João V S Guerra 
  
Luiz F G Alves 
  
Didier Bourissou 
  
Paulo S Lopes-De-Oliveira 
  
György Szalóki 
  
  
Cavity Characterization in Supramolecular Cages

Keywords: Cavity characterization, Supramolecular cages, MOCs

Confining molecular guests within artificial hosts has provided a major driving force in the rational design of supramolecular cages with tailored properties. Over the last 30 years, a set of design strategies have been developed that enabled the controlled synthesis of a myriad of cages.

Recently, there has been a growing interest in involving in silico methods in this toolbox. Cavity shape and size are important parameters that can be easily accessed by inexpensive geometric algorithms. Although these algorithms are well developed for the detection of non-artificial cavities (e.g., enzymes), they are not routinely used for the rational design of supramolecular cages. In order to test the capabilities of this tool, we have evaluated the performance and characteristics of 7 different cavity characterization software in the context of 22 analogues of well-known supramolecular cages. Among the tested software, KVFinder project and Fpocket proved to be the most adapted to characterize supramolecular cavities. With the results of this work, we aim to popularize this underused technique within the supramolecular community.

INTRODUCTION 1. General Introduction

Enzymes are crucial to all living systems: Indeed, more than 99% of biologically relevant reactions are mediated by natural proteins. They are truly remarkable catalysts that can attain exceptional rate enhancement in many biological transformations. [START_REF] Silverman | The Organic Chemistry of Enzyme-Catalyzed Reactions[END_REF] Reactive intermediates and transition states are stabilized at the active site of enzymes, thus providing a lower energy pathway for reactions to take place. This active site is buried (confined) within a cavity, called an enzyme pocket. 2 This confinement offers different advantages: (1) rate acceleration is achieved through predisposition and increased local concentration of reactive centers; and (2) steric constraints alter the normal (solution phase) selectivity of certain reactions. Consequently, enzymes are capable of efficiently synthesizing complex biomolecules with unparalleled stereocontrol. Taking advantage of their efficiency, they have been implemented in synthetic chemistry on both laboratory and industrial scales. Unfortunately, their synthetic use is limited, as this efficiency is met with high substrate specificity or in other words: poor substrate scope.

Fortunately, the principle of confinement is transposable [START_REF] Grommet | Chemical reactivity under nanoconfinement[END_REF] from biological systems to any artificially designed host, with cavities of various shapes and sizes: zeolites, 4 metal-organic frameworks (MOFs), 5 covalent organic frameworks (COFs) 5b and supramolecular cages. More importantly, many supramolecular cages have been prepared over the past 25 years using different strategies: covalent, H-bonded and metal organic cages (MOCs). [START_REF] Mart Nez-M Ez | Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination[END_REF] They have been shown to encapsulate (confine) reactive species within their cavities, just like enzymes, and there is now solid evidence that confinement within these artificial cavities influences the rate and selectivity of various reactions. 7 In recent years, a large amount of experimental data has been accumulated, which has raised interest in gaining a more detailed picture of the encapsulation process in silico. [START_REF] Piskorz | Computational Modeling of Supramolecular Metallo-organic Cages-Challenges and Opportunities[END_REF] Understanding the underlying factors that drive the encapsulation of reactive intermediates is primordial for the rational design of new supramolecular cages with improved catalytic properties. Indeed, recent efforts have been devoted to develop freely available tools (e.g., cgbind) for the computer-aided prediction of binding affinities. [START_REF] Young | cgbind: A Python Module and Web App for Automated Metallocage Construction and ost-uest Characterization[END_REF] However, encapsulation is a complex process, both from thermodynamic and kinetic point of view. Classical simulations (e.g., molecular dynamics, Grand Canonical Monte Carlo) and DFT computations are useful tools to study these complex molecular systems. However, such complex and large molecular systems at density functional theory (DFT) level are time-consuming. Recent work by Major et al. and Ujaque and Maréchal et al. have focused on this problem by integrating quantum mechanics concepts to molecular dynamics simulations. 10 These calculations have provided useful insights about encapsulation in artificial hosts, but their use in a predictive manner is still premature today. On the other hand, cavity size and shape are invaluable parameters, which can serve as good estimates of the steric feasibility of encapsulation processes. Indeed, the binding energies showed a good correlation with the guest size (V guest ) and V guest /V cavity ratio according to the work of Ujaque and Maréchal et al. 10a In addition, these parameters can be easily accessed by inexpensive in silico geometric algorithms, which have been originally developed to detect cavities in protein systems. Although the close analogy between enzyme pockets and artificial cavities is evident (vide supra), these methods have not been routinely used in the context of supramolecular cages. [START_REF]For an exhaustive list of publications that have used different software for cavity detection in supramolecular cages, see SI S2[END_REF] Therefore, the aim of this work is to present a state of the art of different methods and software available to detect and describe cavities in supramolecular cages, in order to make these in silico approaches more accessible to the supramolecular community. The cavity volume is an important parameter for the rational design of new supramolecular cages with improved catalytic properties.

Cavity detection in computational chemistry

First, we are going to provide a brief introduction to the different strategies for detecting cavities in biomolecules (e.g., proteins, DNA, RNA, and lipid membranes). The discussion will only focus on the necessary background and terminology that will serve readers in the following parts of this section. Our goal is to identify robust software that can characterize cavities in supramolecular cages and provide a comprehensive analysis of them. 12 Selected software will be discussed below, keeping a simplified description along with visual aids to help novice readers.

Surface representations

For modeling purposes, the host (biomolecule) and the guest (substrate) are usually described by a hard sphere model, that only considers atomic positions and radii to represent the molecular structure. 9a,b Based on this, the most common mathematical formulations of molecular surfaces are (Figure 1):

(A) van der Waals (vdW) surface represents each atom by a sphere whose radius is proportional to its vdW radius. The vdW surface is represented as the union of those spherical atoms;

(B) solvent accessible surface (SAS) represents the regions of a molecule that can be accessed by a solvent molecule (e.g., a water molecule), which is approximated by a spherical probe;

(C) solvent excluded surface (SES) is similar to SAS, but the outer shell of the probe is considered, instead of the probe center. 

Cavity detection methods

Over the last 40 years, several computational methods have been developed for the characterization of protein surfaces. These methods can be classified into three main categories:

•

Evolutionary-based methods are based on searching for conserved residues in multiple sequence alignments and information from known binding site profiles;

• Energy-based methods identify binding sites from energetic interaction between the target biomolecule and a probe molecule, usually a chemical group;

• Geometry-based methods identify cavities by analyzing the geometrical characteristics of the molecular surface.

Methods in each category have their own benefits and drawbacks. 9b Evolutionary algorithms strongly rely on sequence information or active binding site databases and the quality of the alignment procedure, while energetic methods depend on filtering procedures, force field parametrizations, and scoring functions used. On the other hand, geometrical detection methods are relatively simple, straightforward and do not require any non-geometric knowledge, only the protein structural data file, containing the Cartesian coordinates of the atoms, that can be easily accessed in the Worldwide Protein Data Bank (wwPDB). 14 Once the atoms' coordinates are available, geometric methods should be able to represent any kind of biomolecule. Although purely geometric methods are efficient in identifying all types of cavities of a target molecule, identifying those that are functionally relevant poses a problem. However, cavity characterization in terms of well-chosen physicochemical properties can lead to the identification of functionally relevant cavities, i.e., binding sites for a specific set of ligands.

In general, geometry-based algorithms are the most frequently used to detect protein cavities.

While evolutionary-based methods would be limited to proteins because they rely on principles of biological evolution, energy-based methods could be applicable but would require fine-tuning of force field parameters tailored to supramolecular cages. Since supramolecular cages may have distinct properties compared to proteins, methods that rely on geometrical prior knowledge (e.g., 3D Cartesian coordinates, atom size) are desirable. Therefore, the aim of our article is to evaluate and compare their efficiency in the context of supramolecular cages.

Geometry-based methods

A comprehensive taxonomy of geometry-based cavity detection approaches includes grid-, probe-, tessellation-, surface-based techniques, and their combination. 9a,b,15 The technique employed to extract cavities from the molecular structure is mainly what differentiates them.

• Grid-based algorithms (e.g., POVME 3.0) represent a set of atoms as discrete points, usually using an axis-aligned 3D grid such as a scalar field, i.e., density map, where each discrete point is an integer or a boolean. These grid maps are used to group relevant empty (non-solute) grid points into cavities using voxel clustering algorithms. Typically, these methods employ simple data structures, which can represent a collection of data at a discrete point and identify cavities in an automated procedure. However, geometrical accuracy, computation time, and memory consumption are strongly dependent on grid resolution, i.e., grid-spacing sensitivity.

Besides that, these methods are not rotation invariant, which means the orientation of a given molecule slightly impacts the accuracy, i.e., orientation sensitivity.

• Probe-based algorithms (e.g., pywindow, PHECOM [START_REF] Kawabata | Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites[END_REF] ) use a set of atoms, considering their 3D coordinates and vdW radii, to represent the molecular surface, which is scanned by one or more probes, usually hard spheres, to investigate their accessibility levels. This technique can detect any type of cavity and is related to the spatial extent of putative ligands; however, it may struggle to unambiguously find and delineate the cavity-solvent boundaries, i.e., mouth opening ambiguity.

• Tessellation-based algorithms (e.g., Fpocket, CAVER 3.0) rely on computational geometry techniques, e.g., alpha-shapes, beta-shapes, Voronoi diagrams, and Apollonius graphs.

Specifically, alpha-shapes and Voronoi tessellation use atomic centers, implicitly constant-radius spheres to model atoms, while beta-shapes and Apollonius-based methods depend on varyingradius spheres to model these atoms, which are explored to identify cavities. Usually, these methods do not depend on any molecular surface information to detect cavities but may struggle to identify the correct location of the binding site, identify and delineate the cavity-solvent boundaries and define the number of surface atoms.

• Surface-based algorithms (e.g., NSA, 17 MSPocket 18 ) do not employ a hard sphere model, but a molecular surface model, e.g., vdW, SES, SAS, and ligand excluded surface, which defines the molecular interface and its environment. Molecular interface analysis identifies cavities based on the accessibility to a specific solvent or a ligand. In it, cavity detection operates in an automated manner, like grid-based methods, but does not suffer from mouth opening ambiguity. Also, they can sometimes suffer to detect all type of cavities and their full extent.

Furthermore, the above group of techniques can be combined (e.g., parKVFinder, pyKVFinder, ghecom, MoloVol, 3V, [START_REF] Voss | 3V: cavity, channel and cleft volume calculator and extractor[END_REF] CAVER) to enhance their capabilities and reduce some of their deficiencies to achieve a more robust technique.

Cavity characterization in supramolecular cages

The vast majority of cavity detection software has been originally developed for proteins.

While these algorithms are robust enough to describe and analyze any molecular system (e.g., DNA, RNA, inorganic materials, and supramolecular cages), to date, only a handful of software has been applied to supramolecular cages in order to evaluate structural characteristics such as shape/volume of their cavities and openings. 10 We have carefully evaluated this collection of software and those that have not been previously used in the context of supramolecular cages.

According to our evaluation criteria, the software should be able to detect cavities in supramolecular cages and calculate their volumes (see results in section 2.3), free of charge, well-documented, well-supported by the developers, and accessible from newcomers to experienced users (see SI, section 1). Based on these criteria, we have identified 7 cavity detection software (SI, Table S1). A brief description of their algorithms and functionalities can be found hereafter.

KVFinder project

The KVFinder project uses grid-and-sphere-based methods to detect, characterize and visualize biomolecular cavities. The cavity detection procedure applies a dual-probe algorithm based on the theory of mathematical morphology (Figure 2). [START_REF] Oliveira | steered identification of protein cavities as a PyMOL plugin[END_REF] Basically, a small probe (Probe In -Pi) and a large probe (Probe Out -Po) are translated over the grid points, defining cavities as the non-overlapping regions scanned by these probes (Pi-Po). However, the KVFinder software, originally published in 2014, is deprecated, and the KVFinder project is currently composed of two independent software: Parallel KVFinder (parKVFinder) [START_REF] Guerra | A thread-level parallel approach in biomolecular cavity detection[END_REF] and Python-C Parallel KVFinder (pyKVFinder) .11 parKVFinder is available with an easy-to-use PyMOL plugin with an intuitive graphical user interface that allows users to explore customizable parameters for cavity detection and characterization. On the other hand, pyKVFinder is available as a Python package with efficient scripting routines built on easy-to-handle data structures, facilitating complex structural data analysis. Thus, pyKVFinder can be applied as a building block for data science, drug design, and drug discovery applications. In both, cavity characterization covers spatial (volume, area, and shape), constitutional (surrounding residues), hydropathy, and depth characterizations. 

Fpocket

Fpocket [START_REF] Guilloux | Fpocket: An open source platform for ligand pocket detection[END_REF] is a tessellation-based method that performs pocket detection based on the alpha sphere concept (Figure 3). [START_REF] Liang | Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design[END_REF] The method determines the set of alpha spheres from the target structure, using qhull package [START_REF] Barber | The quickhull algorithm for convex hulls[END_REF] , and eliminates spheres outside a minimum and maximum radius size. Cavities are clusters of alpha spheres, that are formed based on proximity and neighborhood relationships, with uninteresting cavities removed from further analysis. The remaining cavities are evaluated using a set of dpocket descriptors and ranked according to their putative capacity to bind a small molecule. 

pywindow

pywindow [START_REF] Miklitz | Automated Structural Analysis of Molecular Pores[END_REF] is a Python package that uses a sphere-based algorithm to analyze porous molecular materials (Figure 4). Cavity and window detection start by calculating the center of mass of the molecular structure. For characterizing cavity volume, a sphere is fitted into the pore without overlapping any neighboring atom. The sphere volume corresponds to the cavity volume. For window detection, the largest sphere is fitted into each cavity opening (i.e., window). The package uses uniformly distributed sampling points around the target pore and inspects vectors connecting these points to the center of mass to identify the largest sphere that does not overlap with any atom along each vector. For each window, the vector (green arrow) with the largest included sphere (green spheres) along its path is chosen, and the window's circular diameter is calculated. (D) From step A, the void volume of the structure is estimated by fitting the largest possible sphere (blue circle) with the COM as its center.

POVME 3.0

POcket Volume MEasurer 3.0 (POVME 3.0) 26 is a Python package that uses a grid-based method for determining pocket shape and volume (Figure 5). Cavity detection defines inclusion and exclusion regions using 3D objects (spheres, cylinders and cuboids). Briefly, POVME floods the inclusion regions with equidistant points, that do not overlap with any atom, and eliminates any points encompassed by the optional exclusion regions. Then, a convex hull defined around the target structure removes points that are outside its envelope. For each pocket, POVME performs a volume estimation and applies a BINANA coloring algorithm [START_REF] Durrant | BINANA: a novel algorithm for ligand-binding characterization[END_REF] , that depicts hydrogen bonding donors, hydrogen bonding acceptors, aromatic stacking, hydrophobicity and hydrophilicity. Optionally, isolated patches of points that are not contiguous can be removed from the primary pocket.

ghecom

Grid-based HECOMi finder (ghecom) [START_REF] Kawabata | Detection of multiscale pockets on protein surfaces using mathematical morphology[END_REF] is a grid-and-sphere-based method that detects deep and shallow pockets (Figure 6). ghecom combines mathematical morphology operations 29 with different spherical probes to report openness-closedness of a target molecular shape, which when compared reveal deep and shallow (multiscale) pockets. Thus, a single-linkage clustering method groups pockets and subsequently estimates their volumes. Additionally, ghecom calculates a metric called pocketness, which relates the volume and depth of points per residue or atom, which indicates how much it contributes to ligand binding. First, a molecular shape X (gray region) is closed by a spherical probe P (blue sphere), defining the region enclosed by the yellow contour. Then, the intersection of P-closed X and the space outside the protein X c defines the region not accessible to probe P (blue region), which is opened by a spherical probe S (orange sphere), where P is larger than S. Finally, the pocket (orange region) is defined by the space outside the molecular shape not accessible to P, but to S. For multiscale detection, different sizes of the spherical probe P are used.

CAVER

CAVER [START_REF] Petřek | CAVER a new tool to explore routes from protein clefts, pockets and cavities[END_REF] is a method for computing tunnels and channels. The original version used a gridand-surface-based approach, but in CAVER 3.0, 31 a Voronoi diagram approach was adopted (Figure 7). The graphical user interface, CAVER Analyst 2.0, 32 incorporates CAVER 3.0 and visually helps users in tunnel and cavity computations. CAVER 3.0 constructs a pseudo-Voronoi diagram of a target protein to identify pathways that resemble tunnels that connect cavities with the surrounding bulk solvent, which are characterized by length, average radius, and gorge radius. In addition to tunnel detection, CAVER Analyst 2.0 can also identify regions of empty space, where a small probe can enter from the outside, but a large probe cannot, like KVFinder project (Figure 2) and ghecom (Figure 6). 

MoloVol

MoloVol [START_REF] Maglic | MoloVol: an easy-to-use program for analyzing cavities, volumes and surface areas of chemical structures[END_REF] is a grid-and-sphere-based method that analyzes geometrical features in chemical structures. MoloVol detects cavities using one or two spherical probes that roll around a target molecular surface, which can be represented as vdW, SES, and SAS surfaces.. For a single probe, cavities are defined by isolated regions inside the target structure, while for two probes, a large probe defines the outer space, and a small probe defines the space within cavities, like KVFinder project (Figure 2) and ghecom (Figure 6). For each cavity, MoloVol estimates the volume and surface area, and classifies them based on the number of openings. The method is available with an easy-to-use graphical user interface and a command-line interface for highthroughput calculations.

RESULTS AND DISCUSSION

First, a quantitative comparison between software is provided, that is based on two benchmark datasets of well-known supramolecular cages. Afterward, a qualitative comparison of the available software is presented, highlighting their strengths and weaknesses, with special attention to usability and applicability. With this quantitative/qualitative comparison in hand, we intend to guide users toward the software best suited to their needs.

Benchmark datasets

Two benchmark datasets, comprising 22 well-known supramolecular cages (Figure 8 and9), have been selected from the supramolecular chemistry literature to evaluate the previously described software. The X-ray diffraction (XRD) structure of these cages are readily accessible from the Cambridge Structural Database (CSD), 34 which makes them an ideal starting point for our work. However, it should be noted that the prediction of guest binding based solely on cavity detection in XRD structures has its limitations. Firstly, XRD structures might not be available for the cage that needs to be studied. Secondly, volumetric data might be less meaningful for flexible cages. In such cases, cavity detection could be combined with other in silico methods (e.g., Grand Canonical Monte Carlo or molecular dynamics simulations) to generate these input structures (trade-off between accuracy and simplicity). For more information on the selected structures, refer to the Supporting Information (SI, section 2, Table S2 andS3). The selection of supramolecular cages has been guided by two main criteria. First, to test the capabilities and limitations of the previously discussed software. Thus, data selection covers a wide variety of supramolecular cages with different topological and morphological features (i.e., cavity/opening sizes and shapes). Cage diversity followed the categorization used to classify protein cavities (Figure 10). 11b It should be noted that even though covalent cages have not been included in the benchmarking datasets, their topological and morphological features are similar to the classes of supramolecular cages included in the datasets. Secondly, with this selection we aim to provide reliable and comparable cavity volume data for supramolecular cages with well-documented and rich host-guest chemistry. Indeed, benchmark dataset 2 features some of the most relevant examples of supramolecular cages from the literature. The majority of these cages lack data about their cavities and when available, cavity volumes were calculated with different software using different parameters. As a consequence, it is not possible to compare the cavity volumes of these cages and draw conclusions for a rational design. In this work, 7 different software have been used for each supramolecular cage (see next section), therefore the cavity volumes of these cages, calculated with the same software, are now comparable. 

Parameter optimization

Cavity detection parameters of every software (except for pywindow) have been optimized for biomolecules. As the topology and morphology of supramolecular cages differ considerably from biomolecules, we have adjusted these parameters whenever necessary, in order to get the best performance and the most accurate visual representation of the cavity for each member of the benchmark datasets. We propose a new set of starting detection parameters for KVFinder project (Table S10) and MoloVol (Table S11), which users are advised to use on early runs to have reasonable results. For a detailed description of the parameter optimization, refer to the SI (SI, section 3).

Software performance

The software evaluation comprises three distinct benchmarking analyses: visual modeling assessment, quantitative analysis, and qualitative analysis. First, we relied on visual modeling analysis of the identified cavities. In Figure 11, the cavity size of the supramolecular cage C1 was estimated by KVFinder, pywindow, and MoloVol as 558 Å 3 , 412 Å 3 , and 648 Å 3 , respectively. This visual assessment provides a good starting point for identifying outlying results; however, a finer quantitative comparison would be more appropriate for assessing software performance.

Unfortunately, moving from qualitative to quantitative descriptors remains a challenge in the current field of cavity detection methods. 11b On the one hand, verification of calculated volumes is not possible, as the "real" volume of cavities in biological systems is unknown. It has been suggested that performing a quantitative assessment on a dataset of well-defined artificial cavities might offer a solution to this problem. Therefore, in this work, we address this problem by using a dataset of artificial cavities (supramolecular cages). In addition, we take this problem one step further, in order to have an even more realistic evaluation of software performance.

To assess the performance of any cavity detection software, the calculated volumes must be compared to the "real" cavity volume, a value that cannot be determined by experimental methods. To tackle this problem, we are taking advantage of Rebek's rule of thumb: in any (biological and artificial) host-guest system, the guest occupies 55% of the available space within the cavity, when guest encapsulation is only driven by weak interactions (e.g., dipole-dipole, dipole-induced dipole, London dispersion forces). [START_REF] Mecozzi | The 55 % olution A ormula for Molecular Recognition in the Liquid State[END_REF] It is important to note that the packing coefficient (PC) is defined as the V guest /V cavity ratio (e.g., for 55%, PC = 0.55). Therefore, we have selected 13 XRD structures (benchmark dataset 1) from the CSD, [START_REF] Petřek | CAVER a new tool to explore routes from protein clefts, pockets and cavities[END_REF] each of these inclusion complexes features a supramolecular cage with guest molecules(s) within its cavity (Figure 8, and Table S2). Guest vdW volumes were calculated (SI section 4, Figure S1), and the cavity sizes were estimated using Rebek's rule. Then, the estimated volumes were compared to the volumes calculated with different software. Since the relative error (RE) and mean relative absolute error (MRAE) are good performance measures for prediction, we applied them to assess performance of the different software (Table 1).

Table 1: Software performance for benchmark dataset 1. Relative error (RE) with the Rebek's cavity volume as the reference can be found in parentheses. Estimated cavity volume = Guest vdW volume ÷ 0.55. Whenever available, the estimated cavity volumes from the original publications are depicted in the 'Vref' column. The detailed description of benchmark dataset 1 can be found in the SI (Section 2). 12A) shows that volumes calculated with KVFinder project and Fpocket are close to the estimated volume (i.e., zero RE) with a small spread compared to other software. Despite a few outlying results, the overall trend (vide supra) supports our approach of using Rebek's rule as the best estimate for the "real" cavity volume within these supramolecular cages. In benchmark dataset 2, cavity volumes of O2 are excluded due to the high uncertainty related to some methods being unable to detect its cavity. The probability density function of the relative error for each software is estimated using the Kernel Density Estimate with Gaussian kernels and displayed as violin plots. The red line and point indicate the median and mean relative errors, respectively.

We then moved on to benchmark dataset 2 (Figure 9, SI section 2, Table S3) to test the capabilities and limitations of the software collection. This selection presents more challenging examples with different topological and morphological features (tunnels, clefts/grooves, large voids, large openings). However, these examples do not contain guests, so cavity volume estimation based on Rebek's rule is not possible. Consequently, the average volume of detected cavities was chosen as the point of comparison to calculated volumes (Table 2), which establishes an agreement between methods by mitigating deviations in volume data. In summary, each software has its own capabilities and shortcomings that derive from the type of cavity detection method applied, its implementation, and its software interfaces (Table 3). In general, grid-and-sphere-based and tessellation-based methods give the most precise cavity volumes, while grid-based and sphere-based methods performed worse. As previously described, pywindow uses an algorithm that defines the cavity volume as the volume of the largest sphere that can be fitted within the cavity. Therefore, pywindow consistently underestimates the cavity size, especially clear for non-spherical cavities (F1, H1, N1, W1 and O1) and shallow grooves (O2). Grid-, sphere-, and grid-and-sphere-based methods can detect any type of cavities in supramolecular cages, except for ghecom and CAVER Analyst 2.0, which, together with tessellation-based methods, fail to detect clefts and grooves. Taking into account our assessment, KVFinder project and Fpocket overperformed the other software in benchmarking, as they provide volumes closest to the estimated and average volumes, with a small spread compared to other software (Figure 12B).

All these methods are accessible to users with a simple and well-documented installation, configuration, and execution. From this perspective, the software interfaces available to users, i.e., Graphical User Interface (GUI), Command Line Interface (CLI), Application Programming Interface (API), and Web Application, dictate the pool of viable applications for each software.

Commonly, GUIs and Web Applications are simpler and easier for less experienced users to execute due to visual aids that intuitively guide the user through the analysis pipeline. However, these interfaces lack efficiency when performing analysis with large datasets, e.g., highthroughput analysis (HTA), molecular dynamics (MD) simulations, machine learning (ML), deep learning (DL), virtual screening (VS) applications, and automating pipelines. In this sense, CLIs and APIs are efficient and integrable software interfaces, which allow the development of applications with large datasets and pipeline automation; however, they are highly dependent on their documentation to the user interact with the software efficiently. Also, the main drawback of CLI is that they are black-box applications, which do not allow users to fully customize pipeline automation since some variables are not definable by the user. On the other hand, APIs (e.g., pyKVFinder, pywindow, and fpocket) are the most versatile interfaces, which users can use them as building blocks for more complex applications and/or integrate them with third-party scientific packages, e.g., numpy, scipy, scikit-learn and matplotlib. Additionally, pyKVFinder has its core data structures accessible and easy-to-handle, allowing the development of new characterizations and applications built around them. 

CONCLUSIONS

In this work, we present the first evaluation of cavity characterization methods in the context of supramolecular cages. Our thorough literature review led us to identify 7 cavity detection software, which were evaluated on two benchmark datasets of well-known supramolecular cages with diverse cavity shapes and sizes. All of this software is available and accessible even for less experienced users, with user-friendly interfaces, simple installation, and well-documented configuration, and execution. Our results show that KVFinder project and Fpocket are the most accurate software for characterizing supramolecular cavities. In order to obtain the most detailed picture of the software performance, we took advantage of Rebek's rule. This new strategy (and the benchmark dataset 1) also offers a solution to the current problem of missing gold standard reference data in the field of cavity detection. In summary, this work aims to provide an entry
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Figure 1 :

 1 Figure 1: Molecular surface representations. (A) van der Waals (vdW) surface. (B) Solvent accessible surface (SAS). (C) Solvent excluded surface (SES). Images generated with PyMOL 13 for cage A1 (hexameric resorcin[4]arene-cage, see Figure 9). (D) 2D schematic representation of molecular surfaces. The vdW surface (green) is composed of atoms, that are represented as green spheres. A spherical probe (grey), representing a solvent molecule, rolls around the over the atoms of the molecule to define SES and SAS. The SES is defined by the vdW surface (green) and space not reached by the spherical probe (orange). The SAS is defined by the envelope reached by the center of the spherical probe (blue).

Figure 2 :

 2 Figure 2: Schematic representation of cavity detection algorithm in KVFinder project. (A) A structure X, composed of hard sphere atoms with vdW radii, is inserted into a grid. (B) Pi scans the surface of the structure, by translating over the grid points (orange). (C) Then Po scans the accessible points in blue. (D) The cavity points (light grey) are defined as the difference between the probes' accessible points. The points not reached by Pi (dark grey) define the SES (default) or SAS, depending on the user-defined surface representation. (E) Finally, a removal distance routine is applied to remove cavity points within a given distance from the cavity-bulk boundary (red line).

Figure 3 :

 3 Figure 3: Schematic representation of cavity detection algorithm in Fpocket. (A) Voronoi diagram of the atomic centers. (B) Similar to a Voronoi ball (dotted orange circles); (C) Example of an α-sphere (green region), it is centered at a Voronoi vertex (orange points) and grows until it becomes tangential to surface atoms. (D) Cluster of α-spheres that fill a cavity.

Figure 4 :

 4 Figure 4: Schematic representation of cavity and window detection algorithms in pywindow. (A) A molecular shape is represented by hard sphere atoms, and the center of mass (COM) is calculated (red point). (B) Window detection starts by evenly distributing sampling points (red dots) in a sphere around the structure. Then, vectors (gray and green arrows) connecting the COM and the sampling points are inspected. Vectors that overlap with any of the structure atoms are removed. (C)For each window, the vector (green arrow) with the largest included sphere (green spheres) along its path is chosen, and the window's circular diameter is calculated. (D) From step A, the void volume of the structure is estimated by fitting the largest possible sphere (blue circle) with the COM as its center.

Figure 5 :

 5 Figure 5: Schematic representation of cavity detection in POVME. (A) A 3D object (blue sphere) defines an inclusion region (IR) in the molecular shape X, composed of hard sphere atoms with vdW radii. (B) Equidistant points floods the inclusion region. (C) Points that are overlapping with the molecular shape are eliminated. (D) Any points outside the convex hull (red envelope) are optionally eliminated. (E) The cavity points are marked in blue. Optionally, isolated patches of points that are not contiguous can be removed from the primary pocket.

Figure 6 :

 6 Figure 6: Schematic representation of pocket detection in ghecom. First, a molecular shape X (gray region) is closed by a spherical probe P (blue sphere), defining the region enclosed by the yellow contour. Then, the intersection of P-closed X and the space outside the protein X c defines

Figure 7 :

 7 Figure 7: Schematic representation of tunnel and channel detection in CAVER 3.0 and CAVER Analyst 2.0. (A) A molecular shape is inspected by a spherical probe, called shell probe (in sphere), with a radius, specified by shell radius parameter, to define an outer SAS-surface (red line). From it, a distance, specified by shell depth parameter, is removed to define an inner surface (yellow line). (B) A pseudo-Voronoi diagram is constructed based on the molecular shape. Voronoi vertices (orange points) are used to create the tunnel/channel centerlines. (C) A start point (red point) is a user-defined parameter, defined as the molecular shape's center of mass, and an endpoint (blue point) is defined at the center of the inner surface. From the start point, the centerline passes through Voronoi edges and vertices to form a tunnel/channel until the outer surface and passing through the end point. (D) Spheres are fitted into all points of the centerline, from the start point to the endpoint, which defines the bottleneck radius (opening) along the tunnel/channel.

Figure 8 :

 8 Figure 8: Supramolecular cages in the benchmark dataset 1.

Figure 9 :

 9 Figure 9: Supramolecular cages in benchmark dataset 2.

Figure 10 :

 10 Figure 10: Categorization of supramolecular cage cavities based on the classification used for protein cavities. 11b

Figure 11 :

 11 Figure 11: Visual comparison of the calculated cavity volumes for C1 cage using pyKVFinder (left), pywindow (middle), and MoloVol (right). Cavity detected by KVFinder project is colored from 0.0 Å (minimum depth; blue) to 3.89 Å (maximum depth; red). Cavity detected by pywindow is colored from 3.06 Å (minimum diameter; blue) to 4.62 Å (maximum diameter; red).

Figure 12 :

 12 Figure 12: Boxplot of the relative error of the cavity volume in the benchmark datasets. (A) Benchmark dataset 1 with the Rebek's cavity volume as reference. (B) Benchmark dataset 2 with the

project and Fpocket, provide the most reliable cavity volumes

  supramolecular cages with well-defined, closed cavities (void, Figure10), where the characterization of cavity boundaries is simple and straightforward. On the other hand, deviations from Rebek's rule are more elusive. It has been shown that higher packing coefficients can be reached in inclusion complexes, where in addition to weak dipole-dipole interactions, other forces such as H-bonding, π-π and CH-π are at work.[START_REF] Pluth | tructural Consequences of Anionic ost-Cationic uest Interactions in a Supramolecular Assembly[END_REF] This results in tighter . A visual representation of the software performance (Figure

	9) 66.6 First, to assess this quantitative analysis of the benchmark dataset 1, we must analyze the RE 925 MRAE (%) 16.1 16.9 23.4 24.2 35.0 53.4 -values, which consist of: (1) error related to the definitions of the cavity boundaries; and (2) error related to deviations in the PC from Rebek's rule. To minimize the first error, benchmark dataset entropy (restricted movement of the guest within the cage). Therefore, negative RE is expected in these cases, due to the overestimation of cavity volume. For B4-B9, B12, and B13 cages, this trend can be clearly observed in the results of KVFinder project, Fpocket, MoloVol, and CAVER. For B5, B6, and B9, there is experimental evidence for H-bonding interactions (SI, Figure S2, and S3). 37 Furthermore, when considering the examples with fullerenes (B7, B8, B12 and B13), and (Cp*) 2 Co + (B4) as guests, in addition to weak dipole-dipole interactions, additional π-π and CH-π interactions favor strong host-guest association. For ghecom, pywindow, and POVME, a large negative RE is observed for each supramolecular cage, which suggests that the calculation error of these software becomes more significant. On the other hand, 1 only contains packing (i.e., PC > 0.55), where the extra stabilization enthalpy counterbalances the loss of MRAE values clearly show that KVFinder

Table 2 :

 2 Software performance for benchmark dataset 2. Average volumes have been calculated by averaging calculated volumes of pyKVFinder, parKVFinder, Fpocket, MoloVol and CAVER. Relative error (RE) with the average volumes can be found in parentheses. Whenever available, the estimated cavity volumes from the original publications are depicted in the 'Vref' column. The detailed description benchmark dataset 2 can be found in the SI (Section 2).

Table 3 : Assessment of different cavity detection methods.

 3 

	Cavity			Interface				Cavity-type		
	detection	Category									Ref.
	software		GUI	CLI	API	Web	Void	Invagination	Tunnel	Cleft/Groove	
	KVFinder project	grid-and-sphere-based	x	x	x	x	+++	+++	+++	+++	14,15
	Fpocket	tessellation-based	x	x	x	x	+++	+++	+++	NA	17
	MoloVol	grid-and-sphere-based	x	x		x	+++	++	+++	+++	28
	CAVER 3.0	tesselation -based	x	x							26
						x	++	++	++	NA	
	CAVER Analyst 2.0	grid-and-sphere-based	x	x							25
	ghecom	grid-and-sphere-based	x	x		x	+++	++	+++	NA	23
	pywindow	sphere-based			x		++	+	+	+	20
	POVME	grid-based	x	x			+	+	+	+	21

Data and Software Availability

The benchmark datasets used in this study, which include the structural data files of each supramolecular cage and guest, are available at Zenodo: https://doi.org/10.5281/zenodo.7702311 (Zenodo, 07-04-2023). Additionally, the source code (v1.0.0) for the benchmarking procedure can be found at https://github.com/LBC-LNBio/SMC-Benchmarking (GitHub, 07-04-2023). All software used in the benchmarking, including pyKVFinder (v0.5.1; https://github.com/LBC-LNBio/pyKVFinder, GitHub, 07-04-2023), parKVFinder (v1.2.0; https://github.com/LBC-LNBio/parKVFinder, GitHub, 07-04-2023), Fpocket (v3.1.4.2; https://github.com/Discngine/fpocket, GitHub, 07-04-2023), pywindow (v0.0.4; https://github.com/marcinmiklitz/pywindow, GitHub, 07-04-2023), POVME 3.0 (v3.0.35; https://github.com/POVME/POVME3, GitHub, 07-04-2023), ghecom (21/07/2020; https://pdbj.org/ghecom/, GHECOM, 07-04-2023), CAVER 3.0 (v3.0.2; https://caver.cz, CAVER 07-04-2023), CAVER Analyst 2 (v2.0b2; https://caver.cz, CAVER 07-04-2023), and MoloVol (v1.0.0; https://molovol.com/, MoloVol, 07-04-2023), are freely available on the internet.

point in the field of cavity characterization for potential users in the supramolecular community.

This invaluable technique provides an added value to the toolbox of rational design of supramolecular cages with improved physicochemical properties.
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