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ABSTRACT

In this study, we have derived a method which consists in setting up and solving an original dynamics that provides critical precipitate
characteristics, thus circumventing the theoretical difficulties encountered when modeling nucleation phenomena. Our model constitutes a
substantial advance in this field as it enables critical nuclei characteristics to be determined irrespective of the energy barriers associated with
the metastable state. Furthermore, the method is entirely consistent with the phase field approach, and in that respect, can be viewed as
extending its applicability beyond the coarsening stage alone. The theoretical and numerical developments presented are assessed against
original data obtained on an Fe-Cr alloy, used as a model system for studying nucleation and growth in the context of first order phase
transitions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0122126

Nucleation and growth processes are important to understanding
many physical and biological phenomena ranging from crystallization,
melting, and evaporation to the formation of clouds and neurodegen-
erative diseases.1–4 Modeling critical precipitates involved in nucle-
ation and growth processes constitutes a major challenge with
substantial implications in these diverse fields,5–9 since the morphol-
ogy and concentration of critical precipitates control the long-term
evolution of the physical system. The formation of the new phase
from the parent one falls in two distinct categories, depending upon
the energy barriers involved in the nucleation process. In the spinodal
decomposition regime, there are no energy barriers to be overcome for
precipitates to form and the decomposition kinetics may be modeled
using the Cahn–Hilliard (CH) equation.10 In the nucleation and
growth regime, finite energy barriers exist, and a large number of com-
putational methods have been used to investigate critical precipitates.
However, most methods fail to reproduce the characteristics of nuclei
experimentally observed. This precludes a quantitative or even a quali-
tative description of late-stage microstructures.

Indeed, numerous studies based on Becker and Doring’s work
have attempted to compute these critical precipitate characteristics11,12

and have led to what is known as Classical Nucleation Theory (CNT).

In CNT, each critical precipitate exhibits a uniform composition equal
to the equilibrium composition of the bulk of the new phase. The
width of the interfacial layer between the precipitate and matrix is
assumed infinitely small and the critical precipitate is defined by its
radius only. Although CNT has been successfully used to describe
liquid–vapor transitions,13–15 in solid–solid nucleation processes, for
instance, critical precipitates are shown to exhibit a concentration at
their core, which is different from that expected from the equilibrium
phase diagram,16 thus casting doubt upon the applicability of CNT in
a more general context.

Cahn and Hilliard10,17 first proposed the phase-field approach as
an alternative to CNT in order to provide an improved description of
the composition of critical precipitates. In this method, one assumes
that the free energy is a functional of the local composition cðxÞ by
adding a Ginzburg term to the homogeneous free energy density.
Critical precipitates correspond to saddle points of this functional,
which could, in principle, be computed directly. However, this is an
arduous task since the functional is highly non-linear. Alternatives
must, therefore, be sought.

One such alternative has been proposed,18,19 which involves
adding random Langevin forces to the CH equation, thus forcing the
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system to cross the energy barrier and to escape the local minimum
the metastable state constitutes. This stochastic phase-field approach
provides a realistic description of critical precipitates when the energy
barrier is small, i.e., near the spinodal line.20 However, to generate
these precipitates using Langevin forces when the energy barrier is
large, introduction of noise with unrealistically large amplitude is
required. As the critical nucleus concentration is dependent upon the
amplitude of noise, this, in turn, may lead to erroneous particle
densities.21

In this Letter, we present an original method for modeling critical
precipitates within a phase-field framework, which circumvents a
detailed description of the nucleation process. This is done by calculat-
ing critical precipitate characteristics directly, from the knowledge of
the free energy associated with the phase transition. The only assump-
tion made is that critical precipitates correspond to an index-1 saddle
point in the free energy landscape.16 Our approach is of very general
applicability and, therefore, may be used in many different physics
and chemistry problems since no assumptions are made in regard to
the interface layer thickness, the height of the energy barrier, or the
degree to which the free energy is isotropic. We use the paradigm of
the phase decomposition in immiscible binary alloys to demonstrate
the relevance of our method.

For an A1��cB�c alloy, minima, maxima, and saddle points may be
obtained from finding local extrema of the free energy under some
species’ conservation constraint (

Ð
½cðxÞ � �c�dx ¼ 0). Constrained

optimization may be implemented using the Lagrangian multiplier l,
and setting to zero, the first variation of the Grand potential functional
X½cðxÞ�, which is given by

X c½ � ¼
ð

j
2
jrcðxÞj2 þ f ðcðxÞÞ � f ð�cÞ � lðcðxÞ � �cÞ

� �
dx: (1)

The first term in this expression is the Ginzburg term which accounts
for the presence of a heterogeneous concentration field cðxÞ. j is a
phenomenological positive coefficient which represents the energetic
cost associated with the formation of a spatial heterogeneity. Its value
is assumed independent of cðxÞ in the following. The homogeneous
free energy density of the system is given by the functional f ðcðxÞÞ.
l ¼ df

dc ð�cÞ is determined by setting dX½c�
dc to zero and further noticing

that far from the precipitate, c ¼ �c.16,17 Note that although the

gradient-dynamics ð@cðx;tÞ@t /� @X
@cðx;tÞÞ which models the time evolution

of cðx; tÞ differs from that derived from the CH equation ð@cðx;tÞ
@t

/D @X
@cðx;tÞÞ, the stationary points of both dynamics are identical.22 In

other words, once critical precipitates are determined from the identifi-
cation of the saddle points ofX½cðxÞ�, the CH equation can take over to
model the growth kinetics of precipitates.

Setting to zero, the first variation of X½cðxÞ� [Eq. (1)] with respect
to c yields the concentration profile cðxÞ around the critical precipi-
tates and leads to the following, second order, partial differential
equation:

�jDcþ df ðcÞ
dc
¼ df ð�cÞ

dc
: (2)

Assuming that there is no flux of matter or chemical potential at the
surface of the integration domain, one may derive the boundary condi-
tions associated with Eq. (2), which are given byrc ¼ 0 andr3c ¼ 0.

Solving Eq. (2) yields all stationary solutions, i.e., maxima, min-

ima, and saddle points. It is, therefore, necessary to calculate d2X½c�
dc2 at

each spatial discretization point, the second variation of X½c� with
respect to cðxÞ, in order to differentiate saddle points from other
extrema. Equation (2) cannot be solved analytically and the numerical

determination of d2X½c�
dc2 requires extensive computational resources. An

alternative solution consists in setting up a fictitious dynamics, the sta-
tionary solution to which necessarily corresponds to the desired saddle
point. The Constrained Shrinking Dimer Dynamics (CSDD)23 or its
extension, the Gentlest Ascent Dynamics (GAD),24 are examples of
such a strategy. Assuming that the index of the saddle point of X½c� is
one, i.e., d2X½c�

dc2 exhibits a unique negative eigenvalue at the saddle point,
the GAD dynamics may be written as

@c
@t
¼ � dX c½ �

dc
þ 2

�
dX c½ �
dc

����v
�
v; (3a)

@v
@t
¼ � d2X c½ �

dc2
v þ

�
v

���� d
2X c½ �
dc2

����v
�
v; (3b)

where the term h�j�i refers to the scalar product of L2ðR3Þ. Equation
(3a) is a gradient dynamics to which an “ascent” force is added, thus
enabling cðx; tÞ to escape the metastable phase resulting from the high
temperature quench. The normalized vector v that appears in Eq. (3a)
defines the “ascent” direction and converges toward an eigenvector of
d2X½c�
dc2 .24

This dynamics suffers from a number of shortcomings. If the initial
condition cðx; 0Þ is far removed from the concentration profile at the
saddle point, it does not converge.25,26 When it does converge, the con-
vergence is slow.27 If the initial condition for vðx; 0Þ is randomly chosen,
trajectories generated by Eq. (3b) will not escape the metastable state.

To overcome these difficulties, we have implemented a modified
GAD dynamics in which vector vðx; tÞ (hereafter noted v0ðxÞ) no lon-
ger results from solving Eq. (3b) but is time-independent and equal to
the most unstable direction of X½c�. This vector is always the eigenvec-
tor associated with the smallest eigenvalue of d2X½c�

dc2 determined using
the conjugate gradient algorithm. The proposed dynamics may now
be expressed as

@c
@t
¼ � dX c½ �

dc
þ 2

�
dX c½ �
dc

����v0
�
v0: (4)

As a result of this choice for v0ðxÞ, Eq. (4) converges systemati-
cally and its initial condition may be chosen as the homogeneous con-
centration profile �c determined by the high temperature phase.
Choosing an initial value for cðx; 0Þ is no longer an issue. These two
aspects of our method make it substantially different from the CCSD
or GADmethods.

Assuming cðx; tÞ and v0ðxÞ are periodic, the boundary condi-
tions (rcðx; tÞ ¼ rv0ðxÞ ¼ 0 andr3cðx; tÞ ¼ r3v0ðxÞ ¼ 0) suggest
expanding these functions as cosine transforms.28 A first order Euler
scheme is used for solving Eq. (4). As f(c) is a highly non-linear func-
tion of cðx; tÞ, Eyre’s approach29,30 is applied providing an uncondi-
tionally gradient stable scheme and enabling large time step values to
be chosen. The steady state solution to Eq. (4), i.e., the concentration

profile around critical precipitates, is obtained when jj dX½c�dc jjL2 � e

and j @c@t j � e, where e ¼ 10�5 is the chosen tolerance.
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We now apply these developments to the demixion observed at
low temperature in Fe1��cCr�c alloys. The metastable high temperature
homogeneous solid solution decomposes into Cr-rich precipitates in a
Fe-rich matrix for �c< 1

2 below T0¼ 1000K . Since the misfit between
the Fe and Cr unit cells is small (<0:3%), the contribution to X½c� of
the elastic energy resulting from the formation of Cr-rich coherent pre-
cipitates can be neglected and the Landau expansion of f(c) is simply

given by f ðcÞ¼ a2ðcðx;tÞ�c0Þ2
2 þ a4ðcðx;tÞ�c0Þ4

4 þ a6ðcðx;tÞ�c0Þ6
6 .31 The coeffi-

cients that appear in this expression are determined at 773K from our
knowledge of the phase diagram:32–34 a2¼�0:64eV=nm3; a4
¼�920eV=nm3 are both negative and a6¼ 7480eV=nm3 is positive
as expected from Landau theory of first order phase transitions.31 The
solubility limits for the Fe-rich matrix, the Cr-rich precipitates, and the
spinodal line are equal to ca¼ 0:147; cb¼ 0:857, and cs¼ 0:228,
respectively. Moreover, j¼ 6:1eV=nm16 is derived from Monte Carlo
surface free energy simulations performed at T ¼ 773K.35 A possible
concentration dependence of j can be introduced as proposed by
Cahn,17 this concentration dependence does not modify the modified
GAD method we propose but may lead to numerical instabilities for
algorithms. For the FeCr alloys, previous investigations35,36 clearly
show that j has no concentration dependence.

All simulations were performed with a dimensionless time step
of 0.01. The dimensionless 3D mesh size, Dx, was chosen equal to 0.1,
ensuring that the interface is correctly described. The dimension of the
integration volume (V ¼ 32Dx � 32Dx � 32Dx) is large enough to
guarantee the conservation of species, i.e., 1

V j
Ð
ðcðx; tÞ � �cÞdxj

< 10�3.
Figure 1 shows the steady-state solution of Eq. (4), cðxÞ, across a

critical precipitate (magenta line) obtained from the numerical resolu-
tion of Eq. (4) in Fe0:81Cr0:19 at T ¼ 773K . As f(c) is isotropic, this pro-
file is a function of radial position r ¼ jjxjj only. This concentration

profile does not level off toward the center of the precipitate and cannot
be approximated by a hyperbolic tangent function as in the case of
liquid–gas transitions.37 This may explain the convergence difficulties
the CSDD and GAD methods encounter, since hyperbolic tangent
functions are often used as initial conditions in these methods.22,38 It is
apparent that the chromium concentration at the center of the precipi-
tate (cð0Þ � 0:56), differs substantially from the solubility limit of the
bulk of the new Cr-rich phase, cb at this temperature, as CNT postu-
lates. At large r values, the atomic fraction of the metastable phase, �c
¼ 0:19 is recovered. The inset in Fig. 1 shows the eigenvector v0ðrÞ
associated with the unique negative eigenvalue of d2X½c�

dc2 at the saddle
point. This vector is also largely different from v0ðrÞ computed in the
case of liquid-gas transitions.37 We have verified that the eigenvalue of
d2X½cðrÞ�
dcðrÞ2 associated with v0ðrÞ, i.e., in the presence of critical precipitates,

is its only negative eigenvalue, thus demonstrating that the index of the
saddle point is 1. To demonstrate the unstable nature of the chromium
distribution at the saddle point, the time evolution of different concen-
tration profiles cðrÞ6 ev0ðrÞ was obtained from solving the CH equa-
tion. The results of these computations are also illustrated in Fig. 1. The
profile either converges to a concentration distribution such that the
maximum Cr concentration is equal to cb, as prescribed by the equilib-
rium phase diagram (brown and blue dashed lines in Fig. 1) or spreads
out to reach the uniform value, �c, determined by the initial metastable
phase (red and green dashed lines).

In order to assess the theoretical developments we report, a set of
experiments were carried out on several ultra-pure Fe0:81Cr0:19 sam-
ples. The samples, initially heated at 1000K, were quenched and sub-
sequently annealed at 773K over different periods. Atom Probe
Tomography (APT)34,39–41 was used to characterize the chromium
distribution. The results showed precipitates first appeared when sam-
ples were annealed over time-periods greater than 100h. At this
annealing time, all observed precipitates exhibit the same size justify-
ing that we are dealing with critical precipitates.42

Figure 2 shows a comparison between the chromium profile
obtained from solving Eq. (4) and determined using APT. The
remarkable agreement between theory and experiment vindicates the
use of Eq. (4) for computing critical precipitates in solids. Also indi-
cated in the figure, the result is computed from CNT (green curve in
Fig. 2) which is inadequate in two respects. First, it predicts that the
chromium concentration at the critical precipitates’ core is equal to
the equilibrium concentration of the new phase. Second, it describes a
sharp interface which tallies neither with our calculation nor with our
experimental results.

Equation (4) was also solved for different values of �c and the
results of these calculations are shown in the inset in Fig. 2. Close to
the solubility limit defined by �c ¼ ca ¼ 0:147, the critical profile (red
line in Fig. 2) displays two distinct plateaus for which chromium con-
centrations are equal to ca ¼ 0:147 and cb ¼ 0:857. Such a profile is
similar to what is expected from CNT although in our case, it exhibits
a diffuse interface that is practically as broad as the precipitate itself.
As �c approaches the value prescribed by the spinodal curve
cs ¼ 0:228, the critical profiles (magenta and blue lines in Fig. 2) bear
a resemblance to a Gaussian distribution with a diffuse interface and a
maximum chromium concentration which is well below the concen-
tration of the equilibrium Cr-rich phase. The inset clearly illustrates
that in a binodal regime and at the earliest stage of the growth process,

FIG. 1. Concentration profile c(r) for critical precipitates computed from a 3D
numerical resolution of Eq. (4) (magenta curve). Computation results obtained from
solving the CH equation and assuming the initial concentration profile is only slightly
different from the critical one (dashed–dotted green line: t¼ 250; dashed–dotted
red line: t¼ 500 for cðrÞ þ ev0ðrÞ; dashed brown line: t¼ 250; and dashed blue
line: t¼ 500 for cðrÞ � ev0ðrÞ). The inset displays the eigenvector v0ðrÞ associated
with the unique negative eigenvalue of d2X½cðrÞ�

dcðrÞ2 .
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the material may not, in general, be described as consisting of well-
defined precipitates of characteristic radii, embedded in a matrix, both
of which are of uniform concentration.

Having validated our approach against relevant experimental
data now enables us to determine conditions in which other methods
may be applied for calculating the characteristics of critical precipi-
tates. Solutions to Eq. (4) were determined for several chromium
concentration values in the binodal region, whence the height of the

reduced energy barrier X½c�
kBT

, (i.e., the energy difference between the
grand potential energy at the saddle point and the metastable state)
was derived. The corresponding values are shown in Fig. 3 and com-
pared to calculations obtained within CNT. The Cr-concentration
amplitude, cð0Þ � �c, across a Cr-rich critical precipitate as a function
of �c is also shown in the inset in Fig. 3. The figure shows that
although the energy barrier and Cr-concentration amplitudes are
similar to those obtained from CNT at the solubility limit, substantial
discrepancies prevail everywhere else. In particular, in our approach,
the energy barrier and the Cr-concentration variations both fall to
zero as the composition of the alloy approaches the spinodal limit.
This is expected since thermal fluctuations are sufficient in this case
to trigger the growth process. By contrast, CNT predicts these quan-
tities are strictly positive at that point. CNT is, therefore, only appli-
cable in the binodal domain for compositions sufficiently close to the
binodal limit. Our calculation also enables us to determine the condi-
tions in which the stochastic phase field method may be used. The
reduced energy barrier must be lower than 10, in order to apply this
method and Fig. 3 shows that this is only true when the alloy compo-
sition approaches the spinodal limit. Our experimental data were
obtained for average Cr-concentrations of 0.19, a value commonly
encountered in engineering applications, and our figure demon-
strates that neither CNT nor the stochastic phase field approach are
applicable.

This Letter provides a substantial contribution toward solving the
outstanding problem of the formation of critical nuclei in nucleation
and growth regimes. This is done by setting up a fictitious dynamics,43

the saddle points of which correspond to that of the free energy func-
tional, and by determining these saddle points, whence critical nuclei
characteristics are obtained. The model is backed up against original
data we have obtained from ultra-pure Fe0:81Cr0:19 samples, using
atomic probe tomography. The data provide a measure of the chro-
mium concentration in the vicinity of Cr-rich regions at the very begin-
ning of the growth process and enable a very straightforward
comparison to our model. The theory and experiment are shown to tally
remarkably well. On the strength of this, we calculate critical precipitate
characteristics, for several average Cr-concentration values. This pro-
vides a means of establishing the conditions in which it is licit to apply
CNT or the stochastic phase field method. The method we have imple-
mented is independent of the form of the free energy. It is, therefore, not
restricted to metallurgical applications but may be used in many differ-
ent fields of physics and chemistry. The main interest of our approach
in comparison with the previous approaches is that the critical profile
can be obtained from the metastable state. The critical profile then pro-
vides the initial condition for the Cahn–Hillard or the Cahn–Allen
equations in the binodal regime. Our method should then allow model-
ing the long time evolution of the microstructure, i.e., the coarsening.
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