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Abstract

Inherent in model selection is the problem of simultaneously optimizing multiple
performance metrics. Some of these metrics express potentially conflicting criteria,
like accuracy and simplicity. Pareto optimization is a branch of mathematical opti-
mization that deals precisely with problems involving conflicting objective functions.
In this article, an algorithm was developed that searches automatically for Pareto
optimal linear regression models given a dataset and a set of performance metrics.
The optimization task was framed as one of sequential variable selection on a graph.
A search strategy was proposed that draws on ant colony optimization, a probabilis-
tic technique well suited for graph-based problems. Experiments were run in which
the metrics to be minimized were the root-mean-square error, expressing accuracy,
and the number of coefficients, expressing simplicity. To substantiate the usefulness
of our algorithm, cases were presented in which it outperformed AIC-based stepwise
regression. Results suggested that our algorithm copes well with small datasets and
correlated predictors, that it is efficient and that it informs model selection. Key
properties of our algorithm were discussed and areas of improvement highlighted.

Keywords: Model selection, Multi-objective optimization, Ant colony optimization, Pareto
front, Tradeoffs.
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1 Introduction and Motivation

Part of the complexity of model selection is that it is usually motivated by multiple and

potentially competing objectives. A typical example is when a model has to conform as

much as possible to available data, but also has to be sufficiently simple for it to generalize

and be interpretable [1, 2]. Some sort of compromise between accuracy and simplicity

is often necessary because complex models tend to approximate data better than simple

ones. The same observation seems warranted for any pair of conflicting criteria for model

assessment.

Optimal model selection has been studied primarily within the automated machine

learning community [3, 4, 5], with a common point of departure being that model selection

can be framed as a sequential decision making problem. Decisions include the choice of

algorithms (e.g., linear regression), methods (e.g., imputation of missing data) and hy-

perparameters [6]. The goal is to find sequences, and therefore models, that minimize a

loss function. Hutter et al. [3] point out the difficulty in applying classical optimization

to such a problem, citing as their main reasons (a) the complexity of the search space

and (b) the fact that little is known about the loss’s analytical properties, say convexity,

when viewed as a function of the decisions. Accordingly, Feurer et al. [7] explore the search

space using Bayesian optimization (BO) [8], which involves repetitive sampling of sequences

around the current best sequence, based on performance estimates provided by a surrogate.

Rokatoarison et al. [9] use Monte Carlo tree search [10] for structures, i.e algorithms and

methods, and BO for hyperparameters. Structures are built incrementally by “walking

down” a tree, adding one algorithm or method at a time, whereas hyperparameters are

sampled as previously. Other works have focused on particular areas of model selection.

For instance, Khurana et al. [11, 12] propose automatic feature engineering algorithms

for regression and classification. Their goal is to determine, based on a predefined set of

functions, what sequence of variable transformations yields the most predictively accurate

model when applied on a dataset. For this they define a “transformation tree” in which

nodes represent transformed datasets and edges represent functions, then they compare

ad hoc search heuristics [11] with strategies obtained through reinforcement learning [12].
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Zoph et al. [13] also leverage reinforcement learning, but do so in the context of tuning

a convolutional neural network’s hyperparameters. Their method involves training a re-

current neural network to select hyperparameters in such a way as to maximize expected

model accuracy.

A drawback to the general approach represented by the aforementioned works is that it

is single-objective, whereas model selection is essentially multi-objective. Here we propose

a different approach, in which more than one metric is considered. We assume that the

metrics conflict; that is, there exists no solution that optimizes all of them simultaneously,

in which case the expert would be prepared to make tradeoffs. Thus we are primarily

interested in identifying the set of models that cannot be improved in any metric without

causing the others to deteriorate; this is an adaptation of a core Pareto (or multi-objective)

optimization concept known as the Pareto front [14, 15, 16].

Albeit equivalent, models which lie on the Pareto front can be seen as representing

different tradeoffs between the objectives. From a decision making perspective, therefore,

the principal appeal of our approach is that it focuses the expert’s attention on a set of

equally good alternatives that they can ultimately choose from based on their preferences

and the value placed on each objective [17, 18]. Another appeal is that by examining the

shape of the Pareto front, the expert is able to gauge how much compromise is needed from

some metric to improve others [14], and is hence able to locate regions in the model space

where small concessions in some metrics permit considerable improvements in others. From

a statistical perspective, our approach may assist in improving our understanding of the

relationships among metrics and in informing theoretical investigations in that direction.

In this article, we present a model selection algorithm which searches for Pareto optimal

models of a continuous response variable, given a dataset and a set of performance met-

rics. It does this by efficiently exploring a model search graph. We devise and implement a

search heuristic which draws on ant colony optimization (ACO), a combinatorial optimiza-

tion technique modeled after ant colonies [19]. ACO’s first application was the traveling

salesperson problem [20], but its scope has expanded tremendously in the last two decades,

with applications in experiment design [21], project scheduling [22], spatial clustering [23],
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hydraulic engineering [24] and healthcare [25]. Moreover, various extensions of it have been

developed for Pareto optimization [26, 27], one of which was used in our work.

The remainder of the article is organized as follows. Section 2 states the combinatorial

optimization problem underpinning the article, provides some terminology and introduces

the model search graph. Section 3 describes a generic ACO algorithm and shows how it

can be adapted to Pareto optimization. Section 4 presents our algorithm. On the basis of

experiments, Section 5 compares the algorithm with AIC-based stepwise regression [28, 29],

and sheds light on some of its basic properties.

2 Model Search Graph

We concentrate on linear regression models of a response Y that may feature powers of

variables X1, ..., Xp, p ≥ 1, together with two-way interactions. For p = 3 and a maximum

exponent emax = 2, these models have as an upper bound

Y = β0+β1X1+β2X2+β3X3+β4X
2
1 +β5X

2
2 +β6X

2
3 +β7X1X2+β8X1X3+β9X2X3+ϵ (1)

This work is an attempt to construct an efficient procedure for building satisfactory models

of this form, in a way similar to forward selection but one which is stochastic and multi-

objective. We first show that building such models is equivalent to traversing a graph.

2.1 Models as Paths on a Graph

Given p and emax, M(p, emax) will denote the set of models described above. This set is

finite. Let again p = 3 and emax = 2. There are 8 ways of choosing two-way interactions:

(1) X1X2; (2) X1X3; (3) X2X3; (4) X1X2 and X1X3; (5) X1X2 and X2X3; (6) X1X3 and

X2X3; (7) X1X2, X2X3 and X1X3; or (8) no interactions. There are 8 ways of selecting the

first-power terms, and 8 ways of selecting the second-power terms, including the possibility

of not selecting any. This gives a total of 512 models. In general, |M(p, emax)| = 2Np+p·emax ,

where Np =
(
p
2

)
.

The directed graph in Figure 1 contains M(3, 2), with each model corresponding to

exactly one full path. We will call it a model search graph. It can be generalized for any p
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Figure 1: Model search graph for p = 3 and emax = 2, with A = X1, B = X2 and C = X3.

The red path corresponds to the model Y = β0 + β1A+ β2B ++β3A
2 + β4AB + ϵ.

and emax by following the same construction principles as above; that is, by enumerating

the possible combinations of interaction terms, of power-of-one terms, and so on. Some

comments on the graph are supplied in the online Appendix C.

2.2 Problem Statement

Let F1, ..., FQ be Q performance metrics to be minimized with respect to a dataset D. For

fixed p and emax, a combinatorial Pareto optimization problem follows:

min
x∈M(p, emax)

(F1(x,D), ..., FQ(x,D)) (2)

where Fq(x,D), q ∈ {1, . . . , Q}, denotes the value of Fq for a model x ∈ M(p, emax) with

respect to D.

In terms of the model search graph, and assuming as in the Introduction that the

metrics conflict, solving (2) amounts to finding the full paths corresponding to models that

are Pareto optimal with respect to F1, . . . , FQ (Definition 1 and 2). The Pareto front [18]

is the set of such models.
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Definition 1 Let x and y be models in M(p, emax). x is said to dominate y on D if

Fq(x,D) ≤ Fq(y,D) for all q ∈ {1, . . . , Q} and Fk(x,D) < Fk(y,D) for some k ∈

{1, . . . , Q}.

Definition 2 Let x in M(p, emax). x is Pareto optimal (or nondominated, or efficient) if,

for all y ∈ M(p, emax), y does not dominate x.

We would like to point out, in passing, that the definitions above make no reference

to the character of the relationships among the metrics. Indeed, even with nonconflicting

metrics, one can still talk of a Pareto front, namely the singleton containing the model

that minimizes all the metrics at once. In this case, however, the front’s interest is clearly

reduced, and Problem (2) could in principle be solved using single-objective optimization

techniques.

Computing the Pareto front may be intractable [17]. Only an exact algorithm could

determine with certainty whether a model is Pareto optimal, but such an algorithm typi-

cally proceeds by implicit enumeration of the search space [30], which makes it unsuitable

for large graphs. This motivates the interest in heuristics, which are computationally effi-

cient techniques for generating good solutions [31]; that is, solutions that are “feasible and

significantly better than a solution that would have been designed by a human expert” [30].

Constructive heuristics, meaning those that build solutions stepwise, are known to be the

fastest [19, 32], but they also seem to be the most relevant to the objective we outlined

in introducing this section. Even more relevant are algorithms based on ant colony opti-

mization [19], which are designed specifically for problems that can be reduced to finding

desirable paths in a graph.

It is important to note that most applications of Pareto optimization aim not at com-

puting the Pareto front but rather at approximating it [33]. Typically, a good Pareto front

approximation will be a set of solutions in which (a) no solution dominates another; (b) the

solutions are close to those on the true front; and (c) the solutions are diverse [15, 34, 35].

Perhaps the best known measure of the quality of a Pareto front approximation that ac-

counts for (b) and (c) is the hypervolume, which is the size of the objective space enclosed

by the points on the front and a dominated reference point [36]. The hypervolume has
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the property of being strictly Pareto compliant [34]; that is, if A and B are Pareto front

approximations such that the points in B are dominated by those in A, then A has a

higher hypervolume than B. This observation will be useful in Section 5, where we com-

pare different algorithm settings based on the Pareto front approximations obtained in each

one.

3 Multi-objective Ant Colony Optimization

We now turn to ant colony optimization, an umbrella term for a group of algorithms in

which artificial agents imitate the behavior of foraging ants to solve combinatorial opti-

mization problems [19]. The basis for ACO is the assumption that simulation of stigmergy,

i.e the discharging and following of pheromones by insects, can solve problems analogous

to finding the shortest path in a graph. ACO deals traditionally with problems involving

a function to be minimized with respect to a set of discrete decision variables subject to

certain feasibility constraints. We will see, however, that the underlying ideas can easily

be extended to the case where multiple functions are to be minimized.

ACO ants construct solutions incrementally and independently by traversing a graph

whose edges represent value assignments for decision variables. An edge (i, j) is described

at time t by the amount of pheromones present on it, τij(t), and a so-called “heuristic

value” (HV), ηij [19]. Pheromones are “discharged” during travel, with paths closer to

optimal solutions receiving greater amounts of pheromones. Hence, τij(t) is a cumulative

indicator of the quality of solutions which had been built up to time t using (i, j). ηij

expresses an a priori belief about whether (i, j) belongs to an optimal solution. When

approaching the TSP, for example, it is customary to let ηij =
1
dij

, dij being the distance

between cities-nodes i and j [37]; the intuition is that a short tour can be obtained by

repeatedly going to the closest yet-to-be-visited city until no city is left.

An ant chooses its destinations as a function of the pheromones and HVs of the edges

available. Regions with relatively high concentrations of pheromones tend to be preferred

[21]. Once a complete solution has been built, it is evaluated and pheromones are deposited

on its constituent edges. The amount of pheromones deposited is commensurate with the
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quality of the solution. Additionally, pheromones “evaporate” with time. Ideally this

prevents a too rapid convergence to suboptimal regions, and encourages exploration [19, 38].

A multi-objective version of ACO was proposed by [26] in which τij(t) and ηij are Q-

sized vectors, where Q is the number of objectives, such that τij(t) = (τij,1(t), ..., τij,Q(t))

and ηij = (ηij,1, ..., ηij,Q). Ants evaluate their solutions and deposit a separate amount of

pheromones for each objective. For all (i, j) and q ∈ {1, . . . , Q}, the q-th component of

τij(t) is updated as

τij,q(t+ 1) = (1− ρ) · τij,q(t) +
m∑
k=1

∆τ kij,q (3)

where ρ ∈ [0, 1] is the evaporation rate; m the number of ants in the colony; ∆τ kij,q the

amount of pheromones deposited by ant k with respect to Fq, which measures solution

quality with respect to Fq. The Q updates occur simultaneously.

For concreteness, suppose Q = 2. Assuming ant k occupies node i in the construction

graph, it will move to a successor node j with a probability

pkij =


(τ

λ1
ij,1·τ

λ2
ij,2)

α(η
λ1
ij,1·η

λ2
ij,2)

β∑
p∈S(i)(τ

λ1
ip,1·τ

λ2
ip,2)

α(η
λ1
ip,1·η

λ2
ip,2)

β
(i, j) ∈ N(sk)

0 (i, j) /∈ N(sk)

(4)

where sk denotes the path that k has traveled so far; N(sk) the set of edges that can be

added to sk without violating the problem’s constraints; S(i) the successors of i; (α, β)

parameters controlling the importance of an edge’s pheromones relative to its HVs; and

where λq ∈ [0, 1] is the weight of Fq relative to the other objective, such that λ1 + λ2 = 1.

Time was dropped from the expression for brevity.

4 Proposed Algorithm

We now describe an algorithm for solving Problem (2). We will call it MOMSACO, which

is shorthand for Multi-objective Model Selection based on Ant Colony Optimization. We

treat the model search graph as a construction graph for a colony of size m. For simplicity,

a Pareto front approximation will henceforth be referred to as a Pareto front. To avoid

ambiguity, the Pareto front will be referred to as the true Pareto front. We use the notation

of Section 2 and 3.
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4.1 Initialization

The algorithm requires a dataset in which the columns representing Y and X1, ..., Xp were

designated. The dataset is randomly partitioned into a training dataset, Dtrain, and a test

dataset, Dtest. A value for emax is required for generating the model search graph.

HVs are initialized after the graph has been generated. Informally, η
Fq

ij should be high if

selection of j is likely to bring an immediate improvement in Fq. In the TSP, for example,

the biggest immediate improvement in traveled distance comes from visiting the closest city.

It is hard to draw an analogy here, because model assessment metrics are not necessarily

separable in the way distance is. Instead, if the current node is i, we infer the likely

improvement in Fq resulting from the selection of successor node j based on a sample of

models containing both i and j. Specifically, we let, for q ∈ {1, . . . , Q},

η
Fq

ij =
Φ

Fq

i

Fq(., Dtest)ij
(5)

where:

- Fq(., Dtest)ij is the mean of Fq, with respect to Dtest, in a random sample of n init

models containing (i, j). n init ≥ 1 is a user-defined parameter.

- Φ
Fq

i is the maximum of Fq(., Dtest)il over l ∈ S(i).

4.2 Model Search

The m ants construct models independently by walking from Start to End, selecting at

each stage a node from the distribution defined by Equation (6). Let us describe this

process in detail for some ant k, k ∈ {1, . . . ,m}. The ant is located initially in Start. A

successor node is chosen after calculating pkij, where i = Start, for all successors j. The

ant joins this successor then continues in the same manner until it reaches End. Note that

if an interaction node other than None was selected, the ant is required to choose None

for its next moves until the next node is a power-of-one node (for an explanation, see the

online Appendix C). Upon reaching End, a model will have been fully constructed; call it

mk. Its coefficients are estimated on Dtrain then its metrics are evaluated on Dtest. The
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ant subsequently returns to Start by taking the opposite path. Along the way, it deposits

a separate amount of pheromones for each metric, ∆τ kij,q (q ∈ {1, . . . , Q}), on every visited

edge. These are identical for all the edges taken. A percentage ρ of the old pheromones

evaporate. These steps occur at the same time colony-wide, and constitute a full iteration.

Conceptually, ∆τ kij,q should be a nonincreasing function of Fq. Hence, we take ∆τ kij,q to

be the inverse of the value obtained for Fq by ant k, i.e

∆τ kij,q =
δij,k

Fq(mk, Dtest)
(6)

where δij,k = 1 if (i, j) was visited by k, and 0 otherwise. At the end of an iteration, τij,q

is updated for all q ∈ {1, . . . , Q} according to

τij,q(t+ 1) = (1− ρ) · τij,q(t) +
m∑
k=1

δij,k
Fq(mk, Dtest)

(7)

4.3 Populating a Pareto Front

A Pareto front is formed as iterations pass. To form the initial front, we compare the

first iteration’s models, then we drop the dominated ones. The remaining models could be

Pareto optimal, so they constitute the initial front. From the second iteration onward, new

models are compared with each other then with the present front. If a new model is not

dominated by any of the others with which it was compared, then it is added to the front.

However, if a model on the front turns out to be dominated by some new model, then it is

removed. This procedure ensures that out of all the models found up to the present, only

those that have not been proven to be dominated compose the front.

5 Results and Analysis

We begin this section with an experimental comparison of AIC-based stepwise regression

(henceforth AIC-SR) [28] and MOMSACO, the two being sequential, multi-objective pro-

cedures for model selection (Section 5.1). Section 5.2 through 5.4 deal with some salient

properties of MOMSACO.

10



In all the experiments reported, the metrics to be minimized were the root-mean-square

error (RMSE) and the number of coefficients (NoCoeff). RMSE indicates accuracy because

it captures the differences between a model’s predictions and the values observed for the

response [39]. NoCoeff describes a model’s simplicity. The relevance of a Pareto front-based

approach stems from the observation that it is usually impossible to minimize RMSE and

NoCoeff simultaneously: when NoCoeff is minimal, i.e when there are no variables in the

model, RMSE is generally suboptimal. One exception is when the response is constant, in

which case the intercept-only model would score an RMSE of zero.

To initialize MOMSACO, eight models per edge were drawn uniformly (n init = 8), and

Equation (7) was used. Initial pheromones were of one per metric per edge. Experiments

spanned 100 iterations, and were run 50 times due to the randomness of navigation. For

each dataset, 70% of the observations were used for training, and 30% for calculating the

metrics. There were 15 ants. In Section 5.1, ρ was set at 0.5, λ1 and λ2 at 0.5, α and β

at 1. A Pareto front’s hypervolume was the total area of the rectangles enclosed by the

points on the front and a reference point. This point’s location varied with each dataset.

Details on how the reference points and hypervolumes were determined are supplied in the

online Appendix A. In Section 5.4 and 5.5, the term “transition probability” refers to the

quantity defined by Equation (6). The experiments were run in R, on a laptop with an

Intel i3 processor running at 2.10GHz and using 4GB of RAM.

5.1 Examples Where AIC-SR Fails But MOMSACO Does Not

The motivation for comparing MOMSACO with AIC-SR is threefold: (1) they are both

multi-objective procedures; (2) they differ in fundamental ways; and (3) if cases exist in

which MOMSACO outperforms AIC-SR, then positive conclusions can be drawn about its

usefulness. Perhaps the most conspicuous difference between the two lies in the nature of the

procedure. AIC-SR is deterministic, subject to a fixed set of rules based on statistical tests;

MOMSACO is stochastic, iterative and one that “learns” over time. Secondly, consider the

way in which candidate models are compared. AIC-SR compares models on the basis

of AIC, with lower values preferred [29]. In contrast, MOMSACO does not score models;

11



rather, it compares their metrics then discards those that are dominated. The former mode

of comparison produces a ranking of models; the latter supplies a range of models, each of

which represents a particular compromise among the metrics being studied. The latter also

allows some awareness of the relationships among the metrics; in particular, it helps gauge

the extent to which they conflict, and identify opportunities for substantial improvements

in one metric that require small concessions in another. Awareness of such relationships,

which is important to decision making, is precluded by the first mode of comparison.

We now give examples of synthetic datasets where (a) MOMSACO outperforms AIC-SR

in the sense of being able to find data-generating models, and (b) comparing models ac-

cording to Pareto dominance is preferable to ranking them according to AIC. Such datasets

abound, but for the sake of exposition we focus on two. Both were comprised of variables

X1, X2, X3 and X4 and a response Y. In D1, the four variables were drawn independently

from normal distributions; in D2, they were drawn from a multivariate normal distribution

with X1 and X2 correlated. Y was generated in each case according to

Y = 2 +X1 + 1.5X2 +X1X2 +X2
4 + ϵ (8)

where ϵ was drawn from the standard normal distribution. We will henceforth refer to (10)

as the true model. X1, X2, X3 and X4 were all allowed to feature in the models, so p was

equal to four. emax was taken to be two. This produced a search graph with 16 384 models.

Details on the simulation of D1 and D2 (and on a third, unreported example) are provided

in the online Appendix B.

To substantiate (a) and (b), we generated N = 1000 observations in D1 and 10 000

in D2, then we ran two experiments per dataset. In the first, we computed the AIC

value of every model in the graph, then we ran a full search of M(4, 2) to find the true

Pareto front with respect to RMSE and NoCoeff. In the second, we ran forward, backward

and bidirectional AIC-SR, then we initialized MOMSACO and ran 50 trials of it. An

aggregate Pareto front was then obtained by combining the fronts of the MOMSACO

trials and discarding the dominated models. Figure 3 shows both aggregate fronts. To

ensure a fair comparison, we required AIC-SR’s scope to be the same as MOMSACO’s, i.e

{X1, X2, X3, X4, X
2
1 , . . . , X

2
4 , X1X2, . . . , X3X4}.
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Figure 2: The aggregate Pareto fronts obtained for D1 (N = 1000; left) and D2 (N =

10 000; right). Triangles represent the true models.
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Table 1: Effect of sample size and correlation on the ability of both algorithms to find the

true models. Y denotes success in finding these models, and N denotes failure.

Sample size 1000 10 000 100 000

D1 (MOMSACO) Y Y Y

D1 (AIC-SR) N Y Y

D2 (MOMSACO) Y Y Y

D2 (AIC-SR) N N N

In both datasets, the true model was truly Pareto optimal with respect to RMSE and

NoCoeff, but suboptimal with respect to AIC. Several models had better AIC values than

the true one. This suggests that Pareto dominance is a sound basis for comparing models

when RMSE and NoCoeff are its metrics. It also shows that there are situations in which a

ranking of models based on AIC can be misleading in that it places data-generating models

below others. We also found that whereas AIC-SR did not succeed in finding the true

model, MOMSACO did. This was true for both datasets (see the triangles in Figure 3),

which proves that MOMSACO can outperform AIC-SR.

Illustrations of how Pareto dominance can inform model selection are provided by both

fronts’ bottom two models (Figure 3), which show that a small concession in NoCoeff (from

two variables to three) allows for significant gains in RMSE (from approximately 34.4 to

1.8 in D1). Both Pareto fronts also give clear insight into the tradeoff represented by each

model, an insight not provided by AIC values.

Additional experiments withD1 andD2 showed that the relative performance of AIC-SR

was affected by the sample size and the presence of correlated predictors (Table 1). For N =

10 000, AIC-SR was finally able to retrieve the true model in D1. This was not observed

in D2, which differs with D1 only in that it was generated by a model with correlated

predictors. This suggests the following: (a) in the absence of correlated predictors, AIC-

SR requires a larger sample than MOMSACO to find the data-generating model; (b) when

correlations exist, AIC-SR may require a much larger sample, which however was not

confirmed by the experiments, because AIC-SR failed even with N = 106. In any event,
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Figure 3: Evolution of the hypervolume for various evaporation rates (averaged in each

case over the 50 trials). Dataset: D1 (N = 1000). Should be viewed in color.

it seems that in the presence of correlations, MOMSACO can recover the data-generating

model regardless of the sample size.

5.2 Pareto Fronts

Now we concentrate solely on MOMSACO. In each of the previous experiments, the Pareto

front’s size and hypervolume kept increasing until they leveled out. Figure 4 depicts this

process for D1 (N = 1000) for various evaporation rates, omitting the fronts’ sizes for

clarity. In general, the hypervolume improved most rapidly within the first few iterations.

This was when the fronts were being populated at the fastest rate (Table 2).

While work is needed to pinpoint the effect of each parameter on the Pareto front,

experiments suggested that evaporation is an important factor. Notably, the hypervolume
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Table 2: Pareto front size per iteration (averaged over the 50 trials). Dataset: D1 (N =

1000).

Iteration Avg. no. of models on the Pareto front

1 3.6

3 4.6

12 5.8

15 6.0

24 6.3

100 6.3

plateaued earlier for larger evaporation rates, but attained higher values for smaller ones.

This means that for smaller values of ρ, the discovery of new nondominated models spanned

a longer period of time, and higher quality fronts were formed.

It is noteworthy that, on average, MOMSACO was able to recover 26.54% of the true

Pareto front (see the rates of contribution in Table 3) by evaluating as few as 219 models,

i.e 1.33% of the total size of the search graph.

5.3 Ant Navigation

Figure 4 describes the evolution of Pareto front quality over time, using the hypervolume

as an indicator. It may be interesting, from an optimization point of view, to ask how the

mean of each metric evolves while the front is being populated. Figure 5 shows that as

the search was proceeding, there was a gradual decline, and therefore improvement, in the

average values of RMSE and NoCoeff among models on the Pareto front. This indicates

that both metrics were being optimized.

The improvement observed in Figure 4 and 5 can be attributed to the movement of

the pheromones. Initially, these do not contribute to navigation because they are equally

distributed among the edges. Rather, it is the HVs, which differ from an edge to another,

that determine the initial transition probabilities. Therefore, the ants will most likely start

by taking the paths with the highest HVs. Later, the pheromones begin to vary as a result
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Figure 4: Evolution of the Pareto front’s average RMSE and NoCoeff values (averaged

over 50 trials). Dataset: D1 (N = 1000).
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Table 3: Pareto front data after 100 iterations for different evaporation rates. Figures

indicated are averages (standard deviations) over the 50 trials. The rate of contribution

was defined as the percentage of models on the true Pareto front that belonged to the

MOMSACO front for which the rate was computed. Dataset: D1 (N = 1000).

Evaporation

rate

0.1 0.3 0.5 0.7 0.9

Hypervolume 804.68 (18.44) 784.11 (23.56) 766.81 (27.75) 751.32 (28.68) 744.63 (28.87)

Pareto front size 6.30 (0.76) 5.76 (1.06) 5.48 (1.01) 5.04 (1.03) 4.14 (1.14)

Proportion of

Pareto optimal

models

46.85% (16.25%) 29.61% (18.65%) 16.27% (19.45%) 11.93% (17.26%) 16.20% (21.30%)

Rate of contribu-

tion to the true

Pareto front

26.54% (8.58%) 15.09% (9.65%) 8.18% (10.28%) 5.09% (7.15%) 4.91% (5.57%)

of their deposition and evaporation. This affects navigation by altering the probabilities of

the traversed edges, so that those leading to lower metrics become more probable.

5.4 On Initialization

Since the HVs determine the initial transition probabilities, they significantly alter the

behavior of the colony in the first iteration. MOMSACO’s performance in subsequent

iterations is also, by that very fact, dependent on the HVs. The method by which these

are computed is a critical component of ACO algorithms in general, and of MOMSACO in

particular.

To evaluate the initialization scheme described in Section 4.1, further experiments were

run (1) with an arbitrary assignment of HVs (50 trials), then (2) with no HVs at all, i.e

β = 0 in Equation (6) (50 trials). Figure 6 juxtaposes the mean hypervolumes of both sets

of experiments with that of the original D1 experiment (N = 1000). We can see that in the

original experiment, i.e when the HVs had been set using Equation (7), the Pareto front

was of a consistently superior quality, and was thus closer to the true front. When the HVs

were initialized arbitrarily, the resulting Pareto front was the poorest. Two conclusions
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Figure 5: Evolution of the hypervolume when (a) the HVs were initialized under the scheme

of Section 4.1, when (b) they were initialized randomly, and when (c) they were not present.

Hypervolume was averaged over the 50 trials. Dataset: D1 (N = 1000). Should be viewed

in color.

arise from this: (a) our initialization procedure can enhance model search in that it allows

the formation of higher quality fronts; and (b) HVs can hamper performance if they are

not chosen carefully.

6 Conclusion

A model selection algorithm was developed that searches automatically for Pareto optimal

linear regression models, given a dataset and a set of performance metrics. Candidate

models combined two-way interactions with powers of the original explanatory variables.
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The task of finding Pareto optimal models was framed as that of finding the corresponding

paths on the model search graph. A search strategy was proposed that draws on ACO, a

probabilistic technique well suited for problems involving graphs.

Experiments with simulated data showed that MOMSACO could recover the underlying

models where AIC-SR could not. They also showed that these were actually suboptimal

with respect to AIC, but Pareto optimal with respect to RMSE and NoCoeff. Only by

increasing the sample size or reducing the correlations in the data-generating model was

AIC-SR able to find it. These results suggest that MOMSACO is better suited for correlated

predictors and small datasets than AIC-SR, and that comparing models according to Pareto

dominance can inform model selection.

By juxtaposing the Pareto front’s rate of contribution with the total number of models

explored, we were able to conclude that MOMSACO can efficiently navigate the model

search graph. We also found our initialization method to be a desirable component of

MOMSACO because it enabled the formation of a higher quality Pareto front.

MOMSACO can be used as a variable selection procedure for potentially any type of

regression model. Because it does not presuppose the nature of the models it is searching

for, and because these are trained independently of it, the procedure can apply equally to

non-linear models. If hyperparameters are required, however, then grid search or Bayesian

optimization can supplement MOMSACO.

A number of questions remain. One is how the parameters should be set, given some

reference point for hypervolumes, in order to obtain the best possible Pareto fronts. This is

in itself an optimization problem, and a complex one, primarily because the data is a factor

in the optimality of a configuration of parameters. We intend to study the matter in detail,

hoping to enunciate some guidelines on how the parameters should be chosen in broad

enough situations. A second question is how to better the representation of M(p, emax) so

that computational issues associated with large p and emax could be alleviated. For large p,

the model search graph may not fit into the memory of a computer. Immediate solutions

are to consider only interactions and power-of-one terms, or to subject the variables to

preliminary dimensionality reduction via techniques like principal component analysis [40].
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A third question is how the current initialization procedure could be improved. We think

incorporating some form of past knowledge may be beneficial. If, for instance, datasets

similar to the one being used are available, and models that performed well on them

are known, then information about these can be leveraged – for example, by awarding

relatively high values to the constituent edges of similar models in the model search graph.

A database could be set up that stores key statistical characteristics of a large number

of datasets and corresponding models, which characteristics could be used to measure the

similarity between a dataset of interest and those in the database, and between the graph

models and the database models. Datasets and models could be extracted from academic

papers, open machine learning competitions, experts and other relevant sources.

SUPPLEMENTARY MATERIAL

Online Appendix A supplies an analytic expression for the hypervolume of a two-

dimensional Pareto front and explains how reference points were chosen in Section

5. Appendix B gives details about data generation in Section 5. Appendix C offers

comments about the model search graph. An R script and a package demonstrating

the use of MOMSACO are also provided. Comments on the two files are in Appendix

D.
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