
HAL Id: hal-04101797
https://hal.science/hal-04101797

Submitted on 21 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DCS : A logical clock composed of a dynamic set of
probabilistic clocks

Daniel Wilhelm, Luciana Arantes, Pierre Sens

To cite this version:
Daniel Wilhelm, Luciana Arantes, Pierre Sens. DCS : A logical clock composed of a dynamic set of
probabilistic clocks. AlgoTel 2023 - 25èmes Rencontres Francophones sur les Aspects Algorithmiques
des Télécommunications, May 2023, Cargèse, France. �hal-04101797�

https://hal.science/hal-04101797
https://hal.archives-ouvertes.fr

DCS : A logical clock composed of a dynamic
set of probabilistic clocks

Daniel Wilhelm1 et Luciana Arantes1 et Pierre Sens1

1Sorbonne Université, CNRS, LIP6, Paris, France

Plusieurs horloges de taille constante (Probabilistic [5], Plausible [6]) ont été proposées dans la littérature. Ces horloges
capturent la causalité avec une grande probabilité mais ne la caractérisent pas.
L’efficacité d’une horloge de taille constante pour ordonner correctement les messages est négativement impactée par
la charge de messages du système. Néanmoins, cet impact peut être géré en variant la taille de l’horloge en fonction de
la charge de messages. Cependant, la taille des horloges de taille constante existantes est fixée à l’initialization et ne
peut pas changer durant l’exécution.
Ce papier présente les Dynamic Clock Set(DCS), qui sont constitués d’un ensemble d’horloges probabilistes. La taille
de l’ensemble peut changer dynamiquement durant l’exécution et peut notamment s’adapter à la charge de messages.

Mots-clefs : Logical clock, Causal Broadcast, probabilistic clock, distributed algorithms

1 Introduction
Distributed and parallel applications are composed of an ever increasing number of processes that coope-

rate by exchanging messages. Many of them also require that events, i.e., sending and reception of messages
as well as local events, are causally ordered as defined by Lamport’s happened before relationship [3].

Logical clocks have been used in the literature [3][2][4] to track the causality of events in distributed
systems. Events are timestamped with logical clock values, which are appended on application messages
and are updated through rules. However, Charon-Bost[1] proved that, in order to precisely capture the
causality of events, i.e., to characterize their causality, logical vector clocks must have one entry per process
in the system. Thus, in a distributed system with N processes, causality can only be characterized with a
structure in O(N), inducing scalability issues, especially in large systems, since the size of vector clocks
grows linearly with the number of processes.

Constant size clocks (e.g., Probabilistic [5], Plausible [6], etc.) circumvent such scalability issues by
having a size that is much smaller and independent to than the number of processes. On the other hand,
even though they provide a high level of ordering accuracy, they do not characterize causality. Such clocks
are useful in systems where ordering concurrent events impacts only performance and not correctness [6].

The size of existing constant size clocks is fixed at initialization and does not vary during execution.
However, the system’s message load negatively impacts the accuracy of constant size clocks. Therefore, the
clock size should ideally vary with the current message load [5], increasing (resp., decreasing) whenever
the message load is above (resp., below) a given bound value. A wrong choice can result in an oversized
clock or in a clock that is less effective in ordering messages.

This paper presents a new clock, denoted Dynamic Clock Set (DCS), which consists of a set of probabi-
listic clocks. The size of the set can dynamically vary during application execution. Operations required to
modify the size of the clock as well as to compare them are defined. DCS clocks can, for example, be used
to implement causal broadcast such as in the algorithm proposed in [5] that uses Probabilistic clocks.

2 Background
Causal order ensures that two causally related messages are delivered to applications respecting that

order. The causal order relation between events is based on the well-known Lamport’s happened before

Daniel Wilhelm et Luciana Arantes et Pierre Sens

relation between events in distributed systems [3] :
Happened before relationship : Considering two events e1 and e2, e1 causally precedes e2 (e1 → e2)
iff : (a) e1 and e2 occur on the same process and e1 precedes e2 or (b) for a message m e1=send(m) and
e2=deliver(m) or (c) there exists an event e3 such that e1 → e3 and e3 → e2.

Causal order : Processes deliver messages while respecting the causal relation between them. For any
message m and m′, if m causally precedes m′, denoted m→ m′, then all processes deliver m before m′ :

send(m) → send(m′) ⇒ deliver(m) → deliver(m′).
A constant size clock V [6][5] has M entries, 1 ≤ M ≤ N , where N corresponds to the number of

processes of the system. M is usually much smaller than N . Probabilistic clocks have the best performances
among constant size clocks[5]. Therefore, we use them to build the clock proposed in this article.

In a system using probabilistic clocks, each process pi keeps a local clock Vi of size M , whose entries are
initialized to 0. A hash function f (pi) returns the set of k clock entries assigned to pi , with 1 ≤ k ≤ M , i.e.
one to several entries of the probabilistic clock are respectively associated to each process. Process pi uses
the following two rules R1 and R2 to update its local probabilistic clock :

— R1 : Before executing an event, pi updates its local clock as follows :
∀x ∈ f (pi),Vi[x] = Vi[x] + 1

— R2 : Each message m carries with it the vector clock of its sender process at sending time. On the
receipt of a message m, process pi :

— Updates its local clock as follows : ∀x,Vi[x] = max(Vi[x],m.V[x])
— Executes R1, Deliver(m)

Comparison of two probabilistic clocks Considering V1 and V2 :
V1 < V2, iff ∀x, 1 ≤ x ≤ M,V1[x] ≤ V2[x] ∧ ∃i,V1[i] < V2[x]

Note that probabilistic clocks ensures that : send(m1) → send(m2) ⇒ m1.V < m2.V .
Using probabilistic clocks to implement a causal broadcast algorithm, the authors of [5] showed that the

probability that a process delivers a message m out of causal order is equal to (1 − (1 − 1
M)

X∗k)k , where
M is the size of the clock attached on m, k is the number of entries associated to each process, and X
the number of messages concurrent to m. We do two observations out of this equation. First, increasing
the size of the clock attached to m decreases the probability that a process delivers m out of causal order.
Second, increasing the number of concurrent messages increases the probability that m is delivered out of
causal order. In fact, a concurrent message might increment the same clock entries as dependencies of m.
Therefore, the higher the number of concurrent messages to m that pi delivers, the higher the probability that
such deliveries increment the same clock entries as dependencies of m, and pi will then wrongly conclude
that it has delivered all dependencies of m upon receiving m, thus delivering m out of causal order.

3 Dynamic Clock Set
A Dynamic Clock Set (DCS) is composed of a set of probabilistic clocks, denoted components, which

all have the same number of entries (M). Figure 1 gives a representation of a DCS clock. The number of
components of a DCS can dynamically vary during execution. A component Ck is uniquely identified by
its index k. It is either active or inactive. A DCS clock D is composed of one or several active components,
followed by no or several inactive components, as shown in Figure 1, i.e. C1 is always active, followed
by no or several active components Ci with 1 < i < |D | followed by no or several inactive components
Cj with i < j ≤ |D |. A process only attaches the active components of its DCS clock on messages. A
process increments one or several active components of its DCS clock to keep track of events. The set
Cincr,i contains the index of the components that process pi increments to track events. pi applies the hash
function f (pi) to all components whose index is contained in Cincr,i .

The size of DCS clocks is adaptable to the message load. As shown in the Background, the efficiency of
constant size clocks to causally order messages decreases when the message load increases. Nevertheless,
increasing the size of a constant size clock also increases its resillience to the message load. The size of DCS
clocks is dynamically adjustable during execution. DCS clocks can therefore ensure a desired accuracy of
causal message ordering by varying their size according to the message load.

DCS : A logical clock composed of a dynamic set of probabilistic clocks

Active components Inactive components︷ ︸︸ ︷ ︷ ︸︸ ︷
x0 x1 ... xM x0 x1 ... xM x0 x1 ... xM x0 x1 ... xM︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸︸ ︷︷ ︸

C1 of M entries C2 of M entries Ck−1 of M entries Ck of M entries

FIGURE 1: Representation of a Dynamic Clock Set

Process pi uses the following two rules R1 and R2 to update its local DCS clock :
— R1 : Before executing an event, it updates its local clock as follows :

∀x ∈ f (pi), ∀k ∈ Cincr,Vi .Ck[x] = Vi .Ck[x] + d (d > 0)
— R2 : Each message m carries with it the vector clock of its sender process at sending time. On the

receipt of a message (m,Vm), process pi :
— Updates its local clock as follows :

(1) If |Di | < |D |, pi calls Add(), defined below, till |Di | = |D |.
(2) ∀k ∈ [1, |D |], ∀x ∈ [1,M],Di .Ck[x] = max(Di .Ck[x],D.Ck[x])

— Executes R1, Deliver(m)

Comparison of two DCS clocks The comparison operator < of DCS clocks is based on the comparison
operator of probabilistic clocks. Each component of a DCS clock is an independent probabilistic clock. As
a reminder, the comparison operator < of two probabilistic clocks C1 and C2 is defined as follows :

C1 < C2 iff ∀x,C1[x] ≤ C2[x] ∧ ∃k,C1[k] < C2[k]
For two DCS clocks D1 and D2, we have D1 < D2 provided that :
(1) |D1 | ≤ |D2 |
(2) Each component Ck of D1 is smaller or equal to the corresponding component Ck of D2, and at least

one component Cj of D1 is strictly smaller than the component Cj of D2 : ∀k ∈ [1, |D1 |],D1.Ck ≤

D2.Ck ∧ ∃Cj,D1.Cj < D2.Cj .
We claim that two causally related messages m1 and m2 with respective DCS clocks m1.D and m2.D

verify the following condition :
send(m1) → send(m2) ⇒ m1.D < m2.D.

Note that two messages m1 and m2 whose DCS clock comparison does not satisfy the above two condi-
tions are said to be concurrent, denoted as m1 | |m2. Formally : m1.D � m2.D ∧ m2.D � m1.D⇒ m1 | |m2.

Theorem 1. For any two messages m and m′ of respective DCS clocks m.D and m′.D, if m→ m′ then we
have : send(m) → send(m′) ⇒ m.D < m′.D

Proof. Consider that process pi of DCS clock Di sends a message m of causal dependencies Depm. We
prove that ∀m′ ∈ Depm,m′.D < m.D, by showing that when pi sends m, we have ∀m′ ∈ Depm,m′.D < Di .

A process pj updates its DCS clock Dj when delivering a message m : pj adds components to Dj in order
to ensure that Dj has at least as many components than m.D. Therefore, we have |Dj | > |m.D |. Second
pj updates Dj : ∀x, ∀k,Dj .Ck[x] = max(Dj .Ck[x],m.D.Ck[x]). Therefore, we have ∀x, ∀k,Dj .Ck[x] ≥
m.D.Ck[x]. Therefore, after pj delivered m, we have m.D ≤ Dj .

For all messages m′ ∈ Depm, either pi delivered m′, or another process pj delivered m′ and broadcasted
a message m” such that m′ → m” → m and that pi delivered m”. If pi delivered m′, then m′.D ≤ Di as
showed above. Otherwise, (1) a process pj has delivered m′ and therefore m′.D ≤ m”.D (2) pi has delivered
m” and therefore m”.D ≤ Di . Therefore, m′.D ≤ Di . Hence, we have ∀m′ ∈ Depm,m′.D ≤ Di .

When pi sends m, it first updates its DCS clock by incrementing at least one entry x of at least one
component Ck before appending Di on m. Therefore, ∃k, ∃x, ∀m′ ∈ Depm,m.D.Ck[x] > m′.D.Ck[x].

Therefore, ∀m′ ∈ Depm,m′.D < m.D.

Activate() / Deactivate() A process calls the operation Activate() (resp., Deactivate()) to activate (resp.
deactivate) an inactive (resp., active) component of its DCS clock.

Daniel Wilhelm et Luciana Arantes et Pierre Sens

We remind that DCS clock requires that the component of lowest index, namely C1, to be always active.
Thus, the call to Activate() (resp., Deactivate()) immediately returns f alse if pi’s DCS clock has no

inactive (resp., only one active) component ; otherwise, the component of pi’s DCS clock with the lowest
(resp., highest) index among its inactive (resp., active) components will be activated (resp., deactivated).

For example, let’s consider a process pi whose DCS clock D has four components : D = {C1,C2,C3,C4}.
If pi wants to deactivate one or more components, such a deactivation will be done in decreasing order, i.e,
first C4, then C3, and finally C2. On the other hand, if pi wants to re-activate them, first C2 will be activated,
then C3, and finally C4. Furthermore, pi locally keeps deactivated components Cd , since pi can receive a
message from another process pj that contains Cd , i.e. Cd has not been deactivated by pj yet. By locally
keeping Cd , pi ensures that the delivery conditions of Cd will be satisfied locally.

Add() / Remove() A process decides locally to add a new component to its DCS clock, i.e., without
communicating with other processes. When pi calls the Add() operation, it first creates a new component
C in active state, sets its entries to 0, and appends C to the end of its DCS clock. Therefore, C will be the
component of pi’s DCS clock with the highest index.

Having called the Add() operation, pi should also call the Activate() operation for all the inactive com-
ponents Ck of its DCS clock. Indeed, by definition, a DCS clock is composed of active and inactive com-
ponents and the index of the latter are strictly higher than the former. Consequently, adding an active com-
ponent at the end of a DCS clock implies that all components of that DCS clock must be active.

Process pi calls Remove() to remove the component of its DCS clock with the highest index.

4 Conclusion
This paper presents the Dynamic Clock Set (DCS), a new logical clock built with probabilistic clocks.

The size of DCS clocks is modifiable during execution, contrary to the size of constant size clocks. This
is particularly important since the optimal size of DCS and constant size clocks depends on the system’s
message load, and knowing the system’s message load beforehand is difficult or even impossible.

We implemented a causal broadcast algorithm using DCS clocks and compared it to the causal broadcast
algorithm using probabilistic clocks proposed in [5]. Experimental results confirm that DCS clocks adapt
well to the message load and can reduce the size of causal information as well as the number of messages
delivered out of causal order. The causal broadcast algorithm and experimental results could not be included
due to lack of space and can be found in [7].

Références
[1] B. Charron-Bost. Concerning the size of logical clocks in distributed systems. IPL, 39(1) :11–16, 1991.

[2] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In 11th Austra-
lian Computer Science Conference, 1988.

[3] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7) :558–565, 1978.

[4] F. Mattern. Virtual time and global states of distributed systems. In Parallel And Distributed Algorithms,
pages 215–226, 1988.

[5] A. Mostéfaoui and S. Weiss. Probabilistic causal message ordering. In PaCT, pages 315–326, 2017.

[6] F. Torres-Rojas and M. Ahamad. Plausible clocks : Constant size logical clocks for distributed systems.
In WDAG 1996, pages 71–88, 1996.

[7] Daniel Wilhelm, Pierre Sens, and Luciana Arantes. A probabilistic Dynamic Clock Set to capture
message causality. working paper or preprint, February 2023.

	Introduction
	Background
	Dynamic Clock Set
	Conclusion

