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ABSTRACT

We demonstrate that the Swift-Hohenberg functional, which is used to describe patterning observed in out of equilibrium
systems such as diblock copolymers, Rayleigh-Benard convection, and thin film magnetic garnets, can be applied to radiation-
induced patterns that occur in non-miscible alloys. By comparing ground states obtained from the minimization of this func-
tional and a 2D numerical simulation performed on an irradiated AgCu material, which is the archetype of a non-miscible alloy,
we show that the Swift-Hohenberg functional provides all possible patterns generated under irradiation and the solubility limits
of radiation-induced precipitates in these patterns. To rationalize the formation of these radiation-induced patterns, we propose
a generic “pseudophase diagram” that relies not only on the irradiation flux and temperature but also on the overall composition
of the alloy. Tuning this overall composition offers the opportunity to tailor new materials with various micro-structures over-
coming the limitation of the equilibrium phase diagram.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5072798

I. INTRODUCTION

Materials ranging from ferro-fluids to polymers, when at
equilibrium, can exhibit distinct patterns,1,2 which can be com-
puted from ground states of their free energy.2,3 In systems far
from equilibrium, such as solids under irradiation or submitted
to intense deformation,4 experimental observations have also
revealed the existence of such patterns.5,6 Experimental
irradiation-induced dislocation lattices7 can be readily modeled
via reaction-diffusion type equations within a chemical rate
theory framework.7,8 However, there is presently no overarch-
ing theory that predicts and models the patterns resulting from
irradiation-induced disordering.

At the atomic scale, molecular dynamics (MD) is used to
predict how metals and oxides will behave when exposed to

radiation over interatomic distances; its strength lies in the
ability to predict the initial stage of radiation damage. It is,
however, limited to pico-second ranges. Further along the
length and time scale lies Kinetic Monte Carlo (KMC);9,10 it is
capable of describing point defects and dislocations. However,
this method is still limited by the size of the simulation box
and time.8 Due to these limitations, attempts have been made
to develop modeling of disordering generated by ion beam
mixing at larger space and time scales within the phase field
framework.8,11–13

In this study, we have examined the formation of
radiation-induced disordering patterns within the phase field
framework, the continuum counterpart of the atomic Ising
model extensively used in KMC simulations of disordering.9,14
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The postulate, commonly admitted in the radiation damage
community, is that radiation-induced patterns can emerge
from the balance of disordering effects induced by ion beam
mixing (hereafter called ballistic effects8 controlled by the irra-
diation flux f) and radiation enhanced diffusion processes
tuned by the temperature T. This balance leads to the forma-
tion of unexpected patterns when compared with those pre-
dicted under the thermodynamic equilibrium.11,15

This work highlights that the Swift-Hohenberg (SH) func-
tional,16 extensively used to discuss the formation and the
stability of patterns in materials produced out of equilibrium,2,3

can predict the appearance of all possible ground states (nano-
structures) associated with these radiation-induced patterns.
This SH functional was extensively used in the Phase Field
Crystal (PFC) approach initially devoted to the crystal growth
kinetics at the atomic scale.17–19 The ultimate goal of this work
is to show that a SH functional can also be introduced to
discuss radiation-induced patterning. Even if the SH functional
developed in this work cannot be derived from first principles
at the atomic scale such as the PFC, it demonstrates that all
tools developed for understanding pattern formations and
their stability produced by such a functional can be applied to
radiation-induced patterning. The novelty of this study lies
in two aspects. First, we illustrate with an example (AgCu
non-miscible alloy) that the approximation of the Lyapunov
function describing the dynamics of radiation-induced micro-
structures, with a SH functional, allows one to predict the
entire set of patterns that is produced by ion beam mixing.
Secondly, we generalize the “dynamical phase diagram” gener-
ated under irradiation to include, along with temperature and
incident particle flux, the overall composition of the alloy, the
effect of which has been overlooked in previous studies.11,15

II. CONSTITUTIVE EQUATIONS

Disordering of non-miscible A�cB1��c alloys of overall com-
position �c via irradiation is the result of a re-distribution of
atomic species via their thermal mobility enhanced by vacan-
cies produced by the ion beam (or neutron flux) Γth(T, f)

13 and
atom relocation, which is triggered by ballistic effects due to
atomic collisions in the crystal, Γirr(f).

11,15 At the nanoscale, the
local composition c(r, t) of species A in the alloy is described
by the scalar order parameter field η(r, t) ¼ c(r, t)� c0, where
c0 is the atomic fraction of species A at the critical temperature
T0, i.e., the temperature for which the order parameter is null.
For AgCu alloys, c0 is equal to 0.38 and the critical tempera-
ture, which fitted the experimental equilibrium phase
diagram,12 is equal to 1200K.20

A. Competing dynamics

At low temperatures (T � T0), the thermal evolution of
the alloy follows a spinodal decomposition as given by21

@η(r, t)
@t th ¼ Γth(T, f)r2 δF[η]

δη

���� , (1)

where F[η] ¼ Ð
f[η(r, t)]dr represents the free energy of the

system. In this expression, the free energy density, f[η(r, t)],
is represented by a Landau fourth order expansion,
a2
2 η(r, t)

2 þ a3
3 η(r, t)3 þ a4

4 η(r, t)
4. The third order term is nega-

tive as expected for a decomposition transformation, which is
a first order transition.21,22

The spatial heterogeneity of η(r, t) is represented by
adding to F[η] the Ginzburg term,

Ð
κjrη(r, t)j2dr, where κ is

the energetic cost of interfaces forming between separate
domains of different compositions21 (κ . 0).

Alternatively, the dynamics of η(r, t) induced by the bal-
listic effects is non-local and can be modeled via23,24

@η(r, t)
@t irr ¼ Γirr(f)

ð
pRp (r� r0)η(r0, t)dr0 � η(r, t)

� ����� , (2)

where pRp (r) is the probability density of an atom relocating in
a displacement cascade, which lasts a few hundreds of pico-
seconds and Rp is the mean free path of the relocated
atom.11,15 Rp depends on the nature of the incident projectiles,
the atomic composition of the target, and slightly of the inci-
dent energy for particles with kinetic energies below a few
MeV.25 For instance, Rp is equal to 0.3 nm for AgCu samples
irradiated by 1MeV Kr ions.

Equations (1) and (2) result from a space and time coarse-
graining method.11,24 In the Phase Field framework, the
coarse-grained time scale is controlled by the diffusion of
atoms (few 10�6 s, i.e., 4 orders of magnitude larger than the
expansion of a displacement cascade) and the space scale is
proportional to κ�1, which is one order of magnitude larger
than Rp. The main interest of this approach is to incorporate
long range elastic fields induced by precipitates.21

B. Steady states

The specific form of Eq. (2) enables the modeling of two
dynamics, acting in parallel as expected from the postulate,
via a relaxation equation13,15

@η(r, t)
@t tot ¼ Γth(T, f)r2 @L[η]

@η

���� : (3)

The numerical resolution of Eq. (3) is obtained by applying
Neumann conditions at the boundaries (no flux at the bound-
aries) as displayed in Fig. 2. L[η] ¼ F[η]þ Γirr(f)

2Γth(T, f)
G[η] can be

understood as the Lyapunov functional for the full set of
dynamics. In this functional, the effect of non-local ballistic
effects is described by G[η(r, t)] ¼ Ð Ð

η(r, t)g(r� r0)η(r0, t)drdr0

[where r2g ¼ (pRp � δ)]. The dynamics behaves as if it was at
T ¼ 0 with a temperature dependence only entering through
T-dependent model parameters and is only subject to
random initial conditions associated with a fully disordered
state.26 The challenge of understanding radiation-induced
disordering therefore can be posed as finding the nature of
ground states of L[η] under the constraint of conservation of
the overall value, �η, of the order parameter η.
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Introducing a space characteristic length, l0 ¼
ffiffiffiffiffiffiffi
ja2 j
a4α2

q
(α ¼ ηþ�η�

2 ; η+ are the solubility limits of the equilibrium phase
diagram), it is convenient to compute the dimensionless form

of the Lyapunov functional L0[η] ¼ L[η]
F0

(F0 ¼ ακ
3
2ffiffiffiffi
a4

p ) as a function

of the reduced scalar order parameter field η(r, t) ¼ c(r, t)�c0
α ,

the enhancement factor Δ(f, T) ¼ Γirr(f)
Γth(f, T)

κ
α4a42Ωat

(Ωat is the

mean atomic volume of the alloy), and the reduced mean free

path R ¼ Rp

l0
. As η(r, t) is small, a generic “dynamical phase

diagram” can be derived from the minimization of the qua-
dratic term of L0[η] ¼ 1

2

Ð
D(k)jη̂(k, t)j2dk [where D(k) ¼

�1þ k2 þ ΔR2

1þR2k2 is called the response function13,21 and η̂(k, t) is
the Fourier transform of η(x, t) ]. This generic “dynamical
phase diagram,” spanned by R and Δ, exhibits three distinct
domains associated with two “limit of phases” Δmin ¼ R�4

(dashed line in Fig. 1) and Δmax ¼ (1þR2)2

4R4 (full line in Fig. 1). At
high R values, ballistic effects dominate chemical effects and
disordering of the alloy occurs leading to a solid solution (SS).
At low R values, the ballistic effects are neglected in compari-
son with the chemical nature of species forming the alloy and
a spinodal decomposition (SD) occurs. In this domain, A-rich
precipitates of characteristic sizeL(t)/ t

1
3 coarsen.27 At low

temperatures and large relocation distances (PD area), i.e., for
Δmin , Δ , Δmax, A-rich precipitates stop to coarsen and
exhibit a spatial periodicity 2π

k0
of a few nanometers leading to

the formation of nanodomains. This composition modulation
is defined by a non-null wave vector k0 of the modulus

k0 ¼ (
ffiffiffi
Δ

p � ffiffiffiffiffiffiffiffiffiffi
Δmin

p
)
1
2. The limit between the disordered (SS) and

ordered phases (SD and PD) Δmax is given by D(k0) ¼ 0, in
perfect agreement with the previous limit derived from a
linear analysis of the growth rate of Eq. (3).15 The limit
between (SD) and (PD) domains Δmin, given by the vanishing of
k0,11 differs from the previous one calculated assuming an ad
hoc mixed sin-tanh ansatz.15

III. DERIVATION OF THE SWIFT-HOHENBERG
EQUATION

Even if this analysis is sufficient to construct a generic
“dynamical phase diagram,” information about the possible
nano-structures (stripes, droplets, etc.) that emerge in the
(PD) area is not revealed. Additionally, as Eq. (3) is a conserva-
tive equation, it is conceivable that the overall order parame-
ter �η is a selection factor that determines the nature of all
possible radiation-induced patterns; this dependence does
not appear in Fig. 1.

A. Structure factor

To describe nano-structures in the (PD) area
(Δmin , Δ , Δmax), a structure factor S(k, t) ¼ hjη̂(k, t)j2i (where
h:i is a radial average) can be extracted from the numerical
resolution of Eq. (3) obtained by fixing the first and third
spatial derivatives of η(x, t) to zero at the boundaries. An
example of this structure factor is plotted in Fig. 2 for an
Ag0:38Cu0:62 alloy (�η ¼ 0) irradiated at 440 K by 1MeV Kr ions
[values of aj, κ, Γirr(f), and Γth(T, f) used in our 2D simulations
can be found in Ref. 12]. The 2D steady-state pattern shown
in the left-hand side of Fig. 2 was obtained by fixing the
overall composition (ψ ¼ 0) and is in fair agreement with 2D
patterns predicted by KMC simulations for the AgCu alloy28 in
the Bragg-William approximation, assessing our Phase Field
approach.

B. The Swift-Hohenberg equation

At late-times [tΓth(T, f) � 1], the structure factor S(k, t) is
sharply peaked around k0 as clearly pointed in previous investi-
gations.11 As Eq. (3) is a Cahn-Hilliard like equation, the linear
part of Eq. (3) acts as a low-pass filter at short times to dictate
the characteristic wave vector of the patterning k0,27 and it is not
surprising that at late-times, S(k,t) exhibits a maximum at k0
minimizing the response function D(k). Performing a second
order Taylor expansion of D(k) (such expansion is extensively
used in the PFC approach based on the density functional
theory18,19,29) at the vicinity of k0, the quadratic part of L0[η], thus

reduces to
Ð

1
2 η(r2) D(k0)þ 1�

ffiffiffiffiffiffiffi
Δmin
Δ

q� �
k�2
0 (r2 þ k20)

2
h i

η(r1)dr1dr2,

which is no more than the quadratic part of the Swift-
Hohenberg functional extensively used to model pattern forma-
tion in non-equilibrium systems.3

Ground states of the SH functional are defined by peri-
odic modulations of η(r, t) associated with a wave vector k0
and differ from the homogeneous ground states derived from
the minimization of the Cahn-Hilliard equation.27

FIG. 1. “Dynamical phase diagram” resulting from the irradiation of non-miscible
alloys as a function of the reduced units Δ and R irrespective of their overall
composition. Three distinct domains can be produced: a disordered domain
associated with a solid solution (SS), a domain where the spinodal decomposi-
tion (SD) takes place, and a pattern domain (PD) where the coarsening of pre-
cipitates is frozen. [dashed red line: limit between the spinodal decomposition
and patterning of domains (Δmin), blue dotted line: limit between the (PD) and
the (SS)].
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By the following relationships, r0i ¼ k0ri, ψ ¼ ηþ a3
a4

� �

1�
ffiffiffiffiffiffiffi
Δmin
Δ

q� ��1=2
(k0α)

�1, L0[η] reduces to the standard SH

form3,16,17

LSH[ψ] ¼
ð
ψ(r02)
2

�ϵ(R, Δ)þ (1þr2)2
h i

ψ(r01)dr
0
1dr

0
2

þ
ð
ψ(r01)

4

4
dr01,

(4)

where ψ is the reduced scalar order parameter field and LSH

is the reduced SH functional equal to L0[η]

1�
ffiffiffiffiffiffi
Δmin
Δ

p� ��2

k0

.

The term ϵ(R, Δ)/ D(k0) is related to the minimum of the
quadratic part of the Lyapunov functional D(k), i.e., the
Fourier transform of the effective interaction energy related
to the global dynamics. This effective interaction takes into
account not only pairwise interaction energies but also non
local ballistic effects induced by irradiation. This energetic
parameter thus contains all the physics associated with the
formation of radiation-induced steady states. This reduced

free energy term ϵ(R, Δ) ¼ 2
ffiffi
Δ

p
(
ffiffiffiffiffiffiffi
Δmax

p � ffiffi
Δ

p
)

(
ffiffi
Δ

p � ffiffiffiffiffiffiffi
Δmin

p
)2

only depends on R/
Rp /

ffiffiffiffi
κ
a4

q
and Δ/ Γirr(f)

Γth(f, T)
κ
a4
, which contains both information

on ballistic effects and material properties. In this expression,
ϵ(R, Δ) contains all the information about the global dynamics.

IV. DYNAMICAL PHASE DIAGRAM

This approximation of the Lyapunov functional by a SH
functional LSH in the pattern domain is the keystone result of
this study. Ground states of the SH functional are not only a
function of ϵ(R, δ) but also of the overall composition of the
alloy �ψ (in reduced units), which has been neglected in previ-
ous studies.11,15 This implies that a more generic “pseudophase
diagram” including the overall composition of the alloy can be
drawn (Fig. 3) to extend previous studies.

A. Morphology of the nano-structure

2D ground states,30,31 resulting from the minimization of
LSH, can be analytically computed

• a uniform micro-structure with ψ(r) ¼ ψ (graph 6 in Fig. 3)
• a labyrinthine micro-structure (stripes) with compositional
fluctuations, ψ(r) ¼ ψ þ Ascos(kr) and wave vectors,

k ¼ k0
1
0

� 	
and k ¼ k0

0
1

� 	
(graph 1 in Fig. 3). In the one

mode approximation, 7 the amplitude of the modulation is

equal to 30 As ¼ 2
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϵ(R, Δ)� 9ψ2

q
• a honeycomb structure (hexagonal dots) with compositional
fluctuations ψ(r) ¼ ψ þ Ah

P3
j¼1 e

ikj� r þ c:c: and wave

FIG. 2. 2D simulation of a random distribution of a Ag0:38Cu0:62 alloy, before
(top) and after (bottom) irradiation with 1 MeV Kr ions at f ¼ 6�
1012 cm�2 s�1 and T ¼ 440 K obtained from the numerical solution of Eq. (3)
(R ¼ 3 and Δ ¼ 0:2). Initial (up left-hand side) and final (down left-hand side)
2D micro-structures in real space and their corresponding Power Spectral
Density (PSD) in the Fourier space (right-hand side) are plotted. In these simu-
lations, A rich (black) [B rich (white)] domains are associated with positive (neg-
ative) η values (the 2D domain size is equal to 200 in reduced units). At
late-time, the PSD is radially symmetric and peaks sharply around k0 (intense
white ring). Late-time structure factors S(k, t), resulting from a circular average
of the PSD for both initial (top) and final micro-structures (bottom), are plotted
as a full line along the kx component of the wave vector.

FIG. 3. Proposed generic 2D “Pseudophase diagram” in the (PD) area derived
from the SH functional as function of the nominal composition, ψ and the
ϵ(R, Δ) parameter. The solid lines represent the limits between different micro-
structures and the hatched area is associated with coexistent domains. This
“pseudophase diagram” is in fair agreement with 2D simulated microstructures
(graphs 1–6) resulting from the numerical resolution of Eq. (3) ( from top-left to
bottom-right, 1: ψ ¼ 0, 2: ψ ¼ 0:2, 3: ψ ¼ 0:35, 4: ψ ¼ 0:5, 5: ψ ¼ 0:65, 5:
ψ ¼ 0:7 and ϵ ¼ 0:85).
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vectors, k1 ¼ k0
1
0

� 	
, k2 ¼ k0

�1=2ffiffiffi
3

p
=2

� 	
, and k3 ¼ k0

�1=2
� ffiffiffi

3
p

=2

� 	
(graph 3 in Fig. 3). In the one mode approxima-

tion,7 the amplitude of the modulation is equal to30

Ah ¼ 4
5 ψ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15ϵ(R, Δ)�36ψ2

p
3

� �
.

These 2D ground states are in very good agreement with snap-
shots of late-time micro-structures extracted from our 2D
numerical simulations (graphs in Fig. 3). Labyrinthine lamellar

stripes forming at low j�ψ j (snapshot 1 in Fig. 3) evolve to a hon-
eycomb structure of spherical precipitates forming for inter-
mediate jψ j values (snapshot 2 in Fig. 3) and lead to a
homogeneous solid solution forming at large jψ j values (snap-
shot 3 in Fig. 3). Phase domains can co-exist (graphs 4, 5, and 6
in Fig. 3) as expected from the 2D theoretical phase diagram
(full line in Fig. 3). Snapshots of 2D simulations prove that the
ground states in the pattern domain (hatched area in Fig. 1) are
not unique and cannot be modeled by a simple hyperbolic
tangent profile leading the previous computations of the phase
limits between the(SS) and the (SD) domains questionable.15

Extension of this analysis to three dimensions is straight-
forward. Figure 4 displays the theoretical phase diagram com-
puted using the one-mode approximation for a 3D
microstructure derived from the SH equation [Eq. (4)] and the
3D numerical resolution of Eq. (3). The diagram is computed
minimizing the Lyapunov functional LSH[ψ]. For very low �ψ
values, the 3D micro-structure is made of different stripes.
For small �ψ values, hexagonal structures of A-rich precipitates
appear as in 2D. Increasing �ψ , these precipitates form a body-
centered cubic (BCC) structure that does not exist in the 2D
dynamical phase diagram. For large �ψ values, a homogeneous
phase occurs. As it is the case for 2D simulations, all micro-
structures predicted by the SH model have been observed by
the numerical resolution of the global dynamics assessing the
validity of our approach in 3D. Co-existence regions between
these different pure domains can also be formed as plotted in
Fig. 4. As pointed out by previous authors,32 it must therefore
be noticed that the one-mode approximation applied in this
work is only valid in 3D for small ϵ values. For ϵ . 0:35,
face-centered cubic and hexagonal close packed A rich pre-
cipitates can form as a function of �ψ . As the free energy
associated with these micro-structures is very small in com-
parison with the BCC phase, only 3D numerical resolution of
Eq. (4) can provide the full dynamical phase diagram.32

FIG. 4. Comparison between different 3D micro-structures extracted from direct
simulations on the global dynamics and the theoretical phase diagram derived
from the SH functional as function of the nominal composition, ψ and ϵ(R, Δ).
Co-existence domains are drawn in blue. All 3D numerical simulations were per-
formed for ϵ ¼ 0:25 and at different �ψ values: �ψ ¼ 0 stripes, �ψ ¼ 0:25 hexa-
gons, �ψ ¼ 0:33 BCC lattice of A-rich precipitates, and �ψ ¼ 0:4 homogeneous
phase (red: pure A phase, blue: pure B phase).

FIG. 5. Comparison of solubility limits As and Ah ( full red line) calculated from the minimization of the 2D SH functional and extracted from 2D numerical simulations
(black squares) for the honeycomb (left, ψ ¼ 0:25) and the labyrinthine (right, ψ ¼ 0) micro-structures for different Δ values (R ¼ 3).
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B. Induced solubility limits

Besides identification of different nano-structures, ground
states of LSH[ψ] also provide the solubility limits of precipitates
in the pattern domain (AS and Ah in 2D). These solubility limits
are functions of ψ . Such a dependence was systematically
omitted in previous calculations of radiation-induced solubility
limits.15,33 Figure 5 displays variation of these solubility limits as
a function of Δ (full red lines). The comparison between theo-
retical (full line) and calculated [from Eq. (3)] (black squares)
solubility limits is in very good agreement in the vicinity of the
(SS) domain for whichϵ tends to zero (region II in Fig. 5) and
the one mode approximation holds.16 This agreement does not
hold in the vicinity of the (SD) domain for which ϵ tends to 1
(region I in Fig. 5). This limitation can be easily overcome by
introducing higher order mode expansions.16

V. CONCLUSION

Prediction and modeling of radiation-induced disorder-
ing is a long term goal in the advanced materials community.
Our study proves that patterns produced by ion beam mixing
in non-miscible alloys result from the existence of a Swift-
Hohenberg functional LSH and that the radiation-induced
nano-structure in the pattern domain is not unique. All possible
nano-structures, resulting from the minimization of the SH
functional, can be drawn in a generic “dynamical phase
diagram” highlighting the impact on the overall composition, up
to now neglected.13,15 Thus, this approach offers a novel quanti-
tative method to design new classes of nano-materials by
tuning not only the temperature and the flux of incident parti-
cles but also the overall composition of the alloy.
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APPENDIX A: DIMENSIONLESS SYMMETRIC FREE
ENERGY DENSITY

Within the Landau framework of phase transition, the
free energy density associated with a decomposition is a first
order transition and exhibits an odd term

f[η(r, t)] ¼ a2
2
η(r, t)2 þ a3

3
η(r, t)3 þ a4

4
η(r, t)4, (A1)

where η(r, t) ¼ c(r, t)� c0. The negative a3 term is associated
with the asymmetry of the equilibrium phase diagram.
Introducing two solubility limits given by the equilibrium

phase diagram η+ ¼ � a3
3a4

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3

a3
a4

� �2
� a2

a4

r
, the value of η(r, t)

varies from η� to ηþ. It is possible to rewrite this free energy

density in a standard form

f[η0(r, t)] ¼ 3λ2 � 1
2

η0(r, t)2 � λ

3
η0(r, t)3 þ η0(r, t)

4

4

, (A2)

where α ¼ ηþ�η�
2 , λ ¼ ηþþη�

ηþ�η�
, and η0(r, t) ¼ c(r, t)�c0

α . η0(r, t) varies

from 2η�
ηþ�η�

to 2ηþ
ηþ�η�

. Only for the case a3 ¼ 0, η0(r, t) varies from
�1 to 1. Introducing the reduced order parameter
ρ(r, t) ¼ η0(r, t)� λ, the free energy term can be expanded
according to this new variable. In this rescaling, the three
order terms vanish. The functional derivation of the free
energy F implies that constant terms can be ignored in the
expansion of the free energy density. Moreover, the conser-
vative nature of the global dynamics, i.e., the Laplacian in
Eq. (3), implies that linear terms proportional to ρ(r, t) in F[ρ]
can also be ignored. The part of interest in the free energy

density thus reduces to ρ(r, t)4

4 � ρ(r, t)2

2 , which is symmetric with

respect to ρ ¼ c(r, t)�c0þ a3
3a4

α leading to Eq. (4). In this last expres-

sion, ψ(r, t) ¼ ρ(r, t)k�1
0 1�

ffiffiffiffiffiffiffi
Δmin
Δ

q� ��1
2

.

APPENDIX B: CALCULATION OF GROUND STATES IN
THE ONE-MODE APPROXIMATION

The one-mode approximation of the concentration
profile ψ(r) associated with steady states is of the form

ψ(r) ¼ �ψ þ Aiψ i(r), (B1)

where �ψ is the mean value of ψ(r), Ai is the amplitude of the
concentration fluctuation, and ψ i(r) are the test functions
obtained by summing with equal weights plane waves described
by wave vectors characterizing the micro-structures (stripes,
hexagonal network of bubbles, etc.). For various microstruc-
tures, the ψ i(r) are

For 2D micro-structures,

ψs(x, y) ¼ cos (kx), (B2)

ψh(x, y) ¼ cos (kx) cos
kyffiffiffi
3

p
� 	

� 1
2
cos

2kyffiffiffi
3

p
� 	

: (B3)

For 3D micro-structures,

ψbcc(x, y, z) ¼ cos (kx) cos (ky)þ cos (kx) cos (kz)

þ cos (ky) cos (kz):
(B4)

The free energy given by Eq. (4) is then analytically calculated.
This expression is thus minimized with respect to A and k to
find the analytic approximation of the concentration profile.
After computing the minimum of the free energies of all
phases, co-existence domains were numerically calculated via
the common tangent construction.
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