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Introduction

In this article, we study the fractional differential equations

D Φ,α a y (ζ) = f (ζ, y (ζ) , D Φ,β a y (ζ)), ζ > a, (1) 
and

D Φ,1+α a y (ζ) = f (ζ, y (ζ) , D Φ,β a y (ζ)), ζ > a, (2) 
where D Φ,σ a is the Φ-RLFD of order σ > 0 and 0 ≤ β ≤ α ≤ 1. In this article, we discuss the decay and the long-time behavior for solutions of ( 1) and (2), resp. We prove that the rate of stability is of the order a negative (positive) power of the function with respect to which the fractional derivative is calculated.

It is of theoretical and practical significance to expand these results to fractional differential equations because of their various applications, see [START_REF] Agarwal | On the asymptotic integration of nonlinear differential equations[END_REF][START_REF] Glöckle | A fractional calculus approach to selfsimilar protein dynamics[END_REF][START_REF] Kilbas | Differential equations of fractional order: methods, results and problem[END_REF][START_REF] Lang | Fundamentals of differential geometry[END_REF][START_REF] Magin | Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation[END_REF][START_REF] Metzler | Relaxation in filled polymers: A fractional calculus approach[END_REF][START_REF] Sabatier | Advances in Fractional Calculus[END_REF]. Unluckily, this is not easy and many difficulties appear when trying to espouse comparable arguments from the integer case to the fractional case. Fractional derivatives are by definition non-local in time as they take into account all the history of the solution. In addition to that, the kernels involved in the definitions of fractional derivatives are neither regular nor summable in general. Because of all these facts we can not apply many existing results. Moreover, it is clear that many methods and well-known properties for integer order derivatives are no longer true for the non-integer order case (like the chain rule). We shall overcome these difficulties by using some suitable estimations of singular terms as well as generalized and modified versions of Gronwall-Bellman inequality. Numerous results on the long-time behavior of solutions to ordinary differential equations y (η) + g (η, y (η) , y (η)) = 0,

(3) are available in the literature, see e.g., [10-13, 28, 29, 33, 39, 43, 44, 47-49] and others. They showed that, under different conditions, all solutions of (3) are asymptotically convergent to cη + b as η → ∞, c, b ∈ R. The fractional case of equation [START_REF] Bȃleanu | On the asymptotic integration of a class of sublinear fractional differential equations[END_REF], with Caputo or RLFD, has been studied by comparatively few researchers, [4-7, 19-22, 35-37]. They proved that the solutions can be exemplified asymptotically as bη α + O η α-1 + c, c, b ∈ R.

For the equation [START_REF] Bȃleanu | On the asymptotic integration of a class of sublinear fractional differential equations[END_REF] with Hadamard fractional derivative (HFD), we found relatively few results in the literature, see, [START_REF] Graef | Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-Type Hadamard derivatives[END_REF][START_REF] Kassim | Stability of logarithmic type for a Hadamard fractional differential problem[END_REF][START_REF] Kassim | Asymptotic behavior of solutions of fractional differential equations with Hadamard fractional derivatives[END_REF][START_REF] Li | Stability and logarithmic decay of the solution to Hadamard-Type fractional differential equation[END_REF][START_REF] Li | Analysis of nonlinear Hadamard fractional differential equations via properties of Mittag-Leffler functions[END_REF]. The authors of [START_REF] Kassim | Stability of logarithmic type for a Hadamard fractional differential problem[END_REF][START_REF] Kassim | Asymptotic behavior of solutions of fractional differential equations with Hadamard fractional derivatives[END_REF] considered the equation

D α a y(η) = f (η, y(η), D β a y(η)), 0 ≤ β < α < 2, η > a, (4) 
where D σ a is the HFD. They proved that the solutions of (4) approach a logarithmic function for 1 < α < 2 and decay to zero as the logarithmic function for 0 < α < 1.

To the best of our knowledge, the long-time behavior and the decay of solutions for [START_REF] Anastassiou | Opial type Inequalities involving Riemann-Liouville fractional derivatives of two functions with applications[END_REF] with generalized fractional derivatives have not been investigated so far.

In this article, we will popularize the outcomes in [START_REF] Bȃleanu | On the asymptotic integration of a class of sublinear fractional differential equations[END_REF][START_REF] Bȃleanu | On the solution set for a class of sequential fractional differential equations[END_REF][START_REF] Bȃleanu | Asymptotic integration of (1 + α)order fractional differential equations[END_REF][START_REF] Bȃleanu | Asymptotic integration of some nonlinear differential equations with fractional time derivative[END_REF] and [START_REF] Graef | Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-Type Hadamard derivatives[END_REF][START_REF] Kassim | Stability of logarithmic type for a Hadamard fractional differential problem[END_REF][START_REF] Kassim | Asymptotic behavior of solutions of fractional differential equations with Hadamard fractional derivatives[END_REF][START_REF] Li | Stability and logarithmic decay of the solution to Hadamard-Type fractional differential equation[END_REF][START_REF] Li | Analysis of nonlinear Hadamard fractional differential equations via properties of Mittag-Leffler functions[END_REF] to [START_REF] Agarwal | On the asymptotic integration of nonlinear differential equations[END_REF] or [START_REF] Anastassiou | Opial type Inequalities involving Riemann-Liouville fractional derivatives of two functions with applications[END_REF] with Φ (ζ) = ζ and Φ (ζ) = ln ζ, resp. Our results will also expand the outcomes acquired for the equation ( 3) with α = β = 1 and Φ (ζ) = ζ. In particular, problems were addressed in [START_REF] Medved | On the asymptotic behavior of solutions of nonlinear differential equations of integer and also of non-integer order[END_REF][START_REF] Medved | Asymptotic integration of some classes of fractional differential equations[END_REF] become special cases of (2) when Φ (ζ) = ζ and y (0) = y (0) = 0.

In this paper, we prove that solutions of (1) and ( 2) have the following property:

D Φ,β a y (ζ) ≤ C 1 [Φ (ζ) -Φ (a)] α-β-1 and lim ζ→∞ y (ζ) [Φ (ζ) -Φ (a)] α = C 2 , for some C 1 , C 2 ∈
R, resp. The proof of these results are based on the GBI and its generalization due to Bihari [START_REF] Pachpatte | Inequalities for differential and integral equations[END_REF]. We mention here that the non-linearities may contain numerous "fractional derivatives" but for simplicity we restrict ourselves to only two derivatives.

In Sections 2 and 3, we present some material and prove some lemmas which will be used in our proof. In Sections 4 and 5 we introduce and prove our main results on stability and asymptotic behavior of solutions for the equations ( 1) and (2), resp.

Preliminaries and fractional calculus

We present here some definitions and well-known estimations we will use later. Also we prove results regarding the long-time behaviour of fractional integrals. We refer the reader to [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] for more details concerning fractional integrals and fractional derivatives.

Throughout the paper, we consider [a, b] be an infinite or finite interval, Φ ∈ C n [a, b] a function such that Φ is an increasing function and Φ (ζ) = 0. First we need the following definitions Definition 1.

[18] Let 0 ≤ γ < 1. Then C Φ,γ [a, b] = { : (a, b] → R : (Φ (ζ) -Φ (a)) γ (ζ) ∈ C [a, b]} , C Φ,0 [a, b] = C [a, b] , Definition 2. [18] Let Φ ∈ C n [a, b], n ∈ N * , such that Φ (ζ) > 0 on [a, b]. Then C n Φ,γ [a, b] = : (a, b] → R : 1 Φ (ζ) d dζ n-1 ∈ C [a, b] , 1 Φ (ζ) d dζ n ∈ C Φ,γ [a, b] , C 0 Φ,γ [a, b] = C Φ,γ [a, b] .
The Φ-RLFI and the Φ-RLFD are defined as follows. Definition 3. [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] The Φ-RLFI of order α > 0 of a function ∈ L 1 [a, b] is given as

I Φ,α a (ζ) := 1 Γ(α) ζ a [Φ (ζ) -Φ(τ )] α-1 Φ (τ ) (τ ) dτ, (5) 
for almost everywhere ζ ∈ [a, b]. Definition 4. [24] Let α ≥ 0 and n = -[-α] . The Φ-RLFD of order α of a function ∈ C n Φ,γ [a, b]is given as D Φ,α a (ζ) = 1 Φ (ζ) d dζ n I Φ,n-α a (ζ) Γ(n -α) 1 Φ (ζ) d dζ n ζ a [Φ (ζ) -Φ(τ )] n-α-1 Φ (τ ) (τ ) dτ, (6) 
for almost everywhere ζ ∈ [a, b]. For the function g (ζ) = [Φ (ζ) -Φ (a)]
β-1 we have the following lemma. Lemma 2.1. [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] If α ≥ 0 and β > 0, then

I Φ,α a [Φ (ζ) -Φ (a)] β-1 = Γ (β) Γ (β + α) [Φ (ζ) -Φ (a)] β+α-1 , D Φ,α a [Φ (ζ) -Φ (a)] β-1 = Γ (β) Γ (β -α) [Φ (ζ) -Φ (a)] β-α-1 .
The semi-group property is valid for this type of fractional integral. Lemma 2.2. [START_REF] Kilbas | Theory and Applications of Fractional Differential Equations[END_REF] 

If ∈ C Φ,γ [a, b] , 0 ≤ γ < 1, then I Φ,β a I Φ,α a (ζ) = I Φ,α+β a (ζ) , α, β > 0, ζ > a.
The compositions properties between D Φ,β

a and I Φ,α a are given next. Lemma 2.3. [18] If ∈ C Φ,γ [a, b] , 0 ≤ γ < 1, then D Φ,β a I Φ,α a (ζ) = I Φ,α-β a (ζ) , 0 < β < α, ζ > a. Lemma 2.4. [18] Let α > 0, n = -[-α]. If ∈ C Φ,γ [a, b], 0 ≤ γ < 1, and I Φ,n-α a ∈ C n Φ,γ [a, b], then I Φ,α a D Φ,α a (ζ) = (ζ) - n i=1 D Φ,n-i a I Φ,n-α a (a) Γ (α -i + 1) [Φ (ζ) -Φ (a)] α-i = (ζ) - n i=1 I Φ,i-α a (a) Γ (α -i + 1) [Φ (ζ) -Φ (a)] α-i , ζ > a. (7) 
In particular, when 0 < α < 1 we have

I Φ,α a D Φ,α a (ζ) = (ζ) - I Φ,1-α a (a) Γ (α) [Φ (ζ) -Φ (a)] α-1 , ζ > a. ( 8 
) Lemma 2.5. Let 0 < α < 1, ∈ C Φ,γ [a, b], 0 ≤ γ < 1, and I Φ,1-α a ∈ C 1 Φ,γ [a, b] . Then for 0 ≤ β ≤ α < 1 we have D Φ,β a (ζ) = I Φ,α-β a D Φ,α a (ζ) + I Φ,1-α a (a) Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 , ζ > a. Proof. Since ∈ C Φ,γ [a, b] and I Φ,1-α a ∈ C 1 Φ,γ [a, b] then I Φ,α a D Φ,α a (ζ) = (ζ) - I Φ,1-α a (a) Γ (α) [Φ (ζ) -Φ (a)] α-1 , ζ > a. (9) 
Applying D Φ,β a to the (9), then using Lemmas 2.1 and 2.3, we obtain

D Φ,β a (ζ) = I Φ,α-β a D Φ,α a (ζ) + I Φ,1-α a (a) Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 , ζ ∈ (a, b].
The asymptotic behaviour of the Φ-RLFI of a summable function is treated in the next lemma. Lemma 2.6.

If ∈ L 1 (a, ∞), then lim ζ→∞ 1 [Φ (ζ) -Φ (a)] α I Φ,1+α a (ζ) = 1 Γ (α + 1) lim ζ→∞ ζ a Φ (s) (s) ds = 1 Γ (α + 1) lim ζ→∞ I Φ,1 a (ζ) , α > 0.
Proof. In view of the Definition 3, we have

1 [Φ (ζ) -Φ (a)] α I Φ,1+α a (ζ) - 1 Γ (α + 1) ∞ a Φ (s) (s) ds = 1 Γ (1 + α) ζ a [Φ (ζ) -Φ (s)] α [Φ (ζ) -Φ (a)] α Φ (s) (s) ds - 1 Γ (α + 1) ∞ a Φ (s) (s) ds = 1 Γ (α + 1) ζ a 1 - Φ (s) -Φ (a) Φ (ζ) -Φ (a) α Φ (s) (s) ds - ∞ a Φ (s) (s) ds = 1 Γ (α + 1) ∞ a χ [a,ζ] (s) 1 - Φ (s) -Φ (a) Φ (ζ) -Φ (a) α Φ (s) (s) ds - ∞ a Φ (s) (s) ds = 1 Γ (α + 1) ∞ a χ [a,ζ] (s) 1 - Φ (s) -Φ (a) Φ (ζ) -Φ (a) α -1 Φ (s) (s) ds ≤ 1 Γ (α + 1) ∞ a χ [a,ζ] (s) 1 - Φ (s) -Φ (a) Φ (ζ) -Φ (a) α -1 |Φ (s) (s)| ds,
where ), then by Lemma 2.4, we have

χ [a,ζ] (s) = 1, s ∈ [a, ζ] , 0, s / ∈ [a, ζ] . Since lim ζ→∞ χ [a,ζ] (s) 1 - Φ (s) -Φ (a) Φ (ζ) -Φ (a) α = 1, s < ζ. Dominated Convergence Theorem [14] implies that lim ζ→∞ ∞ a χ [a,ζ] (s) 1 - Φ (s) -Φ (a) Φ (ζ) -Φ (a) α -1 |Φ (s) (s)| ds = ∞ a lim ζ→∞ χ [a,ζ] (s) 1 - Φ (s) -Φ (a) Φ (ζ) -Φ (a) α -1 |Φ (s) (s)| ds = 0. Lemma 2.7. Let 0 < α < 1, y ∈ C Φ,γ [a, ∞), 0 ≤ γ < 1, and I Φ,1-α a y = I Φ,2-(1+α) a y ∈ C 2 Φ,γ [a, ∞). Then lim ζ→∞ y (ζ) [Φ (ζ) -Φ (a)] α = lim ζ→∞ D Φ,α a y (ζ) Γ(α + 1) . ( 10 
) Proof. Since y ∈ C Φ,γ [a, ∞) and I Φ,1-α a y = I Φ,2-(1+α) a y ∈ C 2 γ [a, ∞
I Φ,1+α a D Φ,1+α a y (ζ) = y (ζ)- I Φ,1-α a y (a) Γ (α) [Φ (ζ) -Φ (a)] α-1 - D Φ,α a y (a) Γ (1 + α) [Φ (ζ) -Φ (a)] α .
(11) Dividing the [START_REF] Constantin | On the asymptotic behavior of second order nonlinear differential equations[END_REF] by [Φ (ζ) -Φ (a)]

α and taking the limit as ζ → ∞, we get

lim ζ→∞ y (ζ) [Φ (ζ) -Φ (a)] α = D Φ,α a y (a) Γ (1 + α) + lim ζ→∞ 1 [Φ (ζ) -Φ (a)] α I Φ,1+α a D Φ,1+α a y (ζ) = D Φ,α a y (a) Γ (1 + α) + 1 Γ (α + 1) I Φ,1 a D Φ,1+α a y (∞) , (12) 
where we have used Lemma 2.6. Furthermore, we have

I Φ,1 a D Φ,1+α a y (ζ) = I Φ,1 a D Φ,1 a D Φ,α a y (ζ) = D Φ,α a y (ζ) -D Φ,α a y (a) , (13) 
and ( 10) follows directly from ( 12) and ( 13).

Inequalities

The inequalities that we introduce here play an essential role in many studies of differential and integral equations. Theorem 1.

[41] Let u, w and f : [a, ∞) → [0, ∞) be three continuous functions such that w is non-decreasing and w(u) > 0 on (a, ∞). If

u (ζ) ≤ C + ζ a f (τ ) w (u (τ )) dτ, ζ ≥ a, C ≥ 0, then for a ≤ ζ ≤ ζ 1 , u (ζ) ≤ G -1 G (C) + ζ a f (τ ) dτ ,
where G -1 is the inverse function of

G (r) = r r0 dτ w (τ ) , r > 0, r 0 > 0, whilst ζ 1 ∈ R + is selected in such a manner that G (C) + ζ a f (τ ) dτ ∈ Dom G -1 , for a ≤ ζ ≤ ζ 1 . Theorem 2.
[41] Let u, w and f : [a, ∞) → [0, ∞) be three continuous functions such that w is non-decreasing and w(u [START_REF] Kuczma | An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality[END_REF]: For non-negative ρ and ε, we have

) > 0 on (a, ∞). Then for ζ ≥ a u (ζ) ≤ w (ζ) + ζ a f (τ ) u (τ ) dτ, implies that u (ζ) ≤ w (ζ) exp ζ a f (τ ) dτ . Lemma 3.1. [2,
2 r-1 (ρ r + ε r ) ≤ (ρ + ε) r ≤ ρ r + ε r , 0 ≤ r ≤ 1. and ρ r + ε r ≤ (ρ + ε) r ≤ 2 r-1 (ρ r + ε r ) , r ≥ 1,
Now we define the following class of functions:

Ψ = {G : [a, ∞) × [a, ∞) → [0, ∞) such that 0 ≤ G (ζ, x) -G (ζ, y) ≤ M (ζ) (x -y) , ζ > a, x ≥ y ≥ 0, for some continuous function M on [a, ∞)}. ( 14 
) It is clear that the function G (ζ, u) = ue ζ ∈ Ψ.
Below we introduce the following important Lemma.

Lemma 3.2. Let κ (ζ) satisfy κ (ζ) ≤ [Φ (ζ) -Φ (a)] c 2 + c 3 ζ a [G 1 (s, c 1 + κ (s)) + G 2 (s, c 1 + κ (s)) + h (s)] Φ (s) ds , ζ ≥ a, (15) 
where

G i ∈ Ψ, i = 1, 2, h : [a, ∞) → [0, ∞) is a continuous function, c i > 0, i = 1, 2, 3. Then κ (ζ) ≤ [Φ (ζ) -Φ (a)] g (ζ) , ζ > a, (16) 
where

g (ζ) = c 2 + c 3 ζ a [G 1 (s, c 1 ) + G 2 (s, c 1 ) + h (s)] Φ (s) ds × exp c 3 ζ a [Φ (s) -Φ (a)] [M 1 (s) + M 2 (s)] Φ (s) ds , (17) 
with M 1 and M 2 are the functions in the definition ( 14), corresponding to G 1 and G 2 respectively.

Proof. From (15) we have

κ (ζ) [Φ (ζ) -Φ (a)] ≤ c 2 + c 3 ζ a [G 1 (s, c 1 + κ (s)) + G 2 (s, c 1 + κ (s)) + h (s)] Φ (s) ds = c 2 + c 3 ζ a [G 1 (s, c 1 + κ (s)) -G 1 (s, c 1 ) + G 1 (s, c 1 ) + G 2 (s, c 1 + κ (s)) -G 2 (s, c 1 ) + G 2 (s, c 1 ) + h (s)] Φ (s) ds = c 2 + c 3 ζ a [G 1 (s, c 1 ) + G 2 (s, c 1 ) + h (s)] Φ (s) ds +c 3 ζ a [G 1 (s, c 1 + κ (s)) -G 1 (s, c 1 ) + G 2 (s, c 1 + κ (s)) -G 2 (s, c 1 )] Φ (s) ds, ζ > a.
(18) By ( 14) we obtain

κ (ζ) [Φ (ζ) -Φ (a)] ≤ c 2 + c 3 ζ a [G 1 (s, c 1 ) + G 2 (s, c 1 ) + h (s)] Φ (s) ds + c 3 ζ a [M 1 (s) + M 2 (s)] Φ (s) κ (s) ds, ζ > a. (19) 
Put

g 1 (ζ) = c 2 + c 3 ζ a [G 1 (s, c 1 ) + G 2 (s, c 1 ) + h (s)] Φ (s) ds. (20) 
Then from [START_REF] Kassim | Asymptotic behavior of solutions to nonlinear fractional differential equations[END_REF] and ( 20) we obtain

κ (ζ) [Φ (ζ) -Φ (a)] ≤ g 1 (ζ)+c 3 ζ a [Φ (s) -Φ (a)] [M 1 (s) + M 2 (s)] Φ (s) κ (s) [Φ (s) -Φ (a)]
ds, ζ > a.

(21) Obviously g 1 is a positive and non-decreasing continuous function defined for all ζ ≥ a. Applying Theorem 2 to (21), we find

κ (ζ) [Φ (ζ) -Φ (a)] ≤ g 1 (ζ) exp c 3 ζ a [Φ (s) -Φ (a)] [M 1 (s) + M 2 (s)] Φ (s) ds , ζ > a. (22) Let g 2 (ζ) = exp c 3 ζ a [Φ (s) -Φ (a)] [M 1 (s) + M 2 (s)] Φ (s) ds . Therefore κ (ζ) ≤ [Φ (ζ) -Φ (a)] g (ζ) , g (ζ) = g 1 (ζ) g 2 (ζ) , ζ > a. ( 23 
)

Stability

In this section we discuss (1), with 0

< β ≤ α < 1 D Φ,α a y (ζ) = f (ζ, y (ζ) , D Φ,β a y (ζ)), ζ > a. ( 24 
)
with the initial condition

I Φ,1-α a y (ζ) | ζ=a = b, b ∈ R, (25) 
in the space

C α Φ,1-α [a, ∞) = y ∈ C Φ,1-α [a, ∞) : D Φ,α a y ∈ C Φ,1-α [a, b] , (26) 
with the following suppositions

(B1) f (x, z, y) : (a, ∞) × R 2 → R is such that f (., z (.) , y (.)) ∈ C Φ,1-α [a, ∞) for any z, y ∈ C Φ,1-α [a, ∞). (B2) |f (x, z, y)| ≤ [Φ (x) -Φ (a)] γ e -δ[Φ(x)-Φ(a)] h (x) ϕ 1 [Φ (x) -Φ (a)] 1-α |z| ×ϕ 2 [Φ (x) -Φ (a)] 1-(α-β) |y| , (27) 
where h, ϕ i : [a, ∞) → [0, ∞) are continuous functions such that ϕ i , i = 1, 2, are non-decreasing, δ > 0 and γ ∈ R.

(B3) There are continuous functions

ϕ i , h i : [a, ∞) → [0, ∞), i = 1, 2, such that |f (ζ, u, v)| ≤ [Φ (ζ) -Φ (a)] γ1 e -δ1[Φ(ζ)-Φ(a)] h 1 (ζ) ϕ 1 [Φ (ζ) -Φ (a)] 1-α |u| + [Φ (ζ) -Φ (a)] γ2 e -δ2[Φ(ζ)-Φ(a)] h 2 (ζ) ϕ 2 [Φ (ζ) -Φ (a)] 1-(α-β) |v| , (28) 
where ϕ i , i = 1, 2, are non-decreasing, δ i > 0 and γ i ∈ R.

We prove the following general inequality which is interesting by itself. Lemma 4.1. For λ, ν, ω > 0, we have

[Φ (ζ) -Φ (a)] 1-ν ζ a [Φ (ζ) -Φ (s)] ν-1 [Φ (s) -Φ (a)] λ-1 e -ω[Φ(s)-Φ(a)] Φ (s) ds ≤ C, ζ > a > 0,
where

C = max 1, 2 1-ν Γ (λ) [1 + λ (λ + 1) /ν] ω -λ . Proof. Let I (ζ) := [Φ (ζ) -Φ (a)] 1-ν ζ a [Φ (ζ) -Φ (s)] ν-1 [Φ (s) -Φ (a)] λ-1 e -ω[Φ(s)-Φ(a)] Φ (s) ds, ζ > a. Put ξ [Φ (ζ) -Φ (a)] = Φ (s) -Φ (a) . Then, [Φ (ζ) -Φ (a)
] dξ = Φ (s) ds and

I (ζ) = [Φ (ζ) -Φ (a)] λ 1 0 (1 -ξ) ν-1 ξ λ-1 e -ωξ[Φ(ζ)-Φ(a)] dξ, ζ > a.
As for 0 ≤ ξ < 1/2 we have (1 -ξ) ν-1 ≤ max 1, 2 1-ν , we can write

I (ζ) ≤ max 1, 2 1-ν [Φ (ζ) -Φ (a)] λ 1/2 0 ξ λ-1 e -ωξ[Φ(ζ)-Φ(a)] dξ + [Φ (ζ) -Φ (a)] λ 1 1/2 (1 -ξ) ν-1 ξ λ-1 e -ωξ[Φ(ζ)-Φ(a)] dξ. ( 29 
) Let u = ωξ [Φ (ζ) -Φ (a)] , then dξ = ω -1 [Φ (ζ) -Φ (a)] -1 du and [Φ (ζ) -Φ (a)] λ 1/2 0 ξ λ-1 e -ωξ[Φ(ζ)-Φ(a)] dξ ≤ ω -λ ∞ 0 u λ-1 e -u du = ω -λ Γ (λ) . (30) If ωξ [Φ (ζ) -Φ (a)] ≥ 1, we have e ωξ[Φ(ζ)-Φ(a)] ≥ [ωξ [Φ (ζ) -Φ (a)]] [λ]+1 Γ ([λ] + 2) ≥ [ωξ [Φ (ζ) -Φ (a)]] λ Γ (λ + 2) .
Therefore, when 1/2 < ξ ≤ 1

ξ λ-1 e -ωξ[Φ(ζ)-Φ(a)] ≤ ξ λ-1 Γ (λ + 2) [ωξ [Φ (ζ) -Φ (a)]] λ ≤ 2ω -λ Γ (λ + 2) [[Φ (ζ) -Φ (a)]] λ and consequently [Φ (ζ) -Φ (a)] λ 1 1/2 (1 -ξ) ν-1 ξ λ-1 e -ωξ[Φ(ζ)-Φ(a)] dξ ≤ [Φ (ζ) -Φ (a)] λ 1 1/2 (1 -ξ) ν-1 2ω -λ Γ (λ + 2) [Φ (ζ) -Φ (a)] λ dξ = 2ω -λ Γ (λ + 2) 1 1/2 (1 -ξ) ν-1 dξ = 2 1-ν ω -λ Γ (λ + 2) ν . When ωξ [Φ (ζ) -Φ (a)] < 1, we have e ωξ[Φ(ζ)-Φ(a)] ≥ 1 > [ωξ [Φ (ζ) -Φ (a)]] λ and thus [Φ (ζ) -Φ (a)] λ 1 1/2 (1 -ξ) ν-1 ξ λ-1 e -ωξ[Φ(ζ)-Φ(a)] dξ < [Φ (ζ) -Φ (a)] λ 1 1/2 (1 -ξ) ν-1 ξ λ-1 [ωξ [Φ (ζ) -Φ (a)]] -λ dξ < 2ω -λ 1 1/2 (1 -ξ) ν-1 dξ = 2 1-ν ω -λ ν . (31) 
Taking into account ( 29)- [START_REF] Li | Stability and logarithmic decay of the solution to Hadamard-Type fractional differential equation[END_REF] we conclude that

I (ζ) ≤ max 1, 2 1-ν ω -λ Γ (λ) + 2 1-ν ω -λ Γ (λ + 2) ν ≤ max 1, 2 1-ν ω -λ Γ (λ) 1 + λ (λ + 1) ν , ζ > a.
The proof is complete.

We prove an inequality relished by the solution of ( 24)-( 25). Lemma 4.2. Assume that f satisfies (B1), (B2) and y(ζ) is solution of ( 24)- [START_REF] Kilbas | Differential equations of fractional order: methods, results and problem[END_REF]. Then

max [Φ (ζ) -Φ (a)] 1-α |y (ζ)| , [Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (ζ) ≤ κ (ζ) , ζ > a, (32) where κ 
(ζ) = K 1 + K 2 ζ a h q (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| × ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1/q , ( 33 
)
when h q Φ ∈ L 1 (a, ∞) for some q > 1 α-β , γ > 1 q -1, δ > 0,

K 1 = |b| max 1 Γ (α) , 1 Γ (α -β)
and

K 2 = max C 1 Γ (α) , C 2 Γ (α -β) ,
where p + q = pq,

C 1 = max 1, 2 p(1-α) Γ (pγ + 1) 1 + (pγ + 1) (pγ + 2) p (α -1) + 1 (pδ) -(pγ+1) 1/p and C 2 = max 1, 2 p(1-α+β) Γ (pγ + 1) 1 + (pγ + 1) (pγ + 2) p (α -β -1) + 1 (pδ) -(pγ+1) 1/p .
Proof. Applying I Φ,α a to the (24), then using Lemma 2.4, we find for ζ > a

y (ζ) = b Γ (α) [Φ (ζ) -Φ (a)] α-1 + 1 Γ (α) ζ a [Φ (ζ) -Φ (s)] α-1 f s, y (s) , D Φ,β a y (s) Φ (s) ds, (34) 
and using [START_REF] Kuczma | An Introduction to the Theory of Functional Equations and Inequalities: Cauchy's Equation and Jensen's Inequality[END_REF], we obtain

[Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ K 1 + 1 Γ (α) [Φ (ζ) -Φ (a)] 1-α × ζ a [Φ (ζ) -Φ (s)] α-1 [Φ (s) -Φ (a)] γ h (s) e -δ[Φ(s)-Φ(a)] ϕ 1 [Φ (s) -Φ (a)] 1-α |y (s)| ×ϕ 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds, ζ > a. (35) 
Now, Hőlder inequality yields

J 1 := ζ a [Φ (ζ) -Φ (s)] α-1 [Φ (s) -Φ (a)] γ e -δ[Φ(s)-Φ(a)] h (s) ×ϕ 1 [Φ (s) -Φ (a)] 1-α |y (s)| ϕ 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds ≤ ζ a [Φ (ζ) -Φ (s)] p(α-1) [Φ (s) -Φ (a)
] pγ e -pδ[Φ(s)-Φ(a)] Φ (s) ds

1 p × ζ a h q (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1 q
. Now, as q > 1 α-β implies p (α -1) > -1 and pγ > -1, we stratify Lemma 4.1 to obtain

J 1 ≤ C 1 [Φ (ζ) -Φ (a)] α-1 × ζ a h q (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1 q
.

(36) Combining [START_REF] Medved | On the asymptotic behavior of solutions of nonlinear differential equations of integer and also of non-integer order[END_REF] and [START_REF] Medved | Asymptotic integration of some classes of fractional differential equations[END_REF] we entail that

[Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ K 1 +K 2 ζ a h q (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1 q
.

(37) By using Lemma 2.5, we have for ζ > a

D Φ,β a y (ζ) = I Φ,α-β a D Φ,α a y (ζ) + b Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 = b Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 + 1 Γ (α -β) ζ a [Φ (ζ) -Φ (s)] α-β-1 D Φ,α a y (s) Φ (s) ds = b [Φ (ζ) -Φ (a)] α-β-1 Γ (α -β) + 1 Γ (α -β) ζ a [Φ (ζ) -Φ (s)] α-β-1 f s, y (s) , D Φ,β a y (s) Φ (s) ds, (38) 
and in view of ( 27)

[Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (ζ) ≤ K 1 + [Φ (ζ) -Φ (a)] 1-(α-β) Γ (α -β) ζ a [Φ (ζ) -Φ (s)] α-β-1 × [Φ (s) -Φ (a)] γ e -δ[Φ(s)-Φ(a)] h (s) ϕ 1 [Φ (s) -Φ (a)] 1-α |y (s)| ×ϕ 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds, ζ > a. (39) 
By using Hőlder inequality, we see that

J 2 := ζ a [Φ (ζ) -Φ (s)] α-β-1 [Φ (s) -Φ (a)] γ e -δ[Φ(s)-Φ(a)] ×h (s) ϕ 1 [Φ (s) -Φ (a)] 1-α |y (s)| ϕ 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds ≤ ζ a [Φ (ζ) -Φ (s)] p(α-β-1) [Φ (s) -Φ (a)
] pγ e -pδ[Φ(s)-Φ(a)] Φ (s) ds

1 p × ζ a h q (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1 q
.

Again by Lemma 4.1 (with p (α -β -1) > -1 and pγ > -1), we obtain

J 2 ≤ C 2 [Φ (ζ) -Φ (a)] α-β-1 × ζ a h q (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1 q
.

(40) Combining ( 39) and [START_REF] Mustafa | Asymptotic integration of a class of nonlinear differential equations[END_REF], we arrive at

[Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (s) ≤ K 1 +K 2 ζ a h q (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| × ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1 q , ζ > a. (41) 
The relation ( 32) is an instant consequence of ( 37) and ( 41).

Lemma 4.3. Assume that f satisfies (B1), (B3) and y(ζ) is solution of ( 24)- [START_REF] Kilbas | Differential equations of fractional order: methods, results and problem[END_REF]. Then

max [Φ (ζ) -Φ (a)] 1-α |y (ζ)| , [Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (s) ≤ κ (ζ) , ζ > a, (42) 
where

κ (ζ) = K 1 + K 2    ζ a h q 1 (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| Φ (s) ds 1/q + ζ a h q 2 (s) ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) Φ (s) ds 1/q    , ζ > a, (43) 
where h i ∈ L q (a, ∞) for some q > 1 α-β , γ i > 1 q -1, and δ i > 0, i = 1, 2,

K 1 = |b| max 1 Γ (α) , 1 Γ (α -β)
and

K 2 = max {C 3 , C 3 } , C 3 = 1 Γ (α) max {C 1 , C 2 } , C i = max 1, 2 p(1-α) Γ (pγ i + 1) (pγ i + 1) (pγ i + 2) p (α -1) + 1 + 1 (pδ i ) -(pγi+1) 1 p , C 3 = 1 Γ (α -β) max {C 1 , C 2 } , C i = max 1, 2 p(1-(α-β)) Γ (pγ i + 1) (pγ i + 1) (pγ i + 2) p (α -β -1) + 1 + 1 (pδ i ) - (pγi+1) 1 p 
.

Proof. Applying I Φ,α a to (24) and using Lemma 2.4, we find for ζ > a

y (ζ) = b Γ (α) [Φ (ζ) -Φ (a)] α-1 + 1 Γ (α) ζ a [Φ (ζ) -Φ (s)]
α-1 f s, y (s) , D Φβ a y (s) Φ (s) ds.

(44) Multiplying (44) by [Φ (ζ) -Φ (a)]

1-α and using (28), we get

[Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ K 1 + 1 Γ (α) [Φ (ζ) -Φ (a)] 1-α ζ a [Φ (ζ) -Φ (s)] α-1 × [Φ (s) -Φ (a)] γ1 e -δ1[Φ(s)-Φ(a)] h 1 (s) ϕ 1 [Φ (s) -Φ (a)] 1-α |y (s)| Φ (s) ds + 1 Γ (α) [Φ (ζ) -Φ (a)] 1-α ζ a [Φ (ζ) -Φ (s)] α-1 [Φ (s) -Φ (a)] γ2 ×e -δ2[Φ(s)-Φ(a)] h 2 (s) ϕ 2 [Φ (s) -Φ (a)] 1-(α-β) D Φβ a y (s) Φ (s) ds. From Hőlder inequality we have [Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ K 1 + 1 Γ (α) [Φ (ζ) -Φ (a)] 1-α × ζ a [Φ (ζ) -Φ (s)] p(α-1) [Φ (s) -Φ (a)] pγ1 e -pδ1[Φ(s)-Φ(a)] Φ (s) ds 1 p × ζ a h q 1 (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| Φ (s) ds 1 q + 1 Γ (α) [Φ (ζ) -Φ (a)] 1-α ζ a [Φ (ζ) -Φ (s)] p(α-1) [Φ (s) -Φ (a)] pγ2 e -pδ2[Φ(s)-Φ(a)] Φ (s) ds 1 p × ζ a h q 2 (s) ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φβ a y (s) Φ (s) ds 1 q
.

Since q > 1 α-β , γ i > 1 q -1, δ i > 0, then 1 + pγ i > 0, i = 1, 2, and p (α -1) + 1 > 0, so we stratify Lemma 4.1 to obtain

[Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ K 1 +C 3   ζ a h q 1 (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| Φ (s) ds 1 q + ζ a h q 2 (s) ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φβ a y (s) Φ (s) ds 1 q   . ( 45 
)
Also we have

D Φβ a y (ζ) = b Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 + 1 Γ (α -β) ζ a [Φ (ζ) -Φ (s)] α-β-1 D Φα a y (s) Φ (s) ds = b Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 + 1 Γ (α -β) ζ a [Φ (ζ) -Φ (s)] α-β-1 f s, y (s) , D Φβ a y (s) Φ (s) ds. (46) 
Multiplying ( 46) by [Φ (ζ) -Φ (a)] 1-(α-β) and using [START_REF] Kusano | Existence of global solutions with prescribed asymptotic behavior for nonlinear ordinary differential equations[END_REF], we find

[Φ (ζ) -Φ (a)] 1-(α-β) D Φβ a y (ζ) ≤ K 1 + [Φ (ζ) -Φ (a)] 1-(α-β) Γ (α -β) ζ a [Φ (ζ) -Φ (s)] α-β-1 × [Φ (s) -Φ (a)] γ1 e -δ1[Φ(s)-Φ(a)] h 1 (s) ϕ 1 [Φ (s) -Φ (a)] 1-α |y (s)| Φ (s) ds + [Φ (ζ) -Φ (a)] 1-(α-β) Γ (α -β) ζ a [Φ (ζ) -Φ (s)] α-β-1 × [Φ (s) -Φ (a)] γ2 e -δ2[Φ(s)-Φ(a)] h 2 (s) ϕ 2 [Φ (s) -Φ (a)] 1-(α-β) D Φβ a y (s) Φ (s) ds. From Hőlder inequality we have [Φ (ζ) -Φ (a)] 1-(α-β) D Φβ a y (ζ) ≤ K 1 + [Φ (ζ) -Φ (a)] 1-(α-β) Γ (α -β) × ζ a [Φ (ζ) -Φ (s)] p(α-β-1) [Φ (s) -Φ (a)] pγ1 e -pδ1[Φ(s)-Φ(a)] Φ (s) ds 1 p × ζ a h q 1 (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| Φ (s) ds 1 q + [Φ (ζ) -Φ (a)] 1-(α-β) Γ (α -β) × ζ a [Φ (ζ) -Φ (s)] p(α-β-1) [Φ (s) -Φ (a)] pγ2 e -pδ2[Φ(s)-Φ(a)] Φ (s) ds 1 p × ζ a h q 2 (s) ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φβ a y (s) Φ (s) ds 1 q . Applying Lemma 4.1 we obtain [Φ (ζ) -Φ (a)] 1-(α-β) D Φβ a y (ζ) ≤ K 1 +C 3   ζ a h q 1 (s) ϕ q 1 [Φ (s) -Φ (a)] 1-α |y (s)| Φ (s) ds 1 q + ζ a h q 2 (s) ϕ q 2 [Φ (s) -Φ (a)] 1-(α-β) D Φβ a y (s) Φ (s) ds 1 q   . ( 47 
)
The relation ( 42) is an instant consequence of ( 43), ( 45) and [START_REF] Tong | The asymptotic behavior of a class of nonlinear differential equations of second order[END_REF].

Theorem 3. Assume that the assumptions of Lemma 4.2 hold, then there is C > 0 such that solutions of ( 24)-( 25) satisfy

|y (ζ)| ≤ C [Φ (ζ) -Φ (a)] α-1 and D Φβ a y (s) < C [Φ (ζ) -Φ (a)] α-β-1 , ζ > a, provided that ∞ x0 ds ϕ q 1 s 1 q ϕ q 2 s 1 q = ∞, x 0 > 0.
Proof. In view of Lemma 4.2 and since that ϕ i , i = 1, 2, are nondecreasing, we find

   ϕ 1 [Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ ϕ 1 [κ (ζ)] , ζ > a, ϕ 2 [Φ (ζ) -Φ (a)] 1-(α-β) D Φβ a y (ζ) ≤ ϕ 2 [κ (ζ)] , ζ > a. (48) 
Therefore ( 33) and ( 48), lead to

κ (ζ) ≤ K 1 + K 2 ζ a h q (s) ϕ q 1 (κ (s)) ϕ q 2 (κ (s)) Φ (s) ds 1 q , ζ > a. (49) 
Applying Lemma 3.1 to (49), we get

κ q (ζ) ≤ B 1 + B 2 ζ a h q (s) ϕ q 1 (κ (s)) ϕ q 2 (κ (s)) Φ (s) ds, ζ > a, (50) 
where

B 1 = 2 q-1 K q 1 and B 2 = 2 q-1 K q 2 . Now, put u (ζ) = κ q (ζ) , then (50) becomes u (ζ) ≤ B 1 + B 2 ζ a h q (s) ϕ q 1 u 1 q (s) ϕ q 2 u 1 q (s) Φ (s) ds, ζ > a. ( 51 
) Let g (r) = ϕ q 1 r 1 q ϕ q 2 r 1 q , ( 52 
)
then g is a continuous, non-decreasing function and

u (ζ) ≤ B 1 + B 2 ζ a h q (s) Φ (s) g (u (s)) ds, ζ > a. (53) 
From Theorem 1 it follows that

u (ζ) ≤ G -1 B 2 ζ a h q (s) Φ (s) ds + G (B 1 ) , ζ > a, (54) 
where

G (x) = x x0 ds g (s) = x x0 ds ϕ q 1 s 1 q ϕ q 2 s 1 q , x 0 > 0, x > 0.
Clearly

B 2 ζ a h q (s) Φ (s) ds + G (B 1 ) ∈ Dom G -1 , ζ > a.
As h q Φ ∈ L 1 ∈ (a, ∞) , we obtain

H 1 = G (B 1 ) + B 2 ∞ a h q (s) Φ (s) ds < ∞ (55) and u (ζ) ≤ H 2 := G -1 (H 1 ) < ∞. Then κ (ζ) ≤ C := H 1 q
2 and the result follows. Theorem 4. Suppose that suppositions of Lemma 4.3 hold, then there is C > 0 such that solutions of ( 24)-( 25) satisfy

|y (ζ)| ≤ C [Φ (ζ) -Φ (a)] α-1 and D Φ,β a y (ζ) < C [Φ (ζ) -Φ (a)] α-β-1 , ζ > a provided that ∞ x0 ds ϕ q 1 s 1 q + ϕ q 2 s 1 q = ∞, x 0 > 0. Proof. From Lemma 4.3 it follows that        ϕ 1 [Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ ϕ 1 (κ (ζ)) , ζ > a, ϕ 2 [Φ (ζ) -Φ (a)] 1-(α-β) ρ D β a y (ζ) ≤ ϕ 2 (κ (ζ)) , ζ > a, (56) 
where κ (ζ) is as in [START_REF] Rogovchenko | On asymptotics behavior of solutions for a class of second order nonlinear differential equations[END_REF]. Take into consideration ( 43) and (56) we are lead to

κ (ζ) ≤ K 1 +K 2   ζ a h q 1 (s) ϕ q 1 (κ (s)) Φ (s) ds 1 q + ζ a h q 2 (s) ϕ q 2 (κ (s)) Φ (s) ds 1 q   .
(57) By using Lemma (3.1), we have

κ q (ζ) ≤ B 1 + B 2 ζ a ϕ q 1 (κ (s)) h q 1 (s) Φ (s) ds + ζ a ϕ q 2 (κ (s)) h q 2 (s) Φ (s) ds , (58) where 
B 1 = 2 q-1 K q 1 and B 2 = 2 2(q-1) K q 2 . Moreover, due to the inequality

ϕ q 1 (κ (s)) h q 1 (s) + ϕ q 2 (κ (s)) h q 2 (s) ≤ [ϕ q 1 (κ (s)) + ϕ q 2 (κ (s))] [h q 1 (s) + h q 2 (s)] , (59) 
we have by ( 58) and (59) that

κ q (ζ) ≤ B 1 + B 2 ζ a [h q 1 (s) + h q 2 (s)] [ϕ q 1 (κ (s)) + ϕ q 2 (κ (s))] Φ (s) ds. (60) 
Now, let u (ζ) = κ q (ζ) , then (60) becomes

u (ζ) ≤ B 1 + B 2 ζ a [h q 1 (s) + h q 2 (s)] ϕ q 1 u 1 q (s) + ϕ q 2 u 1 q (s) Φ (s) ds, ζ > a. (61) Let g (r) = ϕ q 1 r 1 q + ϕ q 2 r 1 q . (62) 
As ϕ 1 and ϕ 2 are non-decreasing continuous functions, we have g is non-decreasing continuous function.

Then from (61) and (62), we get

u (ζ) ≤ B 1 + B 2 ζ a [h q 1 (s) + h q 2 (s)] Φ (s) g (u (s)) ds, ζ > a. (63) 
Applying Theorem 1 to (63), we find

u (ζ) ≤ G -1 G (B 1 ) + B 2 ζ a [h q 1 (s) + h q 2 (s)] Φ (s) ds , ζ > a, (64) 
where

G (x) = x x0 ds g (s) = x x0 ds ϕ q 1 s 1 q + ϕ q 2 s 1 q , x 0 > 0, x > 0.
As

h q i Φ ∈ L 1 ∈ (a, ∞) , we let H 1 = G (B 1 ) + B 2 ∞ a [h q 1 (s) + h q 2 (s)] Φ (s) ds. (65) Therefore u (ζ) ≤ H 2 := G -1 (H 1 ) < ∞. u (ζ) = κ q (ζ) implies that κ (ζ) ≤ C := H 1 q
2 . Then, we get from (42) that

|y (ζ)| ≤ C [Φ (ζ) -Φ (a)] α-1 and D Φ,β a y (ζ) < C [Φ (ζ) -Φ (a)] α-β-1 , ζ > a.

Asymptotic behaviour

In this section, we discuss (2) with 0

< β ≤ α < 1 D Φ,1+α a y (ζ) = f (ζ, y (ζ) , D Φ,β a y (ζ)), ζ > a. (66) 
with initial conditions

D Φ,α a y (ζ) | ζ=a = b 2 and I Φ,1-α a y (ζ) | ζ=a = b 1 , b 2 , b 1 ∈ R, (67) 
in the space C 1+α 1-α [a, ∞) defined in [START_REF] Kou | Existence and uniqueness of solutions for the Cauchytype problems of fractional differential equations[END_REF]. In the sequel, we assume that

(A1) f (ζ, u 1 , u 2 ) : (a, ∞) × R 2 → R such that f (., u 1 (.) , u 2 (.)) ∈ C Φ,1-α [a, ∞) for any u 1 , u 2 ∈ C Φ,1-α [a, ∞). (A2) There exist continuous functions G i : [a, ∞) × [a, ∞) → [0, ∞), i = 1, 2, h : [a, ∞) → [0, ∞), such that |f (ζ, u 1 , u 2 )| ≤ G 1 ζ, [Φ (ζ) -Φ (a)] 1-α |u 1 (ζ)| +G 2 ζ, [Φ (ζ) -Φ (a)] 1-(α-β) |u 2 (ζ)| + h (ζ) , (68) 
where G i in the space Ψ defined in ( 14), i = 1, 2.

The following result supplies useful estimates for solutions for (66)-(67). Lemma 5.1. Suppose that y ∈ C 1+α 1-α [a, ∞) is a solution of (66)-(67). Then, for all ζ > a, we have

[Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (ζ) ≤ |b 1 | Γ(α -β) + Φ (ζ) -Φ (a) Γ(1 + α -β) × |b 2 | + I Φ,1 a f (ζ, y (ζ) , D Φ,β a y (ζ)) . (69) Proof. Note that D Φ,1+α a y ∈ C 1-α [0, ∞) implies I Φ,1-α a y ∈ C 2 Φ,1-α [0, ∞). Since 0 ≤ β ≤ α < 1, by Lemma 2.5, we see that D Φ,β a y (ζ) = I Φ,1-α a y (a) Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 + I Φ,α-β a D Φ,α a y (ζ) , ζ > a. (70) 
Next, we apply I Φ,1 a to the (66) to get

D Φ,α a y (ζ) = b 2 + I Φ,1 a f (ζ, y (ζ) , D Φ,β a y (ζ)), ζ > a. (71) 
Let us insert (71) into (70), use Lemma 2.1, we find

D Φ,β a y (ζ) = b 1 Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 + I Φ,α-β a b 2 + I Φ,1 a f s, y (s) , D Φ,β a y (s) (ζ) = b 1 Γ (α -β) [Φ (ζ) -Φ (a)] α-β-1 + b 2 Γ (1 + α -β) [Φ (ζ) -Φ (a)] α-β + I Φ,α-β+1 a f ζ, y (ζ) , D Φ,β a y (ζ) , ζ > a. ( 72 
)
We deduce the bound Proof. Let

D Φ,β a y (ζ) ≤ |b 1 | [Φ (ζ) -Φ (a)] α-β-1 Γ (α -β) + |b 2 | [Φ (ζ) -Φ (a)] α-β Γ (1 + α -β) + [Φ (ζ) -Φ (a)] α-β Γ (1 + α -β) I Φ,1 a f ζ, y (ζ) , D Φ,β a y (ζ) . (73) 
κ (ζ) = [Φ (ζ) -Φ (a)] Γ (1 + α -β) |b 2 | + ζ a G 1 s, [Φ (s) -Φ (a)] 1-α |y (s)| + G 2 s, [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) + h (s) Φ (s) ds, ζ ≥ a. (75)
From Lemma 5.1 and the hypothesis (68) we get

[Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (ζ) ≤ |b 1 | Γ(α -β) + κ (ζ) , ζ > a. (76) 
From ( 76) and ( 14), with β = 0, we have

G 1 ζ, [Φ (ζ) -Φ (a)] 1-α |y (ζ)| ≤ G 1 ζ, |b 1 | Γ(α) + κ (ζ) , ζ > a, (77) 
and

G 2 ζ, [Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (ζ) ≤ G 2 ζ, |b 1 | Γ(α -β) + κ (ζ) ≤ G 2 ζ, |b 1 | Γ(α) + κ (ζ) , ζ > a. ( 78 
)
Taking into account (75), ( 77) and (78) we deduce

κ (ζ) ≤ [Φ (ζ) -Φ (a)] Γ (1 + α -β) × |b 2 | + ζ a G 1 s, |b 1 | Γ(α) + κ (s) + G 2 s, |b 1 | Γ(α) + κ (s) + h (s) Φ (s) ds .
(79) From Lemma 3.2, we find

κ (ζ) ≤ C [Φ (ζ) -Φ (a)] , ζ > a, (80) 
where

C = 1 Γ (1 + α -β) |b 2 | + ∞ a G 1 s, |b 1 | Γ(α) + G 2 s, |b 1 | Γ(α) + h (s) Φ (s) ds × exp 1 Γ (1 + α -β) ∞ a [Φ (s) -Φ (a)] [M 1 (s) + M 2 (s)] Φ (s) ds < ∞.
It follows from ( 76) and (80) that

[Φ (ζ) -Φ (a)] 1-(α-β) D Φ,β a y (ζ) ≤ |b 1 | Γ(α -β) + C [Φ (ζ) -Φ (a)] , ζ > a. (81) 
Furthermore, again by our assumption (68) we see that

ζ a f s, y (s) , D Φ,β a y (s) Φ (s) ds ≤ ζ a f s, y (s) , D Φ,β a y (s) Φ (s) ds ≤ ζ a G 1 s, [Φ (s) -Φ (a)] 1-α |y (s)| + G 2 s, [Φ (s) -Φ (a)] 1-(α-β) D Φ,β a y (s) + h (s) Φ (s) ds. (82) 
Therefore from ( 81) and (82) we conclude that

ζ a f s, y (s) , D Φ,β a y (s) Φ (s) ds ≤ ζ a G 1 s, |b 1 | Γ(α) + C [Φ (ζ) -Φ (a)] +G 2 s, |b 1 | Γ(α) + C [Φ (ζ) -Φ (a)] + h (s) Φ (s) ds = ζ a G 1 s, |b 1 | Γ(α) + C [Φ (ζ) -Φ (a)] -G 1 s, |b 1 | Γ(α) + G 1 s, |b 1 | Γ(α) +G 2 s, |b 1 | Γ(α) + C [Φ (ζ) -Φ (a)] -G 2 s, |b 1 | Γ(α) + G 2 s, |b 1 | Γ(α) + h (s) Φ (s) ds, ζ > 0 (83) As G i , i = 1, 2, satisfy (14), we have ζ a f s, y (s) , D Φ,β a y (s) Φ (s) ds ≤ C ζ a [Φ (s) -Φ (a)] [M 1 (s) + M 2 (s)] Φ (s) ds + ζ a G 1 s, |b 1 | Γ(α) + G 2 s, |b 1 | Γ(α) + h (s) Φ (s) ds.
That is From Lemma 2.7, we infer that

lim ζ→∞ y (ζ) [Φ (ζ) -Φ (a)] α = lim ζ→∞ D Φ,α a y (ζ) Γ (1 + α) = r
for some r ∈ R. 

(ζ, u, v)| ≤ G 1 ζ, |u| [[Φ (ζ) -Φ (a)]] α + G 2 ζ, |v| [[Φ (ζ) -Φ (a)]] α-β , and 
∞ a M i (s) Φ (s) ds < ∞, respectively. 6 Examples Example 1. Consider the problem        D Φ,1/2 a y (ζ) = (ζ ρ -a ρ ) 3 cos y 2 e -3(ζ ρ -a ρ ) [y (ζ)] 1/4 D Φ,1/3 a y (ζ) 1/5 , ζ > a, I Φ,1/2 a y (ζ) | ζ=a = b. (84) Here we have f ζ, y (ζ) , D Φ,1/3 a y (ζ) = (ζ ρ -a ρ ) 3 cos y 2 e -3(ζ ρ -a ρ ) [y (ζ)] 1/4 D Φ,1/3 a y (ζ) 1/5 ≤ (ζ ρ -a ρ ) 3-1/8-1/6 e -(ζ ρ -a ρ ) e -2(ζ ρ -a ρ ) (ζ ρ -a ρ ) 1/2 y (ζ) 1/4 (ζ ρ -a ρ ) 5/6 D Φ,1/3 a y (ζ) 1/5 ≤ (ζ ρ -a ρ ) γ e -δ(ζ ρ -a ρ ) h (ζ) ϕ 1 (ζ ρ -a ρ ) 1-1/2 y (ζ) ϕ 2 (ζ ρ -a ρ ) 1-(1/2-1/3) D Φ,1/3 a y (ζ) , where Φ = ζ ρ , ρ > 0, δ = 2, γ = 65 24 , h (ζ) = e -(ζ ρ -a ρ ) , ϕ 1 (ζ) = ζ 1/4 and ϕ 2 (ζ) = ζ 1/5 . All the conditions of Theorem 3 are satisfied. Then |y (ζ)| ≤ C (ζ ρ -a ρ ) -1/2 and D Φ,1/3 a y (ζ) ≤ C (ζ ρ -a ρ ) -5/6 , ζ > a.
≤ [ζ ρ -a ρ ] 1-α e -ζ |y (ζ)| + [ζ ρ -a ρ ] 1-(α-β) e -ζ D Φ,β a y (ζ) ≤ G 1 ζ, [ζ ρ -a ρ ] 1-α |y (ζ)| + G 2 ζ, [ζ ρ -a ρ ] 1-(α-β) D Φ,β a y (ζ) ,

Lemma 5 . 2 .

 52 Multiplying the (73) by [Φ (ζ) -Φ (a)]1-(α-β) and the result follows. Suppose that y ∈ C Φ,1-α [a, ∞) is a solution of (66)-(67), f satisfies (A1), (A2) with s) -Φ (a)] Φ (s) M i (s) ds < ∞, i = 1, 2, (74) and M i , i = 1, 2, are as in[START_REF] De Barra | Measure Theory and Integration[END_REF], h ∈ L 1 (a, ∞). Therefore lim ζ→∞ ζ a f s, y (s) , D Φ,β a y (s) Φ (s) ds < ∞.

Theorem 5 .

 5 y (s) , D Φ,β a y (s) Φ (s) ds < ∞, ζ ≥ 0, and the result follows. Assume that all conditions in Lemma 5.2 are satisfie. Then every solution y ∈ C Φ,1-α [a, ∞) of (66)-(67) has the following property lim ζ→∞ y (ζ) [Φ (ζ) -Φ (a)] α = r, r ∈ R. Proof. By virtue of Lemma 5.2 and (71), we have lim ζ→∞ D Φ,α a y (ζ) = b ∈ R.

Remark 1 .

 1 If b 1 = 0 in Theorem 5, then (68), (74) are replaced by |f

Example 2 . 3 cos y 2 ζ 2 ζ - 2 e -3 ln ζ a cos ζ 2 Dyζ a 3 cos y 2 ζ 1 / 2 + ln ζ a 2 ζ - 2 e -3 ln ζ a cos ζ 2 Dy 3 ay (ζ) 1 / 5 ≤ 5 ≤Example 4 .y 2 + 3 a 2 + 4 ay (ζ) 1 / 2 ≤Example 5 .y

 2322223212222315542324125 Consider the problem -2 e -2 ln ζ a [y (ζ)] 1/2 + ln ζ a (ζ) | ζ=a = b. (85) We can rewrite the RHS of (85) as follows ln -2 e -2 ln ζ a [y (ζ)]whereΦ (ζ) = ln ζ a , γ 1 = 8/3, γ 2 = 37/24, h 1 (ζ) = h 2 (ζ) = ζ -2 and ϕ 1 (ζ) = ϕ 2 (ζ) = ζ 1/2 .Clearly, all conditions of Theorem 4 are satisfied. Then|y (ζ)| ≤ C ln ζ a (ζ) = [Φ (ζ) -Φ (a)] 3 cos y 2 e -3[Φ(ζ)-Φ(a)] f ζ, y (ζ) , D Φ,1/3 a y (ζ) = [Φ (ζ) -Φ (a)] 3 cos y 2 e -3[Φ(ζ)-Φ(a)] [y (ζ)] 1/4 D Φ,1/[Φ (ζ) -Φ (a)] 3-1/8-1/6 e -[Φ(ζ)-Φ(a)] e -2[Φ(ζ)-Φ(a)] × [Φ (ζ) -Φ (a)] 1/2 y (ζ) [Φ (ζ) -Φ (a)] γ h (ζ) ϕ 1 [Φ (ζ) -Φ (a)] 1-1/2 y (ζ) ϕ 2 [Φ (ζ) -Φ (a)] 1-(1/2-1/3) D Φ,1/3 a y (ζ) , where γ = 65 24 , δ = 2, h (ζ) = e -[Φ(ζ)-Φ(a)] , ϕ 1 (ζ) = ζ 1/4 and ϕ 2 (ζ) = ζ 1/5. All the conditions of Theorem 3 are satisfied. Then|y (ζ)| ≤ C [Φ (ζ) -Φ (a)] -1/2 and D Φ,1/3 a y (ζ) ≤ C [Φ (ζ) -Φ (a)] -5/6 , ζ > a. Consider the problem (ζ) = [Φ (ζ) -Φ (a)] 3 cos y 2 [Φ (ζ)] -3 e -2[Φ(ζ)-Φ(a)] [y (ζ)] 1/[Φ (ζ) -Φ (a)] 2 [Φ (ζ)] -3 e -2[Φ(ζ)-Φ(a)] cos ζ 2 D y (ζ) | ζ=a = b.(87) We can rewrite the RHS of (87) as follows[Φ (ζ) -Φ (a)] 3 cos y 2 [Φ (ζ)] -3 e -2[Φ(ζ)-Φ(a)] [y (ζ)] 1/[Φ (ζ) -Φ (a)] 2 [Φ (ζ)] -3 e -2[Φ(ζ)-Φ(a)] cos ζ 2 D Φ,1/[Φ (ζ) -Φ (a)] γ1 e -2[Φ(ζ)-Φ(a)] h 1 (ζ) ϕ 1 [Φ (ζ) -Φ (a)] 1-1/3 y (ζ) + [Φ (ζ) -Φ (a)] γ2 e -2[Φ(ζ)-Φ(a)] h 2 (ζ) ϕ 2 [Φ (ζ) -Φ (a)] 1-(1/3-1/4) ρ D 1/4 a y (ζ)whereγ 1 = 8/3, γ 2 = 37/24, h 1 (ζ) = h 2 (ζ) = [Φ (ζ)] -3 and ϕ 1 (ζ) = ϕ 2 (ζ) = ζ 1/2 .Obviously, all conditions of Theorem 4 are satisfied. Then |y (ζ)| ≤ C [Φ (ζ) -Φ (a)] -2/3 and D Φ,1/4 a y (ζ) ≤ C [Φ (ζ) -Φ (a)] -11/12 , ζ > a. Consider the equation (ζ) = [ζ ρ -a ρ ] 1-α e -ζ y (ζ) + [ζ ρ -a ρ ] 1-(α-β) e -ζ D Φ,β a y (ζ) , ζ > a, D Φ,α a y (ζ) | ζ=a = b 2 and I Φ,1-α a y (ζ) | ζ=a = b 1 , b 2 , b 1 ∈ R, Here we have f ζ, y (ζ) , D Φ,β a y (ζ) = [ζ ρ -a ρ ] 1-α e -ζ y (ζ) + [ζ ρ -a ρ ] 1-(α-β) e -ζ D Φ,β a y (ζ)
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where

Obviously, all conditions of Theorem 5 are satisfied. Then