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UNIMODAL MAPS PERTURBED BY HETEROSCEDASTIC NOISE: AN

APPLICATION TO A FINANCIAL SYSTEMS

FABRIZIO LILLO, GIULIA LIVIERI, STEFANO MARMI, ANTON SOLOMKO, AND SANDRO VAIENTI

Abstract. We investigate and prove the mathematical properties of a general class of one-
dimensional unimodal smooth maps perturbed with a heteroscedastic noise. Specifically, we
investigate the stability of the associated Markov chain, show the weak convergence of the
unique stationary measure to the invariant measure of the map, and show that the average
Lyapunov exponent depends continuously on the Markov chain parameters. Representing the
Markov chain in terms of random transformation enables us to state and prove the Central
Limit Theorem, the large deviation principle, and the Berry-Esséen inequality. We perform
a multifractal analysis for the invariant and the stationary measures, and we prove Gumbel’s
law for the Markov chain with an extreme index equal to 1. In addition, we present an
example linked to the financial concept of systemic risk and leverage cycle, and we use the
model to investigate the finite sample properties of our asymptotic results
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1. Introduction

In this paper, we investigate and prove some mathematical properties – detailed below –
for the following discrete time dynamical system:

(1) φt = T (φt−1) + σn(φt−1)Yt−1.

Here φt, t ∈ N≥1, is a sequence of real numbers in a bounded interval of R, T is a determinis-
tic map on [0, 1] perturbed with the additive and heteroscedastic1 noise σn(φt−1)Yt−1, being
n ∈ N≥1 a parameter that modulates the intensity of the noise; n is such that one retrieves
the deterministic dynamic as n→∞. Finally, Yt, t ∈ N≥1, is a sequence of independent and
identically distributed (i.i.d.) real-valued random variables defined on some filtered probabil-
ity space (Ω,F , (Ft)t≥0,P) satisfying to the usual conditions. The precise assumptions on T ,
σn, and Yt, t ∈ N>0, will be given in Section 2. The peculiarity of the model in Equation (1)
is that the law of the random perturbation, particularly its variance, depends on the position
φt−1 of the point, and therefore of its iterates by the dynamics. The model in (1) can be used
to describe situations where a slow deterministic dynamics interacts with a fast random one,
and more generally when the two systems interact with a separation of time scale. For this
reason, in the present paper, we put it in a very general setting. In Section 7, we will present
an example taken from a specific financial problem whose dynamics can be brought back to
(1).

To study the mathematical properties of (1), we describe the dynamics of φt, t ∈ N≥1,
utilizing a Markov chain parametrized by n; we will study the regime of finite n and the limit
for n → ∞. As far as we know, the Markov chains with the kind of heteroscedastic noise
we introduce are new (see [17] for another type of heteroscedastic nonlinear auto-regressive
process applied to financial time series). In particular, in the first part of the paper, we prove

1A sequence of random variables is heteroscedastic if the variance is not constant.
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the following results. First, we investigate the stability of the Markov chain. It turns out
that some specific properties of the stochastic kernel that defines our model do not allow
us to apply general results available in the literature, as e.g., [3] and [34]. For instance, we
do not know if our chain is Harris recurrent. We look, instead, at the spectral properties
of the Markov operator associated with the chain on suitable Banach spaces and prove the
quasi-compactness of such an operator. This result allows us to get finitely many station-
ary measures with bounded variation densities. The uniqueness of the stationary measure is
achieved when the chain perturbs the map T , which is either topologically transitive on a
compact subset of [0, 1] or an attracting periodic orbit. Second, we show the weak conver-
gence of the unique stationary measure to the invariant measure of the map. This step is
not trivial because the stochastic kernel becomes singular in the limit of large n. Third, we
introduce the average Lyapunov exponent by integrating the logarithm of the derivative of the
map T with respect to the stationary measure and show that the average Lyapunov exponent
depends continuously on the Markov chain parameters. The previous result hinges on the
explicit construction of a sequence of random transformations close to T , which allows us to
replace the deterministic orbit of T with a random orbit given by the concatenation of the
maps randomly chosen in the sequence. Notice that this construction is formally possible un-
der general assumptions, but getting “representations by special classes of transformations”
is challenging, as Y. Kifer pointed out in [29]. We believe this inference from the Markov
chain to the random transformations is interesting and illustrates very well how the Markov
chain randomly moves the states of the system. Representing the Markov chain in terms of
random transformation enables us to state and prove some important limit theorems, such
as the Central Limit Theorem, the large deviation principle, and the Berry-Esséen inequal-
ity. Fourth, for the class of unimodal maps T of the chaotic type, we perform a multifractal
analysis for the invariant and the stationary measures. Finally, we develop an Extreme Value
Theory (EVT, henceforth) for our Markov chain with finite values for the parameter n. In
particular, we prove Gumbel’s law for the Markov chain with an extreme index equal to 1.
Notice that an EVT for Markov chains with the spectral techniques we will use is, as far as
we know, a new result.

In the second part of the paper, we present an example linked to the financial concept of
systemic risk to which our theory applies. In this setting, φt in (1) represents the suitably
scaled financial leverage of a representative investor (a bank) that invests in a risky asset.
At each point in time, the scaling is a linear function of the leverage itself. The bank’s risk
management consists of two components. First, the bank uses past market data to estimate
the future volatility (the risk) of its investment in the risky asset. Second, the bank uses
the estimated volatility to set its desired leverage. However, the bank is allowed maximum
leverage, which is a function of its perceived risk because of the Value-at-Risk (VaR) capital
requirement policy. More specifically, the representative bank updates its expectation of risk
at time intervals of unitary length, say (t, t + 1] with t ∈ N≥1, and, accordingly, it makes
new decisions about the leverage. Moreover, the model assumes that over the unitary time
interval (t, t+ 1] the representative bank re-balances its portfolio to target the leverage with-
out changing the risk expectations. The re-balancing takes place in n sub-intervals within
(t, t + 1]. In particular, the considered model is a discrete-time slow-fast dynamical system;
see [14] and [8]. After showing that the dynamics of the scaled leverage follows – under suit-
able approximations – a deterministic unimodal map on [0, 1] perturbed with additive and
heteroscedastic noise of the type of Equation (1), we perform a detailed numerical analysis in
support of our theory. The numerical analysis also investigates the finite-size validity of some
of our asymptotic results. In addition, we provide a financial discussion of the results. Notice
that the example presented is a non-trivial extension of the models in [11], [31] and [32],
where the scaling of the leverage is constant. In particular, in [31], the authors were also able
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to show that the constant-scaled leverage follows a (different) deterministic unimodal map
with heteroscedastic noise. Also, they were able to prove the existence of a unique stationary
density with bounded variation, the stochastic stability of the process, and the almost certain
existence and continuity of the Lyapunov exponent for the stationary measure. In the present
paper, we prove and extend the previous results but for a more general class of maps, and, as
said, we generalize the model in [31].

Organization of the paper. Section 2 presents and discuss the working assumptions of the
dynamics in (1). Section 3 details the construction of the Markov chain. Section 4 represents
our model regarding random transformations. In Section 5, we investigate the mathematical
properties of our model. An EVT theory for the Markov chain in 3 is provided in Section 6. In
Section 7, we present the financial model of a representative bank managing its leverage. We
show that the model leads to a slow-fast deterministic random dynamical system which can be
recast into a unimodal deterministic map with heteroscedastic noise of the type of Equation
(1). We present and discuss some numerical investigation of this system in connection with
our theory.

2. Assumptions

In this section, we define and discuss assumptions on T , σn and Yt, t ∈ N≥1, as in Equation
(1).

(A1) The map T satisfies the following assumptions:

(a) T is a continuous map of the unit interval I
def.
= [0, 1] with a unique maximum at

the point c such that ∆
def.
= T (c) < 1.

(b) There exists a closed interval [d1, d2] ⊂ I which is forward invariant for the map
and upon which T and all its power T t, t ∈ N≥1 are topologically transitive2

(c) T preserves a unique Borel probability measure η, which is absolute continuous
with respect to the Lebesgue measure.

Notice that Assumption (A1)–(b) is necessary in order to prove the mathematical properties
in Section 5; in general, one could ask for several transitive component but this would be an
additional technicality that would not add to the present work’s conceptual advancements.
Assumption (A1)-(c) is used only in the proof of the stochastic stability; see Subsection 5.1.
We give now the following important

Example 2.1. An important class of maps susceptible to verify (A1) is given by the class
of unimodal maps T ([43] and [33]) with negative Schwarzian derivative3; notice that in this
case, one has to require that the maps are at least C3 on the interval I. Moreover, if T verifies
T (∆) < c < ∆, then the interval [T (∆),∆], called dynamical core, is mapped onto itself and
absorbs all initial conditions; in particular [d1, d2] in (A1)-(b) coincides with the dynamical
core. The latter could exhibit motions other than simply attracting fixed points or 2-cycles. In
the general class of unimodal maps T with negative Schwarzian derivative, one can distinguish
two types:

(i) T is periodic if there is a globally attracting fixed point or a globally attracting cycle.
(ii) T is chaotic if (A1)-(b) and (A1)-(c) hold.

Perturbations of unimodal maps with uniform additive noise were studied in [6] and [5]. As
we already mentioned in the Introduction, [31], instead, studies the perturbations of unimodal
maps with heteroscedastic noise.

2A map T on a topological space X is called topologically transitive if for all nonempty open sets U, V ⊂ X
there exists t such that T−t∩V 6= ∅. Notice that the topological transitivity of T t, t ∈ N≥1 will be substantially
used in Subsection 5.2, 5.3, and 5.4.

3The Schwarzian derivative S(T ) of the map T is defined as S(T ) := T
′′′

T
′ − 3

2

(
T
′′′

T
′

)2
.
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Before presenting the assumptions on σn, we need to introduce the following quantities to
which in the following we will refer:

(2) Γ
def.
= 1−∆,

i.e., the gap between T (c) and 1. A positive constant a satisfying one of the following two
bounds:

(3) a ≤ 1

σmax

Γ

2
,

or

(4) a ≤ 1

σmax
min

{
Γ

2
,
q

2
,
1

2
T

(
1− Γ

2

)}
,

where σmax
def.
= maxx∈I σn(x), and the positive constant q is the eventual intercept of the map

T at zero (see Assumption (B1.2)).

(B1) The function σn is a non-negative differentiable function for x ∈ (0, 1) such that ∀x
σn(x)→ 0 as n→∞.

We distinguish the following two sub-cases of (B1):

(B1.1) T (0) = 0, and so σn(0) = 0. In this case, we assume that for any fixed n ∈ N>0 there
exists εn ∈ R such that:
• T (x)− aσn(x) > 0 for x ∈ (0, 1− Γ/2].

• T (x)− aσn(x) > x for x ∈ (0, εn) (in particular, T
′
(0) > 0).

• T (x)− aσn(x) > εn for x ∈ (εn, 1− Γ/2).
Γ is defined in (2), and a satisfies (3).

(B1.2) T (0) = q > 0. In this case, the positive multiplicative constant in (B1.1) satisfies (4).

Assumptions (B1.1)-(B1.2) will allow us to define the transition probabilities for constructing
our Markov chain. Indeed, the probability density pn(x, ·) defining those probabilities will be
supported on [sa,−(x), sa,+(x)] with sa,±(x) = T (x)±aσn(x); see Section 3. Moreover, (B1.1)
requires T to be C1.

Finally, we have that

(C1) Yt, t ∈ N≥1 is a sequence of i.i.d real-valued random variables defined on some filtered
probability space (Ω,F , (Ft)t≥0,P) satisfying to the usual conditions. Their distribu-
tion function ga, depending on the parameter a in (B1), is such that ∀ω ∈ Ω and

x ∈ Ĩ, with Ĩ ⊃ I, we have T (x) + σn(x)Y1 ∈ Ĩ. The interval Ĩ is slightly larger than
I and will be precisely determined later. Accordingly, the map T will be extended on
Ĩ. The distribution function ga has the following form:

(5) ga(y)
def
= caχa(y)e−

y2

2 , y ∈ R,

where χ is a C∞ bump function on [−a, a] and

ca =

(∫
R
χa(y)e−

ε2

2 dy

)−1

.

Assumption (C1) has two main objectives. On the one hand, the perturbation should not be

too strong so that T admits an extension to some compact interval Ĩ ⊃ I. On the other hand,
the stochastic kernel associated with our Markov chain must be uniformly bounded on some
interval to prove the Markov operator’s quasi-compactness. As the introduction states, the
Markov operator’s quasi-compactness will provide stationary measures for the chain.
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From now on, we will denote by

(6) Sn
def.
= (T, σn, Y )

the triple composed by a map T satisfying ((A1)), perturbed with an additive heteroscedastic
noise in which the variance-like function σn and the noise verifies ((B1)) and ((C1)), respec-
tively.

Under (A1), (B1), and (C1), we define the following stochastic process:

(7) F
(n)
t (x) = T (x) + σn(x)Yt, t ∈ N≥1, x ∈ Ĩ .

In addition, the random orbit associated with our initial difference equation is given by:

(8) F
t,(n)
Y (x) = F

(n)
t ◦ F (n)

t−1 ◦ . . . ◦ F
(n)
1 (x), x ∈ Ĩ .

Before proceeding, the following observation is in order. In Sections 3, we will see that
several results valid under Assumption (A1) could also be extended for the class of maps in
Example 2.1 that are periodic. This will be in particular relevant for the leading example
in Section 7. The validity of (A1) is much easier to verify for uniformly or even piecewise
continuous maps. In principle, one could also consider multimodal maps as having several
critical points. However, in the latter case, one has to handle the construction of the stationary
measure as outlined in Section 5. Notice that such a construction is also based on Assumption
(B1) and (C1).

3. Markov chain

In this section, we define a Markov chain that describes our model. We obtain it as
a deterministic map T satisfying Assumption (A1) perturbed with an additive noise as in
Assumptions (B1)-(C1). In particular, for fixed T we parametrize the chain by the intensity

of the noise n, consequently indexing with n the chain (X
(n)
t ), the transition probabilities

P
(n)
x , and the stochastic kernel pn(x, y). According to the theory of random transformations,

a Markov chain can be constructed as follows; see, e.g., [29]. Take an initial point x ∈ I 4 and
define the following stochastic process for any t ∈ N≥1:

(9) X
(n)
t+1 = F

(n)
t+1(Xn

t ).

Then, for x ∈ I the transition probabilities are defined as:

(10) P (n)
x (A) = P(X

(n)
t+1 ∈ A|X

(n)
t = x) = P(Fnt+1(x) ∈ A) = P(F

(n)
1 ∈ A),

because all the F
(n)
t , t ∈ N≥1, have the same distribution. By Assumption (C1), and ∀x :

σn(x) > 0, we have:

P (n)
x (A) =

∫
R

1A(F1(x))ga(y) dy =

∫
R

1A(T (x) + σn(x)y)ga(y) dy

=

∫
R

1A(z)
1

σn(x)
ga

(
z − T (x)

σn(x)

)
dz

def.
=

∫
A
pn(x, z) dz,

(11)

where pn(x, y) is the stochastic kernel and in the third equality, we use the following change
of variable: z = T (x) + σn(x)y. Instead, if for some x we have σn(x) = 0, the transition

4One could also consider the initial point as a random variable X0 independent of the Yt; in this case, the
measurable and bounded initial distribution is ρ0(A) = P(X0 ∈ A).
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probability verifies Px(A) = 1A(T (x)) (meaning Px = δT (x), where δT (x) is the Dirac mass at
x). So, the stochastic kernel is

(12) pn(x, y) =
1

σn(x)
ga

(
z − T (x)

σn(x)

)
=

1

σn(x)
χa

(
z − T (x)

σn(x)

)
e
− (z−T (x))2

σ2
n
(x) ,

with
∫
pn(x, y) dy = 1 for every x ∈ I, σn(x) > 0. Therefore, z ∈ [sa,−, sa,+] with sa,± =

T (x)± aσn(x).
Since the noise varies in a neighborhood of 0, we need to enlarge the domain of definition of

the map T to take into account the action of the noise. More precisely, we extend the domain

of T to the larger interval Ĩ
def.
= [−Γ, 1]. On the interval [−Γ, 0], T is extended continuously

and decreasing with T (−Γ) < ∆ and with the same slope of T restricted to the interval [0, εn],
where εn is given in (B1.1). With abuse of language and notation, we will continue to call T

the map after its redefinition, and we put I = Ĩ. We have the following remark.

Remark 3.1. [5] consider a similar extension to allow perturbations with additive noise;
in particular, it was supposed that T admits an extension to some compact interval J ⊃ I,
preserving all the previous properties and satisfying T (∂J) ⊂ ∂J . Notice that, in our case and
with these extensions, the map T could lose smoothness in 0. However, this regularity persists
on the interval (0, 1), and this will be enough for the subsequent considerations, particularly
for the construction of the stationary measure whose support will be strictly included in (0, 1).

We look at the Markov operator corresponding to the transition probabilities. To this aim,
we denote by M the space of (real-valued) Radon measure on Ĩ, and by L : M → M the
Markov operator acting by

Lρ(A) =

∫
R
P (n)
x (A) dρ(x), ρ ∈M,

for every Borel set A ∈ I, or, equivalently,∫
R
ϕdLρ =

∫
R

∫
R
ϕ(y)dP (n)

x (y)dρ(x)

for all ϕ ∈ C0, where C0 denotes the Banach space of continuous function on I with the sup
norm. In our case σn(x̃) = 0 in at most two points, x̃ = 0, 1. Therefore in such a case we
could write∫

ϕdLρ =

∫∫
R×{{0}∪{1}}

ϕ(y)dPx(y)dρ(x) +

∫∫
R×{R/{0}∪{1}}

ϕ(y)dPx(y)dρ(x) =

[φ(T (0))ρ({0}) + φ(T (1))ρ({1}]) +

∫∫
R×{R/{0}∪{1}}

ϕ(y)pn(x, y)dydρ(x).

We note that L : L1 → L1 is an isometry, where L1 is intended, from now on, with respect
to the Lebesgue measure. In Subsection 5.1, we will be interested in stationary measures ρ,
which are absolutely continuous with respect to the Lebesgue measure and, therefore, non-
atomic. If we denote by h ∈ L1 the density of such a measure, it will be a fixed point of the
operator L : L1 → L1, i.e.,

(13) (Lh)(y) =

∫
R
pn(x, y)h(x) dx, h ∈ L1,

where pn is the stochastic kernel in formula (12). In particular, it should satisfy

(14) h(z) =

∫
R
pn(x, z)h(x) dx.
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We will return to the previous formula in Section 5. Now, in the next section, we present
a slightly different, yet equivalent (see, e.g., [29]), approach for representing the model in
Equation (1), namely the random transformation approach.

4. Random transformations

We consider the following identity:

(15) Tη(x) = T (x) + σn(x)η, η ∈ [−a, a].

Assumption (C1) implies that Tη can be seen as a family of random maps of I into itself.

Let θ(η)
def.
= ga(η) dη be the probability measure of η with density ga. Now, let ρ ∈ M (see

Section 3 for the definition ofM) a measure with density h ∈ L1. By requiring its invariance,
we have that:

Lρ(A) = ρ(A) =

∫
R
P (n)
x (A) dρ(A).

In addition, by using the definition of ρ(A), we have

ρ(A) =

∫
R

1A(x)h(x) dx =

∫
R

∫
R

1A(Tη(x))h(x) dx dθ(η)

=

∫
R
dθ(η)

∫
R

1A(Tη(x))h(x) dx =

∫
R
dθ(η)

∫
R

1A(x)Lηh(x) dx,

where Lη : L1 → L1 is the Perron-Fröbenius operator associated to the map Tη
5. By changing

the order of integration again, we finally get that the Markov operator in Equation (13)
satisfies for any h ∈ L1 the following identity

(16) (Lh)(x) =

∫
(Lηh)(x) dθ(η).

We now present a correlation integral that we will use to derive some statistical properties
of our model. In order to do this, let (ηt)t≥1 be an i.i.d. stochastic process where each ηt

has distribution θ, η̄t
def.
= (η1, . . . , ηt), and θt(η̄t)

def.
= θ(η1) × . . . × θ(ηt) the product measure.

We call the following concatenation, or composition, of randomly chosen maps Tηt ◦ . . . ◦ Tη1 ,
where (ηs)

t
s=1 are i.i.d. with distribution θ, as random transformation. In particular, the

above-mentioned correlation integral reads as

(17)

∫
R

(Lth)(x)g(x) dx =

∫
R

∫
R
h(x)g(Tη1 ◦ . . . ◦ Tηt)(x)dθt(η̄t) dx,

where h ∈ L1 and g ∈ L∞. Notice that in [31], authors use the Lebesgue measure instead of
the probability measure θ. By using the latter, we do not need to modify the map T as in
the Lebesgue measure case.

5. Mathematical properties of the model

In this section, we investigate some mathematical properties of our model. In Subsection
5.1, we show the existence and uniqueness of an absolutely continuous stationary measure
and establish its convergence to the invariant measure of the deterministic map. This result
allows us to define the Lyapunov exponent and prove its continuity with respect to the model
parameters. We also discuss some limit theorems in Subsection 5.3. Finally, Subsection 5.4
concerns a multi-fractal analysis of our model.

5The Perron-Fröbenius operator associated to the map Tη is defined by the duality relationship
∫
R Lηh g dx =∫

R hg ◦ Tη(x) dx, where h ∈ L1 and g ∈ L∞.
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5.1. Stationary Measure and Stochastic Stability. In this subsection, we establish the
existence of a unique stationary measure for the Markov chain associated with our model.

In Section 3, we extended the domain of definition of the map T to the set Ĩ = [−Γ, 1].
In particular, if the constant a satisfies the bound in Equation (4), then the support of the
stationary measure µn, say supp(µn) ⊂ IΓ, where

(18) IΓ
def
=

[
1

2
T

(
1− Γ

2

)
, 1− Γ

2

]
.

Indeed, on the one hand, if we take a point z ∈
(
1− Γ

2 , 1
]
, then it will be surely greater than

T (x) ± aσn(x), x ∈ I. In order to understand the left-hand side of the interval in Equation
(18), suppose first that T (0) = q > T

(
1− Γ

2

)
. If z ∈ supp(h), being h the density of µn, then

T (x) ∈ [s̃a,−, s̃a,+] with s̃a,± = z± aσn(x), where x ∈ supp(µn) too. If z is in a neighborhood

of 0, then the values of x, which could contribute in T (x) are smaller than
(
1− Γ

2

)
by choice of

a. So, if we take z < 1
2T
(
1− Γ

2

)
and we require that aσn(x) < 1

2T
(
1− Γ

2

)
, then z /∈ supp(h).

If, instead, the constant a satisfies Equation (3), then the interval Iεn,Γ
def
=
[
εn, 1− Γ

2

]
is

invariant for Tη, ∀η ∈ [−a, a] (see Equation (15)). In particular, if x ∈ Icεn,Γ, where Icεn,Γ is the
complementary set of Iεn,Γ, then x will spend finitely many times in Icεn,Γ; note that x = 0 is

a fixed point. In particular, the chain X
(n)
t visits finitely many times any open set K in Icεn,Γ.

Therefore, the chain is not recurrent and µn(K) = 0.
The above considerations implies that the subspace {h ∈ L1 : supp(h) ⊂ IΓ} (resp.

{h ∈ L1 : supp(h) ⊂ Iεn,Γ}) is L-invariant, and that the stochastic kernel pn(x, z) has total

variation of order 1
σn(x) . Therefore, it is uniformly bounded6 when restricted to IΓ × IΓ (resp.

Iεn,Γ×Iεn,Γ). In particular, we can apply Proposition 4.2 and Theorem 4.3 in [31] to conclude
that the following proposition hold.

Proposition 5.1. The random system in Equation (6) admits a unique stationary measure
µn with density hn of bounded variation and such that [d1, d2] ⊂ supp(hn). Moreover, for any
observable f ∈ L1, g ∈ BV , there exists 0 < r < 1 and C > 0, depending only on the system,
such that, for all t ∈ N≥0, we have∣∣∣ ∫

R

∫
R

(Ltf)(x)g(x) dx−
∫
R
f dµn

∫
R
g(x) dx

∣∣∣ ≤ Crt‖f‖1‖g‖BV .
Proof. Let BV the Banach space of bounded variation functions on IΓ (or IΓ,εn) equipped
with the complete norm

‖f‖BV = |f |TV + ‖f‖1,
where |f |TV is the total variation of the function f ∈ L1. Because the stochastic kernel has
uniformly bounded variation on IΓ × IΓ (or on IΓ,εn × IΓ,εn), we have

‖Lρ‖TV ≤ C‖ρ‖1 and ‖Lρ‖BV ≤ (C + 1)‖ρ‖1;

see Lemma 4.1 in [31]. By the previous equation, we have

‖Lρ‖BV ≤ (C + 1)‖ρ‖1 ≤ η‖ρ‖BV + (C + 1)‖ρ‖1
for any η < 1; this is the Lasota-Yorke inequality for the operator L. The latter, plus the fact
that BV is compactly embedded in L1, implies that the operator L has the following spectral
decomposition

L =
∑
i

viΠi +Q,

6In general, we say that a stochastic kernel p(x, y) has uniformly bounded variation if |p(x, ·)|TV ∈ L∞, i.e.,
there is C > 0 such that |p(x, ·)|TV ≤ C for almost every x ∈ I.
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where all vi are eigenvalues of L of modulus 1, Πi are finite-rank projectors onto the associated
eigenspaces, Q is a bounded operator with a spectral radius strictly less than one. They satisfy
the following properties:

ΠiΠj = δijΠi, QΠi = ΠiQ = 0.

Standard techniques show that 1 is an eigenvalue and therefore the chain will admit finitely
many absolutely continuous ergodic stationary measures, with supports that are mutually
disjoint up to sets of zero Lebesgue measure. Moreover the peripheral spectrum is completely
cyclic. We require that 1 is a simple eingenvalue of L, and that there is no other peripheral
eigenvalue, hence implying that our Markov chain is mixing and therefore the norm of ‖Ltf‖BV
goes exponentially fast to zero when t→∞, for f ∈ BV and

∫
R f dx = 0 (exponential decay

of correlations). These properties, which are consequences of the Ionescu-Tulcea-Marinescu
theorem, are summarized by saying that the operator L acting on BV is quasi-compact, see,
e.g., [22]; we will implicitly assume in the following that the operator has the mixing property
too. In order to prove that 1 is a simple eigenvalue of L, and that there is no other peripheral
eigenvalue we first observe that the peripheral spectrum of L consists of a finite union of finite
cyclic groups; then there exists t ∈ N≥1 such that 1 is the unique peripheral eigenvalue of
Lt. It suffices then to show that the corresponding eigenspace is one-dimensional. Standard
arguments show there exists a basis of positive eigenvectors for this subspace, with disjoint
supports. At this point we use a simple generalization of Theorem 4.3 in [31] for the powers
of Ln plus the assumption on the topological transitivity of Tn, n ≥ 1 on [d1, d2] to get that
the basis is one dimensional.

�

We investigate now the stochastic stability of the system, which means to determine if
a sequence of stationary measure will converge weakly7 to the invariant measure of the un-

perturbed map. In our case, the sequence of probability measure is given by µn
def.
= hn dx.

Notice that hn ∈ L∞, ∀n because they have finite total variation. Nonetheless, to prove the
above-mentioned stochastic stability, we need the following assumption

(Ap) There exists p > 1 and Cp > 0 such that for all n ≥ 1 we have ‖hn‖p ≤ Cp; the Lp

norm is taken again with respect to Lebesgue.

We have the following

Proposition 5.2. For the random system in Equation (6), under Assumption (Ap), the
sequence of stationary measure µn converges weakly to the unique T invariant probability µ
as n→∞, in the sense that for any real-valued function g ∈ C0(I), we have∫

R
gdµn →

∫
R
gdµ, as n→∞.

Proof. See Theorem 5.3 in [31]. �

We will see in the next section that with the preceding assumption we can prove the con-
vergence of the Lyapunov exponent (Proposition 5.5) and then verify it numerically on the
examples in Section 7, which is an indirect indication of the validity of (Ap).

We conclude this section with the following observations.

Observation 5.3. Proposition 5.2 is proved by using the representation of the Markov chain
in terms of random transformation; in particular, one uses the correlation integral in Equation
(17) and the continuity of the map η → Fη ∈ C0(I).

7Notice that this result could be strengthened by showing that ‖hn − h‖1 → 0, which is called the strong
stochastic stability.
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Observation 5.4. Proposition 5.2 can be extended to periodic unimodal maps under the
following additional assumption:

(Ap.1) ∀n sufficiently large and ∀x ∈ supp(µn) we have that |T ′(x)| < 1.

In particular, if T has a globally attracting periodic orbit carrying the discrete measure µ and
satisfies (Ap.1), then the sequence µn converges to µ in the weak-?topology as n → ∞. This
requirement can be strengthened by adding the following assumption

(Ap.2) If T is a unimodal periodic map (see Example 2.1) and the critical point of the map
c does not belong to the attracting periodic orbit, then hn → 0 uniformly in a neigh-
bourhood of c as n→∞.

5.2. Lyapunov Exponent. As done in Subsection 4.3 of [31], we define the so-called average
Lyapunov exponent ; see [16, 37]. If the chain admits a unique stationary measure µn, then
the average Lyapunov exponent is defined as:

(19) Λ(µn) :=

∫
I

log |T ′(x)|dµn.

In particular, because the stationary measure µn has density of bounded variation, it is enough
that log |T ′ | ∈ Lp(µn) for some p ≥ 1. For instance, this is the case when T is chaotic or
periodic unimodal map (see Example 2.1) with a non-flat critical point8.

The average Lyapunov exponent in Equation (19) is introduced to prove that it converges to
the analogous quantity computed with respect to the invariant measure µ of T . The following
proposition holds.

Proposition 5.5. Suppose that one of the following conditions is satisfied:

(a) The random system in Equation (6) verifies (Ap) with the additional assumption that

log |T ′ | ∈ Lp(µn) for some p ≥ 1, where µn is the unique stationary measure of the
associated Markov chain.

(b) The deterministic map T is a unimodal periodic map (see Example 2.1) and verifies
Assumptions (Ap.1) and (Ap.2).

Then, the average Lyapunov exponent in Equation (19) converges to the Lyapunov exponent
of the deterministic map T as n → ∞. Moreover, for n large enough, it is positive if T
verifies (A1), and negative if T is a periodic unimodal map (see Example 2.1, (i)).

Proof. See [31], Appendix B, Subsection B.5. �

The average Lyapunov exponent was associated with the phenomenon of noise induced
order [?], which happens when the perturbed system admits a unique stationary measure
depending on some parameter, say θ, and the Lyapunov exponent depends and exhibits a

transition from positive to negative values. Denote by Θ
def.
= {θ ∈ Θ̃ | Θ̃ is open and maxTθ <

1} the (extended) parameter space of the map T . We use the term “extended” because also
the parameter n belongs to Θ. Moreover, let index the map T as Tθ to make explicit the
dependence on the parameters. Suppose that Tθ(x) ∈ C3(Θ̃× I) and pθ(x, y) ∈ C2(Θ̃× I2),

and let Θ̄ ⊂ Θ̃ be the set of parameters for which there exists a unique stationary measure
µn with a density of bounded variation. We can now state the following

Theorem 5.6. The mapping Θ̄ 3 θ 7→ Λθ ∈ R is continuous.

Proof. See [31], Theorem 4.12. �

8A unimodal map T is said to have a non-flat critical point c of order ` if there is a constant D such that

D−1|x − c|`−1 ≤ |T
′
(x)| ≤ D|x − c|`−1. In this case, [38] prove that the invariant density for T is in Lq with

q < `
`−1

.
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5.3. Limit theorems. We will take advantage of the Markov chain description of our model
to state a few important limit theorems for fixed n. These limit theorems are relatively easy
to obtain for a fixed n, but they could become very technical for the unperturbed map T
because they depend in a non-obvious way on the parameters defining T ; see, e.g., [46, 43]
for a discussion in the case of unimodal maps.

As observed above, if T satisfies Assumption (A1), then the Markov operator L associ-
ated with the Markov chain is quasi-compact on the Banach space BV of bounded variation
functions. The adjoint operator U of L acts in the following way∫

R
f1(x)(Lf2)(x) dx =

∫
R

(Uf1)(x)f2(x) dx,

where f1 ∈ L∞ and f2 ∈ L1. In particular

(Uf1)(x) =

∫
R
f1(Tη(x))dθ(η),

where θ(η) is as in Section 4. In particular, we can write the correlation integral in Equation
(17) in terms of the adjoint operator:

(20)

∫
R

(Lth)(x)g(x) dx =

∫
R

∫
R
h(x)g(Tη1 ◦ . . . ◦ Tηt)(x)dθt(η̄t) dx =

∫
R

(U tg)(x)h(x) dx

We take now a function g ∈ BV such that
∫
R gdµn = 0. In addition, let Wk(η̄k, x) =

g(Tηk ◦ . . . ◦ Tη1)(x), where η̄k = (η1, . . . , ηk), and

(21) St =
t−1∑
k=0

Wk.

We now apply the Nagaeev-Guivarc’s perturbative approach [36, 19]. This technique enables
us to get our limit theorem by twisting the transfer operator L; see [22]. Before stating the

results, we precise that the underlying probability is P̃n
def
= θ⊗N⊗µn. If we use this probability,

then we should choose a realization (ηt)t≥1 where any ηt
d∼ η, and the initial condition x ∈ I

is chosen µn-a.s. The following theorem holds:

Theorem 5.7. Suppose the deterministic map T satisfies Assumption (A1) and g ∈ BV . In
addition, let Tη be the random transformation in Equation (15). Then, we have:

(e1) The limit ι2
def
= limt→∞

1
tEP̃n(S2

t ) exists and is equal to

(22) ι2 =

∫
I
g2 dµn + 2

∞∑
t=1

g(U tg) dµn.

(e2) (Central Limit Theorem). Suppose ι > 0. The process
(
St√
t

)
t≥1

converges in law to

N (0, ι2) under the probability P̃n.
(e3) (Large Deviation Principle). There exists a non-negative rate function R, continuous,

strictly convex, vanishing only at 0, such that for every ε sufficiently small we have

lim
t→∞

1

t
log P̃n(St > tε) = −R(ε).

(e4) (Berry-Essén inequality). There exists D > 0 such that

(23) sup
r∈R

∣∣∣P̃n( St√
t
≤ r
)
− 1

ι
√

2π

∫ r

−∞
e−

u2

2ι2 du
∣∣∣ ≤ D‖hn‖BV√

t

Proof. See [2], Section 3. �
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We conclude this section with the following

Remark 5.8. The previous theorem hinges on the following exponential decay of correlations
(see Proposition 5.1), which is a consequence of the spectral gap prescribed by the Markov
operator’s quasi-compactness and the uniqueness and mixing property of the absolutely con-
tinuous stationary measure. For any observables, f ∈ L1 and g ∈ BV , there exists 0 < v < 1
and C > 0, depending only on the system, such that, for all k ≥ 0,∣∣∣ ∫

R

∫
R
f(x)g(Tηt ◦ . . . ◦ Tη1)(x) dη̄ dx−

∫
R
f dµn

∫
R
g(x) dx

∣∣∣ ≤ Crt‖f‖1‖g‖BV .
5.4. A multifractal analysis. We now focus on unimodal maps T of chaotic type, as defined
in the Example 2.1, and preserving a unique absolute continuous invariant measure µ. The
latter is not essentially bounded, but its density is in Lp(µ), for some p ≥ 1. The presence
of divergent values for the density could generate a non-trivial multi-fractal spectrum for the
measure µ.

We start with a few reminders about multi-fractal theory; see, e.g., [18, 24, 39, 25, 7]. Let
µ be a probability measure, and B(x, r) the ball of center and radius r on the interval I. We
denote by

dµ(x)
def
= lim

r→0

logµ(B(x, r))

log r
,

the local dimension of the measure µ at the point x, provided that the limit exists. Then, the
generalized dimension Dq(µ), or simply Dq, where q ∈ Z is obtained as

(24) τ(q)
def.
= Dq(q − a) = inf

α
{qα− f(α)},

where f(α) denotes the Haursdorff dimension of the set of points for which dµ(x) = α. The
previous quantity, also called Legendre transformation, can be linked to the scaling exponent
of a suitable correlation integral. In fact, for several dynamical systems (M,µ, T ), where M
is a metric space, we have that the following limit

(25) lim
r→0

1

log r
log

∫
M
µ(B(x, r))q−1 dµ

exists and coincides with τ(q) in Equation (24). Notice that for q = 1, the limit in Equation
(25) is replaced by

(26) lim
r→0

1

log r

∫
M

logµ(B(x, r)) dµ,

by an application of the Hôpital’s rule. For unimodal maps of Benedicks-Carleson type9

preserving an absolute continuous invariant measure µ, it is possible to compute the spectrum
of generalized dimensions. Authors in [4] prove the remarkable result that the density h of µ
has the form

h(x) = ψ0(x) +
∑
k≥1

φk(x)χk(x)√
|x− zk|

,

with ψ0 ∈ C1, φk ∈ C1 is such that ||φk||∞ ≤ e−ak for some a > 0 and χk = 1[−1,zk if fk has a

local maximum at z0, while χk = 1[zk,1] if fk has a local minimum at z0. For such a measure,

9A unimodal map T is of Benedicks-Carleson type if it is defined on the interval [−1, 1], is C4 and has
negative Schwarzian derivative. In addition, if c = 0 is the critical point and zk = T k(0), then: (i) T is a

Collet-Eckmann unimodal map verifying |(T k)
′
(T (c))| > λkc , with λc > 1 ∀k > H0, where H0 is a constant

larger than 1; (ii) T verifies the Benedicks-Carleson property: ∃0 < γ < log λc
14

such that |T k(c) − c| > e−λk,

∀k > H0.
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one can explicitly compute the generalized dimensions via the definition in Equation (24) (see
[9]):

(27) Dq =

{
1 if q < 2,

q
2(q−1) otherwise.

We think that a similar result holds for the class of unimodal maps considered in Example
2.1. We said similar and not the same result because the non-constant part of Dq depends
on the order of divergence at the singular points zk of the density, which for the Benedicks-
Carleson type maps, behaves like |x − zk|−1/2. The values of Dq are constant for negative q
whenever the invariant density h is bounded away from zero, see [9]; in this case it is also
very ease to see that all the dimensions are less or equal to 1.

Now, it becomes interesting to explore the spectrum of the generalized dimensions for
randomly perturbed orbits. We do not expect any multifractal structure for the stationary
measure when its density is essentially bounded, so Dq = 1, q ∈ R. Nevertheless the density
could become locally very large when n → ∞ making it numerically indistinguishable from
the unbounded density of the deterministic map on the orbit of the critical point. To study the
dimensions for the stationary measure it is convenient to adopt the point of view of random
transformations (see Section 4), and consider a realization Tηt ◦ . . . ◦ Tη1 of a random orbit
producing the following empirical measure for a given n:

(28) νn,t =
1

t

t∑
j=1

δη̃t ,

where η̃t = Tηt−1◦. . .◦Tη1(x) for a suitable point x (see below). Again, each ηk has distribution
θ. From the ergodic theorem for random transformations, it now follows that

(29)

∫
R
gd νn,t =

1

t

t∑
j=1

g(η̃t)→
∫
R
g dµn as t→∞,

where µn is the stationary measure, g ∈ L1(µn), and the point x is chosen µn-a.e., and
the sequence (ηt)t≥1 is chosen θ⊗N-a.e.. Since the support of µn contains the dynamical
core, by taking an arbitrary point x in such a core and by fixing a realization (ηt)t≥1, the
generalized dimensions of the stationary measure µn could be computed directly via the
correlation integral formula (25)by using the empirical measure (28) for large t; see, e.g., [9].

6. Extreme values distribution

In this subsection, we develop an EVT for the Markov chain defined in 3 for finite values

for the parameter n. In particular, we consider the chain (X
(n)
t )t≥1 with the stochastic kernel

pn(x, y), endowed with the canonical probability Pn having initial distribution µn = hn dx.
We focus on the derivation of the Gumbel law for a particular observable by deriving the
distribution of the first entrance of the chain in a small set, which we name rare set10. To
this aim, we index with t the rare set defined as a ball of center z ∈ I and with radius e−ut ,

Bt(z)
def.
= B(z, e−ut), where ut is a sequence called boundary levels such that ut → ∞ as

t→∞, and verifying

(30) tµn(B(z, e−ut))→ τ as t→∞,
where τ ∈ R>0. Then, we consider the observable

(31) ϕ(x)
def.
= − log(dist(x, z)),

10See, e.g., the monograph [30] for a general presentation of EVT.
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where x ∈ I, and dist( · ) denotes the usual distance on R. Then, we define the following
random variable with values in I

(32) M
(n)
t

def.
= max{ϕ ◦X(n)

0 , . . . , ϕ ◦X(n)
t−1}.

We will be interested in the distribution Pn(M
(n)
t ≤ ut) as t → ∞. In particular, by the

stationarity of the Markov chain, this distribution is equivalent to the probability that the
first entrance of the chain into the ball Bt(z) is larger than t.

Condition (30) enables us to get verifiable prescriptions on the sequence of boundary levels
ut. If the stationary measure µn is non-atomic, then the measure of a ball is a continuous
function of the radius. Therefore, for any given τ ∈ R+ and t ∈ N≥1, we can find ut such that
µn(B(z, e−ut)) = τ

t . Now, we denote by Bc
t (z) the complement of the ball Bt(z), and define

the perturbed operator L̃(t) for g ∈ BV as

(33) L̃(t)g
def.
= L(g1Bct (z)).

It is straightforward to check that

Pn(M
(n)
t ≤ ut) = Pn(X

(n)
0 ∈ Bc

t (z), . . . , X
(n)
t−1 ∈ B

c
t (z))

=

∫
Bct (z)

hn dx0

∫
Bct (z)

pn(x0, x1) dx1 . . .

∫
Bct (z)

pn(xt−1, xt) dxt

=

∫
R

(L̃(t)hn)(x) dx.

(34)

We now show that the operator L̃(t) approaches L in a precise sense that allows us to control
the asymptotic behavior of the integral in (34). This result allows us to control the asymp-
totic behavior of the integral in (34). In order to make the argument rigorous, we need more
assumptions on the operator L, in addition to the quasi compactness. The same quasi com-
pactness property is shared by the operator L̃(t), provided that t is large enough, and provided

that L̃(t) is close to L in the following sense

(35) ‖(L − L̃(t))(g)‖1 ≤ c(t)‖g‖BV ,

where c(t)→∞ as t→∞. Indeed, we have

(36)

∫
R
|(L − L̃(t))(g)| dx =

∫
R
|L(g1Bt)| dx ≤

∫
R
L(|g|1Bt) dx ≤ ‖g‖BV Leb(Bt),

because the space BV is continuously embedded into L∞ with constant equal to one. We
can apply the perturbation theorem of Keller-Liverani, which gives the asymptotic behavior
of the top eigenvalue of L̃(n) around one; see [28, 27]. In addition, see, e.g., [?], Chapter 7, for
an application of that theory to Markov chains. At this point, we need a further assumption:

(E1) The density hn of the stationary measure is bounded away from zero on the rare set
Bt(z).

Therefore, we can prove that

Pn(M
(n)
t ≤ ut)→ e−θτ , as t→∞,

where the so-called extremal index (EI) θ satisfies

(37) θ = 1−
∞∑
k=0

qk,
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with qk = limt→∞ qk,t, provided that the limit exists, with:

(38) qk,t =
Pn(X

(n)
0 ∈ Bt(z), . . . , X(n)

k ∈ Bt(z), X(n)
k+1 ∈ Bt(z))

µn(Bt(z))
.

Namely, qk,t is the probability of µn-distributed stationary chain to start in Bt(z) and then
return to it after exactly (k+ 1) steps. It is now easy to show that all the qk,t vanishes in the
limit as t→∞ since we have

(39) qk,t ≤
Pn(X

(n)
0 ∈ Bt(z), X(n)

k+1 ∈ Bt(z))
µn(Bt(z))

≤ cnLeb(Bt(z))µn(Bt(z))

µn(Bt(z))
,

where, to estimate the right-hand side of (39), we use the fact that for a fixed n, the stochastic
kernel pn(x, y) is uniformly bounded by a constant cn. In particular, the right-hand side
converges to zero as t→∞. We have just proved the following

Proposition 6.1. Suppose that our Markov chain is constructed upon a map T verifying
Assumption (A1), and that Pn is the canonical probability with initial distribution µn = hndx.
Then, we get Gumbel’s law:

lim
t→∞

Pn(M
(n)
t ≤ ut) = e−τ ,

where M
(n)
t is defined in Equation (32), ϕ(·) in Equation (31), the boundary level ut verifies

µn(B(z, e−ut)) = τ
t , and on the set B(z, e−ut) the density hn of the stationary measure is

bounded away from zero for large t (Assumption (E1)).

Our Markov chain visits infinitely often the neighborhood Bt(z) of any point z. Therefore,
we expect that the exponential law e−τ given by the extreme value distribution describes
the time between successive events in a Poisson process. To formalize this, we introduce the
random variable

(40) N (t)
z (s) :=

b s
µn(Bt(z))

c∑
k=0

1Bt(z)(X
(n)
k ),

and we consider the following distribution

(41) Pn(N (t)
z (s) = k).

We have the following

Proposition 6.2. Suppose that our Markov chain is constructed upon a map T verifying
Assumption (A1), and that Pn is the canonical probability with initial distribution µn = hndx.
Then, we have:

(42) lim
t→∞

Pn(N (t)
z (s) = k) =

tke−s

k!
,

where the density hn of the stationary measure is bounded away from zero for large t on the
set B(z, e−ut) (Assumption (E1)).

Proof. See [20]. �

In particular, we have shown that the EI is equal to 1. Such an index is less than one when
clusters of successive recurrences happen, which is the case, for instance, when the target
point z is periodic. Our heteroscedastic noise breaks periodicity, so we expect an EI equal to
one.

We conclude this section with the following observation and example.
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Observation 6.3. While we rigorously prove an EVT for the Markov chain, we are still
determining if a similar result holds for the deterministic map T with respect to its invariant
measure. Moreover, there are, in fact, only a few results on EVT for unimodal maps; see, for
instance, [15, 10, 35].

7. An application to systemic risk

This section presents a stylized model of the leverage dynamics to which our theory applies.
A part from providing a potential application of the models considered in this paper, we will
use the specific model to perform numerical simulations of the maps and to test the finite
size effect of some asymptotic results presented above. The model is an extension of the one
presented in [31] since we add here a possible relation between liquidity and leverage, whereas
in [31] liquidity was considered constant. The description of the model follows the same lines
as the presentation in [31].

A representative financial institution (hereafter a bank) takes investment decisions at dis-
crete times t ∈ Z, which defines the slow time scale of the model. At each time the bank’s
balance sheet is characterized by the asset At and equity Et, which together define the leverage
λt := At/Et. The bank wants to maximize leverage (by taking more debt) to increase profits,
but regulation constraints the bank’s Value-at-Risk (VaR) in such a way that λt = 1

ασe,t
,

where α depends on the return distribution and VaR constraint11, and σe,t is the expected
volatility at time t of the asset, which in this model is composed by a representative risky
investment. Thus at each time t the bank recomputes σe,t and chooses λt. Then, in the
interval [t, t+ 1] the bank trades the risky investment to keep the leverage close to the target
λt. The trading process occurs on the points of a grid obtained by subdividing [t, t+ 1] in n

subintervals of length 1/n (the fast time scale). The dynamics of the investment return can
be written as

(43) rt+k/n = εt+k/n + et+(k−1)/n, k = 1, 2, . . . ,n,

where εt+k/n and et+(k−1)/n are, respectively, the exogenous and endogenous component of

the return. The former is a white noise term with variance σ2
ε , while the latter depends on

the banks’ demand for the risky investment in the previous step. For each bank, the demand
for the risky investment at time t + k/n is the difference between the target value of At to
reach λt and its actual value. Since the bank’s asset is composed by the risky investment,
an investment return rt+k/n modifies At and the bank trades at each grid point to reach the
target leverage. It is possible to show (see [11, 32]) that to achieve this, at each time t+ k/n
the bank’s demand for the risky investment is

Dt+k/n = (λt − 1)A∗t+(k−1)/nrt+k/n,

where A∗t+(k−1) is the target asset size in the previous step. If there are M identical banks, the

aggregated demand is MDt+k/n. The endogenous component of returns et+k/n is determined
by the aggregated demand by the equation

(44) et+k/n =
1

γt

MDt+k/n

Ct+k/n
,

where Ct+k/n = MA∗t+(k−1)/n is a proxy of the market capitalization of the risky asset, and γt
is a parameter measuring at each point in time the investment liquidity. Notice that in [31]
this parameter is considered constant. Using the above expression, it is

et+k/n =
λt − 1

γt
et+(k−1)/n = φtet+(k−1)/n

11For example, if returns are Gaussian and the probability of VaR is 5%, it is α = 1.64.
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and thus in the period [t, t+1] the return rt+k/n follows an AR(1) process with autoregression

parameter φt = (λt − 1)/γt and idiosyncratic variance σ2
ε . In the present paper, we assume

that γt is linked to the level of the leverage λt by the following relation:

(45) γt = γ0 + cλt,

where γ0 is a positive constant, and |c| ≤ 1. As far as we know, there is not a unified consensus
in the literature on the type (linear or not), and the sign of the relationship between the
market12 leverage and liquidity. For instance, [44] states, “The relationship between market
leverage ratio and liquidity risk in the long term is negative and statistically significant only
for commercial banks belonging to the old EU countries”. In particular, it seems that there
is no a universal statement on the sign of c. As regards as the type of dependence, we decide
for a linear relationship. Admittedly, the linear relationship may seem too crude, but a non
linear dependence would be an additional technicality that would not add to the present
work’s conceptual advancements.

To close the model, we specify how the bank forms expectations σe,t on future volatility at
time t. We assume that bank uses adaptive expectations, which implies that

σ2
e,t = ωσ2

e,t−1 + (1− ω)σ̂2
e,t,

where ω ∈ [0, 1] is a parameter weighting between the expectation at t− 1 and the estimation
σ̂2
e,t of volatility obtained by the return data in [t− 1, t]. As done in practice, this is obtained

by estimating the sample variance of the returns in [t− 1, t], i.e.

(46) σ̂2
e,t = V̂ar

[
n∑
k=1

rt−1+k/n

]

=

(
1 + 2

φ̂t−1(1− φ̂nt−1)

1− φ̂t−1

− 2
(nφ̂t−1 − n− 1)φ̂n+1

t−1 + φ̂t−1

n(1− φ̂t−1)2

)
nσ̂2

ε

1− φ̂2
t−1

,

where the last expression gives the aggregated variance of an AR(1) process as a function of

the AR estimated parameters φ̂t−1 and σ̂2
ε . In the following we will assume that these are the

Maximum Likelihood Estimators (MLE). We remind that when n is large, φ̂t−1 is a Gaussian
distributed variable with mean φt−1 and variance (1− φ2

t−1)/n.
In conclusion, the leverage dynamics is described by the following equations:

(47)

 λt =
(
ω 1
λ2t−1

+ (1− ω)α2V̂ar[
∑

n

k=1 rt−1+k/n]
)−1/2

,

rs = φt−1rs−1/n + εs, s = t− 1 + k/n, k = 1, 2, . . . ,n,

Since slow variables evolve depending on averages of the fast variables, the model is a slow-fast
deterministic-random dynamical system. By using the expression above for the variance, we
can rewrite the equation for the slow component only as

λt =

(
ω

1

λ2
t−1

+ (1− ω)α2σ̂2
e,t

)−1/2

,

where the estimator σ̂2
e,t can be seen as a stochastic term depending on λt−1 and whose

variance goes to zero when n→∞.

12In the financial literature, one finds also the notion of book leverage. Book leverage is defined as the ratio
of total assets to book equity, while market leverage is defined as the ratio of enterprise value (total assets -
book equity + market equity) to market equity. Empirically, book-measured leverage and market-measured
leverage lead to different inferences about the time series properties of leverage; see the debate between [?]
and [21]. We here refer to the market leverage in our discussion because in order to be consistent with our
empirical application in [31].
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If n is large, the above map reduces to

λt =

(
ω

1

λ2
t−1

+
(1− ω)α2

nσ̂2
ε

(1− φ̂t−1)2

)−1/2

,

When changing n also σ2
ε changes, since the AR(1) can be seen as the discretization of a

continuous time stochastic process (namely an Ornstein-Uhlenbeck process). A simple scaling
argument shows that the quantity Σε = σ2

εn is instead constant and independent from the

discretization step 1/n. With abuse of notation, we set: Σε
def.
= limn→∞ nσ̂

2
ε , and we define

Σε
def
= (1−ω)α2Σε. At this point, we observe that since in the large n limit the MLE estimator

φ̂t−1 is a Gaussian variable with mean φt−1 and variance (1− φ2
t−1)/n, we can write

φ̂t−1 = φt−1 + ηt−1, ηt−1
d∼ N

(
0,

(1− φ2
t−1)

n

)
.

By using the definition of γt in Equation (45), by defining φt
def.
= λt−1

γt
, and by introducing the

function V : R2 → R given for any (u, v) ∈ R2 by

(48) V (u, v)
def.
=

(
ω(1− cu)2

(1 + γ0u)2
+

Σε

(1− (u+ v))2

)−1/2

,

we get

(49) φt =
V (φt−1, ηt−1)− 1

γ0 + cV (φt−1, ηt−1)

def.
= F(φt−1, ηt−1)

If the noise ηt−1 is small (i.e., n is large), we can perform a series expansion, obtaining:

V (φt, ηt) = A(φt) +B(φt)ηt,

where

A(u)
def.
=

1 + γ0u

[ω(1− cu)2 + Σε(1− u)−2(1 + γ0u)2]1/2

B(U)
def.
=

Σε(1− u)−1(1 + γ0u)3

[ω(1− cu)2 + Σε(1− u)−2(1 + γ0u)2]3/2

Accordingly, Equation (49) becomes:

φt =
A(φt−1) + ηt−1B(φt−1)− 1

γ0 + cA(φt−1) + cηt−1B(φt−1)
.

By performing, again, a series expansion we obtain:

φt =
A(φt−1)− 1

γ0 + cA(φt−1)
+

(1− φt−12)1/2(γ0 + c)B(φt−1)√
n(γ0 + cA(φt−1))

η̃t−1,

def
= T (φt−1) + σn(φt−1)η̃t−1

(50)

with η̃t−1
d∼ N (0, 1), t ∈ N≥1. Notice that we performed a series expansion for ηt−1 small,

which is justified whenever the variable φ stays far from one. Because we are going to iterate
the map F in Equation (49) for φ ∈ [0, 1] and |η| � 1, it is enough to show that:

max
φ∈[0,1],|η|�1

|F(φ, η)|, < 1.

because in this case all the successive iterates |F t(φ, η)|, t ∈ N≥1, satisfy the same bound. It
is not difficult to see that the bound holds true provided that γ0 is sufficiently large.
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Figure 1. Plot of the deterministic component T (φ), γ0 = 15.969, α = 1.64, Σε =
2.7× 10−5. The value for γ0 is taken from the empirical analysis in [31], Section 7.2,
(where it is denoted simply by γ) . The value α = 1.64 corresponds to a VaR constraint
of 5% in case of a Gaussian distribution for the returns. The values Σε = 2.7× 10−5

is taken from [32], Table 1, and corresponds to the exogenous idiosyncratic volatility
at the time scale of portfolio decisions. The value for ω and c are randomly sampled
from the dynamical core, once fixed the other parameters. The Blue dot indicates the
critical point c, the Green dot the intersection between the map and the horizontal
axis, the left-hand Red dot indicates the image of 0, the right-hand Red dot indicates
limφ→1− T (φ) = − 1

γ0
. The support of the invariant density belongs to the so-called

dynamical core [T (∆),∆].

Now, we study the deterministic map T in Equation (50), which is the deterministic compo-
nent of F for η small. By arguing as above, we have that

(51) ∆
def
= max

φ∈[0,1]
|T (φ)| < 1,

provided that γ0 is sufficiently large.
Figure 1 shows the map T for some suitably chosen parameters:

• γ0 = 15.969; this value is taken from the empirical analysis in [31], Section 7.2 (where
it is denoted simply by γ). It corresponds to the maximum value of the leverage
computed over a 4,389 time series of US Commercial Banks and Saving and Loans
Associations; see [31], Section 7.1, for a detailed description of the dataset.
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• α = 1.64; it corresponds to a VaR constraint of 5% in case of a Gaussian distribution
for the returns.
• Σε = 2.7 × 10−5; this value is taken from the numerical analysis in [32], Table 1,

and corresponds to the exogenous idiosyncratic volatility at the time scale of portfolio
decisions.
• The values for ω and c are free parameters and are randomly sampled (e.g., from the

dynamical core).

The figure shows that that T is a unimodal map with a negative Schwarzian derivative
(see below). In the figure, ∆ is the iterate of the unique critical point (Blue dot) c of T , i.e.,
∆ = T (c). Therefore, if we take the initial condition φ0 in the interval [∆, 1], then all the
successive iterates |T t(φ0)|, t ∈ N>1 will stay in [0,∆].

By definition, the (re-scaled) leverage of the representative bank is a positive quantity.
However, as one can also notice from the graph in Figure 1, we have that limφ→1− T (φ) = − 1

γ0
.

Therefore, we need to slightly modify the definition of our map by restricting it to the interval
[0, b], being b the point of intersection between the map and the horizontal axis (Green dot
in Figure 1) Notice that this definition makes sense when ∆ < b < 1. In addition, as we
verified numerically, if we take the initial condition in the interval [∆, b], then all the other
iterates will stay in [0,∆]. In particular, the previous redefinition is legitimate also if we
consider the effect of the noise. Indeed, it is clear from the considerations in Section 2 that
if we symmetrize about the horizontal axis, the graph of T in the interval [b, 1] to make it
positive, then the equilibrium state for the chain, precisely its unique stationary measure,
has support that does not intersect the interval [b, 1] if a satisfies the bound in Equation (4).
Also, we verified numerically that the condition ∆ < b < 1 holds for a γ0 sufficiently large.
We continue to denote by T the map after this redefinition. We now modify the map T by
enlarging on the left its domain of definition to take into account the action of the additive
noise. To do so, we first notice that

T (0) = a =
1−

√
ω + Σε

γ0

√
ω + Σε + c

> 0;

see, the Red-left dot in Figure 1. With abuse of notation, (re)define13 Γ
def.
= b−∆, and extend

the domain of definition T to the larger interval [−Γ, b] so that T is continuous at 0 and
on [−Γ, 0) is C4 smooth, positive and decreasing, with T (−Γ) < ∆. Again, with abuse of
notation, we will still denote by T the map after this second redefinition, and, hereafter, write

I
def
= [−Γ, b].

The map T just-defined verifies Assumption (B1.2) and we choose the distribution of the
random variables (η̃t)t≥1 in order to satisfy Assumption (C1). We need to verify Assumption
(A1)-(c). In order to do so, we verify numerically the following important result taken from
[26] (see, also, [22], Theorem 12). Define the number

(52) `T (x) = lim
t→∞

1

t
log |(T t)′(x)| = lim

t→∞

t−1∑
i=0

log |T ′(T t(x))|, x ∈ I.

Suppose T is a unimodal map with negative a Schwarzian derivative, and non-flat critical
point with `T (x) = κ > 0 for Leb-almost all x ∈ I, then T admits a unique absolutely
continuous invariant probability measure ν. In this case, κ will be the Lyapunov exponent
of the map T with respect to ν. Figure 2 represents the value of `T in the same parameters
configuration of Figure 1.

13Cfr. Equation (44)
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Figure 2. Plot of the indicator in Equation (52). Parameters’ configuration: See the
caption of Figure 1.

Once we have verified that our systemic risk model in Equation (50) satisfies Assumptions
(A1), (B1), and (C1), we pass to investigate whether it satisfies, as it should be, the mathe-
matical properties in Section 5 and the EVT in Section 6. The order in which we present the
results reflects the order in which they were presented in the latter sections.

7.1. Dynamics properties of the map. The bifurcation diagram of a dynamical system
shows how the asymptotic distribution of a typical orbit varies as a function of a parameter.
For our map, either the memory parameter ω or the parameter c can be employed as bifur-
cation parameter. Figure 3 shows the bifurcation diagram as a function of c ∈ [−1, 1]. The
choice of the parameter ω for this plot corresponds to a value of ω for which a specific pair
(c, ω) is in the dynamical core (ω = 0.669).

We now comment Figure 3. Moving backward, between 1 and 0.3 there is an attracting
fixed point. Then, as c gets smaller and smaller, the period one behaviour splits into period
two and the two values are getting further apart. The situation is more complex for c in
[−0.48, 0.3] as small parameter variations can change the dynamics from chaotic to periodic
and back. Finally, when c is between −0.48 and −1 there is an attracting fixed point. How-
ever, in this range, φt takes negative values and this does not make sense in our financial
application, since it would correspond to negative leverage. Figure 4 shows how the graph of
the map T changes as a function of c reflecting the description of the bifurcation diagram.

To identify more precisely the signature of a chaotic behaviour, we compute the Lyapunov
exponent as a function of c. For the deterministic map, the Lyapunov exponent is positive
if and only if T admits an absolutely continuous invariant measure. Figure 5, from top
to bottom, shows the estimated Lyapunov exponent for the deterministic map, as well as
for the random system for different intensities of the noise. The Lyapunov exponent is not
displayed for some values of the parameter c because of some numerical issues we encountered
to determine the intersection between the map and the horizontal axis. For this reason, it
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Figure 3. Bifurcation diagram for T . Parameters’ configuration: (γ0, α,Σε, ω) =
(15.969, 1.64, 2.7× 10−5, 0.669) and c ∈ [−1, 1].

is not possible to fully appreciate that the exponent becomes a smooth function of c when
add even a small amount of noise, in agreement with Theorem 5.6. Figure 5 shows also the
validity of Proposition 5.5 and therefore indirectly of Assumption (Ap).

Finally, Figure 6 displays the random map in Equation (15) together with the quantiles of
the distribution of the graphs of the maps associated with the random maps. Notice that we
use a different set for the parameters to emphasize the effect of the noise.

7.2. Limit theorems. We here investigate the validity of the Central Limit Theorem in
Theorem 5.7-(e2). We proceed in the following way. First, we choose as function g ∈ BV
such that

∫
R g dµn = 0 the function

g(x) = sin(x)−
∫
R

sin(t) dt.

Notice that in principle we would like to have a function g with null average with respect
the unknown measure µn; the function in the previous equation verifies this property with
respect the Lebesgue measure. Nonetheless, we verify numerically the validity of the cited
property also for µn. Then, we generate 20,000 orbits of length 10,000 by using the random
transformation. In this way, for each t ∈ {1, . . . , 10000} we have a sample of the quantity St
in Equation (21). Therefore, we can test if the distribution of St√

t
becomes more and more

Gaussian as t increases. In order to do so, we apply three normality tests, namely the Shapiro
([42]), the normal test of D’Agostino and Pearson’s ([12, 13]), and the Jarque-Bera’s test
([23]). They all tests the null hypothesis that a sample comes from a normal distribution.
Table 1 reports the results. Within each row, the two subrows are the value of the test and,
between brackets, the p-value From the table it is clear that the distribution of St√

t
becomes

more and more Gaussian as t increases, confirming the Central Limit Theorem stated above.

7.3. Multifractal Analysis. In this subsection, we compute the spectrum of the generalized
dimension Dq as in Subsection 5.4 by combining Equation (24) with Equations (25) and (26).
The results are displayed in Figure 7. The gray line represents the value for the comparison as
computed in Equation (27). In order to compute the other lines we proceed in the following
way. For q > 1 we approximate the integral in Equation (25) by considering the so called
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Figure 4. Plot of the deterministic component T (φ). Parameters’ configuration:
(γ0, α,Σε, ω) = (15.969, 1.64, 2.7 × 10−5, 0.669). The specific value of c is reported
in the title of each panel.

Normality Test
t

10 1000 5000 10000

Shapiro
0.952 0.968 0.997 0.998

(1.55× 10−17) (5.7× 10−14) (0.11) (0.86)

Normal Test
714.16 67.55 4.19 0.282

(8.34× 10−156) (2.15× 10−15) (0.12) (0.86)

Jarque-Bera
61.83 79.73 4.26 0.33

(3.7× 10−14) (4.85× 10−18 (0.11) (0.84)

Table 1. Normality tests for the variable
(
St√
t

)
for different values of t. Each row

reports the value af the tests and, between parentheses, the p-value.

partition sums

Zr(q) =
∑

µ(B)6=0

(µ(B))q,
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Figure 5. Lyapunov exponent for deterministic and stochastic maps. Parameters’
configuration: (γ0, α,Σε, ω) = (15.969, 1.64, 2.7× 10−5, 0.669).
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Figure 6. Random maps in Equation (15) together with the quantiles of the distribu-
tion of the graphs of the maps associated with the random maps; n = 10, 100, 10000.

where the sum runs over all intervals B of size r. In particular, we follow, e.g., [40] and we
restrict the variable r to a sequence rn in order to give meaningful results. Our values of r
are defined by: r = np.linspace(0.5× 10−5, 10−5, 100). For a fixed r, the occupation number
ni(r) of the i-th interval is defined as the number of sample points it contains out of N sample
points from the trajectory of our dynamical system. The measure µi of the interval Bi is the
fraction of time which a generic trajectory on the attractor spends in the i-th interval Bi and
is roughly equal to ni(r)/N . Therefore, we compute D(q) as the slope of a linear fit of

logZr(q) = log

(∑
i

(ni(r))
q

)
against log r; note that we have dropped the normalization factor N =

∑
i ni(r) since it is

independent of r. The computation of D(1) follows the same logic. Instead, for negative q we
follow [41] and we replace the occupation numbers ni(r) by the extended occupation numbers
n∗i (r) which are defined by

n∗i (r) =
∑

j :Bj⊂B∗i

ni(r),

that is the number of sample points contained in the interval Bi and its neighboring boxes.
By looking, again, at Figure 7, it is interesting to see that for n = 10 the quantity Dq for
the random maps becomes almost a constant equals to 0.8–0.9, whereas this quantity changes
more for higher values of n and, in particular, for the unperturbed map (proxied by n = 1015).
In particular, as we suspected in section 5.4, the generalized dimension Dq becomes more and
more pronounced when n grows as the stationary measure converges (weakly) to the invariant
measure of the deterministic map. In this respect, we think that the previous multifractal
analysis could help us in discriminating between chaotic and random behaviors. Indeed, the
invariant measure of a deterministic map has usually fine properties which reveal themselves
in a fractal or multifractal structure of the density. For our unimodal map T this is due to the
presence of countably many singularities for the density h. Instead, the equilibrium measure
of Markov chains are usually more uniform and indistinguishable from absolutely continuous
measures with bounded densities. Notice that the curves in Figure 7 resemble the curves
in Figure 3 in [45], where authors investigate the multifractal features of liquidity in China’s
stock market. They claim that the liquidity time series at the studied time is no longer subject
to a standard random walk process, but subject to a fractal biased random walk process. This
shows that, theoretically, it is feasible to predict the liquidity of the Chinese securities market.
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Figure 7. Spectrum of the generalized dimension Dq, for different values of the noise
level n. The gray line is derived from Eq. (27). Notice that for our unimodal map
the picture shows the order of divergence as the square root of the singular points as
for the Benedicks-Carleson type.

7.4. Extreme Value Theory. Finally we verify the validity of Proposition 6.1 on EVT.
We proceed in the following way. We fix values for the parameters characterizing the map
(γ0, ω, c, α,Σε) as described above, for the initial point of each orbit x0 and z chosen randomly
in the dynamical core (x0 = 0.38 and z = 0.80), for the parameter τ (τ = log(10)), and for
the intensity of the noise (n = 103). Then, we determine numerically the sequence ut in such
a way that µn(B(z, e−ut)) = τ

t , where µn estimated from the histogram constructed with a
very long orbit. The Left Panel of Figure 8 shows the sequence ut as a function of t and the

Right Panel displays the estimated Pn(M
(n)
t ≤ ut), where M

(n)
t is defined in Equation (32), as

a function of t, together with the theoretical value e−τ (Red horizontal line). The estimated
probability converges to the theoretical value, confirming our EVT results. From a financial
point of view, this means that we are able to compute what is the probability that, given an
initial leverage, the first time the leverage is “close” to a given target is larger than t.
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Figure 8. Top panel : the sequence ut as a function of t; Bottom panel : estimated

Pn(M
(n)
t ≤ ut), where M

(n)
t is defined in Equation (32), as a function of log t, together

with the theoretical value e−τ (Red horizontal line)
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