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Abstract

Sobolev spaces W*P(2; .4") of maps to compact Riemannian manifolds .#” do not enjoy
the standard properties of scalar Sobolev spaces; for example, approximability with smooth
A -valued maps may fail. We present selected significant results in several directions, such as
lifting, strong approximation property, or singularities, with special focus on the case where
0 < s < 1. Thetext, in progress, will be updated and extended. By the very nature of the topics
treated, these notes have a non-empty intersection with Van Schaftingen’s 2019 lecture notes

[74].
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0 Motivation. Program. Preliminary remarks

We discuss a few natural questions concerning the Sobolev spaces W*?(2; .4"), in the following
setting:

a)
b)
c)

d)

A is a smooth connected closed Riemannian manifold isometrically embedded into some R*.
0<s<oo1<p<o.
Q c RY is “smooth” and bounded. In most cases, {2 is a ball or a cube.

WeP(Q; ) = {u € WP(Q; RY); u(x) € A a.e.}, with its natural norm or seminorms.

Here are two typical examples of maps in such spaces.

Lemma0.1. Let Q) be the unit ballin RY and | |denote the Euclidean norm.

a)

b)

a)

b)

Fix some smooth non constant map v : S¥ ! — 4 andlet u(z) := v(z/|z|), Vo € Q. Then
ue WP(Q; A) < sp<N.

Letp: Q = R, a>0,¢():= |z *and u := ¢. Thenu € W*P(Q;S') <= [ (i) either
s<land(a+1)sp< Nor(i)s=>1,(a+s)p<N,and (a+ 1)sp < N].

The proofs are postponed to Section 5. (Item a) is a special case of Lemma 5.5 c).)
Remark 0.2.

In many of the results we present, ./ could have a boundary. However, some kind of “com-
pactness of ./ at infinity” is required; see Bousquet, Ponce, and Van Schaftingen [20, 21].

In most of the limiting examples arising from material sciences, .4 is a “vacuum manifold”
and is indeed closed: (i) .#" = RP? in the Oseen-Frank theory of liquid crystals; (i) .4 is the
set of (normalized) uniaxial Q-tensors in the Landau-de Gennes theory; (iii) .4 = S! = T in
the Ginzburg-Landau theories; (iv) ./ is a general closed manifold in the theory of harmonic
maps. For more examples, see Bethuel and Chiron [9].



¢) Anatural question is whether the definition of the space W*?((2; .4") depends on the embed-
ding of .#". This is not the case when .4 is compact. For non-compact .4/, W*P(Q; .A"), if
defined appropriately, is still independent of the embedding when 0 < s < 1 or, by a limiting
procedure [13], when s = 1 (see Chiron [38] for a thorough discussion on the case s = 1; see
also Bousquet, Ponce, and Van Schaftingen [21, Proposition 2.1]). However, when s > 1, this
need not be the case; see Convent and Van Schaftingen [39].

Real- (or even vector-)valued spaces of Sobolev maps have standard and well-known properties,
e. g., approximability with smooth maps, extension properties (or, seen from another perspective,
trace theory), etc. However, essentially all these properties fail for .4 -valued maps, as shows the
following result.

Proposition 0.3. (All purposes counterexample) Let Q2 = D (the unit disc in R?) and u : Q — S,
u(x) = Lz € Q. Then:

]

a) (Failure of the strong approximation property) There is no sequence (u;) C C*°(€);S!) such
that u; — win W', (Despite the fact thatu € W)

b) (Failure of the weak approximation property) If 1 < p < 2, there is no sequence (u;) C
C>°(€;S!) such that u; — win WP, (Despite the fact that u € W1?)

¢) (Failure of the extension property) For 2 < p < 3, thereisno U € W'?(Q2 x (0,1);S') such
that tr U = w. (Despite the fact thatu € W1=1/P»))

d) (Failure of the lifting property) There is no p € WH(Q; R) such that u = ¢*. (Despite the
fact thatu € Wht)

Proof. The regularity properties of u follow from Lemma 0.1 a). For the negative properties in
items a)-d), we always argue by contradiction. We rely on some basic properties of Sobolev spaces
recalled in Section 4.

a) By Corollary 4.3, along a subsequence and fora.e. 0 < r < 1, we have u; — w strongly in
WH(C,(0); S'), and thus uniformly. Therefore, deg(u;, C,.(0)) — deg(u, C,.(0)) for any such
r. However, deg(u, C.(0)) = 1, while, by a homotopy argument, deg(v, C,.(0)) = 0 for every
randv € C(D;S!).

b) Let 0 < p < land1 < g < oo besuchthat1 < pg < p. By the Gagliardo-Nirenberg
inequalities, the compactness of the embedding W*4(Q)) — W'=4((Q}), and slicing (Corollary
4.3), up to a subsequence, we have u; — uin W#4(C,(0); S') fora.e. 0 < r < 1. Foranysuchr,
by the Sobolev embeddings, we have u; — u uniformly on C,.(0), and we reach a contradiction
as above.

c) The argument in the previous item shows that, in the space W'~/P?(Q): S'), we cannot ap-
proximate u with smooth, or even continuous, maps. If U exists, then, as e — 0, we have (by

trace theory) U(-,¢) — win W'=Y/PP(Q;S') as ¢ — 0. This is a contradiction, since, for a
“generic” ¢, we have U (-, e) € WIP((;S') — C(Q;Sh).

d) On a “generic” r, we have u = e'? on C,.(0), with ¢ € WH(C,.(0); R) < C(C,(0);R)), and
this cannot happen for our specific u. QED



Before proceeding further, let us note that a common feature of the above proofs is that the
presence of topological invariants prevents the existence of extensions, or strongly approximat-
ing sequences, or other classical properties of scalar Sobolev spaces.

We now present a research program, in part initially developed by Bethuel in his groundbreak-
ing contribution [6], motivated by the pathologies exhibited in Proposition 0.3.

General program

Strong density problems
i) Characterize W*P?(Q;.#") having the strong density property (C>($; .#") is strongly
dense in W*5P(Q; A)).
ii) If the density property fails, find a class % of maps u enquoteas smooth as possible
dense in W*P(Q; A").
iii) If the density property fails, characterize the closure of C>(Q; .A4") in W*P(Q; A).

(Sequential) Weak density problems

i) Characterize W*P(Q; .4) having the (sequentially) weak density property (C™(£2; .A4)
is (sequentially) weakly dense in WP (€2; A4)).

ii) If the (sequentially) weak density property fails, characterize the (sequentially) weak
closure of C°(Q; A") in W*P(§; A4).

Extension problems Here, we assume that s is not an integer. (We could also let s be an
integer when p = 2.)

i) Characterize W*?(Q); .4") having the extension property: Vu € W*P(Q; 4"), U €
Wett/Pr(Q x (0,1); .4) sucht that tr U = w.

ii) If the extension property fails, characterize tr W*T1/P(Q x (0,1); .4").

Lifting problems Let 7 : & — .4 be a non-trivial (locally isometric) covering map, with &
a smooth embedded manifold.

i) Characterize W*?(); .4") having the lifting property, in the sense that for every u €
W#P(Q; ) there exists some ¢ € W*P(Q); &) such thatu = 7 o .

ii) Ifthe lifting property fails, characterize 7 o W*P(Q; &).

In full generality, this program is still partly open (especially for the weak density problems,
which are the new frontier). In what follows, I will present some of the main results in these
directions, some basic tools and elements of proofs, and indicate additional results that are be-
yond the scope of these notes. Before proceeding, let us discard two cases: (i) the easy case where
WP — C° (i. e., when sp > N or s = N and p = 1); (ii) the relatively easy case where sp = N.

Proposition 0.4. Assume that W*? — (C°, Then W*P?(£2;.4") has the strong (and thus weak)
density property, the extension property (provided s is not an integer), and the lifting property.



Proof. The proofs of all the properties are similar: they rely on smoothing and nearest point pro-
jection on ./". We detail the extension property. Let p € C2°(B;(0); R ) be a standard mollifier,
and set

V(z,e) :=uxp(x), Ve >0,V € Q. :={xe;dxdN) <c}. (0.1)

By standard trace theory (see, e. g., [35, Proof of Lemma 15.47] and Section 4.4), we have V' €
Ws+1/PP on its domain. Let § > 0 be such that the nearest point projection I on .4 is smooth on
the set {y € RY; d(y, #") < §}. Let gy be such that

0<e<ey,zef] = d(V(z,e), /) <. (0.2)
(The existence of &, follows from the embedding W*? — C° and the definition of V) Set

T(xz,e) :=TloV(x,e), V0 < e < e V€. (0.3)

Then T is clearly .4 -valued and belongs to Wst1/pP (Theorems 4.13 and 4.14). Let us next note
that 7" is defined on

W= {(x,e); 0 <e <ey, x €} (0.4)

Picking a diffeomorphism W : Q x [0,1] — W such that ¥(z,0) = (x,0),Vz € Q, ¥ (£, x
{e}) = Q x {€},V0 < € < &y, we find that U := T o ¥ belongs to W**1/PP(Q) x (0,1); .4).
Finally, since U(z,e) = llo Vo ¥(z,e) — [Touo ¥(z,0) = u(z)ase — 0,Vz € Q, we find
that U has all the required properties. QED

The limiting case sp = N is slightly more involved, and requires additional ingredients: the
embedding W*? — VMO (see Theorem 4.6) combined with a remarkable property of smoothing
of VMO maps, made popular by Brezis and Nirenberg [37] (see Lemma 0.6 below, with roots in
Schoen and Uhlenbeck [69] and Boutet de Monvel and Gabber [22]).

Proposition 0.5. Assume that sp = N. Then W*?(Q); _4") has the strong (and thus weak) density
property and the extension property (provided s is not an integer).

Proof. We may assume that p > 1, since for p = 1 we have W"! — (C° We consider only
the extension property. The proof is similar to the previous one. The main novelty stems in the
proof of the existence of ¢ satisfying (0.2) (see Lemma 0.6), since one cannot invoke anymore the
continuity of u. Granted the existence of ¢;, we construct U as above. To see that tr U = u, we
argue as follows. (i) We clearly have tr V' o W = w. (Start by considering a smooth u, then pass to
the limits, using trace theory.) (ii) Extend II to a smooth compactly supported map, still denoted
I1. By trace theory and Theorems 4.13 and 4.14, for every map Y € W*+1/72(Q) x (0,1); RY), we
havetrlToY =1Io (trY). Applying (ii) to Y = V o ¥ and using (i), we find that, for our specific
u, we have indeed tr U = u, as claimed. QED

Lemma 0.6. Letu € VMO(Q; F'), where ' C R". Let p € C.(B1(0); R;) be such that [ p = 1.
Then

lim sup d(u * p.(z), F') = 0. (0.5)

e—0 2€Q,



Proof. For x € ()., we have

£, —wep@ldy= [ f ) ) lonte ) dus
Be(x) e () < (

< wnllpllo= ][ f u(2)| dydz.

We find that there exists some y, € B.(x) such that
) == o) < ol ff o) —ute)| dui

For such a y,, we have

d(u * pe(x), F) < |ue(x) — u(yo)]
0.6
< wN||p||Lm][ ][ u(z)] dydz. ©6)

We conclude using the definition of VMO. QED

In view of the above,

in what follows, we assume, unless specified otherwise, that sp < N. (0.7

Also, in order to simplify the statements,

in what follows, we assume, unless specified otherwise, that N > 2. (0.8)

1 Lecture # 1. Lifting

Recall that the implicit assumptions in this section are N > 2 and sp < N.

Letm € C*(&, .4") bea Riemannian covering. We assume that: (i) & is connected, embedded
into some R™ ; (ii)  is locally isometric and non-trivial (i. e., 7~!(z) contains at least two points,
Yz € A). Aspecial important case is the one of the universal covering of a non-simply connected
manifold .#". Here are three prototypical examples.

L A =8S,&=R,nx(t) =e".
2. N =RPF & =SF (withk > 2), 7(t) = {t, —t}.
3. N =S, & =S! (viewed as subsets of C), (t) = t*, with k € Z, |k|> 2.

The last two examples belong to the compact case where & is compact, while the first one be-
longs to the non-compact case (£ is non-compact).



We next discuss the seminorm we consider on W*P(Q); &) when 0 < s < 1. Set

b [ds(p(), W)
efyei= | [ A0 ey

where d¢ is the geodesic distance on &. When & is compact, the above seminorm is equivalent to
the one obtained by taking the Euclidean distance |p(z) — ¢(y)| in R™. This need not be the case
in general.

We now present an important condition devised by Detaille [41].

There exists some ® € C*°(R™, Z (R, R™)) with bounded derivatives such that

O(t)((dem)(1)) = 7, YVt € &, VT € T,(&). (LD

This condition requires the global existence of a “controlled” left-inverse of the isometry d;7 :
Ty(&) = Trw(4). An explicit construction shows that this condition is automatically satisfied
in the compact case [41], but a counterexample in [41] shows that it may not be satisfied in the
non-compact case. Intuitively, (1.1) requires that the embedding of & “does not swirl too much”.
Of importance for us is that this condition is satisfied by the universal covering 7 : R — S! (take
O(t)(z1, ) := (—sint)z; + (cost)xq, V (1, 22) € R?).

We have the following results (see [12] for the universal covering of S!, Bethuel and Chiron
[9] for the non-compact case and partial results in the compact case, [61] for the full result when
0 < s < 1, and Detaille [41] for the role of the condition (1.1)).

Theorem 1.1. Let Q) = (0,1)". Assume that s > 1.

a) The lifting property fails when 1 < sp < 2.

b) In the non-compact case, when s > 1 further assume that (1.1) holds. The lifting property
holds when sp > 2.

Theorem1.2. Let 2 = (0,1)". Assume that 0 < s < 1.

a) The lifting property holds when sp < 1.
b) The lifting property fails when 1 < sp < 2.
c¢) Inthe non-compact case, the lifting property fails when 1 < sp < N.

d) Inthe compact case, the lifting property holds when sp > 2.

Proofs. Step 1. The lifting property fails when 1 < sp < 2. Fix some point zy € .4 . Assume, for
simplicity, that zo = 0.

We first explain a gluing construction, valid for each integer 2 < k£ < N. (In our specific case,
we will take k = 2.) Consider, for some 0 < a < 1, the cone C := {2/ = (z1,2") € R¥; |2”|<
az, }. Consider a sequence of maps u; = u;(z'), smooth in R¥\ {0}, such thatu;(z') = 0if2’ ¢ C
and u; € W*?(B;(0)). Write a point in RY in the form z = (2, y) € R* x RV We will define
inductively points b; € (0, 1)* and maps w;, such that:

(1) The truncated cones (C' + b;) N [0, 1]* are mutually disjoint.
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i) {1} x (0,1)* " & Ui (C + 1),V 5.
(i) w;(z) = u;(2’ —b;),Vj, Vo e Q.
(V) [wjllyep <279,V5 > 2.
Letb; = 0. Assume that we have chosen by, . . ., b;. Pick some point (1,2”) € {1} x (0, 1)*71\

Ui<;(C + b;). Then, for sufficiently small ¢, the vertex b, := (1 — ¢,2”) has all the required
properties.

Moreover, clearly, by construction, we also have

W) Q\ Uj»1[(C +b;) x (0,1)N*] is connected.

. L wy, in (O + b]) X (O, 1)N7k
(vi) The map w := {o, in Q\ Ui [(C +b;) x (0, 1)N*]

Q\ Ujza[{b;} x (0, 1)NH).

belongs to W*? and is smooth in

We now specialize to our situation. Recall that we have assumed that 2z, = 0. Let (¢;);>1 be
an enumeration (possibly with repetitions) of 771(0). Let 0 < b < m/4. By Lemma 7.1, there
exists some some v; € C*(R;.4") such that v;(#) = 0,V j, V|0|> b, and there exists no lifting
¢ € C([—b,b]; &) of vj on [—b, b] such that ((—b) = ((b) = t;. Setu;(re?) := v;(#),Vr > 0,
V60 € R. Then, clearly, u; satisfies the assumptions at the beginning of this step (the property
u; € W*P(By(0)) following from Lemma 5.5 c)). Let w be as above. We claim that w has no
lifting o € W*P. Argue by contradiction. By Lemma 8.2, ¢ is continuous in the connected set
U:=Q\Uj=1[{b;j} x (0,1)V~2]. Since w = 0 in U, there exists some j such that p = ¢; in U. By
continuity, ¢ = t; on the set [(OC + b;) N Q] \ [{b;} x (0,1)V~2]. In particular, for smalle > 0,
¢(bj +ee**) = t,. Going back to the definition of w;, we find that v; has, on [—b, b], a continuous
lifting ¢ (given by ((0) := ¢(b; + £¢*)) such that {(—b) = ((b), a contradiction.

For pedagogical reasons, the case s = 1 is split into two sub-cases.

Step 2. The lifting property holds when s = 1 and p > 2: the compact case. Let first u be in the class
Zin (2.1),with ¢ := N — |p] —1 < N — 3. With A asin (2.1), the open set U := Q \ A
is simply connected (Lemma 7.2). Therefore, u has a smooth lifting ¢ in U. Since |Vp|= |Vu|
pointwise, we find that ¢ € W'?(Q; &) and [V, = ||[Vul|,,. Moreover, & being compact, we
have [¢], < C := max{[t|; t € &}. Let nowu € W'P(Q;.4). Consider a sequence (u;) C #
such thatu; — win WP (¢f Theorem 2.1). The corresponding sequence (¢;) ofliftings is bounded
in WhP(Q; &). If o € WHP(Q; &) is such that, up to a subsequence, ¢; — ¢, then p € W? and
p1isalifting of .

Step 3. The lifting property holds when s = 1 and p > 2: the non-compact case. The additional issue is
passing to the weak limit the ¢,’s, since boundedness in L? is not guaranteed anymore. This is
achieved by induction on the space dimension, via the following result. Let N > 2 and let (u;) C
WhP(Q; ) be a convergent sequence. Then there exists a bounded sequence (p;) C WP(Q; &)
such that 7 o ¢; = w;, Vj. (Actually, this result also holds when & is compact, but the proof in
Step 2 allows us to avoid its use.)

Step 3.1. The induction process. Assume that the above property holds for N—1. Letu € W'P(Q; 4.
Consider a sequence (u;) C % such thatu; — uwin WP, Let A; be the corresponding singular
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sets as in (2.1). Possibly after passing to a subsequence, for a.e. § € (0, 1), the partial map u;q :=
u(-, 0) belongs to W'P((0,1)N=1; 4, the set A; := {2/ € (0,1)V71; (a/,0) € A;}is a finite
union of N — |p| — 2 planes (this condition being empty when N < [p]| + 2) and u; 9 — u(-,0)
in WP, Pick such 6. Let ¢; € W'2((0,1)V~1; &) be a bounded sequence of liftings of u; ¢ (cfthe
induction assumption). By Lemma 8.2, 1, is smooth in (0, 1)V '\ A; . Fix some z, € (0,1)V 1\
A, g and let ; be the smooth lifting of u; in Q2 \ A such that ¢,(z,0) = ¥;(z(). (The existence
of ¢, follows from Lemma 7.2.) Since |Vp;|= |Vu;| in Q \ 4, we find that p; € W'?(Q). On the
other hand, we clearly have tr(o 1)v-1, 49y ; = ¥;. By the induction assumption and the standard
inequality

lesll, = 15l + Vs,

we find that (¢;) is bounded in W', As in Step 2, we obtain that v has a lifting o € W?.

Step 3.2. The case N = 2. Let (u;) C W'P((0,1)% .4") be a convergent sequence. We let, as in
the proof of Proposition 0.4, V;(x,¢) := u; * p.(x). We claim that there exists an ¢, (depending
on the sequence (u;)) such that (0.2) holds uniformly in j. When p > 2, this is clear, by Morrey’s

embedding W? — C%1=2/?, When p = 2, the claim follows from an inspection of the proof of
Lemma 0.6. Extend u; by reflection across 0f2. Continuing the calculation (0.6), we find, for small
g, that

d(u; * pa(), F) < 7[ y ][ )~ )]y

$52N/ / luj(z 4+ h) — ui(z)| dzdh
Ba:(0) <(2)

<= [l 9] dyd
By (0) J Bs:(x)

ssl_N/ ( )|VUj(y)| dy < e NENCD G0 L
Bse(z

Recalling that, in our case, N = 2 and p = 2, the claim follows from the above calculation, the
assumption that (Vu;) converges in L?, and Lebesgue’s lemma.

Associate now to u; the map 7} as in (0.3). Fix some M < oo such that 7(By(0) N &) = 4.
Fix some z € 2 and consider some ¢; € & such that |t;|< M and 7 (t;) = Tj(xo, o). By cons-
truction, 7} is smooth in Q x (0, ), and Lipschitz (with a Lipschitz constant independent of )
on 2 x {ep}. In addition, we have

IVaT5 (- 8)l, < V], (1.2)
(with constants independent of j and 0 < € < £¢) and, by standard trace theory,

HVTJ'HLP(QX(O,SO)) S [jlypi-1/pp S HVUJ'HP- (1.3)

Let ; be the smoothlifting of 7, on 2 x (0, £g) with (; (¢, £9) = t;. By theabove, (;(-, €¢) is Lip-
schitz, with controlled Lipschitz constant, and uniformly bounded at o, and thus |[¢; (-, £) [, < 1.
This, together with the L? bound (1.3), implies that |[(;(-,€)[, < [V, + 1,V j, V0 < & < &o.

9



Combining thiswith (1.2), we find that (; (-, €) is uniformly bounded in W' (). We obtain the de-
sired conclusion by letting ¢, be any weak limit of a sequence of the form ({; (-, %)), with e, — 0.

Step 4. The lifting property holds when s > 1 and sp > 2. Letu € W*P(Q; 4") C WL (Q; A)
(Corollary 4.8). By Step 3, there exists some p € W*2(Q; &) such that u = 7 o ¢. We find that
dyu = dyymdyu, foa.e. x € €2, and thus

Dy = ® o p Du, (1.4)
where ® is as in (1.1). We complete this step by proving that

[s>1,0€ WY ue W N L*® (1.4) holds] = ¢ € W*P. (1.5)

Step 4.1. Proof of (1.5) when s is an integer. The proof is by induction on s, the case s = 1 being clear.
The key fact is that (1.4) allows to express D*y in terms of Dy, ..., D*1p. Let, e.g, s = 2. We
claim that, ifu € W*?P N L* and v € W2’ N L*>, then v Du € WP, When u, v are smooth,
this follows from the Gagliardo-Nirenberg embedding W2° N L> — W% combined with the
identity (with loose notation) D(vDu) = DuDwv + vD?u. The general case follows by a standard
limiting procedure. Combining this with (1.4), we find that (1.5) holds when s = 2. Moreover, we
find that |D?p|< | D?u|+|Dul?.

The general case is obtained by an obvious argument. Let u € W*®P N L*°. By differentiating
(1.4) (s — 1)-times, we find that

D%l< > Y [DYul--- DYl (L.6)

j=1 l4-+Llj=s

(again, first formally, then using alimiting procedure). In the process, we use the assumption (1.1).

We conclude using the fact that, by the Gagliardo-Nirenberg embeddings WP N L>®° « WWhsp/k
V1 < k < s — 1, the right-hand side of (1.5) is in L.

Step 4.2. Proof of (1.5) when s is not an integer. Write s = k + o, with 0 < ¢ < 1. By Step 4.1 and the
Gagliardo-Nirenberg embedding W*» N L>° «— W*=P/k we have o € WF=P/k_ By Theorem 4.15
and (1.1), we have J o ¢ € WH*P/k 0 [ while, clearly, Du € W*~' N L°P, By (1.4) and Lemma
4.19 (with f := Joy, g := Du,s — 1 :=k, sy := s — 1,p; := sp/k, po = p, v = sp), we have
Dy € W#=1P whence the conclusion.

Step 5. The lifting property fails in the non-compact case when 0 < s < land 1 < sp < N. We first
present the simple special case of the universal cover 7 : R — S!. Assume for simplicity that
Q = By(0). Letaw > 0 and set {(z) := |z|"*and u := €'°. By Lemmas 0.1b) and 5.3, if
N — N —
P o< °p
p sp

) (1.7)

then ( ¢ W*P, butu € W*P. Argue by contradiction and assume that u has a W*?-lifting .
Then ¢ is continuous in B;(0) \ {0}, and thus there exists some k£ € Z such that p = ( + 2k, a
contradiction with the fact that { ¢ W*?.

We next explain how to treat the general case. As in Step 1, we rely on a gluing construction.
We explain here the idea and postpone the explicit construction to Section 5 (Lemma 5.13). Fix
some z € A andlet 7' ({z}) = {t;; j € J}. We will construct points x; € Q, radiir; > 0,
j € J,and maps (; : By, (x;) — & such that:
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(i) The balls Bs,,(,,) are mutually disjoint and contained in €2.
() ¢ € C=(Bar (1)) \ {a}}).
(iii) ¢; = t;in Boy,(z;) \ By, (z;).
(iv) G & WP(Byr, (x;))-

(v) Themapu := {W °Gj in By () belongs to WP,

Z, iHQ\UjBQTj<l’j)

Granted the existence of such (, we argue as follows. Assume, by contradiction, that u has a lifting
@ € W*P. By Lemma 8.2, ¢ is continuous in the connected set V' := Q \ U;{z;}. Let U :=
Q\ U; By, (x;), which is a connected set contained in V. Note that u = zin U. Let j be such that
¢ (t;) N U is non-empty. By connectedness of U and continuity of ¢ in U, we have ¢ = ¢, in
U, and, again, by continuity and connectedness, ¢ = (; in By, (x;) \ {z;}. This contradicts item
(v).

Step 6. The lifting property holds in the compact case when 0 < s < 1 and sp > 2. We argue by density.
It suffices to find, for u € %, alifting ¢ such that |p|ws» < |u|wse. (Then we may pass to weak
limits.) Setv := N — [sp| =1 < N — 3. Letu € #Z. ThenuissmoothinU := Q\ A, where Aisa
union of v-planes parallel to the v-coordinate planes. By Lemma 7.2, U is simply connected, and
thus w hasa smoothlifting pin U. Note thattheset Uy := {2/ € (0, 1)V 1; [{2'} x (0,1)]NA # 0}
is a null set, and the same holds for

Uj = {(2,2") € (0,1)) x (0, )N {2’} x (0,1) x {z"}JNA#P}, 1 <j<N-1.

Consider the partial function zy +— v := u(2’,zn), oty — ¢ = p(2',zy), with2' € Uy
andzy € (0,1). Let0 < 0 < 0 < 1. Let p := inj(#") > 0 (the injectivity radius of A"). If
v(f) € B,(v(61)),V0; <6 < 6, then

de(1(0),0(01)) = dy (v(6),v(60,)), VO, < 0 < 0. (L8)

Combining (4.30) with the fact that ¢ is uniformly bounded (since & is compact), we find that,
for every 6, 05, we have

02
des((02),9(0h)) < |U|W°v°°((01,92))3: v —][ v . 1.9)
0 1lLeo((61,62))
From (1.9) and Corollary 4.23, we obtain the linear estimate
|7vb|2131/s,10((0,1))S |U|€Vs,p((o,1))a Va' € Uy, (1.10)

and similar estimates hold for each U;.

Combining (1.10) with slicing (Theorem 4.1), we obtain the linear estimate ||y =r< |t|pwsr,
which allows us to complete Step 6.

Step 7. The lifting property holds when sp < 1. We argue again by density. Consider a grid of size
¢ with faces parallel to the coordinate hyperplanes having the origin as an edge, and .#"-valued
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maps constant on each cube of the grid. By (the proof of) Theorem 2.1, the restrictions to {2 of such
maps are dense in W*P(Q); .4"). It suffices to obtain, for each such map, a W*? lifting with a norm
control. In order to further simplify the presentation, we assume that ¢ = 2=/ for some integer
J. (This is not relevant for the validity of the final result.) We may now formalize our program.
For k > 0, let £, denote the collection of dyadic cubes Q;, of size 2% in (2. We let .%,, denote the
set of the (step) functions constant on each ). We will complete Step 7 by proving the following:
forevery J > Oand everyu : Q) — A, u € %, there exists some lifting ¢ € .%; of u such that

lellwsw < 14+ [ufwsr. (L.11)

The construction is relatively involved. We first construct approximations of  at the larger

scales 27%,0 < k < J, as follows. Fix once for all some point z, € 4. Let § > 0 be such that the
nearest point projection II on .4 is well-defined and smooth in the J-neighborhood .45 of .4".

Let Fy(x fQ w,VQr € P,V € Qy,and set

_ [N(Ew), d(B(e), ) <0
uk(x) = {z ifd(Ep(z), N) > 6

Note that £} and u, belong to %, V k.

We next construct, inductively, a lifting ¢y, of uy, 0 < k < J, and finally set ¢ := ;. The
construction goes as follows. Fix once for all some ¢, € 77!(2,). Let 2, be the value of uy and let
o € &beapointin ! ({20}), nearest from¢.. Inductively, given Q1 € P;.1,letQ; € P, be
such that Q;11 C Q;. If t; is the value of ¢; on @); and z;, is the value of w41 on )44, then the
value of p; 1 0n Q;1isapointin ' ({z;41}), nearest fromt,. Clearly, oy € Z, and oy = uy.

In order to estimate the W*P-norm of ¢, we rely on the following inequalities:

de(t, 7 '({z})) <d y(n(t),2), VtEE, V2 € N, (1.12)
dy(ug(x),up—1(z)) < fru(x) == |u(z) — Ex(z)|+|u(z) — Ex_1(x)|, VE =1, V2, (113)
d_y(up(x), z ) < fo() = |z — Eo(2)|+|u(z) — Eo(z)|< 1+ |u(x) — Eo(x)|,Va. (1.14)

The first property is clear, since a geodesic v of length L from 7 (¢) to z lifts to a curve of length
L from t to some point in 7~ 1({z}). For the second one, if both Ey(x) and Ej_;(z) are in 45,
then (1.13) holds, since

dy (ug (), up—1 (7)) Slur(e) — g (2)|= [M(Ex(z)) — T(Ep (2))|< [Er(z) — Epa (2)]

|

u(z) = Ex(2)|+[u(z) — By ()]

(the first inequality following from the fact that the geodesic distance and the Euclidean distance
are equivalent on .4").

On the other hand, if, say, Ey(z) & 45, then |u(x) — Ey(x)|> J, so that the right-hand side of
(1.13) is at least 0, while the left-hand side of (1.13) is dominated by sup{d_ (z, w); z,w € A} <
oo. Thus (1.13) holds in all cases.

The proof of (1.14) is similar to the one of (1.13).

Going back to the construction of p, let us note that f;, € &,V k, and that, by combining (1.12)-
(1.14) with the construction of the ¢;’s we have, for every j, every ); € &;, and every z,y € Q;:

de(p(x), 0(y)) =ds(@s(x), 05(y))

12



< Y [de(pil(@), e () + de (o), er-1(y))]

1<k<J

= Z [d(g(cpk(x), gﬁk_1(l‘)) + dé”(@k(y)v Wk—l(y))]

i<k<J

= Z 91 () + gx(y)], (1.15)

j<k<J
where

gr(x) == dg(pr(x), pr_1(x)) < dy(uk(z), up—1(x)) < fr(z), Vk = 1. (1.16)

Using (1.15) and (1.16), the fact that g, € %}, V k, the assumption sp < 1, and, successively,
Lemmas 4.25 and 4.24 in Section 4, we find that

lfyons D 2% il < Y 2 lu — Eyll? < [ulfy. (1.17)
k>1 k>0

On the other hand, we have, by Holder’s inequality, the construction of the y;’s, (1.12)-(1.14),
(1.16), and Lemma 4.24,

P
ol < (Hmnp £ o - soknp) < ool + 2™ en — il
k>0 k>0

S+ 2% u— Bel? < 1+ uffy., (1.18)
k=0

Step 7 follows from (1.17) and (1.18).
The proof of Theorem 1.2 is complete. QED

We next investigate the existence of lifting in the limiting case sp = N, which was left apart
in the previous section. We also consider the case where N = 1, which is of interest here. By
Theorems 1.1 and 1.2, a W*P-lifting does exist when s > 1 or, in the compact case, when N > 2.
We may thus assume that we are in the cases uncovered by the previous results, i. e.,

Assume that 0 < s < 1and, if NV > 2, that & is non-compact. (1.19)

Let k > 1 be the least integer such that s + k/p > 1. We make a second assumption.
If s+ k/p > 1 and & is non-compact, then (1.1) holds. (1.20)

Proposition 1.3. Assume (1.19)—(1.20). Then the lifting property holds.

Proof. Let u € W*P(Q; 4"). We first construct successive extensions of v until we reach the
framework of Theorem 1.1. This goes as follows. Arguing as in the proof of Proposition 0.5, u has

a smooth extension u; € W*+/PP(Q) x (0,1);.4). Continuing inductively as above, if k > 1 is
the least integer such that s + k/p > 1, the final map uy, is smooth in Q x (0, 1), and belongs to
Wtk (Q) x (0,1)F; 4. Since s + k/p > 1and (s + k/p)p > 2, we are in position to apply
Theorem 1.1 (here, when s+k/p > 1 we use the assumption (1.20)), and obtain that u;, has a phase
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o € WeHk/PP(Q x (0,1); &). By Lemma 8.2, ;. is smooth. By trace theory adapted to &-valued
maps (see Lemma 4.26 and Chiron [38, Section 3.2]), we have the uniform estimate

lon, 2 lwsnay < lerllwessmaqxouyy ¥2" € (0,1). (L.21)

By (1.21), the obvious embedding W*P?(Q; &) — W*P(Q2;R™), standard trace theory, and
the compactness of the embedding W*?(Q; R™) — LP(€); R™), we obtain the existence of a se-
quence zj — Oandap € W*P(Q; &) such that ¢..(-, 27) — ¢ a.e. and p is alifting of u. QED

Finally, we prove that, in the proof of Proposition 1.3, the assumption (1.20) is just an artefact
of the proof, and can be removed using a different approach, as in [60].
Proposition 1.4. Assume (1.19). Then the lifting property holds.
Proof. Let V, )., and T be as in (0.1)—(0.4), and ¥ be a diffeomorphism as in the proof of Propo-

sition 0.4. Let £y be such that (0.2) holds. In the simply connected set W given by (0.4), T" has a
lifting ® such that

Vo |=|VT|< |[VV]. (1.22)

In order to explain our proof, we first invoke the following local version of the theory of weighted
Sobolev spaces (see [60, proof of Lemma 3.7] for a proof when Q2 = T¥; the argument there can
be adapted to any Lipschitz bounded domain)

[2(-, 0)[Tysn(y < Cleo // P91 G D(z, )P dedx, V0 < 0 < &,. (1.23)

We call the attention of the reader to the fact that, in (1.23), the | |};..,, seminorm is calculated
with respect to the Euclidean distance in R™. However, the proof of (1.23) is obtained starting
from

|P(x + h,0) — O(z,0)|<|P(x + h,0) — P(x + h/2,0 + |h|/2)| (1.24)
+ |®(x + h/2,0 + |h|/2) — ®(z,0)|

1
g/ 4
o |dT

1
+/0%

V(z,h) € QxRY s.t. |h|< %and[m,x—i—h] c Q.

(x + h/2 +7h/2,0 + |h|/2 — 7|h|/2)|dr

O(x+7h/2,0 + T|h|/2)|dT

Clearly, we may replace, in (1.24), the Euclidean distance with the geodesic distance ds on &,
and find that (1.23) still holds for the adapted W*P-seminorm in W*?(Q; &).

By (1.22), (1.23), and standard inverse trace theory (see [60]), we have

[2(-, 0) [fyen(y = C(e0) // U= T (2, €) P dedr S |uliyer, VO <0 < go.  (1.25)

Using (1.25) and a standard limiting procedure, we find that ®(-, #) has a weak limit ¢ €
WeP(Q; &) ase — 0, satisfying 7 o ¢ = w. QED
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2 Lecture # 2. Strong density

Recall the implicit assumption sp < N. In this section, we let Q = (0, 1),
If0 < v < N — lisaninteger, let

R =R, :={u:Q— A;Je >0, Jafinite union A of v-planes parallel
to the v-coordinate planes, 3U € C™([—¢,1 + €]V \ 4; A4) 2.1)
such thatu = U)oy~ and |D*U(z)|< Cyld(z, A)] ", Vk > 0}.

The importance of the class %, devised by Bethuel [6], is illustrated by the following result
(see Bethuel [6] for s = 1, Bousquet, Ponce, and Van Schaftingen [19] for s = 2,3, ..., [31] for
0 < s < 1, and Detaille [42] for the remaining cases).

Theorem 2.1. Letv := N — |sp| — 1. The class %, is dense in W*P(Q); 4).

Theorem 2.1 is complemented by the following result (same references as above).

Theorem 2.2. C*(€2; /") is dense in W*?(Q; .#") if and only if 7|, (-#) s trivial.

The full proofs of the above results require more than hundred pages. We will present here
only four elements of proof:

1. The necessity of the assumption that 7, (.4") is trivial in Theorem 2.2 (following essen-
tially Schoen and Uhlenbeck [69]).

2. Approximation with homogeneous maps when 0 < s < land 1 < sp < N (following [31,
Section 5]).

3. Smoothing of homogeneous maps when s = 1 (following essentially Hang and Lin [50,
Sections 2.3 and 3]).

4. Bethuel’s singularities removing technique in W'? (following Bethuel [6] and the presen-
tation in [50]).

Contents
2.1 Necessity of the condition g, (A7) ~ {0} . . . . ..o oo oL 16
2.2 Approximation with homogeneous mapswhen0 <s<1..... ... ... .. 16
2.3 Smoothingin WP . . . . ... 21
2.4 Singularities removing technique in W'» . . . .. .. ... .. ... ... ... 25
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2.1.0 Necessity of the condition 7|, (.#") ~ {0}
Proposition 2.3. If |4, (/) is non-trivial, then C*°(Q; .#) is not dense in W*?(Q; .1).

Proof. We actually establish the stronger result that C>(Q; A4") N W*P(Q; .4) is not dense in
W*P(Q; A"). For simplicity of the formulas, we work in B;(0) instead of (0, 1).

Let k := |sp] < N — 1. Assume first that k > 1. Consider some v € C*°(S¥;.#") that is
not null-homotopic. Let u(z) := v((z1,...,Tkr1)/|(21,. .., 2r+1)|). By Lemma 5.5 c), we have
u € W*P(§2; A"). We claim that u cannot be approximated with smooth .4 -valued maps. Argue
by contradiction and let (u;) C C*(;.47) N W*P(2; .4") be such that u; — win W*P. By
slicing (Corollary 4.3), up to a subsequence and for some 0 < r < 1/2and 2” € RY¥~*~1 such
that [2”|< 1/2, we have u;(-,2”) — u(-,2") in W*P(rS*1; _#"). By Corollary 4.28, for large
7, u;(-,2") and u(-, 2") are homotopic as continuous functions from rS*~! to .4#". However, on
the one hand u(-, 2”) is not null-homotopic (for otherwise, v would also be), while u;(-, z") is
always null-homotopic (by a homotopy argument, since ; is smooth in B, (0)). The contradiction
achieves the proof when £ > 1.

Assume next that £ = 0, 1. e., that sp < 1. Since we work with connected .A"s, my(4") is
trivial. For the record, let us note that, if .4 is not connected, then density fails. To see this, let
¢,..., 6 k = 2, be the components of 4. Let a,, € %,,, m = 1,2. Consider a ball B with
- ai, in B
B C Q. Letu = {a% nQ\ B’
approximated with a sequence (u;) of smooth .4 -valued maps. Argue by contradiction. Up to a
subsequence, we have u; — u a.e., and in particular, for a given ¢ > 0 and large j, the sets {z €
Q; |u;j(x) — ap|< €} have positive measure. If we let, in particular, ¢ < min{d(%;, ¢,,), i # m},
we find that, for large j, u; has to take values both in %, and 5. However, this cannot happen,
since the image of v, is connected. QED

Thenu € W#*P(Q; 4") (Lemma 5.2). We claim that v cannot be

2.2.0 Approximation with homogeneous mapswhen( < s < 1

In this section, | |stands for the || || norm.

We start by describing a procedure for constructing homogeneous maps on R”. Fix some
e > 0andt € RY. Consider the mesh ¢y = €n; = €y, of N-dimensional cubes (with vertices
parallel to the coordinate axes) of side-length 2¢ having ¢ as one of the centers. (Thus, cubes in €
are of the form t + 2¢k + [—¢,¢]", with k € ZV.) Let €_1 = €x_1, be the (N — 1)-dimensional
skeleton associated with this mesh, i. e., €n_; is the union of the boundaries of the cubes in €.
Let Hy be the mapping that associates with every g : 6y_; — R’ its homogeneous extension
(on each cube of €y) to R. Analytically, if € is a cube in €y, of center u, then Hy(g)(z) = g(u +
e(x —u)/|x —ul), Vo € € In order to keep notation reasonably simple, we will identify ¢; with
the union of its cubes, so that we write both € € € and, ifx € €,z € F.

We next consider a more general situation. We start by defining the lower dimensional skele-
tons and cubes associated with €. This is done by backward induction: €y_2 = En-_2: =
CnN—2. 1s the union of the (N — 2)-dimensional boundaries of the cubes in €x_1 = €n_1; =
©nN-11. and so on. A cube in ¥y is any cube of the mesh €. A cube in €y _, is any of the 2N
faces of a cube in €. For j < N — 2, acube in % is any of the 2(j + 1) faces of any cube in €.

For g : ¢; — R’ let H;,1(g) be its homogeneous extension to 6, ;.
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Let0 < j < N.Fore > 0andt € R", we associate with each map f : RY — R’amap
ft = fie = fie; : RN — R*through the formula

fe=gj:=HyoHy_y0---0Hj og; here,wesetg:= f|y,. (2.2)

More generally, given any map g : 6; — R, the map g; given by the right-hand side of (2.2)
is referred to as a j-homogeneous map or the j-homogeneous extension of g.

Here is our main result in this section.

Theorem 2.4. Let0 < j < N,0 < s < 1,sp < j + 1,and let f € W*P(R™; R?). Then there exist
sequences ¢, — 0 and (¢;) C RY suchthat f;, ., — fin W*P(RY).

For the sake of simplicity, we prove Theorem 2.4 under the extra assumptions
l<p<oo,j=1 (2.3)

(Theorem 2.4 holds without these assumptions, but the treatment of the remaining cases is more
involved.) Under these assumptions, we will obtain the following improvement of Theorem 2.4.

Theorem 2.5. Assume 1 < j < N,0<s< 1,1 <p<oo,andsp < j+1.Let f € W(RN; R).
Then, for each ¢ € RY, there exists some . € RY suchthat f;_. — fin W*P(R") ase — 0.

Before proceeding to the proof of Theorem 2.5, let us note the following consequence of The-
orem 2.4.

Corollary 2.6. Assume that 0 < s < 1and sp < N. Let F C R’ be an arbitrary set. Let f €
W*P(Q; F'). Then there exists a sequence of j-homogeneous maps (f;) € W*P(RY;R) such
that f, — fin W*?(Q) and f; is F-valued in (—1,2)".

Proof. Extend f, by reflexions, to amap f € WeP((—-2,3)N; F). Then extend ftoamaph €
WeP(RN;RY). (We do not claim that h is F-valued.) Finally, let f; := hi, ., With €, t;, as in
Theorem 2.4 (applied to k). Then the f;’s have, for large £ (and thus small &), the desired proper-
ties. QED

Proof of Theorem 2.5. We start by introducing some useful notation. Set ). := [—¢,¢]". In order
to keep notation easier to follow, we will sometimes denote a point in Q. by 2" rather than .
We denote by 27 ~! the radial projection (centered at 0) of 2V onto the (N — 1)-skeleton (thus the
boundary) of Q. ; this projection is defined except when 2% = 0. With an abuse of notation, 7"V ~!
also denotes a “generic” point of Q.. We next let V=2 denote the radial projection of V=1 onto
the (N — 2)-skeleton of Q.. The point #"~2 is obtained as follows: if vV =! € 9Q. belongs to an
(N —1)-dimensional face F of 0Q., and if 2V ! is not the center C of F', then the radial projection
(centered at C) of 2V~ on OF is well-defined, and yields 2V ~2. By backward induction, we define
27,0 < j < N — 1, as the radial projection of 27! onto dQ. N % ; this is defined for all but a
finite number of 27*1’s. Again, with an abuse of notation, 27 is the “generic” point of Q. N € 0.
Note that 2" is one of the vertices of Q..

When 27 is obtained starting from xV, we will denote 27 as the radial projection of 2% (onto
Q. N %j). This projection is defined except on a set of finite 7"~/ ~! measure.
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More generally, let j < k < N. We identify 2" with a “generic” point of Q. N 6} . Then 2
is the projection of z* onto Q. N ;o (except for a set of x;’s of finite 7%~ ~! measure).

Let k € Z" and set u = t + 2¢k. Then the radial projection of u + 2 onto ¢ is u + z7. If
j < k < N, then for #*-a.e. 2% € Q. N €}, the projection of u + z* onto ¢ is u + 7.

With the above notation, formula (2.2) is equivalent to

fi(t +2ek +2N) = f(t + 2k +27), Vk € ZV, for Y —ae. 2V € Q.. (2.4)

We now proceed to the proof of the theorem. Set
F.(f)(t,z) = fi.(z),VteQ., Vx e RY,

Step 1. An Li-estimate for F.(f). Let 1 < g < coand f € L(RY). We claim that

iy [ 1 felf =0 23)
and
| E.(f)|lg< C ™| |4, with C independent of ¢ or f. (2.6)

(Here, we do not require j > 1.) Set Q.(z) = x + Q., Vo € RY. Using the facts that: (i)
Q:(t + 2¢k))ezn is an a.e. partition of RY; (ii) f,. = fiioek fort € RN and k € ZV (thanks to
(2.4)), and (iii) the “change of variable” t = x + ¢y, Vt € Q.(z) (withy" € Q.), we have

—/ If = frelly dt —/ Z/ — foe(2)|7 dadt

Qe keZN E(t+2€k

o [ W@ = e s

L e -
RN J Q.

5 [ 150 = £+ =)y
Qe

We next note that y¥ € Q. = y» — 4’ € Q.. Therefore,

oo [ = Rl < 2 1) - £+ 2l s <) 2

Finally, we note that (2.7) implies both (2.5) and (2.6).

Step 2. AW estimate for F.(f). Let 1 <j < N —1,1<r < j+1,and f € W (RY). We claim
that

I F()l r (et @y < C eN"|| f|lwr.r, with C independent of € or f. (2.8)
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In view of Step 1, in order to obtain (2.8) it suffices to establish, with C' = C(N, j,7), the
estimate

/ / |Vft,5(x)|rdmdt§C'€N/ |V f(z)|" dx. (2.9)
Qa RN RN

We next observe that it suffices to prove (2.9) when f € C2°. Indeed, assuming for the mo-
ment that (2.9) holds for such f, Step 1 combined with (2.9) for f € C¢° and with a standard
limiting argument implies that (2.9) holds for every f € W',

We finally turn to the proofof (2.9) when f € C%°. Let, fort € R¥ande > 0,v :=t+(e,...,¢)
and ¢ := €n_j_1,.. Then (see Lemma 6.1) the projection

RN\%Bt—f—Qek—l—xNianQek—i-xj6%7t78,Vk€ZN,VxNEQE

is well-defined, locally Lipschitz, and satisfies

d(z, %)

VO (z)|< (2.10)

It follows from (2.10) and the fact that € is locally a finite union of (N — j — 1)-planes that

VUle L) (RY), V1<r<j+1. (2.11)

loc

Combining (2.11), the fact that f € C2°, Lemma 5.11, and the observation that f, . = fo ¥, we
find that f;. € WH(RY),V1 <r < j+1,and df;. = [(df) o ¥] dV in the sense of distributions.

After these preliminary remarks, we proceed to the proof of (2.9). By symmetries of the for-
mula defining ¥, it suffices to establish (2.9) when RY is replaced by

R*N = UkeZN (t+2€k+@:)7
withQ* = {a" € Q.; 21 > - = an_; = |Tp], Vm > N — j}.
We note that, when 2%V € Q* \ €, we have,Vk € Z",

U(t+ 2k + 2V) =t + 2ek + z(z"),

) N 2.12)
with z(2™) 1= (e,...,6,exn_j41/TN_j, .- -, ETN/TN_j),
and
IVO(t+ 2k + V)< ——, Vo € Q. (2.13)
TN—j

Using (2.12) and (2.13), we find that

/ / IV £y ()| dadt — / 3 / IV £, () dadt
Qe Riv e t+2ek+Q}

kezZN
g/ Z/ 5 IV f(t + 2k + 2(x)|" dodt
e pezn ) t+2ek+Qz TN
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=V £l d?’ ~ MV

Q*
where the last line uses the definition of Q) and the fact thatr < j + 1.
We find that (2.9) holds for RY and thus, as explained above, for R". Step 2 is now completed.

Step 3. Average estimate for f — f, . and conclusion. (Here, weusel < p < ooandj > 1.) Let

0<s<ll1<p<ooandl < j < N —1besuchthatsp < j+ 1. We claim that there exist ¢,
r such that

) 1 s 1-—s
l<g<oo, 1<r<jy+1, —=—-+
p T q

(2.14)

Indeed, the existence of r and ¢ as in (2.14) is equivalent to

S 1—s 1 s 1-—s

<
j—l—ljL 00 p 1 1

Y

which clearly holds.

We next recall three classical interpolation results. Given two Banach spaces X and Y, we use
the standard notation [ X, Y], ,; see e. g. [70, Section 1.5]. First, when (2.14) holds we have [70,
Section 2.4.2, Theorem 1 (a), eq. (2), p. 185]

(Wwhr L9,, = W=, (2.15)

Next, if X and Y are Banach spaces and s, p, ¢, r are as above, then [70, Section 1.18.4, Theorem,
eq. (3), p- 128]

[L7(; X), LY Y)]sp = LP(Q; [ X, Y5 ) (2.16)
By (2.15) and (2.16),
Vr,qasin (2.14), [L"(Qo; W' (RY)), LY(Q.; LYRN))]sp = LP(Qo; WHP(RY)). (2.17)
Final classical result. Let s, p, ¢, 7, X, and Y be as above. Let F’ be a linear continuous operator
from X into L"(€2; X') and from Y into L9(€2; Y'). Then F is linear continuous from [ X, Y], , into
LP(Q); [X,Y]s,) and satisfies the norm inequality
IF Nl 2qx e @x v < 1F 0@ TE o3 pagay - (2.18)
By (2.6), (2.8), and (2.18), we find that

I Fo(f)] oo w@ny < C ™| fllwsn@ny, with C independent of e. (2.19)

(In principle, the constant C'in (2.19) may depend on ¢, since we apply the interpolation result
(2.17) in an e-dependent domain. The fact that C' does not depend on ¢ is obtained by a straight-
forward scaling argument: we consider, instead of F, the map

Gs(f) : Ql X RN — Rév Ga(f)<t7‘r) = fst,s('r)‘
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We obtain (2.19) by applying (2.18) to G.(f) in (;.)

A clear consequence of (2.19) is
1 p
5_N 0 Hft,s - f”Ws,p(RN) dt < C”f”ws P(RN)" (2'20)

Arguing as above and using (2.5) instead of (2.6), we improve (2.20) to

tim / o = £y sy = 0. @21
Clearly, (2.21) and a mean-value argument yield the conclusion of Theorem 2.5. QED

2.3.0 Smoothingin V1P

We start by explaining how Theorem 2.5 is used in the proof of Theorem 2.1 (when 0 < s < 1).
Let0 <s<1,1<p<oo1<j< N —1besuchthatsp < j+ 1. (Here and in what follows, j
is fixed.) Let f € W*P(RY;R?). It will be convenient here to consider f as a everywhere defined
Borel map (rather than an equivalence class). By (2.21), for a.e. t € ). we have

frej € WP, (2.22)

On the other hand (by a “generalized slicing” argument, see e. g. [31, Lemma 6.1]) for a.e.
t € Q. we have

Jimee €W P(Crpe), VO<m < N — 1. (2.23)

(The discussion here being rather informal, we do not give the precise definition of the space W*?
on a skeleton. We will be precise in the case s = 1 detailed below.)

Moreover, when sp > 1, we have, for a.e. t € Q. [31, Appendix E],

tr(figme) = fiom 10 V1 <m < N. (2.24)

Note the assumption sp > 1, which implies that trace theory makes sense in W*". (The as-

sumption sp > 1 can be relaxed to sp > 1, provided we replace, when sp = 1, the notion of trace
with the one of good restriction; see [30, Appendlx B, Appendix E].)

Combing these facts with (2.21), we find that there exists t = t. € (). such that (2.22)-(2.24)
hold and, in addition f,. ; = fin W*Pase — 0.

Assume now thatwe start fromu € W*P(Q; .#"), thatwe first extend by reflexions to (-2, 3)",
nexttoamap f € W*P(RY;R). Then, by construction, for small ¢,

fiejis A -valuedin (—1,2)V. (2.25)

Up to now, the fact that .4 is a manifold was irrelevant. The next step consists of taking
advantage of the smoothness of .#" and of the properties (2.22)—(2.25). More specifically, if: (i)
1 <j <sp<j+1;Gi)eisfixed; (iii) f € WP and ¢ are such that (2.22)—(2.25) hold, then one may
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prove that it is possible to approximate, in W*?((—1/2,3/2)"), f, . ; with a map v: (j) .4 -valued;
(j) locally Lipschitz in [—1/2,3/2] \ €n—j—1.0; (jj) satisfying |[Vu(z)|< C(e)/d(x, EN-j-1v.)-
By Lemma 5.7, we have v € W19, V¢ < j + 1. Granted the existence of v as above, we thus
obtain that: under the assumptions 0 < s < 1,1 < sp < N,and1 < ¢ < |sp] + 1, each
u € W#P((0,1)"; 4") can be approximated in W*? with maps v € Wh?((0,1)"; .4") such that
each v islocally Lipschitz outside a finite union of (N — | sp| — 1)-planes. Then a rather standard
smoothing procedure (see, e. g., Brezis and Li [26, Proposition A.4] when s = 1) allows to further
smoothen the v’s and obtain approximation with maps in the class Z.

To summarize, the heart of the transition from f; . ; to mapsin the class % is the construction of
v as above. When 0 < s < 1, this is performed in [31, Section 7], following a scheme conceptually
similar to the one of Hang and Lin for s = 1 [50, Section 2.3, Section 3]. In order to keep the
presentation technically simple but yet relevant concerning the main ideas, we present here the
s = 1 counterpart of the above, consistent with the schemes in [50, 31]. More specifically, we will
prove the following.

Proposition 2.7. Lete = 1/2andt = 0. Let M € Nand Q = (=M — 1/2, M + 1/2)". Let
1<j<p<j+1<N.Letue Wh(Q;.#) be such that

UG, 0,12 € lep(%m,071/2)7 Vi<m <y, (2.26)
(W, 01 /0) = U1 jer V1 <M< (2.27)

Then, for every A > 0, there exists some Lipschitz map g : €12 — -4 such that the j-
homogeneous extension v = g; of g (given by (2.2)) satisfies ||ug1/2,; — v| )1, < AT

Before proceeding to the proof of Proposition 2.7, let us precise some notation and assump-
tions. With an abuse of notation, ¢; = 4;N%,0 < j < N —1,where ¢ := Uyezn jj<m@1/2(k) is
the part of the grid €y = @ 0,12 corresponding to €2. € denotes a generic cube in %,,,. The mean-
ing of (2.26)-(2.27) is that, for each 1 < m < j, and each cube € of 4,,, u|c belongs to W'?(&)
and, in addition, the trace of uj¢ to O€ is u|y¢. (Recall that we consider everywhere defined maps.)
We naturally define

||u’|ip(<5m) = Z ”u” ‘U’Wu) = HVuH Z ”quLP(Q
CECm CECGm
lellwroce,y = Tull o,y + lulwrrgs,)-

In view of Lemma 6.2, the conclusion of Proposition 2.7 follows from the following fact, that
we will establish below: if 1 < j < N, j < p < 0o,and g : €; — .4 satisfies

Gmonss € WP (Gmpay2), V1 <m < j, (2.28)

(96 01/2) = 9mr01y20 1 <M <7, (2.29)
then

VA>0,3g € Lip(€j; A )s.t. ||g — g||W1,p(<gj) <A\ (2.30)

(Note the wider range j < p < coinsteadof j < p < j + 1.)

TProposition 2.7 still holds when p = j, but when j > 2 the case p = j requires a separate argument (in the
spirit of the proof of Proposition 0.5), since the embedding W!?(R7) < C° holds for p > j, but fails for p = j. For
simplicity, we do not consider here the case p = j.
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Proof of Proposition 2.7. Step 1. Choice of a continuous representative. Assume that 1 < j < Nandp >
J. Assume that g satisfies (2.28)-(2.29). We claim that there exists a continuous function g : ¢; —
A suchthat gis,, = gj¢,, #€"-a. e, ¥ 0 < j < m. The construction of g is performed successively
on each %,,, by induction on m. For m = 0, we simply let § = ¢. Assuming g constructed on
Cm-1,with1 < m < j, welet, for € € €, g be the continuous representative of g on €. Itis
easy to see that gj4,,_, agrees with the map already constructed on %,,,_1, is continuous, and that

the final map constructed on % has all the required properties. From now on, we assume that g
is continuous.

Step 2. Reduction to almost .4 -valued maps. Fix some small § > 0 such that the projection II :
N5 — A is well-defined and smooth in the §-neighborhood .45 of .#". Assume that we are
able to construct a Lipschitz map § : ¢; — 4 such that [[§ — glly1p(s) < A. Then, clearly,

IT o gis Lipschitz and, by Lemma 6.2, | (I 0 §); — g1, < F()), for some function F such that
limy_,o £'(A) = 0. In conclusion, it suffices to prove (2.30) in the apparently weaker form

VA>0,3g € Lip(€j; 45)s.t.||g — g||W1,p(<gj) <A\ (2.31)

Step 3. Approximation on a fixed cube. Let g € W'P(6;; R"). Let € be a cube in ¢, of center O¢. The
projection of the point O¢ + 27 € € on € is O¢ + 27!, where 2771 = 27 /(2|27]).

We first define convenient approximations of g as follows. For 0 < p < 1, we set, with the
above notation,

9(0¢ +2771), if [27|= (1 — p)/2

J) — J A
w0 =g vk 12 ) il -2

Note that g, is continuous on %}, .4 -valued, and clearly satisfies (2.28)—(2.29). The following
fact is straightforward.

l<p<oo,1<j<N, €€, geW?PQ)] = g, ginW"(€)aspu — 0. (2.32)

Let p € C°((—1/2,1/2)7) be a standard mollifier. Given h € L'(%;;RY), the convolution
h * p is well-defined and smooth in the set Ugew, {O¢ + #7; |27|< (1 — t)/2}. (Here, we naturally
identify each € with a subset of R7.)

Fix some function n € C2°([0,1/2);[0, 1]) such that n(¢) = 1 for small §. For small ¢, the map
€3 0¢ + 27 = ¢"(0¢ + 27) := n(|27]) g * ps(0g + 27)

is well-defined and smooth in €.
We also set

9°(O¢ +27) := n(|27]) g(0¢ + 7).
The following is straightforward.

l1<p<oo,1<j<N,C€€%,geW() = ¢ —¢"inW"(€)ast — 0. (2.33)
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Given f : O€ — RY, set (with H; the homogeneous extension from %;_;to %)
T()(0c +27) == (1= n(|2’])) H;(f)(0c + '), ¥ 0c + 27) € €. (2.34)

We note the following consequence of (the proof of) Lemma 6.2.

[1<p<oo,1<j<N,Cc

= [W"(0€) > f + T(f) € W"P(€) is continuous]. (2.35)

Finally, let us note the following consequence of the embedding W'?(€) — (?, valid when
p>7J

[1<j<p<oo,1<j<N,C€€%b,gecW?eE.N) 2.36)
= Jtps.t.[t <to, |27|< (1 —1)/2 = g*pi(0¢ +27) € N3] '
(The validity of (2.36) when p = j requires a separate argument, relying on Lemma 0.6.)
Step 4. Proofof (2.31) when j = 1. By (2.32), it suffices to prove (2.31) when g is replaced by g,,. Since
j = 1 and thus % is a finite collection of points, we may thus assume that g is constant near each
point in é:

J0<pu<lst[Ced, |zt=(1—pn)/2] = g(0¢+2') = g(0¢ + 2°)]. (2.37)
Let now n € C'*°([0,1/2); [0, 1]) be such that

_J1, ifo<0<1/2—p/4
n(0) = {0, if0>1/2— /6 (2.38)

When 0 < t < p1/6, the map
€ >x=0¢+ 22— G'(z) = 77(|x1\) g * pi(0¢ + Clil) + (1 — 7](|x1|)) 9(0¢ + xo)

is well-defined everywhere on %7, and is Lipschitz. Moreover, by (2.33) and the choice of n, we
clearly have G* — gin WP ast — 0.

It remains to prove that, for small ¢, we have

G'(0¢ +2') € M5, VE EC, V0 + 2 €C. (2.39)

By (2.36) and (2.38), property (2.39) holds when |z!|< 1/2— /5. Clearly, (2.39) holds also when
|#t|> 1/2 — 11/6. Finally, when 1/2 — pu/5 < |2'|< 1/2 — p/6 and t < /6, we have

Gt(OQ + 371) =gx* pt(()@ + [Bl) = g(Oq + [BO) eN.

This completes Step 3.

Step 5. Proof of Proposition 2.7 by induction on j. (Here, we use the assumptions (2.26)—(2.27) at all
dimensions 1 <m < j.) Let2 < j < N. Let f be the restriction of g to €;_;.
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By (2.32), we may assume that there exists some i € (0, 1) such that

9(0¢ + 27) = f(0g + 2771), VE € €, V0e + 27 € Cs.t. [27|= (1 — p)/2. (2.40)

By (2.28)—(2.29) and the induction hypothesis, the map f is the limit in W'? of a sequence
(F*) C Lip(%;_1; /). Withn asin (2.38) and 0 < ¢ < /6, we define, everywhere on ¢, the
Lipschitz maps

% 2 0¢ + 27 = GF(0¢ + 27) :=n(|27]) g * pe(0¢ + 27)
+ (1= n(|27])) F*(0 +2771).
By (2.33) and (2.35), we have
lim lim G*' = gin W'?(%)).

k—o0 t\0

In order to complete Step 5 and the proof of Proposition 2.7, it remains to prove that, for large
k and sufficiently small ¢ (possibly depending on k) we have

G (0¢ +27) € N5, VE € C, V0e + 27 € €. (2.41)
Asin Step 4, (2.41) holds when |27 |< 1/2 — p/5or |[27|> 1/2 — /6. When 1/2 — /5 < |27]<

1/2 — 11/6, we argue as follows. By the Sobolev embeddings, we have F'* — f uniformly. Let kg
be such that

|F* = fl|l, <6, VE = k. (2.42)

By (2.40) and the continuity of f, for every fixed k we have
lim G (Oeta?) = n(|2’]) f(Oe +27) + (1 = n(|27[) F*(0c + 2"")

uniformly in the set U {0¢ +27; 1/2 — /5 < |a?|< 1/2p/6}. (2.43)
Qe(lfj
We complete the proof of (2.41) using (2.42) and (2.43). QED

2.4.0 Singularities removing technique in 1717

One of our purposes here is the proof of Theorem 2.2 when 0 < s < 1, under the necessary
condition that 7|, (/") is trivial. We have seen in Sections 2.2 and 2.3 that maps of the form g;,
where g € Lip(%j;./), are dense in W*P({; .4), atleast when1 < j < sp < j+1 < N.
We have already noted that g; actually belongs to the space W¢(Q; #),V1 < ¢ < j + 1. We
will prove below that g; can be approximated, in W(Q), V1 < ¢ < j + 1, with Lipschitz /-
valued maps. This fact, combined with the Gagliardo-Nirenberg inequalities (Corollary 4.8) and
a straightforward smoothing argument, implies Theorem 2.2 when 0 < s < 1.

After these introductory remarks, we present and prove the main result of this section (see
Bethuel [6], with roots in White [75, Section 6], for the main idea of the proof (Step 2 below) and,
for the presentation we give here, also Hang and Lin [50, Section 6] and Bousquet, Ponce, and
Van Schaftingen [19, Section 7]). The result is stated, with no loss of generality, in 2 = (—M —
1/2, M +1/2)V.
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Proposition2.8. Let1 < j < N —land1 < ¢ < j + 1. Assume that 7;(./#) is trivial. Then, for
every g € Lip(%}; /), the map g, is strong limit in W' of maps in Lip(Q; .A4).

Proof. Step 1. Construction of a Lipschitz .4 -valued extension h of g to €. (Here, we use the assump-
tion on 7;(4).) Let € € €}, ;. Since O¢ is bi-Lipschitz homeomorphic with §7, and, by assump-
tion, 7;(.4") is trivial, there exists a homotopy G : € x [0, 1] — .4 such that G¢(z,0) = g(x),
Vr € 0€, and Ge¢(x,0) = be, Vo € 0C€, V0O > 1/2, for some constant by € 4. Moreover, by a
smoothing argument, we may assume that G is Lipschitz. The map

Ge(0¢ + 27,1 — 2|27 7)), if |27t > 1/4

. +1y . )
Cia1 2 h(0e +2777) = {be, if ot < 1/4

is a Lipschitz .4 -valued extension of g to €.

Step 2. Construction of a Lipschitz A -valued extension k of g to €. (Here, we use the existence of the
map h from the previous step.) We rely on the following geometrically obvious fact (see Lemma
7.4 for a formal proof). There exists a Lipschitz homotopy G = G(x,6) : €y x [0,1] — @y such
that:

a) G(z,0) =z,Vz € Ey.

b) G(z,0) = a, for some (fixed) pointa € €j11,Va € €N, VO > 1/2.

o G(z,0) € €j11,Vr €6;,V0.

Granted the existence of G, and with h as in Step 1, we let, V 0¢ + 2V € € € Gy,

E(0 + 2) o= { MG O 27, 2d(0c + 2%, ), ifd(0 + ¥, %) < 1/4
¢ "\ h(a), ifd(0¢ + 2V, 6;) = 1/4°

Clearly, k is a Lipschitz .4 -valued extension of g to €.

Step 3. Approximation of g;. (Here, we use the assumption ¢ < j + 1.) For 0 < p < 1/2, consider
the following sets and functions:
U, ={z€by; d(z,6;) < 1/2 — pu},
Ve={rebyn; 12— pn<dx,6) <1/2 - pn/2},
W, ={x € €n; dx,6;) > 1/2 — nu/2},
. __Jo, if0>1/2—p/2
fl : [1/2_M71/2] - [Ovl]af1<9) T {(1_20)/M_17 ifl/Z—MSQS 1/2—#/2’
' (1, if0>1/2— p/2
f2 . [1/2_M71/2] — [071]af2(0) T {_(1_29)//1"“27 1f1/2_:u£0§ 1/2—#/2’
di(z) = d(x,6;).

We define the following approximation of g;:

_ _ Jgi(x) = g(0¢ + 27), ifz € U,
3=tk a" o Ba) = LN e, it €V
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We note that F), is well-defined, Lipschitz, .4 -valued, equals ¢; in U,,, and is Lipschitz (with
Lipschitz constant independent of x) in W),. Since |W,|— 0as p# — 0, in order to prove that
F, — g; in Wh(Q) as u — 0 it remains to prove that HVFM|MW“> — 0as pu — 0. In turn, this
follows from the fact that, from the definition of F), and the fact that & is Lipschitz, we have

1 Iuj+1
\VE, "< —|V,|~ — 0ase — 0. QED
Vi e e

3 Lecture # 3. Hearing singularities

Let us return to the all purposes counterexample in Proposition 0.3. It relies on the existence of a
non-trivial topological invariant (in that case, the winding number of maps f € C°(S';S')) and
on the construction of a map “carrying” the topological invariant around a singular point. This
raises several questions: (a) what is a topological singularity? (b) can one detect such singularities?
(c) do standard properties of Sobolev spaces hold for maps in W*?(); .4") without topological
singularities? In full generality, the answer to question c) is negative (see Bethuel and Demengel
[11], Bethuel [7], or [61] for examples of smooth maps with no extensions or liftings). Depending on
the answer we choose to question a), the answer to question (b) could be positive. However, a full
theory allowing to encode singularities and/or to clarify their role as only possible obstructions
is, for the time being, out of reach. Let us mention several topological invariants that have been
investigated so far in the literature: (i) Brouwer degree of maps f : S¥ — S* (starting with Brezis,
Coron, and Lieb [25]); (ii) spherical homology (starting with Giaquinta, Modica, and Soucek [48]);
(iii) (Hopf) degree of maps f : S* — S? (starting with Riviére [67]); (iv) higher homotopy groups
of general manifolds, under restrictive assumptions on the lower homotopy groups (Pakzad and
Riviere [65]); (v) rational homotopies (Hardt and Riviere [51]).

In this section, we discuss the best understood situation, the one of sphere-valued maps. In or-
der to further simplify the presentation and focus on analytical (rather than geometrical measure
theory) issues, we first assume that the space dimension N and the dimension k of the sphere are
related by N = k+1. In Section 3.5, we provide a glimpse of the general case and of the additional
difficulties it raises.

Contents
3.1 Thedistributional Jacobian . . . . . . . . . . . .. ... 27
3.2 Therange of the distributional Jacobian . . . ... ... ... ... ....... 32
3.3 Insertingsingularities . . . . . . . . . ... e 37
3.4  Characterization of the closure of smoothmaps . . .. ... ........... 37
3.5 Overview of the higher co-dimensionalcase . .. ... ... ........... 40

3.1.0 The distributional Jacobian

We let, in Sections 3.1-3.4, u : Q — S¥~!, where @ = (0,1)" and N > 2. Recall that we always
assume that sp < N. If sp < N — 1, then C°°(Q; SV~ 1) is dense in W*?(Q; S¥~1) (by Theorem
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2.2 and the fact that 7;(SV 1) is trivial when j < N — 1). Therefore, the interesting range is

N —-—1<sp<N. 3.1

For such s and p, maps in the class Z = %, (i. e., maps as in (2.1), with A a finite subset of ()
are dense in W#?(Q; S¥~!) (Theorem 2.1). When u € %, one can define the singular set simply

as A. However, this is not a tractable definition, since it is not clear how to pass to the limits sets
of points. The appropriate substitute is the distribution

Ju:=Cy Y _deg(u,a)d, € 7'(9), (3.2)

a€A

where Cy := | B;(0)| (the volume of the unit ball in R"). Here, deg(u, a) is the (Brouwer) degree
of the map us, () : S:(a) — SV, for small e. Clearly, this integer does not depend on (small) .

The main result here is the following (see [15] for the full result, and, for special cases, Bethuel,
Brezis, and Coron [8], Jerrard and Soner [52, 53], Hang and Lin [49]).

Theorem 3.1. Assume (3.1). Then the map

Z>us Jue P(Q) (3.3)

has a unique extension by continuity, still denoted .J, to W*?(€; SV ~1).
In addition, Ju belongs to the space [Lip,(£2)]*, the mapping W*?(;SV~1) 5 u — Ju €
[Lip,(€2)]* is continuous, and we have the estimate

N-1)/s
HJUH[LipO(Q)]* S ‘U’%/Vs,p i (3.4)

Proof. Step 1. A first convenient formula for Ju. We first derive a tractable formula for Ju when u €
2. This formula (which will explain the title of this section) appears in Brezis, Coron, and Lieb
[25], with roots in Ball [4] and Morrey [62]. To start with, we note that # € W4,V ¢ < N. (For
this step, Z C WH"~1 suffices.) Letw = wy_; be the standard volume form on S¥~!, given by

N
wy_1 =Y (=1 apday A Adrg AL Aday. (3.5)
j=1
Denoting uf w the pullback by u of w, i. e.,

N
ww = Z(—l)j—luj dug N\ ... N\ d/u\] A...Nduy € LI(Q;AN_1)7

Jj=1

we claim that

Ju = %d(ujj w)in 2'(Q), (3.6)

where, in (3.6), we have identified a scalar distribution (the left-hand side) with a N-form whose
density is a distribution (the right-hand side).
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To justify (3.6), a first important fact is that, when u is C? in some open set V' C (2, we have,
inV,

d(uﬁw) =Nduy A+ Nduy = N (Jacu)dzy A -+ Adey =0, (3.7)

where Jac stands for the Jacobian determinant. The first equality is a clear consequence of the
exterior calculus rules, and justifies the designation of d(uw) as (up to a constant factor N) dis-
tributional Jacobian. The last equality is justified by the fact that the N vectors dyu(z), ... dyu(x),
x € V,areallin the (N — 1)-dimensional tangent hyperplane Tgv-1 (), and thus Jac u(x) = 0,
Ve eV.

A second important fact is Kronecker’s formula (see, e. g., Dinca and Mawhin [43, Section 1.1,
Section 1.2]): if S is any sphere in RY (with the usual orientation), then

deg(v, S) = @/Svﬁw, Yo e CHS;SVh). (3.8)

Let now u € #. Combining: (i) the definition of the distributional derivative; (ii) the fact that
u € WHN=L (iii) (3.7); (iv) the divergence theorem; (v) the fact that u € %; (vi) (3.8), we find that,
Ve CX(Q),

d(u* w) (@) = — / dp A (vPw) = — lir% dp A (u'w)
Q €70 JQ\Uqgea B: ()
= — lim lim o(ufw)
=70 JQ\UaeaBe(a ) e
_|gN-1
—Z ll_r}é ww =[S ]ng ) deg(u, a)
acA Se(a) acA
—NCNZg0 )deg(u,a) = NJu(yp),
acA

so that (3.6) holds.
For further use, let us note that we have proved that, when u € %, we have

Ju(p) = ]17 dp A (U'w), Vo € C(Q), (3.9)

and that, ifu € C?(Q;R"), we have

/(Jacu)gp _ L / dp A (uPw), Vo € C(Q; R). (3.10)
0 N Jqo

Step 2. The easy case s > 1. The right-hand side of (3.9) is clearly continuous (with respect to the u’s
satisfying |u|< 1) in WH¥ =1, We complete this step by noting that, when s > land sp > N — 1,
we have W#P N L[> — WH¥=1 (Corollary 4.8).

In the remaining part of the proof, we assume that 0 < s < 1.

Step 3. A second convenient formula for Ju. This step appears in [15], but was essentially known before
(see Dunford and Schwartz [44, p. 467]).
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Letu € C*(Q;RY), respectively ¢ € C®(Q;R). Let W = W (u) € C%(Q2 x [0,1); RY) be
an extension of u, respectively @ = ®(p) € CH(Q x [0,1);R) be an extension of . Let, for
eachj € {1,...,N + 1}, E;=F;(W) denote the determinant whose columns are the NV partial

derivatives 4 W, ..., 0;W,..., Oy;1W. We claim that

N+1

> (-1Y7'9,E; =0. (3.11)

J=1

Indeed, identifying (£, ..., Eyy1) with the N-form ¢ := dW; A -+ - A dWy;, (3.11) amounts
to the trivial equality d{ = 0 (see [28, Lemma 1.3] for details).

Combining: (i) (3.11); (ii) the divergence theorem; (iii) the fact that, on 2 x {0}, we have
Eni1®P = (Jacu)yp; (iv) (3.10), we find that

N+1 N+1
/ Z(_l)NﬂEj 0;® :/ Z aj((_l)NHEj D) = / Eni1®
Qx(0,1) j=1 Ox(0,1) j=1 Qx{0}
1
Z/Q(JaCU)sO - Qdcp/\(jj w),
so that
1 N+1
—/dgp/\(u / )NV E; 0. (3.12)
N Q Qx(0,1) j= 1

At this stage, we know that (3.12) holds when v € C? and W € C?. By a straightforward
argument, (3.12) still holds provided ¢ € Lip,(€2), ® € Lip, (€2 x [0,1)) and

we WHNTHQ RN N L®, W e WY (Q x (0,1);RY) N L™,

loc loc

W(,e) = uinW " (Q)ase — 0. (3.13)

loc

Combining the first two steps, we find the useful identity

N+1

Ju() — _/Q DI 0, Y YW asin G.13) (.14

and also the fact that the right-hand side of (3.14) is well-defined (under the assumption (3.14)) for
O € Lip,y(Q x [0,1)).
The heart of the proof of Theorem 3.1 consists of proving the existence, for each u € %, of a

convenient extension W = W (u) such that the right-hand side of (3.14) is continuous in W*P
(with respect to u).

Step 4. The main geometric estimate. (Here, we do not use the assumption sp > N — 1.) Consider a
linear continuous operator W*? > u = u(x) — U = U(z,¢), z € Q,0 < € < 1such that: (i)
U € C%; () U € WP, (iii) tr U = u; (iv) |U\Ws+1/pp$ \ulwsr; @) |U], < ul,, ifue L
wi)ifu € W9, thenU(-,e) € W?%and |U(-, €)|we.a < |u|wo.a (see Section 4.4). By slicing, trace
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theory, and Sobolev embeddings, for a.e. z € Q we have (j) lim. o U(z, ) = u(z) € S¥7% (jj)
Ul(x,-) € Wst/pr((0,1)) < C*([0, 1]). Define the function

d(z) :==inf{0 <e < 1;|U(z,¢)|< 1/2},

with the convention that inf () = co. We claim that

1 p
| ey o < ks e

Indeed, if  is such (j) and (jj) hold and d(z) < oo, then d(z) > 0and |U(x,d(x))|= 1/2, and
therefore

1/2 < u(z) = Uz, d(z))|< [d@)*|U(z, ) |csoaps [d@)]*|U (@, )wermao1y.  B16)

Using (3.16), slicing, and (iv), we find that

/ /|U We+1/p 2((0,1)) dx S |u|€VSvP’

so that (3.15) holds, as claimed.

Step 5. Construction of W (u) and ®(p). Fix some ¢ € CL([0,1);R) such that ((0) = 1. Let
O(p)(x,e) = ((e)p(x), Vo € Q,Ve € [0,1]. Clearly, ¢ — @ islinear and continuous from
Lip,(2) into Lip,y (€2 x [0,1)).

Let IT € C*®(RY;RY) be such that [I(z) = z/|z| when |z|> 1/2. (Here, || stands for the
Euclidean norm.) Let U be as in the previous step. Set W := 1o U. Ifu € %, thenu € W1N-!
and, by the construction of U, we have | VU (-, ¢)||y_; < [[Vu| y_;. By the formula of W, we also

have |[VW (-, €)||x_; < |Vully_,- On the other hand, we have U(-,¢) — win W' "tase — 0

and U € L. By Theorem 4.13 and the fact that IT o 4 = u, we find that W (-, &) — win W1N-1
ase — 0. Therefore, (3.13) holds, and thus (3.14) holds when v € Z and W = W (u).

Step 6. Conclusion. It remains to prove that the right-hand side of (3.14) is continuous from % (with
the distance inherited from WW*?) into [Lip,(£2)]*. Consider the open set

V =V(u) :={(z,e) € A x (0,1); |U(z,e)|> 1/2}
C{(z,e) € 2x(0,1);0 < e < min{d(x),1}}.
In V, we have [W|= 1, and thus E; = 0, V j (see the proof of (3.7)). On the other hand, for
(x,e) € V, we have, by the construction of U (see Section 4.4)
1 1
VW (z,e)ls VU ()l Zlulo = < (3.17)

Using: (i) (3.14); (ii) (3.17); (iii) the fact that, when (z,¢) € V, we have ¢ > d(x); (iv) (3.15), we
find that

1 1
|wansmmwm/i/ ——&dstV¢mﬂ/——————dx
Q Jexd(z) eN o [d(z)]N-1 (3.18)
<Vl fulipa’,
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where the last line uses (3.15), Holder’s inequality, and the assumption sp > N — 1.

In order to complete the proof, it suffices to prove the continuity of Z > u — Ju(y) fora fixed
. Consider a sequence (u;) C Z converging in W*? to some u. By: (i) trace theory; (ii) slicing;
(iii) the converse to the dominated convergence theorem, there exist a subsequence, still denoted
(u;),and a function I € LP(Q) such that |U;(z, -) [jys41/p» < F () foreach janda.e.z € Q2. An
inspection of the proof of (3.16) shows that, for each j and a. e. z, we have d(z) = [F(z)]~/*, and
therefore the corresponding sets V' (u;) satisfy

[ x (0,1)]\ V(u;) C Z:={(2,6) € Q2 x (0,1); e = [F(x)]""*}. (3.19)

(Note that Z does not depend on the (sub)sequence (u;).) Using: (i) (3.17); (ii) the fact that, clearly,
W (u;)(x,e) — W(u)(z,¢),Vx,Ve; (iii) (3.19); (iv) the fact that (7, ¢) +— 1/eN € LP/N-Y(7) C
L'(Z); (v) dominated convergence, we find that (possibly along a subsequence) (J(u;)()) con-
verges to the right-hand side of (3.14) corresponding to u. Finally, the uniqueness of the limit
implies that convergence holds for the full original sequence.

Moreover, using the above domination and the explicit construction of ®(¢y), the continuity
of W#P(Q; SN=1) 5w+ Ju € [Lipy(Q)]* is routine. The estimate (3.4) easily follows from (3.18)
and a limiting argument. QED

3.2.0 Therange of the distributional Jacobian

Recall that we consider maps u : Q@ € RY — S¥~! with N > 2. The main result here is the
following.

Theorem 3.2. Assume (3.1).
1. Ifu € W*P(Q; SN~1), then there exist points P;, N, € 0, j > 1, such that

1P = Nl Julipnn (3.20)
J
Ju=CyY (5p, = dn,) in 7'(Q). (3.21)

J

2. Conversely, given points P;, N; € ) satisfying (3.21) and >_;|Pj — Nj|< oo, there exists
u : Q — SV~!such that, for every s, p satisfying sp = N — 1: (i) u € W*P(Q; SV~1); (i)
(3.21) holds; (iii)

|u\§vs,pginf{Z|Pk—Nky > (05, — 65, Z((spj—aNj)in@/(Q)}, (3.22)

J

See [15, 18] for the general case, and [24, 14, 36] for special cases. Whens = landp = N — 1,
the above theorem is a special case of the main result in Alberti, Baldo, and Orlandi [2, Theorem
5.6], but obtalnlng Theorem 3.2 from [2, Theorem 5.6] requires an additional argument. The proof
involves two important ingredients: a duality formula and a dipole construction, both due to Brezis,
Coron, and Lieb [25], complemented with a dipole insertion technique due to Bethuel [5].
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Remark 3.3. Note therange N — 1 < sp < N initem 1, and the range sp = N — 1 in item 2.

Thus, item 2 is not the exact converse of item 1. When N = 2 (i. e., we consider Sl—va_tlu.ed maps),
the exact converse of item 1 is known (see Bousquet [16]), i. e., when 1 < sp < 2, it is possible

to characterize the set { Ju; u € W*P(Q;S!)}. The counterpart of the result in [16] is not known
when N > 2.

Elements of proof of Theorem 3.2. Step 1. A pseudometric and a duality formula. Set, for P, N € Q,

d(P,N) = min{|P — N/, dist(P,89) + dist(N, Q) }. (3.23)

Clearly, d is a pseudometric, and, for each P, N € Q: (i) either d(P, N) = |P — N| and the
interior of the segment [P, N| is completely contained in (2, or: (ii) there exist points Py, N; € 0%
suchthat|P—Ny|= d(P,09), |P,—N|= d(N, 0f?),and d(P, N) = | P— N;|+|P,— N|. Moreover,
in the latter case, if, for example, P € (), then the line segment [P, N;] is normal to 92 at Ny, and
its interior is completely contained in ).

Given P;, N; € Q,1 < j < m, set
L((P}),(N;)) :=minses,, Y d(Pj, Ny(j)). (3.24)
J
It is clear from the definitions (3.23) and (3.24) that, given initial collections (P;), (N;), 1 <

J < m, we may find new collections, still denoted, for simplicity, (P%), (V) (containing, possibly,
more points), such that

Y. Gr—dn)= D (On—0dy)in7'(Q), (3.25)
new points initial points
L((P)), (N;)) = L((Pe), (Nk) = Y|Py = N, (3.26)
k

for each £, the points Py, N; are distinct, at least one of them is in €2,

and, if P, € 0Q or N}, € 052, the segment [Py, Vi] is normal to 0. (3.27)
Note that, if p € Lip,(Q2) and P, N € €, then
p(P) = o(N) < d(P, N)|¢luip, (3.28)
and therefore
L((P;), (N;)) = max {Z(@(Pj) — ¢(N;)); ¢ € Lipo(Q), |¢lLip< 1} : (3.29)
J

Remarkably, we actually have equality in (3.29) (see [25] for the original result and, for other
proofs, Brezis [23] and [33]):

L((P;), (N;)) = max {Z(@(Pj) — ¢(N;)); ¢ € Lipo(Q), |¢lLip< 1} : (3.30)
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For further use, let us note the following consequence of (3.30) combined with (3.32) below
and (3.25)—(3.28):

HJ“”[LipO(Q)]* = (Cy min { Z]Pk — Ngl|; Py, Ny € Q. Ju=Cy Z((SPk - 5Nk)}’ (3.31)
- .

Vue %0.

Step 2. Proof of item 1. We start with a preliminary remark. If u € % then (in view of the definition
(3.2) of Ju), possibly after adding fictitious points on 0f2, we may always write

Ju=Cy Y (6p, — dn,) in 7'(9) (3.32)
J
(where the sum contains a finite number of terms).
Letnowu € WP(Q2; S¥~1). Let ug be any constantin S 1. Consider a sequence (u;);=; C Z
such that u; = win W*P, |ui|w=r < [ulwss, and [[Jui1 — Juill 5, ) < 2_"|u|§,f,vs,_p1)/s, Vix>1

(see Theorem 3.1). Combining the observation (3.32) with (3.30), (3.25)—(3.26), and the estimate
(3.4), we find that there exist sequences ( Py ;)x, (Nk;)x such that

Tty — Jui =Cn Y (6p,, — 0n,,)in 2'(Q), Vi = 0, (3.33)
k
> 1Pio — Niol < Julip””, (3.34)
k
Z|Pk:,i — Nl < 2_i|u|$,f,vs,_pl)/s, Vi>1. (3.35)
k

Combining (3.33)—(3.35) with the continuity of J, we find that (3.20)—(3.21) hold.

Step 3. Partial proof of item 2: setting and strategy. We present the proof of a weaker result: we let
N >3andwefix0 < s < N—1land1 < p < oosuchthatsp = N — 1. (For an “all couples”
(s, p procedure, based on a diagonal process and Gagliardo-Nirenberg, in a similar context, see
[18, proof of Theorem 1.3].) For such s, p, and NN, and all sequences (P;), (N;) as in item 2, we
prove the existence of a map u satisfying (3.22). For the proof of item 2 in full generality, we refer
the reader to [18].

For pedagogical purposes, we temporarily assume that

SIP — N7 < oo (3.36)
k

we will remove this assumption in the final step.

It will be more convenient to work in the full space RY, N > 3. More precisely, given se-
quences (Py)k=1, (Ni)k=1 C RY such that >, |P, — Nx|< oo and P, # N, Vk, and a point
a € SN1, we will construct a map u : RY — SV~! such that:

a) u—a€ WSP(RY).
b) Ju = CN Zk((SPk — 6Nk) in .@/(RN>
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) [lu = alyyer < 324 Pk — Nig| < 0.

Clearly, the existence of such a map implies item 2 of the theorem.

The map u will be obtained as the limit of a sequence of maps, each iterative step consisting
of dipoles insertions.

Step 4. The dipole construction. We fix amap f € C>([0,1];[0,1]) such that f(0) = f(1) = 0,
£1(0) > 0, f(1) < 0,and f(§) > 0,V 8 € (0,1).

Given a line segment S in RY, say, in order to simplify the statement, S = [0, Ley], and
0 < & < L, there existsamap u. € C®(RY \ {0, Len }; S¥~!) such that

Ue € Ky, Ve, (3.37)
|uc|fyea< L, Vo,q suchthatog = N — 1,Ve, (3.38)
Ju. = Cn(8g — 1ey ) in Z'(RY), Ve, (3.39)
supp(u. —a) C {(2/,zn) e RN xR0 < oy < L, |2'|< Lef(zn/L)}, Ve (3.40)

(see Lemmas 5.14 and 5.15). A similar conclusion holds for an arbitrary segment. A noticeable fact
is that the estimate (3.38) involves the length of the segment.

Step 5. The iterative construction. We will construct a sequence (v ) such that vy = a and

Jom =Cn Y (6p, — On,) in Z'(RY), Vm, (3.41)
n<<m

[Vm = Vm—1|[iysr < [P — Nin|, Y > 1, (3.42)

[0m s = Um—1lyss < |Pm — Npl|, Vm > 1. (3.43)

Assuming (3.41)—(3.43) and using the temporary assumption (3.36), we find that the limiting
mapu:=a-+ Y, (vm — vm_1)hasall the desired properties.

To start with, we let, as in the dipole construction, v; € C®(RN \ {P, N, };SV™1) satisfy
Ju; = Cn(dp, — dn,) and the estimates (3.42)—(3.43). (This is possible, for sufficiently small ¢,
since P, # N;.) Assume next that we were able to construct vy, ..., v;_; such that (3.41)-(3.43)
hold, and, in addition, there exists an increasing sequence of finite sets A, C RV ,1 <m < k—1,
such that:

vy, is smooth in RY \ A,,, (3.44)
U € R, (3.45)

for each = € A,,, there exists a non-empty open conical cap C,, with vertex x
. (3.46)
such thatv,,(z) = ain C,.

Note that these assumptions are satisfied when m = 1, with A; = {P;, N;}. We next con-
struct vy, according to the position of P, and N}, with respect to the set A;_;.

Case 1. [Py, Nx] N Ap_1 = (). We first modify v;_; in a convenient small open neighborhood V
of [Py, Ni], such that the modified map, still denoted v;._1, continues to satisfy (3.41)-(3.43), and
vp_1 = ain V. (Intuitively, this is possible since a segment in R", with N > 3, has zero W*?-
capacity.) The rigorous existence of such a modified map is established in Lemma 5.16.
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We next consider, with an abuse of notation, the map

o Vk—1, II’IRN\V
b Ug, inV,

where . is the map in the dipole construction corresponding to the singularities Py, Ni. Clearly,
in view of (3.37)-(3.40) and of the Brezis-Lieb type Lemma 4.20, for small € the map v, satisfies
(3.41)-(3.46), with A,, := A,;,—1 U { Py, Ni.}.

Case 2. [Py, Ny] N Ax_1 # 0. In this case, we may construct a finite chain D = [, Q2] U ... U
[Q:—1, Q] without self intersections and such that:

(i) Ifz € D\ {P, Ny}, thenz & Ax_y U {Py, Ni}. In particular, Qo,...,Q;—1 & A1 U
{ Py, Ni.}.

(i) If P, € Ag_y, then, near Py, the segment |1, ()2] is contained in Cp,_, where Cp, is as in
(3.46). Similarly for Ny.

(ii1) Zj|Qj+1 — Qi< | Pe — Nil.

We next modify vy, in a neighborhood of D \ { P, Ny} such that: (j) (3.41)—(3.46) still hold;
()) vk—1 equals a in a neighborhood of D \ { Py, Ny }. The construction of the modified map and
the corresponding estimates are established in Lemma 5.17. Finally, we insert (¢ —1)-dipoles u; .,

1 <j <t—1,satisfying Ju;., = Cn(dq,,, — dq,)- By the multi-sequences Brezis-Lieb lemma
4.21, for convenient small € ;, the new map

_ Uje; — @, in supp(uj,a]- —a)
() = a+ {Uk—l —a, inRY\ U;supp(u;e, — a)

has all the required properties, with Ay, = Ax_1 U{Q1,...,Q:}.

Step 6. Removing the assumption (3.36). Let S := ), | P, — Nj|. We consider integers 1 = j, < j; <
ja < ...suchthat ij—1§j<jk |Pj — N;|< 2755,V k. We let vy = a and construct, as explained in

Step 5, Case 2 (using several chains and the multi-sequences Brezis-Lieb Lemma 4.21), a sequence
(vg) such that

Jop =Cx Y (0p, — Oy,)in Z'(RN), VE,

J<Jk
H'Uk - vk*l”%/s,p g Z ’Pj - N]‘S 27kS, Vk > 1,
Jk—1<7<Jk
H/UngVS,P - Hvk‘—lHIP;VS,p S Z |P] - N]’$ 2_kS, Yk > 1,
Je—1=7<Jk

vy, is smooth in RY \ A, for some finite A,

v, € Ko,

for each = € Ay, there exists a non-empty open conical cap C, with vertex
such that v, (z) = ain C,.

Then (v, — a) converges in W*? to some map v with v — a € W*? and such that Jv =
CNZ]'((SPJ- _6Nj)' QED
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3.3.0 Inserting singularities

Recall that we consider maps u : Q € RY — SV~! with N > 2. The main result here is due to
Bethuel when s = 1and N > 3 [5].

Theorem 3.4. Let u € %,,.
1. Let N > 3. There exists some map v € %, such that Juv = 0in 2'(2) and
v =l < [Jullpip o) VO<s<N—-1,1<p<oost.sp=N-1 (347

2. Let N = 2. There exists some map v € %, such that Jv = 0in Z'(§2) and

v — ulfyen < [Jullpip, o) VO<s<1,1<p<ocostsp=1L1 (3.48)

Elements of proof. For simplicity, we consider only the case where N > 3, and we prove the esti-
mate (3.47) for a fixed couple (s,p). (For N = 2, see [35, Proposition 1.1, Proposition 15.2].) The
proof is very similar to the one of item 2 in Theorem 3.2. Let u € %, and the sets U, A as in (2.1).
We may assume that Ju # 0. Write, as in (3.32), Ju = Cy >_,(dp, — On, ), where the points P,
Ny, satisfy (3.26)—(3.27).

Step 1. Modification of u near its singularities. The purpose of this step is to obtain a new map, u € %y
such that

Ji = Juin 2'(), (3.49)
10— ullfyen < 1ullgip, ) (3.50)
near each of its singularities in €, % satisfies the assumption (i) of Lemma 5.17. (3.51)

This modification is performed in Lemma 5.18. For this step, we require 0 < s < N — 1 and
we exclude the couple (s,p) = (N — 1, 1). For the record, it is possible to extend the validity of
Lemma 5.18 to this couple, if, for each singularity z € A, we have deg(u, x) # 0.

Step 2. Dipole insertion, and conclusion. By Step 1, we may assume that (3.51) holds for u (instead of
u). We next construct amap v € %, such that

Jv=0in 2'(Q),
v = ullfyer £ ) 1P — Ni. (3.52)
k

The construction is performed using the procedure explained in Steps 5 and 6 of the proof of
Theorem 3.2, by inserting, at each singularity P, (respectively N}) a dipole of degree —1 (respec-
tively +1).

We complete the proof by noting that (3.26), (3.31), and (3.52) imply (3.47). QED

3.4.0 Characterization of the closure of smooth maps

Recall that we consider maps u : @ C RY — SV~! with N > 2. The main result we present
here is due to Demengel [40] when s = 1,1 < p < 2,and N = 2, Bethuel [5] when s = 1 and
p = N — 1, and has been announced, with indications of proof, by Bethuel, Coron, Demengel,
and Coron [10] when s = 1and N — 1 < p < N, respectively Mucci [63] when 0 < s < 1. See
also Ponce and Van Schaftingen [66].
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Theorem3.5. Let N > 1,0 < s < 1,1 < p < cobesuchthat N — 1 < sp < N. Then, for
u € W*P(Q; S¥~1), we have

S,P

_—W
u € C=(0; SN-1) — Ju=0.

Elements of proof. The implication “ = ” follows from Theorem 3.1 and the fact that, when u €
C*>(; S¥~1), we have Ju = 0. The remaining part of the proof is devoted to the reverse impli-
cation. In Step 2, we limit ourselves to the case 0 < s < 1, since we rely on our constructive proof
of Theorem 2.1for 0 < s < 1. However, as explained in [10], we could have completed Step 2 even

for s = 1, by combining our argument with Bethuel’s constructive proof of Theorem 2.1 when
s =11[6].

Step 1. “<= "holdswhen: 1) sp = N — ;1) 0 < s < N —1when N > 3; (11" 0 < s < 1 when
N = 2. By Theorem 2.1, there exists a sequence (u;) C %, such that u; — win W*?. By Theorem
3.1 and the assumption Ju = 0, we have Ju; — 0in [Lip,(Q2)]* as i — oco. By Theorem 3.4, there
exists a sequence (v;) C %, such that Jv; = 0, Vi, and v; — win W*P. In order to complete this
step, it remains to prove that

— s,p

—W
v e Ry, Jv=0] = veC>(SN-1) . (3.53)

In order to prove (3.53), we argue as in the proof of Lemma 5.18. Since deg(v,z;) = 0 near
each singularity z; of v, we find that the restriction of v to a small sphere Ss(x;) around z; is
homotopic to a fixed constant @ € SV~!, and then, for every ;1 > 0, we may construct, as in the
proof of Lemma 5.18, a smooth map ¥ : Q — S¥~! such that ||¥ — v||;y.,, < pzand, near each z;,
¥ = a. This construction completes Step 1.

Step 2. “ <= "holdswhen 0 < s < land N — 1 < sp < N. (Sketch of proof.) We work with
|z|:= [|z| . Let Q5 := {2 € Q;d(x,0Q > 0)}. We will prove that, for each § > 0, ujq, can be
approximated in W*? with maps in C*>°(Qs; SV~!). The same conclusion on 2 will then follow
by a standard argument based on domain diffeomorphisms. In order to simplify the formulas,
we work in Q rather than €5, and then we may assume thatu € W*P(U;SV"1) and Ju = 0 in
2'(U), where U is the larger domain {z € RY; d(z,Q) < 6}. By Step 1, we have

o

—— W4
ue C>U;SN-1)  V0<o<N-1,1<g<oos.t.og=N — 1. (3.54)

Consider an extension of u, denoted f, to RY, such that f € W*?(RY; RY). (We do not claim
that the extension is S ~-valued.) Let 0 < ¢ < §/2. Using the notation in the proof of Theorem
2.5, formula (2.21) holds for f (by Theorem 2.5). Moreover, as explained at the beginning of the
Section 2.3, for a. e. t € @, [ satisfies (2.22) with j = N — 1 and (2.23) withm = N — 1. By
Step 1, there exists a sequence (u;) C C*°(U; SV~!) such that u; — win WNV=D/pr(7: SN-1), By
slicing [31, Lemma 6.1], possibly after passing to a subsequence, still denoted (u;), fora.e.t € Q.,
we have

. s,
Wil G —1,4,:NU — U gn_1,4,.nU 11 weP. (3.55)

Consider now at € (). such that (2.22), (2.23), and (3.55) hold, and any fixed cube C' € €, .

contained in U. Let v; := u;pc, v := ujgc. Note that v has a continuous representative (since
(2.22) holds with j = N — 1). By the above and a homotopy argument, we have
0 = limdeg(u;, S-(t)) = deg(v, S-(t)), (3.56)
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where the second equality follows from the embedding W*?(0C') — C° and the stability of the
Brouwer degree under uniform convergence.

Consider now the smoothing process described in Section 2.3: on the cubes C' € €y . con-
tained in U and such that (2.22), (2.23), and (3.56) hold, we may approximate u with a (N — 1)-
homogeneous map w such that its restriction on the boundary of each C'is Lipschitz and (by the
above stability argument) has zero degree. By Lemma 5.19, we may approximate, in W*?, w (and
thus u) with Lipschitz S¥ ~!-valued maps. By an additional smoothing argument, we may approx-

imate, in W*?, u with maps in C>(Q; SV—1). QED

For the record, let us note that the second step above has little to do with sphere-valued maps.
It reveals a more general scheme that we formalize in the next statement.

Proposition 3.6. Let:

1 N > 2.
) 0<s<1l,1<p<oo,1<j< Nsuchthatj <sp<j—+1.

(ii)) Ifj = N — 1, Qis any Lipschitz bounded domain. If j < N — 1, we take Q = (0, 1)".

Seto :=j/p < s.Letu € W*P(Q; .4). Then

W 'SP —_—— WP

u € C°(Q; . AN) = ue C>(N)

Sketch of proof. “ = ”is clear. For the reverse implication, we argue essentially as in Step 2 above,
andlet U asthere. First, we introduce an ad hoc notation. Let ‘gN = ‘é,Nﬁ =U{C ebn; CCU}
and,for0 < j < N — 1,%? ::‘Kjﬂ‘gN.

Lett € (). be such that (2.22)-(2.24) hold and

ui‘%;j — u% mW vV0o<j<N-—1. (3.57)

By the stability argument leading to (3.56), for every face C' € ‘gjﬂ, upc : 0C — A is null
homotopic. By the smoothing process described in Section 2.3 and the multi-sequences Brezis-

Lieb Lemma 4.21, we may approximate in W*?, on ‘5;, wg with Lipschitz maps, null homotopic

on each 0C with C' as above. We now invoke Lemma 5.19 and approximate, on each C, the ho-
mogeneous extension of usc to C' with a Lipschitz map. Then apply again Lemma 4.21 to obtain

a global W*P-approximation. To summarize, we have sketched the argument of the fact that,
for a “generic” t € ()., the homogeneous extension H;; of U, O ©j+1 can be approximated,

in W#?, with Lipschitz maps. If j = N — 1, then we found that u itself may be approximated
with Lipschitz (and then smooth) .4 -valued maps, and we are done. When j < N — 1, we use

the fact that %y is, up to an affine transformation, a cube, and apply the singularities remov-
ing technique described in Section 2.4 to approximate, in W' (and thus in W*?, by Gagliardo-
Nirenberg), Hyo---0oHj (u‘%;]) with Lipschitz .4 -valued maps and thus, finally, v with smooth

A -valued maps. QED
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3.5.0 Overview of the higher co-dimensional case

We let here N > k > 1 and consider mapsu : Q C RY — S*. The case where N = k + 1
corresponds to Sections 3.1-3.4; here, we rather focus on the case where N > k + 2. For the
exposition in this section and beyond, we refer the reader to Alberti [1] and [35, Chapter 4].
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3.5.1 Jacobian and singularities

We will consider a slightly different route from the one in Section 3.1. We start with the analytical
definition of the distributional Jacobian (analogue of (3.6)) rather than its geometric definition
(analogue of (3.2)). For u € WH*(€); SF), set

k+1
uf wy = Z(—l)j_luj duy N\ ..o N\ d/u\] Ao AN dugyy € LS AR, (3.58)
j=1

where wy, is the standard volume form wy, on S* (wy, corresponds to the choice N = k + 1in (3.5)).
Note that, in particular, the definition (3.58) makes sense foru € Zy_j_1.

Then define

1
o 1 1(0). Ak+1
Ju = = duy) € 7'(Q AM), (3.59)

The above definitions are consistent with the ones in Section 3.1. Let us note that, in the pre-
vious sections, it turned out to be more convenient to identify the N-form Ju with its density (a
scalar distribution). The same situation occurs in any dimension: it will be more convenient to
work with the (N — k — 1)-form xJu (where * stands for the Hodge operator) rather than with
the (k + 1)-form Ju. In this perspective, and with the notation of the present section, we should
have written, on the left-hand side of (3.9), xJu(y) rather than Ju(y).

We start with a fundamental example connecting Jacobians and singularities; see Jerrard and

Soner [53, Section 5] (and, also, Bousquet [17]) for the first item, and Alberti, Baldo, and Orlandi
[2, Theorem 5.6] for the second one.

Theorem 3.7.

1. LetI"be asmooth connected oriented (N — k — 1)-submanifold I' without boundary (in ©2).
Letu € WHE(Q; S¥) N C(Q\ T). Then, with m := deg(u, I'), we have

xJu = CirrymIin .@/(Q;AN_k_l), (3.60)

where C}, . is the volume of the unit ball in R**! and I' is identified, as usual, with an (N —
k — 1)-current.
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2. Given any connected I' of the form I’ = I' N Q), with ' ¢ R¥ a smooth closed oriented
(N — k — 1)-manifold, and any m € Z, there exists u € W1*(; S*) such that (3.60) holds.

Remark 3.8. Some comments are in order concerning the statement of Theorem 3.7.

a) The requirement that I is oriented is important only when N — k — 1 > 2. Indeed, points and
curves are always orientable, but not, for example, surfaces in R%.

b) Given an oriented submanifold I in R", we may always choose a coherent orientation of the
normal spaces: if {e;,...,en_r_1}isadirectbasisof 7,I', thenabasis {ey ¢, ..., enx} of N, T
is directif {ey, ..., ey} is a direct basis of RY.

c) The degree m = deg(u,I") is defined as follows. Let z € T". Consider a (small) k-dimensional
(hyper)sphere, denoted S.(x), of radius ¢, in the (geometric) normal (k + 1)-plane to I' at z.
The map w5, () : S-(z) — S* is continuous. By a homotopy argument, its Brouwer degree,
denoted here m, does not depend on x or (small) .

d) The meaning of (3.60) is the following:
/ do A (W) = (DY (E+ 10y m/ @, Vi € Lipo(; ANF1), (3.61)
Q r

e) Item 2 cannot be an exact converse to item 1, in the sense that the condition that I" has no
boundary in €2 is not sufficient for the existence of u as in item 2. Here is an example. Let

Q := Byy(0) \ B1(0) and let I be the oriented segment from (0, 0, 1) to (0, 0, 10). Then there
existsnou € C(Q\ T'; S') such that deg(u, ") # 0 (and thus, in particular, for this I' and for
m = 1, the conclusion of item 2 does not hold). Indeed, argue by contradiction, and consider
someu € C(Q\ I';S"), such that deg(u, ') = m # 0. We note that every circle C.(x) as in
2423 =1
T3 — —2

homotopic to a point. Via a homotopy argument, we find that m = 0 - a contradiction.

the definition of deg(u, I') is homotopic, in Q2 \ T, to the circle ,which in turn is

We next present a limitation of the use of the Jacobian as a “singularities detector” (see [35,
Section 4.3.1]).

Proposition 3.9. Let u € WY (Q;S¥) N C(Q \ I'), where I' C Q is a closed set such that
HNF1(T) = 0. Then Ju = 0.

Remark 3.10. Proposition 3.9 implies that, if u(z) = H(z/|z|), wherez € © C R% 0 € Q, and
H € C'(S?*S?), then Ju = 0in 2'(Q2). (Note that this u belongs to W?(Q;S?), Vp < 4, by
Lemma 0.1a).) This implies that Ju does not detect lower dimensional “topological singularities,”
since H may carry a non-trivial Hopf degree.

On the other hand, if H is topologically non-trivial, then, by the argument in Section 2.1, u
cannot be strongly approximated, in W?(£2;S?), 3 < p < 4, with smooth maps. This implies
that the condition Ju = 0 is not sufficient for approximability with smooth maps.
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3.5.2 The distributional Jacobian. Disintegration (slicing)

We present here the higher-dimensional counterpart of Section 3.1. We assume that

0<s<oo,l<p<ook<sp<k+1. (3.62)

The main result here is the following (see [18]).

Theorem 3.11. Assume (3.62). Then the map

BN—_—1 DU Ly Ju e 2'(Q; AP (3.63)

has a unique extension by continuity, still denoted ./, to W*(); S¥).

In addition, Ju belongs to the space [Lip,(£2; A¥N=*=1)]*, the mapping W*?(Q;S*) > u —
Ju € [Lipy(Q; AN=*=1)]* is continuous, and we have the estimate

k/s
Tt ipy a1y S [l (3.64)
The proof follows essentially Steps 25 of the proof of Theorem 3.1.

We next connect the distributional Jacobian defined above with the definition in Theorem 3.1.
For simplicity, we let = (0, 1)V,

Set
IIN-k—1,N)={ac{l,....,N}; Carda= N — k — 1}.

Fora € (N —k—1,N),seta:={l,...,N}\a € I(k+1,N). Let p € C(Q; AN=F-1),
Then we may write

p= > = > (¢ (1a) da”.

a€l(N—k—1,N) a€l(N—k—1,N)

Here, dz® denotes the canonical (N — k — 1)-form induced by the coordinates z;, j € o, and
()2, (Ta) == (4, Tz) belongs to C°((0, 1)V +=1: R) (for fixed z,,).

Given u € W*P(Q;S*), by slicing (Corollary 4.2), for a. e. z, € (0,1)¥~*~! the partial map
(u®),, = 75 — u(z4,r5) belongs to W*P((0,1)1; S*). Assuming that s, p satisfy (3.62), for
such z, the distributional Jacobian J(u®),,, (or rather, as we have explained, *.J(u®),,) is well-
defined (via Theorem 3.1) as an element of Z'(2).

We have the following disintegration result.

Proposition 3.12. Assume (3.62). Let Q = (0,1)" and u € W*?(2;S*). Then, with appropriate
e(a) € {—1,1} dependingonlyon k, N,and « € I(N — k — 1, N ), we have

s Ju(p) = Z e(a) / s J(UY) g, ((0%) s, ) dz®. (3.65)

a€l(N—k—1,N) (0,1)N =kt

When s > 1, (3.65) follows from the Fubini theorem. The case where 0 < s < 1 is more
delicate. See [60, Lemma 3.12] for a proof when s = 1/p and k = 1. (The argument there works

in the general case.)
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3.5.3 The range of the distributional Jacobian

I will try not to appeal here to the language of geometric measure theory. For the same story
(moderately) using this language, see [35, Chapter 2, Chapter 4]. Letn := N —k < N — L.
Consider a C' oriented n-dimensional submanifold 3 of €2, and a Borel set A C ¥ such that
S (A) < oo. Then A acts by integration on smooth compactly supported n-forms, through the

formula

A(C) = /A (Ve C®(QAM). (3.66)

Note that the integral makes sense since A is oriented.

This allows us to identify A with a linear object (a distribution, or rather a current), and thus
allow operations as (infinite) sums.

Consider the set

F" = {T = Z Aj; A; C QisaBorel subset of a C" oriented n-dimensional

! (3.67)

submanifold X; of €, Z JO"(A;) < oo}.
J

Given T' € F™ (or, more generally, a distribution acting on smooth compactly supported
n-forms), we define the boundary OT of T' through the formula

OT (o) :=T(dy), Vo € C(Q; AN, (3.68)

The terminology is justified by the fact that, when 7" is the integration over a compact oriented
manifold with boundary, 0T is the integration over the geometric boundary 97 of T'. (In this case,
(3.68) is simply the Stokes theorem.)

We may now present the higher co-dimensional counterpart of Theorem 3.2.

Theorem 3.13. Assume (3.62).

L Ifu € W*?(Q;S*), then there exists some T = ), A; € F"~* such that
SN TRA) < Julif (3.69)
J
xJu = Cy 10T in D' (Q; AN_k_l). (3.70)

2. Conversely, given T = Y7, A; € FN-k there exists u : Q — S* such that, for every s, p
satisfying sp = N — 1: (i) u € W*P(2; S¥); (i1) (3.70) holds; (ii1)

|ulfysp < inf {Z ANTF(AL); aZﬁk = aZAj in 7' (%; AN‘k‘l)} . (3.71)
k k J
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Already the fact that Theorem 3.2 is the special case of Theorem 3.13 with N = k + 1 is not
obvious (but not difficult to prove). When s = 1, item 1 is due to Alberti, Baldo, and Orlandi [2,
Theorem 3.7], who extended to general maps an argument relying on the co-area formula devised
by Almgren, Browder, and Lieb [3]. This main idea is illustrated, when w is sufficiently smooth, in
[35, Section 3.3]. Item 2 with s = 1 is also due to Alberti, Baldo, and Orlandi [2, Theorem 5.6]. It
relies on a delicate dipole insertion technique, reminiscent of the one in Brezis, Coron, and Lieb
[25], but technically much more involved. The general case (arbitrary s, p) was obtained in [18].

3.5.4 Characterization of the closure of smooth maps

We have the following counterpart of Theorem 3.5 (with the same references as for Theorem 3.5).

Theorem 3.14. Assumethat) < s < 1,1 < p < o0,k < sp < k + 1. Moreover, when k < sp <
k+1land N > k + 1, assume that 2 = (0, 1)". Then, for u € W*?(); S¥), we have

S$,p

u € C>=(€); SF) — Ju=0.

4 Appendix # 1. Standard & less standard properties of Sobolev
spaces

We present here, mostly without proofs, some of the basic properties of Sobolev maps that we use
in the main text. For the full proofs, some useful general references are Triebel [71, 72], Runst and
Sickel [68], Maz’ya [56], Leoni [54]; an elementary, but partial, account can be find in [58]. See also
the specific references indicated below.

In what follows, Q@ C R is a Lipschitz bounded domain. Occasionally, it could be R or a
half space. Unless specified otherwise, the Sobolev spaces W*? and the corresponding norms are
considered with respect to 2.

Contents
4.1 Slicing and characterization via differences . . . . ... ... .. ... ..... 45
4.2 Sobolevembeddings . . . ... ... ... 46
4.3 Gagliardo-Nirenberg inequalities . . . . . .. .. ... ... ... . ....... 47
44 Tracetheories . . . . . . . . . . 48
4.5  SUpPErposSition OPEratorS . . . . « v v v v v v v i e e e e e e e e e e e e e e e 49
4.6 Products . . . . . . ... 49
47 Gluing . . . . .o 50
4.8 Quantitative suboptimal Sobolev embeddings . . . . ... ... ... ... ... 51
4.9 Martingales and Sobolevspaces . . . . ... ... L Lo oL 52
410 Adaptedtracetheory . . . . . . . . . . . . . ... 54
411 Homotopyand VMO . . . . . . . . . . e 54

44



4.1.0 Slicing and characterization via differences

For simplicity, we only consider the case of one-dimensionalslices, i. e., givenamapu = u(xy, ..., zy),
we connectits regularity with the one of its one-dimensional slices u(x1, . . . , T 1, *, Tha1, - - -, TN),
k=1,..., N, but similar results are available for /-dimensional slices.

Theorem4.1. Let s > O be non—integer. Then

R
sy ~ uuuf’+2 [ (e ae) 1

Here:

1. tisaone-dimensional variable.

2. M is any integer satisfying M > s.

3. Theintegral in x is computed over the set {x € Q; [,z + Mte,] C Q}.
4. pu(r) == u(z + h) —u(x),and M := Op ... 00

~~ “
M times

For a proof, see [72, Section 3.5.3], [68, Section 2.3.1].
An immediate consequence of (4.1) is the following
Corollary 4.2. Let s > 0 be non-integer and 1 < p < oco. Then

N
HuHWsp RN) Z/Hu(x17"'7xk17'7$k+17"'7 )HWsp )d@ (42)
k=1
In particular, fora.e. (21, ...,2x_1) € RN"! wehave u(zy,...,2n_1,+) € W5P(R).

Here, dz; := dx ... dvg_1dzpy . . . doy.

A straightforward consequence of (4.2) and of the “converse” to the dominated convergence
theorem is the following Fubini type convergence result.

Corollary 4.3. Let s > 0 be a non-integer and 1 < p < oco. Assume that u; — win W*P(RY).
Then, possibly up to a subsequence, we have u;(z1, ..., zn_1,-) = u(z1,...,xN_1, ) In W*P(R)
fora.e. (zy,...,2n_1) € RN7L

A variant of (4.2) holds for both fractional and integer Sobolev spaces. Let u : RY — R. If
w € SN~ let w' denote the hyperplane orthogonal to w, and consider the partial functions

wh 32—, withu® (t) == u(a’' +tw), Vt € R.
Then we have the following

Proposition4.4. Let s > 0and 1 < p < co. Letu : RY — R. Then
il [ 0 Wy da'do™ o), 4
For a proof, see [58, Lemma 22].
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4.2.0 Sobolevembeddings

Optimal Sobolev embeddings are of the form W*?(Q2) — W"™1(Q2), where s, r, p, ¢ satisfy

N N
s>r>0,1<p<qg<oo,s——=1r——. (4.4)
p q

Note that we allow the value ¢ = oc.

The following result incorporates the classical Sobolev, Morrey, and Gagliardo-Nirenberg em-
beddings.

Theorem 4.5. Let s, 7, p, q, N satisfy (4.4). Then we have
WeP(Q) — WH(Q) (4.5)

with the following exceptions, when (4.5) does not hold.

(a) When
N =1, sisaninteger > 1, p=1,1<¢g<oo,andr=s—1+1/q, (4.6)
we have
WoL(Q) o WeiH1/aa(Q), (4.7)

In particular, we have

WHL((0,1)) 4 WH94((0,1)), 1 < ¢ < oc. (4.8)
(b) When
N . )
N=>11<p<oo,q=o00, and s — — = risaninteger, (4.9)
p
we have
WeP(Q) L WH(Q). (4.10)

For a proof, see, for example, [34, Appendix].

In the limiting case sp = N, we have the following substitute of the Sobolev non-embedding
WP — [ (Brezis and Nirenberg [37], with roots in Boutet de Monvel and Gabber [22]).

Theorem 4.6. Assume that sp > N. Then W*? — VMO, 1. e,

v WP —s limsup][ ][ fu(y) — u(z)| dydz = 0. @1)
5(95) 6(5’3)

e—0 2€Q.

For a proof, see, e. g., [35, Proof of Lemma 15.20].
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4.3.0 Gagliardo-Nirenberg inequalities

Consider the estimate
|| ywrsr < (22| Spres s HuHWSQ oy Y € WHPL N T/ 52:P2 (4.12)

where s1, 52,5 > 0and 1 < py, po, p < 0o are related by

s =0s1+ (1 —0)ss
1_0 N 1-46 for some # € (0,1). (4.13)
p N D2

With no loss of generality, we may assume that

S1 < Sa. (4.14)

The following condition plays an essential role in the validity of (4.12):

. . 1
spisaninteger > 1, pp =lands, — s <1 — —. (4.15)
b1

(The latter condition can also be written in the more symmetric forms, — 1/p; > so — 1/p2.)

We have the following result [32] incorporating the classical Gagliardo-Nirenberg inequalities
[47, 64].

Theorem 4.7. Let s, s1, So, p, p1, and p, satisfy (4.13) and (4.14). Then, (4.12) holds if and only if
(4.15) fails.

More precisely, we have
1. If (4.15) fails, then, for every 6 € (0, 1),
[ullwer < Nulliyer o |l e, Yu € W nwsre, (4.16)
Moreover, if s; < s < S5, then we have (in a bounded domain) the estimate
|l wer S || w)|%srm Uiy aams, Yu € WEPL QT 2P2, (4.17)
2. If (4.15) holds, there exists some u € W*Pr N W*2P2 guch thatu ¢ W*P, V0 € (0, 1).

Here is the special case of the above theorem we use the most often in this text.

Corollary 4.8. The embedding

WP N L® — W0 v < g <1,

and the corresponding estimate (4.12) hold, Vs > 0,V 1 < p < oo, except when s = p = 1.
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4.4.0 Tracetheories

We consider, to simplify the presentation, only maps u : R — R. In order to obtain the corre-
sponding results on domains, either we extend maps from domains to RY, or we work directly in
domains and then deform the domain {(z,¢); 0 < ¢ < &g, x € Q, d(x,0) > €} to the cylinder
) x (0,&0) (as explained in the proof of Proposition 0.4). The classical results presented here are
due to several authors, including Gagliardo [46] and Uspenskii [73]. For the proofs, see, e. g., [18
Section 7], [59], [35, Lemma 15.47].

Let u : RY — R, p be a standard mollifier, and set U (z, €) := u * p.(z), Vo € RY, Ve > 0.

We first present trace theory in weighted Sobolev spaces.

Theorem 4.9. (Inverse trace theory in weighted Sobolev spaces) Let 0 < s < m, with s is non-
integer and m integer. We have, with C' = C'(m, s, p, N),

Z / / ePm=9=19o1 (1, ) [P dedx < Clullyep, Yu: RY — R. (4.18)
ja=m B
Theorem 4.10. (Direct trace theory in weighted Sobolev spaces) Let 0 < s < m, with s is non-

integer and m integer. Let V € C*°(RY x (0, 00); R). We have, with C' = C(m, s,p, N),V0 <
£<1/2,

V()i < C Z/ / 5p(m‘5)‘1|8“V(x,5)|pdedx+C||V||§,,(RNX(O’1)). (4.19)

Moreover, if the right-hand side of (4.19) is finite, then the limit v := lim._,, V (-, ¢) exists in
W$P and satisfies

fully., <€ 3 / /O M9V (2, €) P deda + OV o1 (4.20)

|laj=m

We next present trace theory in fractional Sobolev spaces. (The two theories coincide when
s + 1/pis an integer.)

Theorem 4.11. (Inverse trace theory in fractional Sobolev spaces) Let s > 0 be non-integer. We
have, with C' = C(s,p, N),

U wss1mn< Clulwer, Yu: RY — R, (4.21)

Theorem 4.12. (Direct trace theory in fractional Sobolev spaces) Let s > 0 be non-integer. Let
V e C*(RY x (0,00); R). We have, with C' = C(s,p, N),V0 < e < 1/2,

IVl < ClVIwst1ma+ClIV ] o @ x0,1))- (4.22)

Moreover, if the right-hand side of (4.22) is finite, then the limit u := lim._,, V' (-, €) exists in
W*P and satisfies

||U||Ws,p = C|V|WS+1/P47+C”VHLP(RN><(0,1))' (4.23)
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4.5.0 Superposition operators

Given®: R - Randu:Q - Rr®:R” - Rfandu: Q — RM), set

F(u) == ®ou. (4.24)

Here are the results on the continuity of F' we rely on.

Theorem 4.13. Assume that  is Lipschitz. Let 0 < s < 1,1 < p < oo. Then F (given by (4.24)) is
continuous from W*? in itself.

The non-trivial part of the above result is continuity. For a proof when s = 1, see Marcus and
Mizel [55]. For the case 0 < s < 1, see, e. g., [14, proof of (5.43)]).

Theorem 4.14. Let s > 1and 1 < p < co. Let m denote the first integer > s. Let € C™. Then
F (given by (4.24)) maps W5 N L* into W*? and is continuous in the following sense:

ifu, — win W*? and ||u,||p~< C, then ®(u, ) — ®(u)in W*P.

For an elementary proof of the above result for arbitrary s, see Escobedo [45].

Theorem4.15. Lets > 1andlet1 < p < co. Let m be the least integer > s. Let ® € C™(RM; R¥)
have bounded derivatives of order < m. Then, for every u € W*P N WLs(Q; RM), we have
F(u) € WP(Q; R¥). In addition, F' (given by (4.24)) is continuous from W*? N W15 to W*P,

For a proof, see [29]. (The result there is stated for p > 1, but exactly the same proof applies
when p = 1.) See also Maz’ya and Shaposhnikova [57].

Corollary 4.16. Let 0 < s < 00,1 < p < oo. Ifeithers < lorsp > N, then ¢ — €' acts
continuously from W*?(Q; R) to W*?(Q; Sh).

Proof. When s < 1, this is a special case of Theorem 4.13. When s > 1, by assumption we have

sp > N, and in this case we rely on Theorem 4.15 and on the Sobolev embedding WP — WP,
QED

4.6.0 Products

The most used product property of the Sobolev spaces is that WP N L* is an algebra, in the
following sense.

Lemma4.17. Lets > 0,1 < p < oco. Ifu,v € WP N L™, then uv € W*? and
H’U/UHWs,pS C(HUHLooHUHW.s,p‘i‘H’UHLooHu”ws,p). (425)

In addition, the map (u, v) — wv is continuous in the following sense: if u,, — wand v,, — v in
WP and if ||uy, || Lo, ||Un]| Lo < C, then u,v,, — wv in W*P.

For a proof, see, e. g., Runst and Sickel [68].

When s > 1, the above result can be strengthened as follows.
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Lemma4.18. Let 1 < s < 00,1 < p < co. Letu,v € WP N L™, Then uDv € WP,

For a proof, see, e. g., [35, Appendix 15.12].

A refinement of Lemma 4.18 is provided by the following result [29, Lemma 6.1]."

Lemma 4.19. A couple (s, p), with s > 0and 1 < p < o0, is regular if eitherp > 1orp = land s
is not an integer.

Let (s1,p1), (S2, p2) be two regular couples such that s; > s, and s1p; > sops. Let 1 < r < 00
be defined by

1 1 S92

r D2 51291'

If fe WsePr N L>®(Q)and g € L5272 N L7(Q), then fg € W*2P2(Q).

4.7.0 Gluing

We have the following straightforward versions of the Brezis-Lieb lemma [27].

Lemma4.20. Let f € W*P((2). Consider a bounded sequence of maps f; € W*P(2) such that

lim Uy supp fx|= 0.
Jj—o00

Then

|f + fj 5[/87?: ‘f’léVs,P—i_Uj 5{/5;?"’_0(1) asj — 00,

Lf+ filly, = AU, + 1LF515 + o(1) as j — oo.
Lemma 4.21. (Multi-sequences Brezis-Lieb lemma) Let f € W#®P(2). Consider m bounded se-
quences (fj1),...(fjm) C W*P(Q) such that

lim [Uy; supp fii|= 0, V4,

j—o0

| filbren< Ci, V4, Vi,
1 f54llb < Di, V3, Vi

Then there exist j1, . . ., j,, such that
[t Fa o L liven < [ ont2(Cr+ -+ Con),
\fivat -t Finmlren < | florent2(CL + ... + Cpy),
I£ 5 Fia 4+ Frmlls < LI+ 2(D1 + ..+ D),
I fiia+ -+ fjm7m||§ <2(D1+ ...+ Dy).

In view of the applications, let us note that, in Lemma 4.21, the indices j; may be chosen in-
ductively with respect to k.

"The result in [29] is stated for 1 < p1,ps < oo, but the proof there is valid for all regular couples.
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4.8.0 Quantitative suboptimal Sobolev embeddings

In view of the applications we consider, we work here in the unit ball 2 (for some norm | |in RY)

and with less than one derivative, but what follows can be adapted to any domain and to higher
order spaces.

Consider parameters satisfying

N N
O0<a<s<l,l<p<oo,l<g<o0,a——<s——,p<t<o0. (4.26)
q p
When a = 0, set
[ulwoa(s, ()= ||u— 7[ !
r(@) LB, (x))
Lemma 4.22. Assume (4.26). Set
1 1
ﬁ::s—a—N(———)>0, (4.27)
p q
U:={(xz,r); x €Q,r>0, B.(x) C Q}. (4.28)

Then (with the obvious modification when ¢ = c0)

|u|€va,q(gr(x)) dxdr e
g | S lubwer Ve Qo R (4.29)

Proof. Letaw < o < s be such that

1 1
7:20—04—N(———> > 0.
p q

By Sobolev’'s embedding, Poincaré’s inequality, and scaling, we have

\ulwea(s, @) < 77U werB,(2)), ¥ (z,7) € U. (4.30)

The choice ¢ = s yields (4.29) for t = oo. It thus suffices to obtain (4.29) when t = p; the
general case will follow via Holder’s inequality. For this purpose, we note that, with @ < o < s as
aboveand ¢ := f — v = s — ¢ > 0, we have (using (4.30))

|U|Waq By(x)) dxdr u(z)[P
/ rN+1 ~/ 7"5P+N+1 // \w — z|N+ dwdz dxdr
// |p // ! dxdr dwd
xdr dwdz
02 |w — Z|N+ap (I P)EU: 20€ B (@) r5p+N+1
|P
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|p/
dr dwdz
//92 |w—Z|N+Up lw—z|/2 Td”“
u@pP ul?
02 Iw—z|N+ap+6p waz = [Ulysp- QED

We will use the following special case of Lemma 4.22 [61, Section 3.1].

Corollary 4.23. Assumethat() < s < 1,1 < p < oo,and sp > 1. Then

|u‘W0°° xy
Ty = drdy < |ulyysy, Yu: (0,1) — R. (4.31)

Proof. Settingr := |y — x|/2, z := (y + x)/2, we see that the left-hand side I of (4.31) satisfies

U oo
[</ / | ‘WOI (Br(z ))drdz.
{r B+(2)C(0,1)} ritep

We conclude via (4.29) applied witha = 0, ¢ = oo, t = p,and N = 1. QED

4.9.0 Martingales and Sobolev spaces

The framework is the one of Step 7 of the proof of Theorem 1.2. We work in 2 = [0, 1)" and with
the | ||, norm, denoted for simplicity | | For k > 0, let &7, denote the collection of dyadic cubes

of size 27% in Q. Q. denotes a generic cube in &2, and, for z € Q, Qx(x) is the only cube in &,
containing z. We let %, denote the set of the (step) functions constant on each Q. Ifu : 2 — RY,

let Ey(u) € . be defined by Ey(u)(x) := ][ u.
Qr(z)
For the next result, see [12, Proof of Theorem A.1, Step 3].

Lemma4.24. Let 0 < s < 1. Then, for each f € LP(); RY),

> 27N = BN < 1f e

k>0

We next present a variant of [12, Theorem A.1] adapted to our purposes.

Lemma4.25. Let0 < s < land1 < p < oobesuchthatsp < 1. Let ® : Q2 — [0,00) be
measurable and let, foreach k > 1, g, € Z}, g, = 0. If

[,y € Q) = ®(x,y) <> (gx(x) + 3(y)), Vi =0,VQ; € 2, (4.32)

k>j

then

[ oot dedy < S 2l (#39

k>1
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Proof. Step 1. Reduction to inequalities for step functions. Given x,y € Q, x # y, set
s(z,y) == max{k; Qr(z) = Qr(y)}, t(x,y) = min{k; |z —y|> 27"},

We note the following obvious facts: (i) s and ¢ are symmetric; (ii) if & > s(x,y), theny ¢
Qr(2); (i) t(z,y) > s(z,y); (v) 271 < |z — y|< 217H=),
In view of (4.32), in order to obtain (4.33) it suffices to prove the inequality

/ / ( ))p dvdy  _ po _ > 27 gilh. (4.34)

— Nt
|z —y[NHop Pt
Since, by Holder’s inequality, we have

(%

k>s(z,y)

k>s(z,y)

<gk<x>>)ps S ot @Y () — HPw)

k=t(x,y) s(z,y) <k<t(z,y)
it suffices to establish the inequalities

dxd

k>t(:c Y)

dxd
Jim / > (t(;c,y)_k)pg;;(x)%“_ 436

s(zy)<k<t(z,y)

Step 2. (4.35) holds for 0 < s < 1 and measurable gi’s (without the assumptions sp < 1or g, € .F;). We

have
P dy
I = E E —j+ 17 gk(x) —y‘Ndeas

k=1 1<j<k {yeQ;t(z,y)=7} |z —
DY k-j+1) / g (x) 2% dr < Zzskl’/ g (x)de = K.
k>1 1<j<k Q k>1 Q

Step 3. An auxiliary estimate. Let Q be a(ny) cube of size 27* in RV, If sp < 1, then

dxd
L= (j— // |]%+Sp < 2Up=N)k, 4.37)

>k {(z); 2€Q, y£Q; t(z,y)=5} [z —y

Indeed, the left-hand side of (4.37) does not depend on the center of the cube, and, by a scaling
argument, we have I}, = 20P=N¥ [ It therefore suffices to prove that, with Q := (—1/2,1/2)",

we have
dxdy
ZJ Tz — gV < 00. (4.38)

>0 {(zy); 2€Q, y¢Q; t(z,y)=3} |z —

For this purpose, let us note that

Hz € Q; |z|= 27! —¢c}|S e, Ve >0, (4.39)
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[z€QugQ,try)=j] = [277 <|r—y|<2"7and |z|>1/2 — 2'7]. (4.40)

Combining (4.38)—(4.40) and using, at the end, the assumption sp < 1, we find that

dxdy
n=yr | PR
{(z,y);2€Q, |z|>1/2—21-7 2= <|z—y|<21 -7} |z =yl

7>0
< ij/ . 2577 g < ijgsm'zl*j -9 ijgf(lfsp)j < oo,
>0 {z; z€Q, |z|=1/2—-21-7} §>0 >0

Step 4. (4.36) holds when sp < 1 and g, € Fy. For Qr € P, let gx(Qy) denote the value of g, on
Q. For k > s(x,y), we have y & Qi (z). Combining this observation with (4.37), we find that

) dxd
JZZ Z Z(]_ gk (Qr) //M) y|%+sp

k>1 QrePy, j>k TEQk, YEQk; t(w,y)=5} |I o

SN Q)2 =N g = -

k>1 QrEP), E>1

4.10.0 Adapted trace theory

The following result is presented, with a sketch of proof, in Chiron [38, Section 3.2]. In the state-
ment below, we impose an extra smoothness assumption on ( that makes the arguments in [38]
essentially complete.

Lemma 4.26. Let 0 < s < 1. Let k > 1 be the smallest integer such that s + k/p > 1. Let
¢ € Wetk/pe((0,1)N*F; &) N C*. Then, for every 2” € (0, 1)F,

IS, 35”) ”WSvP((O,l)N;o@) S HCHWSJF’“/PvP((O,l)N'*‘k)‘

4.11.0 Homotopy and VMO

We consider two closed embedded Riemannian manifolds, .# C R¥and .4 C R.

Lemma 4.27. Let u;,u € C(.#; /) be such that u; — win BMO and L. Then, for large j, u;
and u are homotopic in C(.#; N).

Proof. Given a continuous map v : .# — R’, set vy := v and, for small e > 0,
vie) = o) dy
()
By the proof of Lemma 0.6, we have

d(ve(x), N) < sup ][ ][ v(2)| dwdz. (4.41)
yeM = (y) <(y)
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Let 0 > 0 be such that the nearest projection on ./#” is continuous on the j-neighborhood .45
of 4. By (4.41) and the continuity of v, there exists some &, such that

d(us(z), V) <0/2,Vx € M, Ve < &y. (4.42)

On the other hand, since u; — w in BMO, there exists some jj such that

sup][ f lv(w) —v(2)|dwdz < 6/2,Vj = jo,Vy € M, Ve < ey. (4.43)
ye€M J Be(y) J Be(y)

Combining (4.41)-(4.43), we find that, for j > joand 0 < ¢ < ¢, (u;). and u. take values into
Ns.
LetII : .45 — .4 be the nearest point projection. Then, clearly, the map

0,e0] €= 1lo[(u)):] € C(A;.N)
is continuous, and therefore u; and IT o [(u;).,] are homotopic. A similar conclusion holds for w.
On the other hand, since u; — win L', we clearly have IT o [(u;).,] — II o [u,,] uniformly, and
thus, for large j, we have

uj ~ 1o [(ug)e,] ~ o [ug] ~ u. QED

Corollary 4.28. Let s, p be such that sp > dim .Z. Ifu;,u € C®(A; 4 ")and u; — win W*?
then, for large j, u; and u are homotopic in C'(.4; .A").

Proof. It suffices to combine Lemma 4.27 with the continuous embeddings W*? < VMO (Theo-
rem 4.6) and W$P — L1, QED

5 Appendix # 2. Standard examples of maps in Sobolev spaces

Contents
51 Characteristicfunctions . . . . . . . . . . ... Lo 55
52 Power-type functions . . . . . . . . . ittt e e 56
53 Homogeneousmaps . . . . . . . . v ittt it e e e e e e e e e e e 57
54 Gluingmaps . . ... e 60
55 Thedipole construction . . . . .. . ... ... 62

5.1.0 Characteristic functions

Lemma5.l. Let0 < s < land1 < p < ocobesuchthatsp < 1. LetQ := (0,1)Y and Q :=
(0,1)¥=1 x (—1,1). Then ¢ := x¢ belongs to W*P(Q).

55



Proof. Inview of Theorem 4.1 (applied with M = 1), the conclusion of the lemma is equivalent to
the straightforward fact that

0 1
1
/ / dedy<oo,v0<a<l (51)
-1J0 -

Lemma5.2. Lets > Oand 1 < p < co. Let w be a non-empty smooth relatively compact domain
such thatw C Q. Then ¢ := x, € W*P(Q)) <= sp < 1.

Proof. If we straighten the coordinates around a point of Ow, we find that, up to a constant factor,
the left-hand side of (5.1), with ¢ := sp, is a lower bound for ||} ,. When sp > 1, this implies
that p & W*P,

Assume next that sp < 1. Let (U;) be a finite covering of {2 such that, for each j, we have
either ¢ = 0in U}, or there exists a bi-Lipschitz diffeomorphism ®; of (0,1)V~! x (—1,1) onto
U, such that ¢ o ®; = ¢y (with ¢ as in the previous lemma). For any such j, we have p o ®; €
WeP((0,1)N=1 x (—1,1)) (and thus ¢ € W*? in U;). Finally, we have p € W*?(U;) for each j,
which implies that ¢ € W*P (). QED

5.2.0 Power-type functions

Lemmas.3. Let Q2 := B;(0) C RY. Let @ > 0 and set () := Vz e Q\ {0}. Then

1
|z
e WP(Q) <= (a+s)p < N. (5.2)

Proof. If sis an integer, the conclusion is clear. We may therefore assume that s is not an integer
and that o < N (the latter condition is equivalent to u € L'). We rely on Theorem 4.1. Before
going further, let us note that, since the specific ¢ we consider is smooth outside the origin, we
have p € W*? if and only if the double integral in (4.1) considered over the larger set [—1, 1] x
is convergent.

We use (4.1) with an integer M satisfying, in addition to M > s, the condition

(o + M)p > N. (5.3)

For simplicity, we drop the subscript j in ;. Using the homogeneity of ¢, we find that 6 o (z) =
1
——0Mp(z/t). Hence,

]
| —(ats 1M
1_/¥L ﬂ+ * ddt ] =1 5M ()P dydt. 5.4
- 1( 1/¢(0

“ <= " Assume that (o + s)p < N. In this case, we show that / < co. Indeed, we have

1
1g2/thﬂW1ﬁ/|g%@w@,
0 RN
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Note that the assumption on « implies that [} tN~(*+"1dt < oc. On the other hand, we

have [,x |62 o(y) P dy < oo, since |6} o (y)|~ at infinity and |6M |” has integrable sin-

|y|a+M

gularities. (These singularities, located at y = 0, —e, ..., —Me, behave like |z|~*?.) This proves
« ¢ 7’.

“ — ” We note that (5.4) implies that

1
I> 2/ / Nt =1 §M o (1) P dydt = oo.
0 JB1(0)

Here,we use the fact that /
B1(0
tion). QED

16 (y)|P dy > 0 (since ¢ is not a polynomial in the e direc-
)

Remark 5.4. For a different approach, see the proof below of Lemma 0.1 b).

5.3.0 Homogeneous maps

By repeating the proof of Lemma 5.3, we obtain the following result.

Lemmas.5.
a) Letu(z) := |£|,Vx € R?\ {0}. Lets > 0,1 < p < oo. Then, u € W*? (B,(0)) if and only if
x
sp < 2.

b) More generally,letk € {1,..., N} andlet

W RY S RE, u(an, o) = LT G RN (10} x RNRY,

(21, )]
Then, u € W*P?(B;(0)) ifand only if sp < k.

c¢) Even more generally, let v : S¥~! — R’ be a smooth non constant map and

N ko ) = (z1,- -, my) " N N—k
w:RY = R w(zq,...,xy): <—|(x1"”’xk>|>,v e R™\ ({0} x R™ 7).

Then, v € W*?(By(0)) ifand only if sp < k. In particular, Lemma 0.1 a) holds.

A more general result is the following

Lemma5.6. Let U be a neighborhood of 2 and let S be a d-dimensional submanifold of U, with
d< N —1.Letu € C=(U \ S) satisfy

|Du(z)|< Cy[dist (z,9)] " £=0,....N —d, Vo € U\ S. (5.5)

Then, ujo € W*P(§2) provided sp < N — d.
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Proof. We consider only the more complicated case where d < N — 2. Without loss of generality,
we may assume that sp > N — d — 1. Furthermore, we may also suppose that s > N —d —1, and
thus N —d—1<s < N —d(since sp < N —d). Indeed, if s < N —d — 1, fixany § € (0, 1)
such that

andletr := s/ > N —d —1,and ¢ := pf > 1. From the Gagliardo-Nirenberg embedding
Wi L® — W*P (see Corollary 4.8), and the fact that ujo € L> (by (5.5) with ¢ = 0), it
suffices to prove that uj, € W"9. Thus, as claimed, it suffices to prove the lemma under the extra
assumption s > N — d — 1, which impliesthat N —d -1 <s < N —d.

Letm := N —d—1andwrite s = m+ o, with 0 < o < 1. The assumption sp < N — d reads
(m+o)p <N —d.

We set d(z) := dist (x,.S). Since S is d-dimensional, we find that

1
/dq()dx<oo Vi<g< N —d. (5.6)

We next invoke the following well-known result.

Lemma5.7. Let S be a d-submanifold of the open set Q C RY, withd < N —2. Letu € C1(Q2\ 5)
be such that Vu € L (). Thenu € W21 (Q).

loc

Proofof Lemma 5.6 continued. Combining (5.5) with (5.6) and Lemma 5.7, we find that D/u € L?(Q),
j =0,...,m.It remains to check that

[D™u(z) — D™u(y)[”
/Q/Q =y dxdy < oo. (5.7)

For this purpose, we note that, with constants depending on u but not on x or y, we have:

T — T —
|D™u(x) — D™u(y)|< C max {a‘lmﬂé‘), a‘lm“(yy‘) } : (5.8)
1 1
D™ - D™ <C , . (5.9)
) = Dl O { s s |
We split
D™u D™ p
[t =,
where

I::// ...,J:://
lz—y|<d(y)<d(x) d(y)<min{d(z), |z—y|}

58



Using (5.8) (respectively (5.9)), in order to estimate [ (respectively J), we find that

// [D™ufz) = D u(y)f” dy < // |z =y~ NP dndy
S T Weyicawza@  AT(Y)
+ // dx dy
d(y)<min{d(x), lo—y[} 1T — Y|V TPA™P(y)

< 1 d
S | amren(y) WS 0O

by (5.6) (since mp + op < N — d). QED

Remark 5.8. In Lemma 5.6, when d < N — 2, the assumptions on u can be weakened to u €
CN=4(Q\ S) and |DN~y(x)|< C[dist (x, S)]¢N.

Remark 5.9. The conclusion of Lemma 5.6 is still valid under the weaker assumption that S is
a finite union of d-dimensional submanifolds. This has the following important (for us) conse-

quence: the class %, defined in (2.1) satisfies Z, — W"™4(Q; A7),V r, gsuchthat |rq| < N—{(—1.

Remark 5.10. When s = 1, the above result (or versions of it) can be proved using more elemen-
tary arguments; see, e. g., [30, Lemma 2.15] for the following version of Lemma 5.6.

Lemma5.1l. Let 1 < 7 < oo. Assume that N > 2 and let U C R” be an open set. Let K be a
closed subset of U such that /N~ (K) = 0. Letu € W' (U \ K) be such that Jonge | Vul" < .
Then u € W, (U) and the Sobolev gradient of u is the Sobolev gradient of u i -

loc

Proof of Lemma 0.1 b).

“ <= ”Case s < 1. By Lemma 5.3, we have ¢y € W**¢ and thus also u € W+, for small
¢ > 0. By Corollary 4.8, we find that u € W*?,

Case s = 1. The conclusion follows directly from Lemma 5.3.

Case s > 1. By Lemma 5.3, we have o € W*? N WP, We conclude via Theorem 4.15.

“="Case s = 1. We have |Vu|= |Vp|~ |z|*1in Q\ {0}, and the conclusion is clear.

Case s > 1. By Corollary 4.8, we have u € W*P, and thus (as in the case s = 1) we find that
(a + 1)sp < N. On the other hand, by differentiating the equality u = e'¥, we find that Dy =
—uDu. Lemma 4.18 implies that Dy € W '», and thus ¢ € W*P. Lemma 5.3 implies the
second condition, (a + s)p < N.

Case 0 < s < 1. This case is more involved. Setting

7’1, T?u / / 8 <y) 3 (510)
S(0,r1) 07‘2 |x_y|

we have, with 5 := N + sp, using the changes of variables t = r{%, 7 = r, %, Lemma 5.12 below,
and the factthat N — g+ p > 0,

1 r1
lfyes=2 [ [0S = 12, B) dradry
0 JO
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oo oo

|ez7— . ezt|p[<t—1/a7 7_—1/cy7 ﬂ)T_l/a_lt_l/a_l drdt

t+1
‘6” . ezt’ptf(Nfl)/a(tfl/a . 7_71/04)Nf,Bflel/afltfl/ozfl drdt

2

Sy ey ey ey ey

8

NV

t+1
(7_ o t)pt—Q—(N—i-l)/a(t—l/a . T—l/a)N—B—l drdt

i

t+1

4%

t+1
(1 — )N Btp-1y=(N=5+1)-@N=)/a g gy

3

3
— S S S —

e}

~(N=B+1)~(@N=B) /o gy

v

Therefore, the exponent of ¢ in the last integral above has to be < —1, and this amounts to
(v +1)sp < N. QED

Lemma5.12. Fix 5 > 0. Forry < 1 < 2r;, we have

I(ri, 79, B) 2y My — o)V PN

Proof. Writer; = (14 1t)ry, with 0 < ¢ < 1. By scaling and invariance with respect to isometries,
we have

I(ry,ry, 8) = onry vy PTLI(E, ), (5.11)
where

o dA#AN 1 (x)
J(t.8) = /SN_l |z — (1 +t)en|?

Write x = (2, xy). We have, using the factsthat¢ < land 1 —v1 — s? <twhen0 < s <t < 1,
and the change of variable 2’ = ty/,

! !
J(t, ) 2/ , dx 2/ , dx
wi<t [(@ 1+t —vV1—22)"  J= |2, 1+t = V1 —2?)|?

de’ n_gy dy’
= T o b (TEEIEL
jwr|<t | (2, 21)] i<t (Y, 2)]
so that, by (5.11),
I(ry,m9,8) 2 r) " hry NI = N (g — )N QED

54.0 Gluing maps

Lemma5.13. Let7 : & — ./ be a covering. Fix some z € .4” and let .J be at most countable such
that 71 ({z}) = {t;; j € J}. Then there exist: points z; € Q, radiir; > 0, j € J, and maps
Cj : BQ,«]. (.I‘]) — & such that:
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(i) The balls Bs,,(,,) are mutually disjoint and contained in €2.
(i) ¢ € C(Bar, () \ {z;})-
(i) ¢; = t;in Boy,(z;) \ By, (z;).
(iv) ¢ & W*P(Bay,(75)).

_ Jmo(;, in By, (x;) N
(v) Themapu := {27 inQ\ U, Bay. (1) belongs to WP,

Proof. We consider only the non-compact case where J = {1,2,...}. We will construct induc-
tively a sequence of maps (u;) such that its weak limits has all the required properties. Start with
ug := z. Assume that we have constructed (;, satisfying the above properties for J = {1,..., k},
we construct ;1. Consider a point xy 1 € '\ Ujgkggrj (z;). Lety = 7, ,, be asin Lemma 7.3.

We fix A : [0,00) — [0,00) suchthat A\(§) = 0if 6 < 1and \(f) = 1if 0 > 2. Let a be asin (1.7).
Let 0 < € < 1 be be fixed later, and set

Ye(w) =y o A(e/|r = 2k ])*), V& € Bae(k11),

extended with the value ¢, outside By. (7). Clearly, 1. is smooth in RY \ {z;,,}. If we set
v, := 7o, thenv, — z € C°(RN \ {x;,,}) and is supported in B.(x)1).

We claim the following:

. & W*P(Boe(xp41)), Ve >0, (5.12)
|ve = 2|lyys — Oase — 0. (5.13)

Taking temporarily for granted the two above properties, we conclude as follows. By (5.13) and
Lemma 4.20, for sufficiently small ¢ we have |Juy + v. — z||W » < |ukllyer + 27F. We complete
the proof via a straightforward inductive process, by setting uy1 := ug + v — z.

Proof of (5.12). Assume, for simplicity, that 2,1 = 0. If |z|< 27V, then \((¢/|z|)*) = 1.
Therefore, with r := 2-1/%¢, we have

€/|fv!) ) ((e/1y)*)”
W}E Ws:p = /T 0)/r dl’dy

y|N+5p

|(e/lzD)™ = (/lyD))P
dzdy = oo
/r 0)/r |z — y|Ntsp Y

where we have used successively Lemma 7.3, (1.7), and Lemma 5.3.

Proof of (5.13). By construction, y is 1-Lipschitz. We find that |V, (7)|< €% /|x|*T!, and therefore
IVY.|,, — Oase — 0. Therefore, 7 0 9. — 2 — 0in WH*?(R") as e — 0. Since the 1.’s are
uniformly bounded, we conclude via the Gagliardo-Nirenberg inequality (4.12). QED
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5.5.0 Thedipole construction

We describe and analyze here the dipole construction of Brezis, Coron, and Lieb [25], in a form
and functional setting adapted to our purposes.

Lemma 5.14. (Dipole construction, unscaled version) Let:
1 N > 2.
(i) a € SV-L.

(i) f € C>([0,1];[0,1]) be such that f(0) = f(1) = 0, f/(0) > 0, f(1) < 0, and f(6) > 0,
Vo e (0,1).

(iv) v € C°(RN~1;SV-1) be such that v(z) = aif |z|> 1/2 and degv = 1.

Set,for0 < e <1,

w (. 6) = {v (gf(/e))’ ifd € (0,1)

if6 ¢ (0,1)
Then
. € Xy, Ve, (5.14)
[uc s < 1, VO < s <00, 1 <p<oosuchthatsp =N —1, Ve, (5.15)
Ju. = Cn(8 — 6, ) in Z'(RY), Ve, (5.16)
supp(u. —a) C {(2/,0) e RY;0< 0 < 1,|2/|< ef(0)}, Ve. (5.17)

Proofwhen N > 3. We present the proof when N > 3. As we will see, it relies on a Gagliardo-
Nirenberg embedding that fails when N = 2. For a full proof (including the case N = 2), see
[14, 18].

Step 1. Preliminary remarks. Property (5.17) is clear. It is also clear that u. is smooth except at 0 and
en. Moreover, we claim that deg(u., 0) = 1 (and, similarly, deg(u., ey) = —1). Indeed, let§ > 0
be small. By a homotopy argument, deg(u., S5(0)) = deg(ue, {z € RY;|z|, = d}), and the
latter number is 1, by the definitions of v and u..

The claim, combined with (3.2) and the fact that, as we will see, u. € %, implies (5.16).

Step 2. The main estimate and conclusion. Set V. := {(2/,0); 0 < 0 < 1,|2'|< f(0)}. By a tedious
calculation, using the fact that |2' /(¢ f(6))|< 1 when = € V, we find that
1 1

a af / /
b Oy e (@ ’9)‘ S JeTflel8(g) = Zlelt8 flalth(g)’ V(@' 0) € Ve. (5.18)

On the one hand, using (5.18) and the assumptions on f, we find that u. € %,. On the other
hand, (5.18) implies that, for 1 <k < N — 1,

1 1
DFu (z)| dx < / dz'do ~ 5N_1_k/ N=1=k(9) do < 1. (5.19)
Lpwwiirs [ S )
In particular, (5.15) holds when s = N — 1. By the Gagliardo-Nirenberg inequality (Corollary
4.8) and the fact that N > 3, we find that (5.15) still holds in the full range given in (5.15). QED
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By scaling, Lemma 5.14 implies the following result.

Lemma5.15. (Dipole construction, scaled version) Let N, a, f, v, s, p be as above. Let A, B € RY.
Set& := (B — A)/|B — Aland H := ¢+, oriented by an orthonormal basis (e1, ..., ex_;) such
that (e1,...,en_1,&) is a direct basis of RY. Let R be an orientation preserving linear isometry
from H toRY~!. Writeapointz in RY asz = 2/ + ¢, with2’ € Hand# € R. Let L := |B — A|
and set, for0 < e < L,

Ha'
/ T _r/n/T) | I 7L
vt vo0— " (om0 e0n.
a, ifo & (0,L)
Then
Ue € ‘@07 v&f, (520)
[ue| Py S L, VO < s < 00,1 <p<oosuchthatsp =N —1, Ve, (5.21)
Ju. = Cn(04 — 65)in Z'(RY), Ve, (5.22)
supp(u. —a) C {(2' +0¢) e RYN;0 <0 < L,|2'|< Lef(0/L)}, Ve. (5.23)

We next explain how to “make room” for inserting a dipole into an already existent map u :
O — sV

Lemma 5.16. (Making room when u is locally smooth) Let N > 3. Let0 < s < N — 1 and
1 < p < oobesuchthatsp = N — 1. Leta € S¥1. Let v be a smooth simple compact curve in
RY. Letu : RY — SN~1 be smooth in an open neighborhood U of 7. Fix 6, ;1 > 0. Then, for small
e > 0, there existsamap @ : RY — SV~ such that:

a) u(z) = u(x)ifd(z,y) = 0.
b) t(x) = aifd(z,) < .
c) ue C>®U).

d) ’a - u|Ws,p g ILL.
Similarly in the neighborhood of a finite union of smooth simple compact curves.

Proof. Step 1. Making u constant near its endpoints. Assume, for simplicity, that the origin is an end-
point of . Let ¢ € C*°(R; [0, 1]) be such ¢(f) = 0if§ < 1/2and p(f) = 1if# > 1. Letting
u(x) := u(p(|z|/e)x), it is easy to see (using the assumption that u is smooth) that, for small ¢,
U satisfies a)—c) with + replaced by 0, and, in addition, || DV ~(@ — v)|| , = Oase — 0. By the
Gagliardo-Nirenberg inequality Corollary 4.8 (recall that N > 3 and that u is bounded), we find
that d) holds as well.

Therefore, in what follows, we may assume that u is constant near the endpoints of .

Step 2. Construction of . and conclusion. Since N > 3, the set u(y) U {a} is contained in the interior

of a closed spherical cap ¥ # SV~1. By a standard argument, there exists a smooth map H :
¥ x R — ¥ such that
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(i) H(z,0)=a,VzeX Vo< -3.
(i) H(z,0)=z,Vxe X, Vo> -2
(i) H(a,0) =a, VO € R.

Set, for small ¢,

() = Ju@), if d(x, ) > £
u(ﬁ)_{H(U(fc),1n(d(x,’v))/!1ne|), ifd(z,7) <e - (5.24)

Clearly: (j) the definition is consistent when € < d(z,~) < ¢, thanks to the property (ii) of H;
(Gj) 2)—¢) hold. Noting thatu — u — 0in L?ase — 0,V ¢ < oo, in order to verify d), it suffices to
prove that, with V. := {x € RY; &3 < d(x,v) < &%}, we have

[l v-11qr,y < Clu) (e, D’%HLI(%) <Cu),¥0<e<1,Vi<k<N-—1), (525

[aillysv-i 1y = O G || DV woryyiyy = Oase =0, V1 <k <j<N-—1), (526)

(Ve)

then conclude via Gagliardo-Nirenberg. In order to prove (5.25)—(5.26), we note that: (i) thanks to
the assumption that u is constant near the endpoints of A and B of -y, we may replace V. with the
smaller set

V.= {r eV |z —Al= A\, |x — B|= \},

for a fixed small constant ; (ii) in V., we have |D*(d(z,~))|< [d(z,7)]**, Vk > 0. Combining
these facts with the definition (5.24), we find that

|DFi(z)|< ~VaeeV, Vk> 1 (5.27)

1
|Inef[d(z,7)]
Integrating (5.27), we find, with the help of the coarea formula, that

N=l=dk /llnel?. ifgk < N — 1
kx4 . < )€ /‘n€|71q
HD UHL‘Z(VS) ~ {1/’1115‘11—1’ iqu =N —1"

whence (5.25)—(5.26). QED

Lemma5.17. (Making room near a singular endpoint (1)) Let u : RY — SV~1, Let:
1 N > 3.

() 0<s<N-—-1,1<p<oosuchthatsp=N — 1.

Let v be a smooth simple compact curve in R". Assume that 0 is one of the endpoints of 7, and
that7/(0) = ey.

Set, for o, 8 > 0,

Wap ={z=(,2ny) ERVI' xR, 0 <y < a, |2/|< By} (5.28)
Assume that:
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(i) Thereexista > 0,5 > 0,and a € SV~! such that

u(x) =a, Vo € Wyp.
(i) u is smooth in an open neighborhood U € RY \ {0} of v \ {0}.

Fix d, 1 > 0. Then, for small e > 0, there exists a map % : RY — S¥~! such that:

2) @i(z) = u(x) ifd(z,7) > o.
b) @i(z) = aif z € Wanz .

Q) U(x) = aifz & Wy s and d(z,7) < 22,
d) @ e C=(D).

&) U — ulys, < p

Sketch of proof. The proofis essentially the same as the one of Lemma 5.16, with, as additional in-
gredient, the use of property (iii) of the homotopy H. The definition (5.24) has to be modified
to

u(x), ifd(z,v) > c?andx & Wo3.5/3
u(z) = < H(u(z),In(d(x,v))/|Inel), ifd(z,v) <candax & Wa/ss/3 -
a, ifr e Wa/gﬁ/g
Details are left to the reader. QED

Lemma 5.18. (Making room near a singular endpoint (2)) Let:
(i) N >3anda e SN

() 0<s<N-—-1,1<p<oosuchthatsp=N — 1.

(i) p > 0.

(iv) uw: RN — SN,

Assume that, in the unit ball B, u belongs to %,. Let 0 < § < 1 be such that u is smooth in
Bs(0) \ {0}. Then there exists some map @ : RY — SV~ such that:

a) U =uinRY\ Bs(0).

b) @ is smooth in Bs(0) \ {0}.

c) deg(u,0) = deg(u,0).

d) Thereexist o, § > O such that u(z) = a,Vz € W, g (with W, g as in (5.28)).

O [l — ully < .
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Similarly for .4 -valued maps, provided we replace conclusion c¢) with “@ and u are homotopic
on small spheres around the origin”.

Proof. We write points in RY \ {0} in the formx = ro,r > 0,0 € S¥~!. Consider a map
w € C=(SN~1 SN1) of degree deg(u,0) and such that w = a near the North Pole ey. Let
H e C°(SN~1 x (=00, d]; S¥1) be such that:

(i) H(o,r)=u(ro)ifd/2 <r <4.
(i) H(o,r) =w(o)ifr < /4.
Let, for small ¢,

N R u(z), ifr >¢ed/2
(x) = i(ro) = {h;((g) rle), ifr < ;5/ :

Note that: (j) the definition is consistent when £§/2 < |z|< £6; (jj) a)—d) hold. Next, we note
that

D@ — ) (2)] < ﬁ when k > 1 and || < £5/2. (5.29)

Integrating (5.29), we find that & — u||;yn—1,1 — 0ase — 0. We conclude via the Gagliardo-
Nirenberg inequality. QED

A similar argument leads to the following
Lemma5.19. Let:
(i) €y afinite grid of cubes in RY.
() 0<s<1,1<p<oosuchthatsp < N.
(iii) g : €n_1 — A aLipschitz function.

Assume that, for each cube C' € €, gjac : 0C — A" is null homotopic. Let f : €n — 4 be the

(N — 1)-homogenous extension of g. Then there exists a sequence (f;) C Lip(%;.4#") such that
fi — f in W#P,

Sketch of proof. We work with |z|:= ||z|_. Let 0 be the size of the cubes in €. Fix some point a €
. Consider, for each cube C; € €y of center X, a homotopy H; € Lip(51(0) x (—o0, d]; .A4")
such that:

@) Hj(o,r)=g(X; +d0/2)if0/2 <r <é.
(i) Hj(o,r) =aifr <4/4.
Let, withe; smalland z € C; € €y,

Y J9(X;+00/2), ifed/2<r<§
[(Xj+ro)= {Hj(é, r/e), ifr <ed '

The fact that, for fixed arbitrarily small 4 > 0, may choose the ¢,’s such that If = fllwer< p
follows from the multi-sequences Brezis-Lieb Lemma 4.21. QED
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6 Appendix # 3. More on homogeneous maps

For the next result, we use the notation in Section 2.2. Let W = ¥, . : RN — 4; = 4}, . be the
projection on the j-skeleton of size 2¢ of R obtained from €y ;.. Setv :=t + (e,..., ).

Lemma 6.1. The mapping ¥ : RN \ €y_;_1,. — %, is locally Lipschitz, and satisfies, with C
independent of € and ¢,
Ce

fora.e.z € RV, (6.1)
(% %N—j—l,v,a)

V¥ (z)|<
V()<
Sketch of proof. By scaling, we may assume that e = 1and ¢ = 0. In this case, ¢ := Gn_j_1,,1 15
given by

¢ = {x € R"; atleast (j + 1) coordinates of = belong to 27" }.

For further use, let us also note that, if 2V € Qy, with |21|> -+ |[an_|= |zm|, VM > N — 4,
then

d(z™ + 2k, €) = min{|z,,|; m = N — j} < |on_|, Vi € 2Z". (6.2)

Leto € Sy_jnv:={f:{1l,...,N—j} = {1,...,N}, finto}and 7 € {—1,1}V 7. Set

Spr = {2V € Qy; |To)|= - = |Tov_i)|= |Tm], VM € o({1,...,N = j}),
and 7,2, > 0, V1 <m < N — j}.

If 2N € Sy, \ € and k € Z", then

\IJ($N + 2]{‘) = 2]{‘ + (7’1, Ce ,TN_j, I'N—j—i-l/xN—ja Ce ,QTN/QZN_]'), (6.3)
and a similar formula holds for a general o € Sy_; v.

Using (6.3) and its analogues, one can easily prove that ¥ is continuous on RY \ . On the
other hand, the sets S, ; form a polyhedral a.e.-partition of (); and, in the interior of Sy , and for

k € Z" we have (using (6.3) and (6.2))

1 2] 1 1
(N +2k)|< <
VEETakls D < *(a:N_»Z)N|mN_jr£d<xN+2k:,<5>

m>N—j |2y

(and similar formulas hold in each S, ;). Combining (6.3) and its analogues, we obtain (6.1). qep

For the next result, we are in the context of Proposition 2.7, and we use the notation there.

Lemmaé.2. Let 1 < p < j + 1 < N. Assume that g € W?(%}; R®). Then we have

19i 170y = Cllgllzos,): (6.4)
|gj|€vl,p(cg)£ C’g’a/l,p(%’j)' (6.5)

Equivalently, the map W'r(6;) > g — g; € W'P(%) is continuous.
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Proof. By astraightforward induction argument, it suffices to prove that (with the notation at the
beginning of the Section 2.2) the map h := H;,(g) satisfies

Wiy < Cllolo, 6.6
|h|€V17P((@”J+1)£ C|g|€‘/l,p((g])‘ (6.7)

The validity of (6.6) on each cube € € €1, and thus on &, is clear (here, we use p < j+ 1).
We next check (6.7) first “cube by cube”, next globally. Fix first a cube € € €4, of center Og.
When go¢ is Lipschitz, we find that A is locally Lipschitz in € \ {O¢}, and |VA(z)|< 1/d(z, O¢).
Moreover, we have [Vh(z)|~ |Vg((x — 0¢)/(2|z — 0¢|)), Vz € €. We find that h € W'?(€) and
\h|lwir@)S |glwiroe). (Here, we use again the fact that p < j + 1.) The case of a general map
g € WP(9¢€) follows by approximation.

It remains to prove that b € W'?(%}) (globally). This amounts to tr(hic) = ge, V€ €
€+1. This is clear when g|s¢ is Lipschitz; the general case follows by approximation. QED

7 Appendix # 4. Basic topological tools

Lemma7.l. Let7 : & — .4 be a non-trivial covering. Let 29 € A, to € 7' ({20}), and b > 0.
Then there exists some v € C*°(R; .4") with v(f) = zo when |#|> b, with no continuous lifting
¢ :[=b,b] = & of uon [—b,b] satisfying ((b) = ((—b) = .

Sketch of proof. We prove the existence of a continuous such v. (The existence of a smooth v re-
quires an additional smoothing argument that we omit.) Lett; € 7 '({z0}) \ {to}. Lety :
[—b, b] — & be continuous such thaty(—b) = to, v(b) = t1,and setv(d) := wov(0),V 0 € [—b, b].
We extend v with the value z, outside [—b, b]. Note that v is continuous. By uniqueness of lifting,
~y is the only continuous lifting ¢ of v on [—b, b] such that {(—b) = t,, whence the non-existence
claimed in the statement. QED

For the next result, see [6], Lemma 3.8].
Lemma7.2. Let N > 3. Let A be a finite union of subspaces of dimension v < N — 3. Then
((0,1)N \ Ais simply connected.

For the next result, see, e. g., Bethuel and Chiron [9, Proof of Proposition 2].

Lemma 7.3. Assume that & is non-compact. Then, for each t € &, there exists some smooth map
v : [0,00) — & such that v, (0) = t and de(7:(61), 7 (02)) = |01 — 65],V 0,65 > 0.

For the next result, we are in the context of Propositions 2.7 and 2.8, and we use the notation
there.

Lemma7.4. Let0 < j < N — 1. Then there exists a Lipschitz homotopy G = G(z,0) : €y X
[0,1] — @ such that:

a) G(z,0)=z,Vz € Ey.
b) G(z,0) = a, for some (fixed) pointa € €;11, Vo € €N,V > 1/2.

68



c) G(z,0) € €j11,Vx € E;, V6.

Proof. The proof is by induction on N — j and “concatenation” of successive homotopies. When

N —j—1wemayleca= (1/2,....1/2), G(z,0) — {ff’“* (1= 20z, 0= f/é 1/2

Assume next that N — j = k£ > 2 and the the lemma has been established for N — 1 and j.
Let us note that

%; = {x € €x; vhasatleast (N — j) coordinates in (1/2 + Z)"}.

(@, 0+ (1—20)zy), fO<O<1/2

(2',1/2), ifo>1/2
is 2 homotopy satisfying conclusions a) and c) above. Moreover, if we set 4, := €, N (RY -1 x
{1/2}),then G(én,1) C ‘gN,l and G (z,0) =z, Vo € CgN,l, V 6. It then suffices to concatenate
G, with an appropriate map (given by the induction hypothesis) G5 : €y x 0,1] — Cy. QD

Using this, we see that G, (z,0) = Gy(2/, xn,0) = {

8 Appendix # 5. Uniqueness

In what follows, we let Q = (0, 1)".

For the next result, see [12, Theorem B.1].
Lemma8.l. Let F' C R beadiscrete closed set. Let f € W*P(Q; F). If sp > 1, then f is constant.

Lemma8.2. Assume that sp > 1. Let p € W*P(Q); &) be such that u := 7o ¢ is continuous. Then
 is continuous. Moreover, if u is smooth, then ¢ is smooth.

Proof. We may assume that s < 1. Given the local nature of the problem, we may also assume
that u(€2) C B for some geodesic ball or radius r smaller than the injectivity radius of .4". Write
7~ !(B) as an at most countable union of balls B;, each one diffeomorphic with B. Pick j such
that the set ' (B;) has positive measure. Let ¢ be the continuous lifting of u with values into B;.
By Theorem 4.13, we have ( € W*? and, by choice of B, the set [¢ = (] has positive measure. We
claim that ¢ = ( a.e. (and this completes the proof).

For this purpose, we consider some smooth map ¢ : [0, 00) — [0, 1] such that g(0) = 0 and
g(0) = 1when 6 > r. Let

f(@) = glde(o(z),((2)), Vo €,

where d ¢ denotes the geodesic distance on &. By triangle’s inequality, we have

de(p(), C(7)) — de(p(y), C(W)< de(w(x), p(y)) + de(((z), ((y))- (8.1)

Since o, ( € W*P? and g is Lipschitz, we obtain from (8.1) that f € W*? (recall that s < 1).

On the other hand, we clearly have, by the formula of g and the property 7 o ¢ = 7 o (, that
f : Q — {0,1}. By Lemma 8.1 and the choice of B;, we find that f = 0 a.e., and thus ¢ is
continuous. QED
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