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ABSTRACT  

Confining molecular guests within artificial hosts has provided a major driving force in the 

rational design of supramolecular cages with tailored properties. Over the last 30 years, a set of 

design strategies have been developed that enabled the controlled synthesis of a myriad of cages. 

Recently, there has been a growing interest in involving in silico methods in this toolbox. Cavity 

shape and size are important parameters that can be easily accessed by inexpensive geometric 

algorithms. Although these algorithms are well developed for the detection of non-artificial 

cavities (e.g., enzymes), they are not routinely used for the rational design of supramolecular 

cages. In order to test the capabilities of this tool, we have evaluated the performance and 

characteristics of 7 different cavity characterization software in the context of 22 analogues of 

well-known supramolecular cages. Among the tested software, KVFinder project and Fpocket 

proved to be the most adapted to characterize supramolecular cavities. With the results of this 

work, we aim to popularize this underused technique within the supramolecular community. 

  



3  

INTRODUCTION 

1. General Introduction 

Enzymes are crucial to all living systems: Indeed, more than 99% of biologically relevant 

reactions are mediated by natural proteins. They are truly remarkable catalysts that can attain 

exceptional rate enhancement in many biological transformations.
1
 Reactive intermediates and 

transition states are stabilized at the active site of enzymes, thus providing a lower energy 

pathway for reactions to take place. This active site is buried (confined) within a cavity, called an 

enzyme pocket.
2
 This confinement offers different advantages: (1) rate acceleration is achieved 

through predisposition and increased local concentration of reactive centers; and (2) steric 

constraints alter the normal (solution phase) selectivity of certain reactions. Consequently, 

enzymes are capable of efficiently synthesizing complex biomolecules with unparalleled 

stereocontrol. Taking advantage of their efficiency, they have been implemented in synthetic 

chemistry on both laboratory and industrial scales. Unfortunately, their synthetic use is limited, 

as this efficiency is met with high substrate specificity or in other words: poor substrate scope. 

Fortunately, the principle of confinement is transposable
3
 from biological systems to any 

artificially designed host, with cavities of various shapes and sizes: zeolites,
4
 metal-organic 

frameworks (MOFs),
5
 covalent organic frameworks (COFs)

5b
 and supramolecular cages. More 

importantly, many supramolecular cages have been prepared over the past 25 years using 

different strategies: covalent, H-bonded and metal organic cages (MOCs).
6
 They have been 

shown to encapsulate (confine) reactive species within their cavities, just like enzymes, and there 

is now solid evidence that confinement within these artificial cavities influences the rate and 

selectivity of various reactions.
7 

In recent years, a large amount of experimental data has been accumulated, which has raised 

interest in gaining a more detailed picture of the encapsulation process in silico.
8
 Understanding 

the underlying factors that drive the encapsulation of reactive intermediates is primordial for the 

rational design of new supramolecular cages with improved catalytic properties. Indeed, recent 

efforts have been devoted to develop freely available tools (e.g., cgbind) for the computer-aided 

prediction of binding affinities.
9
 However, encapsulation is a complex process, both from 

thermodynamic and kinetic point of view. Classical simulations (e.g., molecular dynamics, 

Grand Canonical Monte Carlo) and DFT computations are useful tools to study these complex 
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molecular systems. However, such complex and large molecular systems at density functional 

theory (DFT) level are time-consuming. Recent work by Major et al. and Ujaque and Maréchal 

et al. have focused on this problem by integrating quantum mechanics concepts to molecular 

dynamics simulations.
10

 These calculations have provided useful insights about encapsulation in 

artificial hosts, but their use in a predictive manner is still premature today. On the other hand, 

cavity size and shape are invaluable parameters, which can serve as good estimates of the steric 

feasibility of encapsulation processes. Indeed, the binding energies showed a good correlation 

with the guest size (Vguest) and Vguest/Vcavity ratio according to the work of Ujaque and Maréchal 

et al.
10a

 In addition, these parameters can be easily accessed by inexpensive in silico geometric 

algorithms, which have been originally developed to detect cavities in protein systems. Although 

the close analogy between enzyme pockets and artificial cavities is evident (vide supra), these 

methods have not been routinely used in the context of supramolecular cages.
11

 

Therefore, the aim of this work is to present a state of the art of different methods and software 

available to detect and describe cavities in supramolecular cages, in order to make these in silico 

approaches more accessible to the supramolecular community. The cavity volume is an 

important parameter for the rational design of new supramolecular cages with improved catalytic 

properties.  

2. Cavity detection in computational chemistry 

First, we are going to provide a brief introduction to the different strategies for detecting 

cavities in biomolecules (e.g., proteins, DNA, RNA, and lipid membranes). The discussion will 

only focus on the necessary background and terminology that will serve readers in the following 

parts of this section. Our goal is to identify robust software that can characterize cavities in 

supramolecular cages and provide a comprehensive analysis of them.
12

 Selected software will be 

discussed below, keeping a simplified description along with visual aids to help novice readers.  
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2.1 Surface representations 

For modeling purposes, the host (biomolecule) and the guest (substrate) are usually described 

by a hard sphere model, that only considers atomic positions and radii to represent the molecular 

structure.
9a,b

 Based on this, the most common mathematical formulations of molecular surfaces 

are (Figure 1):  

(A) van der Waals (vdW) surface represents each atom by a sphere whose radius is 

proportional to its vdW radius. The vdW surface is represented as the union of those spherical 

atoms; 

(B) solvent accessible surface (SAS) represents the regions of a molecule that can be accessed 

by a solvent molecule (e.g., a water molecule), which is approximated by a spherical probe;  

(C) solvent excluded surface (SES) is similar to SAS, but the outer shell of the probe is 

considered, instead of the probe center.  

 

Figure 1: Molecular surface representations. (A) van der Waals (vdW) surface. (B) Solvent 

accessible surface (SAS). (C) Solvent excluded surface (SES). Images generated with PyMOL
13

 for 

cage A1 (hexameric resorcin[4]arene-cage, see Figure 9). (D) 2D schematic representation of 

molecular surfaces. The vdW surface (green) is composed of atoms, that are represented as green 

spheres. A spherical probe (grey), representing a solvent molecule, rolls around the over the atoms 

of the molecule to define SES and SAS. The SES is defined by the vdW surface (green) and space 

not reached by the spherical probe (orange). The SAS is defined by the envelope reached by the 

center of the spherical probe (blue). 

 

 

2.2 Cavity detection methods 
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Over the last 40 years, several computational methods have been developed for the 

characterization of protein surfaces. These methods can be classified into three main categories:  

• Evolutionary-based methods are based on searching for conserved residues in multiple 

sequence alignments and information from known binding site profiles; 

• Energy-based methods identify binding sites from energetic interaction between the 

target biomolecule and a probe molecule, usually a chemical group; 

• Geometry-based methods identify cavities by analyzing the geometrical characteristics of 

the molecular surface. 

Methods in each category have their own benefits and drawbacks.
9b

 Evolutionary algorithms 

strongly rely on sequence information or active binding site databases and the quality of the 

alignment procedure, while energetic methods depend on filtering procedures, force field 

parametrizations, and scoring functions used. On the other hand, geometrical detection methods 

are relatively simple, straightforward and do not require any non-geometric knowledge, only the 

protein structural data file, containing the Cartesian coordinates of the atoms, that can be easily 

accessed in the Worldwide Protein Data Bank (wwPDB).
14

 Once the atoms' coordinates are 

available, geometric methods should be able to represent any kind of biomolecule. Although 

purely geometric methods are efficient in identifying all types of cavities of a target molecule, 

identifying those that are functionally relevant poses a problem. However, cavity 

characterization in terms of well-chosen physicochemical properties can lead to the identification 

of functionally relevant cavities, i.e., binding sites for a specific set of ligands.  

In general, geometry-based algorithms are the most frequently used to detect protein cavities. 

While evolutionary-based methods would be limited to proteins because they rely on principles 

of biological evolution, energy-based methods could be applicable but would require fine-tuning 

of force field parameters tailored to supramolecular cages. Since supramolecular cages may have 

distinct properties compared to proteins, methods that rely on geometrical prior knowledge (e.g., 

3D Cartesian coordinates, atom size) are desirable. Therefore, the aim of our article is to evaluate 

and compare their efficiency in the context of supramolecular cages. 
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2.2.1 Geometry-based methods 

A comprehensive taxonomy of geometry-based cavity detection approaches includes grid-, 

probe-, tessellation-, surface-based techniques, and their combination.
9a,b,15

 The technique 

employed to extract cavities from the molecular structure is mainly what differentiates them.  

• Grid-based algorithms (e.g., POVME 3.0) represent a set of atoms as discrete points, 

usually using an axis-aligned 3D grid such as a scalar field, i.e., density map, where each discrete 

point is an integer or a boolean. These grid maps are used to group relevant empty (non-solute) 

grid points into cavities using voxel clustering algorithms. Typically, these methods employ 

simple data structures, which can represent a collection of data at a discrete point and identify 

cavities in an automated procedure. However, geometrical accuracy, computation time, and 

memory consumption are strongly dependent on grid resolution, i.e., grid-spacing sensitivity. 

Besides that, these methods are not rotation invariant, which means the orientation of a given 

molecule slightly impacts the accuracy, i.e., orientation sensitivity.  

• Probe-based algorithms (e.g., pywindow, PHECOM
16

) use a set of atoms, considering 

their 3D coordinates and vdW radii, to represent the molecular surface, which is scanned by one 

or more probes, usually hard spheres, to investigate their accessibility levels. This technique can 

detect any type of cavity and is related to the spatial extent of putative ligands; however, it may 

struggle to unambiguously find and delineate the cavity-solvent boundaries, i.e., mouth opening 

ambiguity.  

• Tessellation-based algorithms (e.g., Fpocket, CAVER 3.0) rely on computational 

geometry techniques, e.g., alpha-shapes, beta-shapes, Voronoi diagrams, and Apollonius graphs. 

Specifically, alpha-shapes and Voronoi tessellation use atomic centers, implicitly constant-radius 

spheres to model atoms, while beta-shapes and Apollonius-based methods depend on varying-

radius spheres to model these atoms, which are explored to identify cavities. Usually, these 

methods do not depend on any molecular surface information to detect cavities but may struggle 

to identify the correct location of the binding site, identify and delineate the cavity-solvent 

boundaries and define the number of surface atoms. 

• Surface-based algorithms (e.g., NSA,
17

 MSPocket
18

) do not employ a hard sphere 

model, but a molecular surface model, e.g., vdW, SES, SAS, and ligand excluded surface, which 
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defines the molecular interface and its environment. Molecular interface analysis identifies 

cavities based on the accessibility to a specific solvent or a ligand. In it, cavity detection operates 

in an automated manner, like grid-based methods, but does not suffer from mouth opening 

ambiguity. Also, they can sometimes suffer to detect all type of cavities and their full extent. 

Furthermore, the above group of techniques can be combined (e.g., parKVFinder, 

pyKVFinder, ghecom, MoloVol, 3V,
19

 CAVER) to enhance their capabilities and reduce some of 

their deficiencies to achieve a more robust technique. 

 

2.3 Cavity characterization in supramolecular cages 

The vast majority of cavity detection software has been originally developed for proteins. 

While these algorithms are robust enough to describe and analyze any molecular system (e.g., 

DNA, RNA, inorganic materials, and supramolecular cages), to date, only a handful of software 

has been applied to supramolecular cages in order to evaluate structural characteristics such as 

shape/volume of their cavities and openings.
10 

We have carefully evaluated this collection of 

software and those that have not been previously used in the context of supramolecular cages. 

According to our evaluation criteria, the software should be able to detect cavities in 

supramolecular cages and calculate their volumes (see results in section 2.3), free of charge, 

well-documented, well-supported by the developers, and accessible from newcomers to 

experienced users (see SI, section 1). Based on these criteria, we have identified 7 cavity 

detection software (SI, Table S1). A brief description of their algorithms and functionalities can 

be found hereafter.  

 

2.3.1 KVFinder project 

The KVFinder project uses grid-and-sphere-based methods to detect, characterize and 

visualize biomolecular cavities. The cavity detection procedure applies a dual-probe algorithm 

based on the theory of mathematical morphology (Figure 2).
20

 Basically, a small probe (Probe In 

- Pi) and a large probe (Probe Out - Po) are translated over the grid points, defining cavities as 

the non-overlapping regions scanned by these probes (Pi-Po). However, the KVFinder software, 
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originally published in 2014, is deprecated, and the KVFinder project is currently composed of 

two independent software: Parallel KVFinder (parKVFinder)
21

 and Python-C Parallel KVFinder 

(pyKVFinder)
.11

 parKVFinder is available with an easy-to-use PyMOL plugin with an intuitive 

graphical user interface that allows users to explore customizable parameters for cavity detection 

and characterization.  On the other hand, pyKVFinder is available as a Python package with 

efficient scripting routines built on easy-to-handle data structures, facilitating complex structural 

data analysis. Thus, pyKVFinder can be applied as a building block for data science, drug 

design, and drug discovery applications. In both, cavity characterization covers spatial (volume, 

area, and shape), constitutional (surrounding residues), hydropathy, and depth characterizations. 

 

Figure 2: Schematic representation of cavity detection algorithm in KVFinder project. (A) A 

structure X, composed of hard sphere atoms with vdW radii, is inserted into a grid. (B) Pi scans the 

surface of the structure, by translating over the grid points (orange). (C) Then Po scans the 

accessible points in blue. (D) The cavity points (light grey) are defined as the difference between 

the probes' accessible points. The points not reached by Pi (dark grey) define the SES (default) or 

SAS, depending on the user-defined surface representation. (E) Finally, a removal distance routine 

is applied to remove cavity points within a given distance from the cavity-bulk boundary (red line). 

 

 

 

2.3.2 Fpocket 

Fpocket
22

 is a tessellation-based method that performs pocket detection based on the alpha 
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sphere concept (Figure 3).
23

 The method determines the set of alpha spheres from the target 

structure, using qhull package
24

, and eliminates spheres outside a minimum and maximum radius 

size. Cavities are clusters of alpha spheres, that are formed based on proximity and neighborhood 

relationships, with uninteresting cavities removed from further analysis. The remaining cavities 

are evaluated using a set of dpocket descriptors and ranked according to their putative capacity to 

bind a small molecule. 

 

Figure 3: Schematic representation of cavity detection algorithm in Fpocket. (A) Voronoi 

diagram of the atomic centers. (B) Similar to a Voronoi ball (dotted orange circles); (C) Example of 

an α-sphere (green region), it is centered at a Voronoi vertex (orange points) and grows until it 

becomes tangential to surface atoms. (D) Cluster of α-spheres that fill a cavity. 

 

2.3.3 pywindow 

pywindow
25

 is a Python package that uses a sphere-based algorithm to analyze porous 

molecular materials (Figure 4). Cavity and window detection start by calculating the center of 

mass of the molecular structure. For characterizing cavity volume, a sphere is fitted into the pore 

without overlapping any neighboring atom. The sphere volume corresponds to the cavity 

volume. For window detection, the largest sphere is fitted into each cavity opening (i.e., 

window). The package uses uniformly distributed sampling points around the target pore and 

inspects vectors connecting these points to the center of mass to identify the largest sphere that 

does not overlap with any atom along each vector. 
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Figure 4: Schematic representation of cavity and window detection algorithms in pywindow. 

(A) A molecular shape is represented by hard sphere atoms, and the center of mass (COM) is 

calculated (red point). (B) Window detection starts by evenly distributing sampling points (red dots) 

in a sphere around the structure. Then, vectors (gray and green arrows) connecting the COM and the 

sampling points are inspected. Vectors that overlap with any of the structure atoms are removed. (C) 

For each window, the vector (green arrow) with the largest included sphere (green spheres) along its 

path is chosen, and the window's circular diameter is calculated. (D) From step A, the void volume 

of the structure is estimated by fitting the largest possible sphere (blue circle) with the COM as its 

center. 

 

2.3.4 POVME 3.0 

POcket Volume MEasurer 3.0 (POVME 3.0)
26

 is a Python package that uses a grid-based 

method for determining pocket shape and volume (Figure 5). Cavity detection defines inclusion 

and exclusion regions using 3D objects (spheres, cylinders and cuboids). Briefly, POVME floods 

the inclusion regions with equidistant points, that do not overlap with any atom, and eliminates 

any points encompassed by the optional exclusion regions. Then, a convex hull defined around 

the target structure removes points that are outside its envelope. For each pocket, POVME 

performs a volume estimation and applies a BINANA coloring algorithm
27

, that depicts 

hydrogen bonding donors, hydrogen bonding acceptors, aromatic stacking, hydrophobicity and 
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hydrophilicity.  

 

Figure 5: Schematic representation of cavity detection in POVME.  (A) A 3D object (blue 

sphere) defines an inclusion region (IR) in the molecular shape X, composed of hard sphere atoms 

with vdW radii. (B) Equidistant points floods the inclusion region. (C) Points that are overlapping 

with the molecular shape are eliminated. (D) Any points outside the convex hull (red envelope) are 

optionally eliminated. (E) The cavity points are marked in blue. Optionally, isolated patches of 

points that are not contiguous can be removed from the primary pocket. 

 

2.3.5 ghecom 

Grid-based HECOMi finder (ghecom)
28

 is a grid-and-sphere-based method that detects deep 

and shallow pockets (Figure 6). ghecom combines mathematical morphology operations
29

 with 

different spherical probes to report openness-closedness of a target molecular shape, which when 

compared reveal deep and shallow (multiscale) pockets. Thus, a single-linkage clustering method 

groups pockets and subsequently estimates their volumes. Additionally, ghecom calculates a 

metric called pocketness, which relates the volume and depth of points per residue or atom, 

which indicates how much it contributes to ligand binding. 

 

Figure 6: Schematic representation of pocket detection in ghecom. First, a molecular shape X 

(gray region) is closed by a spherical probe P (blue sphere), defining the region enclosed by the 

yellow contour. Then, the intersection of P-closed X and the space outside the protein X
c
 defines 
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the region not accessible to probe P (blue region), which is opened by a spherical probe S (orange 

sphere), where P is larger than S. Finally, the pocket (orange region) is defined by the space outside 

the molecular shape not accessible to P, but to S. For multiscale detection, different sizes of the 

spherical probe P are used. 

 

2.3.6 CAVER 

CAVER
30

 is a method for computing tunnels and channels. The original version used a grid-

and-surface-based approach, but in CAVER 3.0,
31

 a Voronoi diagram approach was adopted 

(Figure 7). The graphical user interface, CAVER Analyst 2.0,
32

 incorporates CAVER 3.0 and 

visually helps users in tunnel and cavity computations. CAVER 3.0 constructs a pseudo-Voronoi 

diagram of a target protein to identify pathways that resemble tunnels that connect cavities with 

the surrounding bulk solvent, which are characterized by length, average radius, and gorge 

radius.  In addition to tunnel detection, CAVER Analyst 2.0 can also identify regions of empty 

space, where a small probe can enter from the outside, but a large probe cannot, like KVFinder 

project (Figure 2) and ghecom (Figure 6). 

 

Figure 7: Schematic representation of tunnel and channel detection in CAVER 3.0 and 

CAVER Analyst 2.0. (A) A molecular shape is inspected by a spherical probe, called shell probe 

(in sphere), with a radius, specified by shell radius parameter, to define an outer SAS-surface (red 

line). From it, a distance, specified by shell depth parameter, is removed to define an inner surface 

(yellow line). (B) A pseudo-Voronoi diagram is constructed based on the molecular shape. Voronoi 

vertices (orange points) are used to create the tunnel/channel centerlines. (C) A start point (red 

point) is a user-defined parameter, defined as the molecular shape's center of mass, and an endpoint 

(blue point) is defined at the center of the inner surface. From the start point, the centerline passes 

through Voronoi edges and vertices to form a tunnel/channel until the outer surface and passing 

through the end point. (D) Spheres are fitted into all points of the centerline, from the start point to 

the endpoint, which defines the bottleneck radius (opening) along the tunnel/channel. 
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2.3.7 MoloVol 

MoloVol
33

 is a grid-and-sphere-based method that analyzes geometrical features in chemical 

structures. MoloVol detects cavities using one or two spherical probes that roll around a target 

molecular surface, which can be represented as vdW, SES, and SAS surfaces.. For a single 

probe, cavities are defined by isolated regions inside the target structure, while for two probes, a 

large probe defines the outer space, and a small probe defines the space within cavities, like 

KVFinder project (Figure 2) and ghecom (Figure 6). For each cavity, MoloVol estimates the 

volume and surface area, and classifies them based on the number of openings. The method is 

available with an easy-to-use graphical user interface and a command-line interface for high-

throughput calculations. 

 

RESULTS AND DISCUSSION 

First, a quantitative comparison between software is provided, that is based on two benchmark 

datasets of well-known supramolecular cages. Afterward, a qualitative comparison of the 

available software is presented, highlighting their strengths and weaknesses, with special 

attention to usability and applicability. With this quantitative/qualitative comparison in hand, we 

intend to guide users toward the software best suited to their needs. 

 

3.1 Benchmark datasets 

Two benchmark datasets, comprising 22 well-known supramolecular cages (Figure 8 and 9), 

have been selected from the supramolecular chemistry literature to evaluate the previously 

described software. The X-ray diffraction (XRD) structure of these cages are readily accessible 

from the Cambridge Structural Database (CSD),
34

 which makes them an ideal starting point for 

our work.  However, it should be noted that the prediction of guest binding based solely on 

cavity detection in XRD structures has its limitations. Firstly, XRD structures might not be 

available for the cage that needs to be studied. Secondly, volumetric data might be less 

meaningful for flexible cages. In such cases, cavity detection could be combined with other in 

silico methods (e.g., Grand Canonical Monte Carlo or molecular dynamics simulations) to 
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generate these input structures (trade-off between accuracy and simplicity). For more 

information on the selected structures, refer to the Supporting Information (SI, section 2, Table 

S2 and S3). 
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Figure 8: Supramolecular cages in the benchmark dataset 1. 
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Figure 9: Supramolecular cages in benchmark dataset 2. 

 

The selection of supramolecular cages has been guided by two main criteria. First, to test the 

capabilities and limitations of the previously discussed software. Thus, data selection covers 
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a wide variety of supramolecular cages with different topological and morphological features 

(i.e., cavity/opening sizes and shapes). Cage diversity followed the categorization used to 

classify protein cavities (Figure 10).
11b 

It should be noted that even though covalent cages have 

not been included in the benchmarking datasets, their topological and morphological features are 

similar to the classes of supramolecular cages included in the datasets. Secondly, with this 

selection we aim to provide reliable and comparable cavity volume data for supramolecular 

cages with well-documented and rich host-guest chemistry. Indeed, benchmark dataset 2 

features some of the most relevant examples of supramolecular cages from the literature. The 

majority of these cages lack data about their cavities and when available, cavity volumes were 

calculated with different software using different parameters. As a consequence, it is not possible 

to compare the cavity volumes of these cages and draw conclusions for a rational design. In this 

work, 7 different software have been used for each supramolecular cage (see next section), 

therefore the cavity volumes of these cages, calculated with the same software, are now 

comparable.  

 

Figure 10: Categorization of supramolecular cage cavities based on the classification used 

for protein cavities.
11b

 

 

3.2 Parameter optimization 

Cavity detection parameters of every software (except for pywindow) have been optimized for 

biomolecules. As the topology and morphology of supramolecular cages differ considerably 

from biomolecules, we have adjusted these parameters whenever necessary, in order to get the 

best performance and the most accurate visual representation of the cavity for each member of 

the benchmark datasets. We propose a new set of starting detection parameters for KVFinder 

project (Table S10) and MoloVol (Table S11), which users are advised to use on early runs to 
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have reasonable results. For a detailed description of the parameter optimization, refer to the SI 

(SI, section 3). 

 

3 Software performance 

The software evaluation comprises three distinct benchmarking analyses: visual modeling 

assessment, quantitative analysis, and qualitative analysis. First, we relied on visual modeling 

analysis of the identified cavities. In Figure 11, the cavity size of the supramolecular cage C1 

was estimated by KVFinder, pywindow, and MoloVol as 558 Å
3
, 412 Å

3
, and 648 Å

3
, 

respectively. 

 
Figure 11: Visual comparison of the calculated cavity volumes for C1 cage using pyKVFinder 

(left), pywindow (middle), and MoloVol (right). Cavity detected by KVFinder project is colored 

from 0.0 Å (minimum depth; blue) to 3.89 Å (maximum depth; red). Cavity detected by pywindow 

is colored from 3.06 Å (minimum diameter; blue) to 4.62 Å (maximum diameter; red). 

 

This visual assessment provides a good starting point for identifying outlying results; however, 

a finer quantitative comparison would be more appropriate for assessing software performance. 

Unfortunately, moving from qualitative to quantitative descriptors remains a challenge in the 

current field of cavity detection methods.
11b

 On the one hand, verification of calculated volumes 

is not possible, as the “real” volume of cavities in biological systems is unknown. It has been 

suggested that performing a quantitative assessment on a dataset of well-defined artificial 

cavities might offer a solution to this problem. Therefore, in this work, we address this problem 

by using a dataset of artificial cavities (supramolecular cages). In addition, we take this problem 

one step further, in order to have an even more realistic evaluation of software performance. 
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To assess the performance of any cavity detection software, the calculated volumes must be 

compared to the “real” cavity volume, a value that cannot be determined by experimental 

methods. To tackle this problem, we are taking advantage of Rebek’s rule of thumb: in any 

(biological and artificial) host-guest system, the guest occupies 55% of the available space within 

the cavity, when guest encapsulation is only driven by weak interactions (e.g., dipole-dipole, 

dipole-induced dipole, London dispersion forces).
35

 It is important to note that the packing 

coefficient (PC) is defined as the Vguest/Vcavity ratio (e.g., for 55%, PC = 0.55). Therefore, we 

have selected 13 XRD structures (benchmark dataset 1) from the CSD,
30

 each of these inclusion 

complexes features a supramolecular cage with guest molecules(s) within its cavity (Figure 8, 

and Table S2). Guest vdW volumes were calculated (SI section 4, Figure S1), and the cavity 

sizes were estimated using Rebek’s rule. Then, the estimated volumes were compared to the 

volumes calculated with different software. Since the relative error (RE) and mean relative 

absolute error (MRAE) are good performance measures for prediction, we applied them to assess 

performance of the different software (Table 1). 

 

Table 1: Software performance for benchmark dataset 1. Relative error (RE) with the 

Rebek's cavity volume as the reference can be found in parentheses. Estimated cavity volume = 

Guest vdW volume ÷ 0.55. Whenever available, the estimated cavity volumes from the original 

publications are depicted in the 'Vref' column. The detailed description of benchmark dataset 1 

can be found in the SI (Section 2).  

Inclusio

n comp-

lex 

Guest 

vdW 

volu-

me 

(Å3) 

Estima-

ted cavity 

volume 

(Å3) 

Calculated Cavity Volumes 

(Å3 (RE %)) 

KVFinder 

project 
Fpocket MoloVol CAVER ghecom 

pywin-

dow 
POVME Vref 

B1 150 273 

283 

(3.7) 

247 

(-9.5) 

261 

(-4.5) 

396 

(44.8) 

175 

(-35.9) 

133 

(-51.4) 

109 

(-60.1) 

293 

B2 155 281 

269 

(0.8) 

279 

(-0.6) 

289 

(2.7) 

339 

(20.8) 

192 

(-31.7) 

90 

(-68.1) 

108 

(-61.6) 

285 

B3 137 248 

269 

(8.1) 

277 

(11.6) 

253 

(1.6) 

335 

(34.9) 

191 

(-23.3) 

113 

(-54.6) 

99 

(-60.1) 

270 
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B4 309 562 

438 

(-22.1) 

434 

(-22.7) 

410 

(-27.0) 

474 

(-15.7) 

343 

(-39.0) 

251 

(-55.4) 

222 

(-60.5) 

434 

B5 50 90 

78 

(-13.6) 

84 

(-6.5) 

44 

(-51.4) 

65 

(-27.5) 

29 

(-67.6) 

37 

(-59.2) 

11 

(-88.4) 

52 

B6 53 96 

81 

(-15.6) 

82 

(-14.3) 

55 

(-42.5) 

79 

(-17.4) 

64 

(-33.7) 

40 

(-58.8) 

11 

(-88.8) 

55 

B7 519 944 

757 

(-19.8) 

771 

(-18.3) 

708 

(-25.0) 

778 

(-17.6) 

734 

(-22.3) 

492 

(-47.9) 

385 

(-59.2) 

810 

B8 512 930 

731 

(-21.4) 

805 

(-13.5) 

747 

(-19.7) 

682 

(-26.7) 

704 

(-24.3) 

517 

(-44.4) 

409 

(-56.0) 

- 

B9 141 257 

155 

(-39.5) 

181 

(-29.5) 

177 

(-31.1) 

173 

(-32.5) 

159 

(-38.0) 

122 

(-52.4) 

62 

(-75.8) 

184 

B10 151 274 

251 

(-8.4) 

225 

(-17.7) 

225 

(-17.7) 

351 

(28.1) 

161 

(-41.1) 

125 

(-54.5) 

94 

(-65.6) 

261 

B11 307 558 

496 

(-11.0) 

482 

(-13.6) 

435 

(-22.0) 

457 

(-18.1) 

401 

(-28.1) 

265 

(-52.4) 

208 

(-62.7) 

- 

B12 524 954 

737 

(-22.7) 

627 

(-34.2) 

650 

(-31.8) 

742 

(-22.2) 

606 

(-36.5) 

532 

(-44.2) 

319 

(-66.5) 

718 

B13 618 1 123 

872 

(-22.3) 

811 

(-27.7) 

821 

(-26.9) 

1031 

(-8.1) 

752 

(-33.0) 

555 

(-50.5) 

450 

(-59.9) 

925 

MRAE (%) 16.1 16.9 23.4 24.2 35.0 53.4 66.6 - 

 

First, to assess this quantitative analysis of the benchmark dataset 1, we must analyze the RE 

values, which consist of: (1) error related to the definitions of the cavity boundaries; and (2) error 

related to deviations in the PC from Rebek's rule. To minimize the first error, benchmark dataset 

1 only contains supramolecular cages with well-defined, closed cavities (void, Figure 10), where 

the characterization of cavity boundaries is simple and straightforward. On the other hand, 
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deviations from Rebek’s rule are more elusive. It has been shown that higher packing 

coefficients can be reached in inclusion complexes, where in addition to weak dipole-dipole 

interactions, other forces such as H-bonding, π-π and CH-π are at work.
36

 This results in tighter 

packing (i.e., PC > 0.55), where the extra stabilization enthalpy counterbalances the loss of 

entropy (restricted movement of the guest within the cage). Therefore, negative RE is expected 

in these cases, due to the overestimation of cavity volume. For B4-B9, B12, and B13 cages, this 

trend can be clearly observed in the results of KVFinder project, Fpocket, MoloVol, and 

CAVER. For B5, B6, and B9, there is experimental evidence for H-bonding interactions (SI, 

Figure S2, and S3).
37

 Furthermore, when considering the examples with fullerenes (B7, B8, B12 

and B13), and (Cp*)2Co
+ 

(B4) as guests, in addition to weak dipole-dipole interactions, 

additional π-π and CH-π interactions favor strong host-guest association. For ghecom, 

pywindow, and POVME, a large negative RE is observed for each supramolecular cage, which 

suggests that the calculation error of these software becomes more significant. On the other hand, 

MRAE values clearly show that KVFinder project and Fpocket, provide the most reliable 

cavity volumes. A visual representation of the software performance (Figure 12A) shows that 

volumes calculated with KVFinder project and Fpocket are close to the estimated volume (i.e., 

zero RE) with a small spread compared to other software. Despite a few outlying results, the 

overall trend (vide supra) supports our approach of using Rebek’s rule as the best estimate for 

the “real” cavity volume within these supramolecular cages. 

 
Figure 12: Boxplot of the relative error of the cavity volume in the benchmark datasets. (A) 

Benchmark dataset 1 with the Rebek's cavity volume as reference. (B) Benchmark dataset 2 with the 
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average volume of detected cavities as reference. In benchmark dataset 2, cavity volumes of O2 are 

excluded due to the high uncertainty related to some methods being unable to detect its cavity. The 

probability density function of the relative error for each software is estimated using the Kernel Density 

Estimate with Gaussian kernels and displayed as violin plots. The red line and point indicate the 

median and mean relative errors, respectively. 

 

We then moved on to benchmark dataset 2 (Figure 9, SI section 2, Table S3) to test the 

capabilities and limitations of the software collection. This selection presents more challenging 

examples with different topological and morphological features (tunnels, clefts/grooves, large 

voids, large openings). However, these examples do not contain guests, so cavity volume 

estimation based on Rebek's rule is not possible. Consequently, the average volume of detected 

cavities was chosen as the point of comparison to calculated volumes (Table 2), which 

establishes an agreement between methods by mitigating deviations in volume data.  

 

Table 2: Software performance for benchmark dataset 2. Average volumes have been 

calculated by averaging calculated volumes of pyKVFinder, parKVFinder, Fpocket, MoloVol 

and CAVER. Relative error (RE) with the average volumes can be found in parentheses. 

Whenever available, the estimated cavity volumes from the original publications are depicted in 

the 'Vref' column. The detailed description benchmark dataset 2 can be found in the SI (Section 

2). 
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   Calculated Cavity Volumes (Å3 (RE %)) 

Type of 

cavity 
Cage 

Average 

Volume 

KVFinder 

project 
Fpocket MoloVol CAVER ghecom pywindow POVME Vref 

Void A1 1315 

1399 

(6.4) 

1387 

(5.5) 

1411 

(7.3) 

1778 

(35.2) 

1362 

(3.6) 

1029 

(-21.8) 

840 

(-36.1) 

1375 

Invagination 

C1 549 

558 

(1.6) 

617 

(12.3) 

648 

(17.9) 

569 

(3.6) 

669 

(21.7) 

412 

(-25.0) 

373 

(-32.1) 

- 

F1 500 

463 

(-7.5) 

483 

(-3.5) 

653 

(30.6) 

481 

(-3.9) 

655 

(30.9) 

306 

(-38.8) 

461 

(-7.8) 

- 

F2 42572 

37728 

(-11.3) 

39077 

(-8.2) 

62843 

(47.6) 

22941 

(-46.1) 

59147 

(38.9) 

30568 

(-28.2) 

45704 

(7.4) 

- 

H1 259 

226 

(-12.8) 

211 

(-18.6) 

409 

(58.1) 

215 

(-16.8) 

429 

(65.5) 

154 

(-40.4) 

168 

(-35.1) 

- 

N1 434 

488 

(12.4) 

495 

(14.0) 

526 

(21.2) 

543 

(25.1) 

461 

(6.2) 

314 

(-27.6) 

211 

(-51.4) 

- 

O1 142 

160 

(12.9) 

177 

(24.5) 

172 

(21.2) 

199 

(40.0) 

146 

(3.2) 

80 

(-43.6) 

59 

(-58.4) 

- 

Tunnel W1 696 

866 

(24.4) 

542 

(-22.2) 

984 

(41.3) 

1008 

(44.8) 

936 

(34.4) 

263 

(-62.2) 

275 

(-60.5) 

400 

Cleft/ 

Groove 

O2 20 

36 

(78.8) 

0* 

(-100.0) 

37 

(41.3) 

0* 

(-100.0) 

0* 

(-100.0) 

6 

(-62.2) 

2 

(-60.5) 

- 

MRAE (%) 18.7 23.2 36.4 35.1 33.8 39.9 42.0 - 

(*) Cavity not detected. 

 

In summary, each software has its own capabilities and shortcomings that derive from the type 

of cavity detection method applied, its implementation, and its software interfaces (Table 3). In 

general, grid-and-sphere-based and tessellation-based methods give the most precise cavity 
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volumes, while grid-based and sphere-based methods performed worse. As previously described, 

pywindow uses an algorithm that defines the cavity volume as the volume of the largest sphere 

that can be fitted within the cavity. Therefore, pywindow consistently underestimates the cavity 

size, especially clear for non-spherical cavities (F1, H1, N1, W1 and O1) and shallow grooves 

(O2). Grid-, sphere-, and grid-and-sphere-based methods can detect any type of cavities in 

supramolecular cages, except for ghecom and CAVER Analyst 2.0, which, together with 

tessellation-based methods, fail to detect clefts and grooves. Taking into account our assessment, 

KVFinder project and Fpocket overperformed the other software in benchmarking, as they 

provide volumes closest to the estimated and average volumes, with a small spread compared to 

other software (Figure 12B). 

All these methods are accessible to users with a simple and well-documented installation, 

configuration, and execution. From this perspective, the software interfaces available to users, 

i.e., Graphical User Interface (GUI), Command Line Interface (CLI), Application Programming 

Interface (API), and Web Application, dictate the pool of viable applications for each software. 

Commonly, GUIs and Web Applications are simpler and easier for less experienced users to 

execute due to visual aids that intuitively guide the user through the analysis pipeline. However, 

these interfaces lack efficiency when performing analysis with large datasets, e.g., high-

throughput analysis (HTA), molecular dynamics (MD) simulations, machine learning (ML), 

deep learning (DL), virtual screening (VS) applications, and automating pipelines. In this sense, 

CLIs and APIs are efficient and integrable software interfaces, which allow the development of 

applications with large datasets and pipeline automation; however, they are highly dependent on 

their documentation to the user interact with the software efficiently. Also, the main drawback of 

CLI is that they are black-box applications, which do not allow users to fully customize pipeline 

automation since some variables are not definable by the user. On the other hand, APIs (e.g., 

pyKVFinder, pywindow, and fpocket) are the most versatile interfaces, which users can use them 

as building blocks for more complex applications and/or integrate them with third-party 

scientific packages, e.g., numpy, scipy, scikit-learn and matplotlib. Additionally, pyKVFinder 

has its core data structures accessible and easy-to-handle, allowing the development of new 

characterizations and applications built around them. 
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Table 3: Assessment of different cavity detection methods. 

Cavity 

detection 

software 

Category 

Interface Cavity-type 

Ref. 

GUI CLI API Web Void Invagination Tunnel Cleft/Groove 

KVFinder 

project 

grid-and-

sphere-based 
x x x x +++ +++ +++ +++ 14,15 

Fpocket 
tessellation-

based 
x x x x +++ +++ +++ NA 17 

MoloVol 
grid-and-

sphere-based 
x x  x +++ ++ +++ +++ 28 

CAVER 3.0 
tesselation -

based 
x x  

x ++ ++ ++ NA 

26 

CAVER 

Analyst 2.0 

grid-and-

sphere-based 
x x  25 

ghecom 
grid-and-

sphere-based 
x x  x +++ ++ +++ NA 23 

pywindow sphere-based   x  ++ + + + 20 

POVME grid-based x x   + + + + 21 

 

CONCLUSIONS 

In this work, we present the first evaluation of cavity characterization methods in the context 

of supramolecular cages. Our thorough literature review led us to identify 7 cavity detection 

software, which were evaluated on two benchmark datasets of well-known supramolecular cages 

with diverse cavity shapes and sizes. All of this software is available and accessible even for less 

experienced users, with user-friendly interfaces, simple installation, and well-documented 

configuration, and execution. Our results show that KVFinder project and Fpocket are the most 

accurate software for characterizing supramolecular cavities. In order to obtain the most detailed 

picture of the software performance, we took advantage of Rebek’s rule. This new strategy (and 

the benchmark dataset 1) also offers a solution to the current problem of missing gold standard 

reference data in the field of cavity detection. In summary, this work aims to provide an entry 
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point in the field of cavity characterization for potential users in the supramolecular community. 

This invaluable technique provides an added value to the toolbox of rational design of 

supramolecular cages with improved physicochemical properties.   
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