectory in the
3D plane (t, x, ẋ/xw ω0) is presented in Appendix B.
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In quantitative terms, the mean harvested power is 26.5 times higher after the orbit
jump in Fig.9, while the experimental invested energy required is equal to 0.65 mJ
and can be recovered in 0.21 s. Then, we optimize the orbit jump strategy in the fre-
quency range [30 Hz, 60 Hz] and obtain an optimal triplet (τopt0 ,∆τopt, koptw ) satis-
fying the criterion S (7) for each driving frequency. Subsequently, we launch experi-
mental maps around each optimal triplet and driving frequency in order to evaluate
the robustness of the approach. It is worth mentioning that experimental maps are
defined with 49 parameters values and a variation rate of ±15%. Specifically, we
take 7 values in [0.85×τopt0 , 1.15×τopt0 ] for τ0, 7 values in [0.85×∆τopt, 1.15×∆τopt]
for ∆τ and kw = koptw .
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Fig. 10: Orbital mean harvested power Ph obtained numerically (points) and exper-
imentally (stars) as a function of the driving frequency fd for a sinusoidal excitation
of amplitude A = 4 m/s2 with optimal resistor R = 1/2Cpωd. The experimental
data (stars) were obtained through the implementation of the optimized orbit
jump strategy.

Figure 10 compares numerically (points) and experimentally (stars) mean har-
vested power (3) as a function of the driving frequency. Note that experimental
power (stars) plotted in Fig.10 comes from experimental results of the orbit jump.
The VEH starts in an intra-well orbit at each driving frequency. Then, the optimal
jump is applied, and the power is measured in order to evaluate the inter-well or-
bit power. Through optimization of the orbit jump strategy, the highest orbit was
achieved at each driving frequency both experimentally and numerically, as illus-
trated in Fig. 10. Differences between experimental and numerical data may result
from the mismatch between the numerical model and our vibration harvester pro-
totype. It is worth mentioning that applying an orbit jump strategy always yields
a significant increase in power in this frequency range. As a matter of example,
for fd = 55 Hz the experimental mean harvested power of the intra-well orbit is
0.044 mW despite of 4.44 mW for the inter-well orbit leading to a power gain of
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100 after a successful orbit jump. Then, as shown in Fig.(8, 9, 10), experimental
results are consistent with numerical results and allow to validate the model and
the proposed orbit jump strategy.

4.2 Energy harvesting performance analysis

Figure 11 shows the optimal orbit jump parameter combinations (blue points)
and successful experimental parameters closest to the optimal (red stars) for each
driving frequency. Note that the automated pre-characterization of the relation-
ship between xw and vw allows the experimental determination of the modified
buckling level kw xw with good accuracy. As shown in Fig.11, experimental data
with a variation of ±15% around the optimal times parameters and fixed kw = koptw

are in good agreement with the optimized data except for fd = 40 Hz. The dis-
crepancy between experimental and numerical models observed at fd = 40 Hz can
be attributed to the sudden change in behavior of the intra-well orbit due to soft-
ening nonlinearity of the potential wells for this particular acceleration amplitude
(which equals 4 m/s2), as seen in Fig.10. The experimental success rate associ-
ated with tested (τ0,∆τ) pairs, distributed with a variation of ±15%, is shown in
Fig.12. It is worth noting that despite the relatively large variation around the
optimal times parameters, the average experimental success rate is about 48 %,
which demonstrates the robustness of the optimized orbit jump strategy. However,
the highest inter-well orbit ceases to exist beyond 55 Hz (both numerically and ex-
perimentally), resulting in the subharmonic 3 [8] becoming the highest inter-well
orbit. Nonetheless, this orbit is challenging to reach and highly unlikely, leading
to a decline in success rate between 55 Hz and 60 Hz.
Figure 13 shows invested energy (4) and total harvested energy (5) over 100 cycles
as a function of the driving frequency for both successful experimental data and
optimal numerical data. The dotted orange curve corresponds to the minimum
difference in mechanical energy between the high-power inter-well orbit and the
low-power intra-well orbit, ∆Emin, whose expression is given by (8).

∆Emin = min
∀t∈[0,Td[

([
Ep(t) +

1

2
mẋ(t)2

]
inter-well

−
[
Ep(t) +

1

2
mẋ(t)2

]
intra-well

)
(8)

As shown in Fig.13, the invested energy required for the orbit jump does not
exceed 1 mJ, even experimentally. Moreover, the invested energy associated with
the optimal parameters is close to this minimum energy limit, validating the op-
timization strategy. Note that a portion of the electrical energy injected into the
system is currently lost as electrostatic energy in the tuning APA. For example,
at fd = 50 Hz, the mechanical energy injected into the system is equal to 0.6 mJ,
while the electrostatic energy lost in the tuning APA is 4.15 mJ. As a result, the
total invested energy is 4.75 mJ, and the recovery time should not exceed 2 s.
To adress this issue, a power electronic converter could be used to store the lost
electrostatic energy in the tuning APA and reintroduce it into the system at the
appropriate time, although this approach was not implemented in this study.
As illustrated in Fig.13, the driving frequency increases, achieving a high-power
orbit becomes more challenging. This leads to an increase in the amplification fac-
tor, the invested energy and the total harvested energy over 100 cycles.
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Fig. 11: The optimal numerical values (blue points) and the optimal experimental
values (red stars) of (a) the amplification coefficient kw, (b) the starting time τ0
and (c) the orbit jump duration ∆τ for successful orbit jumps as a function of the
driving frequency.

The evaluation of the invested energy for orbit jumping is a major parameter for
analyzing the quality of an orbit jump strategy. Additionally, the recovery time to
achieve a positive energy balance allows the evaluation of the interest of jumping
and the assessment of the cost-effectiveness ratio. Table 3 compares orbit jump
strategies from the literature with results presented in this paper based on these
aforementioned parameters (the jump duration, the invested energy and the recov-
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Fig. 12: The experimental success rate provided by the maps of ±15% around each
optimal times parameter combination as a function of the driving frequency.

References Frequency range Jump duration Energy cost Recovery time
Robustness to

parameters shifts
Optimized

Udani et al.

[4] (2017)

Single freq.

19.8 Hz
2 s 1.21 mJ 5.66 s No 3

Wang et al.

[24] (2019)

Single freq.

7 Hz
10.9 s 22 mJ 120 s No 7

Huang et al.

[27] (2022)

Multiple freq.

35 – 40 Hz
90 s∗ 4.67 mJ 120 s No 7

Huguet et al.

[25] (2019)

Multiple freq.

30 – 70 Hz
20 ms∗ 1 mJ∗ 1 s Partial (Exp.) ∼∼∼

This paper

(2023)

Multiple freq.

30 – 60 Hz
8.3 ms 0.6 mJ 0.1 s

Yes

(48 % robustness

with a ±15% variation)

3

Table 3: Comparison between the optimized strategy developed in this paper and
other previous strategies in literature. * indicates that the values have been esti-
mated based on the given papers.

ery time), but also whether they are optimized or robust to parameter shifts and
if they were experimentally tested over a wide frequency range. It can be noted
that very few strategies are optimized in the literature and that the only refer-
ence where a complete optimization of an orbit jump strategy has been considered
(Udani et al. [4]) has only been tested for a single driving frequency, which does
not validate its robustness, nor the generality of the optimization method. Wang’s
et al. [24] strategy requires a high amount of energy which can be optimized. On
the other hand, Huang et al. [27] have defined an innovative strategy that com-
bines two other strategies (buckling level modification and VIE) and is therefore
more complex. However, the jump duration is high (90 s), increasing the difficul-
ties of implementation and decreasing both the robustness and efficiency of the
strategy with a long recovery time equals to 120 s. Huguet et al. [25] introduced
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Fig. 13: (a) Invested energy and (b) Total harvested energy over 100 cycles for the
numerical optimal orbit jump parameters (in blue dotted curve) and the experi-
mental orbit jump parameters that allowed to jump (green star-shaped markers)
as a function of the driving frequency with optimal load resistor. The dotted or-
ange curve represents the minimum mechanical energy difference (8) between the
highest inter-well orbit and the lowest intra-well orbit.

the strategy considered in this paper and examined two orbit jump parameters:
the starting time of the jump (tested in 4 different values) and the amplification
factor of the buckling level (tested in 6 different values). They fixed the ending
time as the instant when the mass reaches its maximum displacement. However,
using the optimization criterion defined in our study, results show that the opti-
mal ending time for the jump occurs slightly after the maximum displacement.
Nonetheless, their study has the merit of presenting numerous experimental trials,
which allowed them to partially evaluate the robustness of the approach through
statistical analysis of the jumps (with a 0% variation around each combination).
The evolutionary strategy algorithm as well as the new optimization criterion pro-
posed in this paper enable the achievement of performant orbit jumps, combining
the shortest time duration (8.3 ms), lowest energy cost (0.6 mJ), shortest recovery
time (0.1 s) while being robust to large parameters shifts (±15% variation).

5 Conclusion

Due to the existence of low-power orbits in nonlinear VEHs dynamics, robust and
effective orbit jump strategies are essential to ensure good energy harvesting per-
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formance by enabling transition from low-power to high-power orbits. To achieve
this, orbit jump parameters can be optimized. This paper presents the optimization
of an existing orbit jump strategy using an evolutionary strategy algorithm. As
a result of the development of an in-house Python CUDA code compatible with
GPU computations, the optimization results are accelerated. The experimental
results consistently demonstrate that the optimized orbit jump parameters gener-
ated high-power inter-well orbits, while maintaining their performance even under
potential fluctuations in the VEH bistable environment. By considering the experi-
mental amplification factor at its optimal value and times within a ±15% variation
of the optimal times, the optimized strategy’s robustness was demonstrated with
an average success rate of 48% for the orbit jump. Finally, the energy required
for the orbit jump does not exceed 1 mJ, even in experimental conditions. The
proposed optimization strategy allows to enhance the confidence of an orbit jump
despite fluctuations in the environment of the VEH. This generic approach can be
applied to other types of multi-stable VEHs to design optimized orbit jump strate-
gies. In future works, optimization of the final buckling level, which would add a
fourth orbit jump parameter associated with the strategy, will be investigated.
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discussions on orbit jump strategies and nonlinear dynamics.



Optimized and Robust Orbit Jump for Nonlinear Vibration Energy Harvesting 25

References

1. K.T. Prajwal, K. Manickavasagam, R. Suresh, Eur. Phys. J. Spec. Top. 231(8), 1359
(2022). DOI 10.1140/epjs/s11734-022-00490-0

2. A. Morel, A. Badel, Y. Wanderoild, G. Pillonnet, Smart Mater. Struct. 27, 084002 (2018).
DOI 10.1088/1361-665X/aac3b6

3. Z. Yang, S. Zhou, J. Zu, D. Inman, Joule 2(4), 642 (2018). DOI 10.1016/j.joule.2018.03.011
4. J.P. Udani, A.F. Arrieta, Appl. Phys. Lett. 111(21), 213901 (2017). DOI 10.1063/1.

5000500
5. S.M. Shahruz, J. Comput. Nonlinear Dynam. 3(4), 041001 (2008). DOI 10.1115/1.2960486
6. F. Cottone, H. Vocca, L. Gammaitoni, Phys Rev Lett. 102(8), 080601 (2009). DOI

10.1103/PhysRevLett.102.080601
7. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Smart Mater. Struct. 20(7), 075022

(2011). DOI 10.1088/0964-1726/20/7/075022
8. T. Huguet, A. Badel, M. Lallart, Appl. Phys. Lett. 111, 173905 (2017). DOI 10.1063/1.

5001267
9. C. Wang, Q. Zhang, W. Wang, J. Feng, Mech. Syst. Signal Process. 112, 305 (2018). DOI

10.1016/j.ymssp.2018.04.027
10. X. Ma, H. Li, S. Zhou, Z. Yang, G. Litak, Mech. Syst. Signal Process. 168, 108612 (2022).

DOI 10.1016/j.ymssp.2021.108612
11. S. Zhou, L. Zuo, Commun. Nonlinear. Sci. Numer. Simul. 61, 271 (2018). DOI 10.1016/j.

cnsns.2018.02.017
12. R.L. Harne, K.W. Wang, Smart Mater. Struct. 22(2), 023001 (2013). DOI 10.1088/

0964-1726/22/2/023001
13. S. Fang, S. Zhou, D. Yurchenko, T. Yang, W.H. Liao, Mech. Syst. Signal Process. 166,

108419 (2022). DOI 10.1016/j.ymssp.2021.108419
14. C. Wei, X. Jing, Renew. Sust. Energ. Rev. 74, 1 (2017). DOI 10.1016/j.rser.2017.01.073
15. A.N. Pisarchik, U. Feudel, Phys. Rep. 540(4), 167 (2014). DOI 10.1016/j.physrep.2014.

02.007
16. A. Erturk, D.J. Inman, J. Sound Vib. 330(10), 2339 (2011). DOI 10.1016/j.jsv.2010.11.018
17. G. Sebald, H. Kuwano, D. Guyomar, B. Ducharne, Smart Mater. Struct. 20(10), 102001

(2011). DOI 10.1088/0964-1726/20/10/102001
18. A. Masuda, A. Senda, in SPIE Proceedings, vol. 7977 (2011), vol. 7977, p. 79770V. DOI

10.1117/12.880905
19. D. Mallick, A. Amann, S. Roy, Phys. Rev. Lett. 117(19), 197701 (2016). DOI 10.1103/

PhysRevLett.117.197701
20. S. Zhou, J. Cao, D.J. Inman, S. Liu, W. Wang, J. Lin, Appl. Phys. Lett. 106(9), 093901

(2015). DOI 10.1063/1.4913606
21. C. Lan, L. Tang, W. Qin, Eur. Phys. J. Appl. Phys. 79(2), 20902 (2017). DOI 10.1051/

epjap/2017170051
22. J. Wang, W.H. Liao, Energy Convers. Manag. 192, 30 (2019). DOI 10.1016/j.enconman.

2019.03.075
23. S. Ushiki, A. Masuda, in J. Phys.: Conf. Ser, vol. 1407 (2019), vol. 1407, p. 012011. DOI

10.1088/1742-6596/1407/1/012011
24. J. Wang, B. Zhao, J. Liang, W.H. Liao, in Volume 8: 31st Conference on Mechanical

Vibration and Noise (2019). DOI 10.1115/DETC2019-97807
25. T. Huguet, M. Lallart, A. Badel, Mech. Syst. Signal Process. 128, 202 (2019). DOI

10.1016/j.ymssp.2019.03.051
26. L. Yan, A. Badel, M. Lallart, A. Karami, Sens. Actuator A Phys. 285, 676 (2019). DOI

10.1016/j.sna.2018.12.009
27. Y. Huang, Z. Zhao, W. Liu, Mech. Syst. Signal Process. 166, 108444 (2022). DOI 10.

1016/j.ymssp.2021.108444
28. J.P. Udani, A.F. Arrieta, Nonlinear Dyn. 92(3), 1045 (2018). DOI 10.1007/

s11071-018-4107-3
29. A. Benhemou, T. Huguet, D. Gibus, C. Saint-Martin, Q. Demouron, A. Morel, E. Roux,

L. Charleux, A. Badel, in 2022 21st International Conference on Micro and Nanotech-
nology for Power Generation and Energy Conversion Applications PowerMEMS (2022),
pp. 106–109. DOI 10.1109/PowerMEMS56853.2022.10007567

30. W.Q. Liu, A. Badel, F. Formosa, Y.P. Wu, A. Agbossou, Smart Mater. Struct. 22, 035013
(2013). DOI 10.1088/0964-1726/22/3/035013



26 Camille Saint-Martin et al.

31. J. Dormand, P. Prince, J. Comput. Appl. Math. 6(1), 19 (1980). DOI 10.1016/
0771-050X(80)90013-3

32. A. Morel, L. Charleux, Q. Demouron, A. Benhemou, D. Gibus, C. Saint-Martin, A. Carré,
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A Algorithm

Next frequency          and
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Fig. 14: Evolutionary strategy algorithm for optimizing orbit jump strategy. This
flowchart illustrates different steps that allow to determine optimal orbit jump pa-
rameters for each driving frequency. Here (τ0,∆τ, kw) ∈ D denotes the individuals
sequence for a given population in D.

Figure 14 illustrates the various steps involved in the evolutionary strategy algorithm. The
procedure starts with a first random generation of 8 000 orbit jump parameters combinations
(i.e., individuals). Then, the simulation of the orbit jump associated with each set of parameters
is performed, and each individual is evaluated based on its fitness function value (6). This
involves considering 7 elements in the neighborhood of each direction, comprising τ0, ∆τ and
kw. That is, we take |I| = 7 then for each individual we launch 73 new orbit jump simulations
to compute its fitness function value (6). That means that for each generation, we simulate
2 744 000 orbit jumps using parallel GPU computations. Each individual is then evaluated
and selected based on its average total harvested energy (6) over 100 cycles. To complete the
population of the next generation, classical operations of crossing and mutations are applied
to the 10% best individuals present in the next generation.
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B Experimental trajectory
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Fig. 15: Experimental trajectory in (t, x, ẋ/xwω0) 3D plane for fd = 50 Hz before
(in blue), during (in orange) and after (in green) the application of the orbit jump.
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