Daniel Wilhelm

Luciana Arantes

Pierre Sens

DCS : A logical clock composed of a dynamic set of probabilistic clocks

Keywords: Logical clock, Causal Broadcast, probabilistic clock, distributed algorithms

) ont été proposées dans la littérature. Ces horloges capturent la causalité avec une grande probabilité mais ne la caractérisent pas. L'efficacité d'une horloge de taille constante pour ordonner correctement les messages est négativement impactée par la charge de messages du système. Néanmoins, cet impact peut être géré en variant la taille de l'horloge en fonction de la charge de messages. Cependant, la taille des horloges de taille constante existantes est fixée à l'initialization et ne peut pas changer durant l'exécution. Ce papier présente les Dynamic Clock Set(DCS), qui sont constitués d'un ensemble d'horloges probabilistes. La taille de l'ensemble peut changer dynamiquement durant l'exécution et peut notamment s'adapter à la charge de messages.

Introduction

Distributed and parallel applications are composed of an ever increasing number of processes that cooperate by exchanging messages. Many of them also require that events, i.e., sending and reception of messages as well as local events, are causally ordered as defined by Lamport's happened before relationship [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF].

Logical clocks have been used in the literature [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF][2] [START_REF] Mattern | Virtual time and global states of distributed systems[END_REF] to track the causality of events in distributed systems. Events are timestamped with logical clock values, which are appended on application messages and are updated through rules. However, Charon-Bost [START_REF] Charron-Bost | Concerning the size of logical clocks in distributed systems[END_REF] proved that, in order to precisely capture the causality of events, i.e., to characterize their causality, logical vector clocks must have one entry per process in the system. Thus, in a distributed system with N processes, causality can only be characterized with a structure in O(N), inducing scalability issues, especially in large systems, since the size of vector clocks grows linearly with the number of processes.

Constant size clocks (e.g., Probabilistic [START_REF] Mostéfaoui | Probabilistic causal message ordering[END_REF], Plausible [START_REF] Torres-Rojas | Plausible clocks : Constant size logical clocks for distributed systems[END_REF], etc.) circumvent such scalability issues by having a size that is much smaller and independent to than the number of processes. On the other hand, even though they provide a high level of ordering accuracy, they do not characterize causality. Such clocks are useful in systems where ordering concurrent events impacts only performance and not correctness [START_REF] Torres-Rojas | Plausible clocks : Constant size logical clocks for distributed systems[END_REF].

The size of existing constant size clocks is fixed at initialization and does not vary during execution. However, the system's message load negatively impacts the accuracy of constant size clocks. Therefore, the clock size should ideally vary with the current message load [START_REF] Mostéfaoui | Probabilistic causal message ordering[END_REF], increasing (resp., decreasing) whenever the message load is above (resp., below) a given bound value. A wrong choice can result in an oversized clock or in a clock that is less effective in ordering messages.

This paper presents a new clock, denoted Dynamic Clock Set (DCS), which consists of a set of probabilistic clocks. The size of the set can dynamically vary during application execution. Operations required to modify the size of the clock as well as to compare them are defined. DCS clocks can, for example, be used to implement causal broadcast such as in the algorithm proposed in [START_REF] Mostéfaoui | Probabilistic causal message ordering[END_REF] that uses Probabilistic clocks.

Background

Causal order ensures that two causally related messages are delivered to applications respecting that order. The causal order relation between events is based on the well-known Lamport's happened before relation between events in distributed systems [START_REF] Lamport | Time, clocks, and the ordering of events in a distributed system[END_REF] : Happened before relationship : Considering two events e 1 and e 2 , e 1 causally precedes e 2 (e 1 → e 2) iff : (a) e 1 and e 2 occur on the same process and e 1 precedes e 2 or (b) for a message m e 1 =send(m) and e 2 =deliver(m) or (c) there exists an event e 3 such that e 1 → e 3 and e 3 → e 2 . Causal order : Processes deliver messages while respecting the causal relation between them. For any message m and m , if m causally precedes m , denoted m → m , then all processes deliver m before m : send(m) → send(m) ⇒ deliver(m) → deliver(m).

A constant size clock V [START_REF] Torres-Rojas | Plausible clocks : Constant size logical clocks for distributed systems[END_REF][5] has M entries, 1 ≤ M ≤ N, where N corresponds to the number of processes of the system. M is usually much smaller than N. Probabilistic clocks have the best performances among constant size clocks [START_REF] Mostéfaoui | Probabilistic causal message ordering[END_REF]. Therefore, we use them to build the clock proposed in this article.

In a system using probabilistic clocks, each process p i keeps a local clock V i of size M, whose entries are initialized to 0. A hash function f (p i) returns the set of k clock entries assigned to p i , with 1 ≤ k ≤ M, i.e. one to several entries of the probabilistic clock are respectively associated to each process. Process p i uses the following two rules R1 and R2 to update its local probabilistic clock : -R1 : Before executing an event, p i updates its local clock as follows :

∀x ∈ f (p i), V i [x] = V i [x] + 1 -R2 :
Each message m carries with it the vector clock of its sender process at sending time. On the receipt of a message m, process p i :

-Updates its local clock as follows : ∀x,

V i [x] = max(V i [x], m.V[x]) -Executes R1, Deliver(m) Comparison of two probabilistic clocks Considering V 1 and V 2 : V 1 < V 2 , iff ∀x, 1 ≤ x ≤ M, V 1 [x] ≤ V 2 [x] ∧ ∃i, V 1 [i] < V 2 [x] Note that probabilistic clocks ensures that : send(m 1) → send(m 2) ⇒ m 1 .V < m 2 .V.
Using probabilistic clocks to implement a causal broadcast algorithm, the authors of [START_REF] Mostéfaoui | Probabilistic causal message ordering[END_REF] showed that the probability that a process delivers a message m out of causal order is equal to

(1 -(1 -1 M) X * k) k
, where M is the size of the clock attached on m, k is the number of entries associated to each process, and X the number of messages concurrent to m. We do two observations out of this equation. First, increasing the size of the clock attached to m decreases the probability that a process delivers m out of causal order. Second, increasing the number of concurrent messages increases the probability that m is delivered out of causal order. In fact, a concurrent message might increment the same clock entries as dependencies of m. Therefore, the higher the number of concurrent messages to m that p i delivers, the higher the probability that such deliveries increment the same clock entries as dependencies of m, and p i will then wrongly conclude that it has delivered all dependencies of m upon receiving m, thus delivering m out of causal order.

Dynamic Clock Set

A Dynamic Clock Set (DCS) is composed of a set of probabilistic clocks, denoted components, which all have the same number of entries (M). Figure 1 gives a representation of a DCS clock. The number of components of a DCS can dynamically vary during execution. A component C k is uniquely identified by its index k. It is either active or inactive. A DCS clock D is composed of one or several active components, followed by no or several inactive components, as shown in Figure 1, i.e. C 1 is always active, followed by no or several active components C i with 1 < i < |D| followed by no or several inactive components C j with i < j ≤ |D|. A process only attaches the active components of its DCS clock on messages. A process increments one or several active components of its DCS clock to keep track of events. The set C incr,i contains the index of the components that process p i increments to track events. p i applies the hash function f (p i) to all components whose index is contained in C incr,i .

The size of DCS clocks is adaptable to the message load. As shown in the Background, the efficiency of constant size clocks to causally order messages decreases when the message load increases. Nevertheless, increasing the size of a constant size clock also increases its resillience to the message load. The size of DCS clocks is dynamically adjustable during execution. DCS clocks can therefore ensure a desired accuracy of causal message ordering by varying their size according to the message load.

DCS : A logical clock composed of a dynamic set of probabilistic clocks

Active components

Inactive components Process p i uses the following two rules R1 and R2 to update its local DCS clock : -R1 : Before executing an event, it updates its local clock as follows :

x 0 x 1 ... x M x 0 x 1 ... x M x 0 x 1 ... x M x 0 x 1 ... x M C 1 of M entries C 2 of M entries C k-1 of M entries C k of M entries
∀x ∈ f (p i), ∀k ∈ C incr , V i .C k [x] = V i .C k [x] + d (d > 0) -R2
: Each message m carries with it the vector clock of its sender process at sending time. On the receipt of a message (m, V m), process p i :

-Updates its local clock as follows :

(1)

If |D i | < |D|, p i calls Add(), defined below, till |D i | = |D|. (2) ∀k ∈ [1, |D|], ∀x ∈ [1, M], D i .C k [x] = max(D i .C k [x], D.C k [x]) -Executes R1, Deliver(m)
Comparison of two DCS clocks The comparison operator < of DCS clocks is based on the comparison operator of probabilistic clocks. Each component of a DCS clock is an independent probabilistic clock. As a reminder, the comparison operator < of two probabilistic clocks C 1 and C 2 is defined as follows : A process p j updates its DCS clock D j when delivering a message m : p j adds components to D j in order to ensure that D j has at least as many components than m.D. Therefore, we have Activate() / Deactivate() A process calls the operation Activate() (resp., Deactivate()) to activate (resp. deactivate) an inactive (resp., active) component of its DCS clock.

C 1 < C 2 iff ∀x, C 1 [x] ≤ C 2 [x] ∧ ∃k, C 1 [k] < C 2 [k] For two DCS clocks D 1 and D 2 , we have D 1 < D 2 provided that : (1) |D 1 | ≤ |D 2 | (2) Each component C k of D
|D j | > |m.D|. Second p j updates D j : ∀x, ∀k, D j .C k [x] = max(D j .C k [x], m.D.C k [x]). Therefore, we have ∀x, ∀k, D j .C k [x] ≥ m.D.C k [x].
We remind that DCS clock requires that the component of lowest index, namely C 1 , to be always active. Thus, the call to Activate() (resp., Deactivate()) immediately returns f alse if p i 's DCS clock has no inactive (resp., only one active) component ; otherwise, the component of p i 's DCS clock with the lowest (resp., highest) index among its inactive (resp., active) components will be activated (resp., deactivated).

For example, let's consider a process p i whose DCS clock D has four components : D = {C 1 , C 2 , C 3 , C 4 }. If p i wants to deactivate one or more components, such a deactivation will be done in decreasing order, i.e, first C 4 , then C 3 , and finally C 2 . On the other hand, if p i wants to re-activate them, first C 2 will be activated, then C 3 , and finally C 4 . Furthermore, p i locally keeps deactivated components C d , since p i can receive a message from another process p j that contains C d , i.e. C d has not been deactivated by p j yet. By locally keeping C d , p i ensures that the delivery conditions of C d will be satisfied locally.

Add() / Remove() A process decides locally to add a new component to its DCS clock, i.e., without communicating with other processes. When p i calls the Add() operation, it first creates a new component C in active state, sets its entries to 0, and appends C to the end of its DCS clock. Therefore, C will be the component of p i 's DCS clock with the highest index.

Having called the Add() operation, p i should also call the Activate() operation for all the inactive components C k of its DCS clock. Indeed, by definition, a DCS clock is composed of active and inactive components and the index of the latter are strictly higher than the former. Consequently, adding an active component at the end of a DCS clock implies that all components of that DCS clock must be active.

Process p i calls Remove() to remove the component of its DCS clock with the highest index.

Conclusion

This paper presents the Dynamic Clock Set (DCS), a new logical clock built with probabilistic clocks. The size of DCS clocks is modifiable during execution, contrary to the size of constant size clocks. This is particularly important since the optimal size of DCS and constant size clocks depends on the system's message load, and knowing the system's message load beforehand is difficult or even impossible.

We implemented a causal broadcast algorithm using DCS clocks and compared it to the causal broadcast algorithm using probabilistic clocks proposed in [START_REF] Mostéfaoui | Probabilistic causal message ordering[END_REF]. Experimental results confirm that DCS clocks adapt well to the message load and can reduce the size of causal information as well as the number of messages delivered out of causal order. The causal broadcast algorithm and experimental results could not be included due to lack of space and can be found in [START_REF] Wilhelm | A probabilistic Dynamic Clock Set to capture message causality[END_REF].

FIGURE 1 :

 1 FIGURE 1: Representation of a Dynamic Clock Set

1 Theorem 1 .

 11 is smaller or equal to the corresponding component C k of D 2 , and at least one component C j of D 1 is strictly smaller than the componentC j of D 2 : ∀k ∈ [1, |D 1 |], D 1 .C k ≤ D 2 .C k ∧ ∃C j , D 1 .C j < D2 .C j . We claim that two causally related messages m 1 and m 2 with respective DCS clocks m 1 .D and m 2 .D verify the following condition : send(m 1) → send(m 2) ⇒ m 1 .D < m 2 .D. Note that two messages m 1 and m 2 whose DCS clock comparison does not satisfy the above two conditions are said to be concurrent, denoted as m 1 ||m 2 . Formally : m 1 .D m 2 .D ∧ m 2 .D m 1 .D ⇒ m 1 ||m 2 . For any two messages m and m of respective DCS clocks m.D and m .D, if m → m then we have : send(m) → send(m) ⇒ m.D < m .D Proof. Consider that process p i of DCS clock D i sends a message m of causal dependencies Dep m . We prove that ∀m ∈ Dep m , m .D < m.D, by showing that when p i sends m, we have ∀m ∈ Dep m , m .D < D i .

 Therefore, after p j delivered m, we have m.D ≤ D j . For all messages m ∈ Dep m , either p i delivered m , or another process p j delivered m and broadcasted a message m" such that m → m" → m and that p i delivered m". If p i delivered m , then m .D ≤ D i as showed above. Otherwise, (1) a process p j has delivered m and therefore m .D ≤ m".D (2) p i has delivered m" and therefore m".D ≤ D i . Therefore, m .D ≤ D i . Hence, we have ∀m ∈ Dep m , m .D ≤ D i . When p i sends m, it first updates its DCS clock by incrementing at least one entry x of at least one component C k before appending D i on m. Therefore, ∃k, ∃x, ∀m ∈ Dep m , m.D.C k [x] > m .D.C k [x]. Therefore, ∀m ∈ Dep m , m .D < m.D.