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This paper studies thermal transport in nanoporous silicon with a significant specific surface area. First, 

the equilibrium molecular dynamics approach was used to obtain the dependence of thermal conductivity 

on a specific surface area. Then, a modified phonon transport kinetic theory-based approach was 

developed to analyze thermal conductivity. Two models were used to evaluate the phonon mean free 

path in the porous materials. The first model assumes that the dependence of the mean free path only 

relies on the specific surface area, and the second one also considers the mean free path variation with 

the porosity. Both approaches approximate molecular dynamics data well for the smaller porosity values. 

However, the first model fails for highly porous matrixes, while the second one matches well with 

molecular dynamics simulations across all considered ranges of the porosities. This work illustrates that 

the phonon mean free path dependence with the porosity/volume fraction of composite materials is 

essential for describing thermal transport in systems with significant surface-to-volume fractions.  

 

The miniaturization of electronic devices and their components nowadays leads to issues such as 

overheating with hotspots and subsequent failure occurrence. Therefore, further development of such 

technologies requires significant efforts to establish the background of efficient thermal management in 

nanostructured objects. The latter involves understanding heat carriers transfer mechanisms, scattering 

and interactions close to an interface separating different species. Porous silicon (PS) is an excellent 

candidate to be a model object to investigate various conditions favoring/disfavoring thermal transport 
1,2. From a practical point of view, one can fabricate PS with a wide range of pore sizes, porosity, and 

morphology3. Thus, it gives an excellent and clear basis for experimental verifications of the developed 

models4,5. Further, such results can be broadcasted for various nanocomposite systems, where interfacial 

boundaries also crucially impact thermal transport6,7. 

Specifically, the significant reduction of thermal conductivity of PS compared to the bulk one is already 

well known8,9. Two main reasons explain this: i) the natural removal of material and ii) the phonon 

scattering at the interfaces. The first mechanism arises due to the lowering of the number of energy 
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carriers per unit volume in the porous materials as compared to the bulk one. It results from material 

extraction by voids formation, and it is dominant for large pore radius. The second is more crucial while 

decreasing the pore radius while maintaining overall porosity volume, and thus increasing the phonon 

scattering specific surface area, i.e. the total interfacial area per system volume. A model that describes 

this tendency is Minnich and Chen model 10. The latter describes the dependence of thermal conductivity 

of porous and composite systems. It has been used for a wide range of materials and broad volumetric 

fraction of pores or inclusion components11–13.  

In Minnich and Chen model, the effective thermal conductivity of a nanoporous system (𝜆) can be 

decomposed into multiplicands: 𝜆 = 𝜆𝑛𝑚𝐹, (1) 

where 𝜆𝑛𝑚 is the thermal conductivity of the nanoporous matrix, which differs from the bulk one due to 

the phonons mean free path reduction as a result of the scattering on the interfacial boundaries;  𝐹 is the 

factor describing the reduction of thermal conductivity due to the decrease the portion of the bulk 

material. According to the Maxwell model for effective media, this factor can be presented as follows for 

porous material 14: 𝐹 =  2 − 2𝑃2 + 𝑃 , (2) 

where 𝑃 is the porosity. 

 

Fig. 1. Sketch view of the considered simulated domain. The minimum and maximum pore radii are 

characterized by dotted and dashed circles respectively. Here those radii correspond to the case 𝐿 = 12 𝑎  

Regarding the thermal conductivity of the nanoporous matrix, Minnich and Chen proposed a simple 

approach for the evaluation of the thermal conductivity of the matrix as follows: 𝜆𝑛𝑚 = 13 𝐶ℎ𝑣ℎ 11 Λh⁄ + Φ 4⁄ , (3)  
where 𝐶ℎ is the volumetric heat capacity of the host matrix, 𝑣ℎ is the mean velocity of phonons of the 

host matrix, Λh is the mean free path in the host matrix material, and 𝛷 = 𝐴𝑝𝑜𝑟𝑉𝑏𝑜𝑥  is the specific surface 
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area of the pore. Eq. (3) is based on several assumptions, and one of them is that the cross-section of the 

phonons’ scattering at the pore edge has the following form: 𝜎 = 𝜋𝑅2, (4) 

where 𝑅 is the pore radius. This cross-section corresponds to the assumption of the phonon scattering at 

the edge of a solid sphere. Yet, this assumption forms the bottleneck of the approach and its application 

to the cases of small pore radii with a very high interface density, where the multiple scattering events 

are frequent. 

Therefore, our work aims to understand the role of multi-scattering processes in the perturbation of heat 

transfer in nanoporous materials. We first simulated thermal conductivity in porous silicon using the 

equilibrium molecular dynamics (EMD) approach. Then, we adapted the kinetic theory (KT) approach to 

model thermal conductivity in PS, considering the contribution of each mode to heat transfer. The latter 

allows us to identify the role of different mechanisms leading to the modification of the thermal transport 

performance of the porous matrix. 

In this work, we investigated a crystalline silicon matrix with a lattice constant equal to 𝑎 = 5.431 Å for 

molecular dynamics simulations; the simulation domains contain a repeated translation of silicon cells in 

x, y, and z directions. We chose the number of repetitions (𝑛) to equal 6, 8, 10, and 12, and the domain 

size was  𝐿 = 𝑛 𝑎. Periodic boundary conditions were set in all directions. Pore structure was created by 

cutting out the atoms in a sphere with a radius 𝑅 located in the center of the simulated domain. The 

sphere radius was considered in the range from 0 (bulk silicon) to (𝐿 − 𝑎)/2 with the step 𝑎/2. Such 

variation of 𝐿 and 𝑅 allows us to consider porosity and specific area of nanoporous material in a wide 

range. The interaction between silicon atoms was simulated with the respect of Tersoff potential15. 
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Fig. 2. Dependence of thermal conductivity with the specific surface ratio of a pore. Inset: Dependence 

of thermal conductivity with pore radius 

We used the Green-Kubo formalism for the thermal conductivity calculations: 
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𝜆 = 13𝑉𝑘𝐵𝑇 ∫ 𝑑𝑡〈𝑱(0)𝑱(𝑡)〉𝑡𝑠
𝑡𝑐

0 , (5) 

where 𝑉  is the volume of the simulation domain, 𝑇 is the temperature, 𝑱(𝑡) is the heat flux vector, 𝑡𝑐  is 

the finite correlation time for which integration was carried out, 𝑡𝑠 is the sampling time for sampling time 

over which the autocorrelation function was accumulated for averaging. 

Fig. 2 presents the dependence of thermal conductivity with the pore specific surface area for different 

box sizes. The inset of Fig. 2 details the dependence of the thermal conductivity as a function of the pore 

radius. As shown in Fig. 2, the specific surface ratio is the more versatile parameter for describing thermal 

conductivity reduction in the considered pore radius range. 

In order to evaluate the Minnich and Chen model 10 for thermal transport in composite media, we used 

the kinetic theory (KT) approach developed previously by P. Chantrenne et al16. In the frames of this 

model, the thermal conductivity of the nanoporous matrix can be represented as follows: 𝜆𝑛𝑚 = 6 𝑘𝐵3 𝑎34 ∫ 𝑑𝜔𝐶𝑉(𝜔)∞
0 𝐷(𝜔) ∑ 𝜉(𝜔, 𝑝)𝑣2(𝜔, 𝑝)𝜏(𝜔, 𝑝)𝑝 , (6) 

where 𝑘𝐵 is the Boltzmann constant, 𝜔 and 𝑝 are the phonon frequency and the polarization, 𝐶𝑉(𝜔) is 

the per mode per unit volume heat capacity, 𝐷(𝜔) is the phonons density of states, 𝑣(𝜔, 𝑝) is the phonon 

group velocity, 𝜏(𝜔, 𝑝) is the phonon relaxation time due to phonons scattering, 𝜉(𝜔, 𝑝) is the coefficient 

to express the contributions of different polarizations to the phonons density of states. 

Considering the classical nature of MD computations, we use the KT model with constant (high-

temperature limit) heat capacity to minimize the number of different factors in KT and MD approaches. 𝐷(𝜔), 𝑣(𝜔, 𝑝) and 𝜉(𝜔, 𝑝) were taken from our previous paper 17. According to the Matthiessen rule, the 

resulting relaxation time (RT) was calculated as follows 𝜏−1(𝜔, 𝑝) = 𝜏𝑝ℎ−𝑝ℎ−1 + 𝜏𝑝𝑜𝑟−1 , (7) 

where 𝜏𝑝ℎ−𝑝ℎ is the lifetime due to phonon-phonon scattering; this dependence was also taken from 17; 𝜏𝑝𝑜𝑟  is the lifetime due to phonon scattering at the pore edge. In our calculations, we evaluate this lifetime 

as follows 𝜏𝑝𝑜𝑟 = 𝑙𝑝𝑜𝑟𝑣(𝜔, 𝑝) , (8) 

where 𝑙𝑝𝑜𝑟  is the mean free path due to phonon scattering at the pore edge. Following Minnich and Chen 
10, it was estimated as 

𝑙𝑝𝑜𝑟 = 𝑙𝑀𝑖𝑛𝑛𝑖𝑐ℎ = 4𝛷 = 𝐿3𝜋𝑅2 . (9) 

Fig. 3 presents the dependence of the thermal conductivity of the nanoporous matrix calculated with the 

KT approach by Eq. (6) and the one evaluated from MD simulations by Eq. (1). 
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Fig. 3. The dependence of the thermal conductivity of the nanoporous matrix calculated with the KT and 

MD approaches 

As shown in Fig. 3, the Minnich and Chen model approximates well MD data for the small and intermediate 

regions of specific surface area (before 0.3 nm-1). While for the high interfacial density, the difference in 

thermal conductivity may reach 100%. Therefore, one can conclude that phonon localization may play a 

significant role in high interface densities. Such localization may arise as a result of decreasing distance 

between pores due to the necking effect18,19. The distance decreases mainly because of the increased 

volume occupied by a pore. 

In order to take this into account, we use the approximation of the mean free path obtained for the 

periodic Lorentz gas represented by two types of particles. The first type is the “heavy particles” 

periodically located in a 3d lattice representing the pores, while the “light particles” represent the 

phonons. For such a configuration, the mean free path of the light particle due to the scattering on heavy 

one can be represented by Santaló's formula 20,21: 

𝑙𝑆𝑎𝑛𝑡𝑎𝑙ó = 𝐿3 − 43 𝜋𝑅3𝜋𝑅2 = (1 − 𝑃)𝑙𝑀𝑖𝑛𝑛𝑖𝑐ℎ , (10) 

where 𝑃 is the porosity. As one can see, Santaló's formula for the mean free path also shows the impact 

of reducing the material's volume on the mean free path. This impact is crucial for highly porous materials 

with an enormous specific surface area. One should note that Eq. (10) was obtained for specular scattering 

of the light particle at the surface of the heavy one (billiard model).  
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Fig. 4 Dependence of thermal conductivity with pore radius for different temperatures (the case 

L = 12 a) 

The analytical description of the modified mean free path with Santaló's formula is also presented in Fig. 

3. As one can see, this model well describes the dependence of thermal conductivity for higher values of 

the specific surface area. It should be noted that in Fig. 3, we presented the curve only for two extreme 

cases 𝐿 = 6𝑎 and 𝐿 = 12𝑎. As shown in Fig. 3, the impact of the volume reduction is more pronounced 

for the bigger box for the same specific surface area. However, the deviation of both curves from the one 

given by the Minnich and Chen approximation is significant only under the enormous specific surface area, 

which may arise only at the nanoscale.  

The KT model with the mean free path modification based on the “billiard model” also describes the 
temperature dependence of porous silicon (see Fig. 4). 

We want to stress that the impact of the porosity on the phonon mean free path in the current letter is 

demonstrated for a porous system made of a periodically arranged spherical pores network. Nevertheless, 

the core equations for KT modelling (Eq. (6) and Eq (7)) used here are quite general. Therefore, the results 

presented here can be broadcasted for different porous and composite systems, including non-periodical 

arrangements. Specifically, this approach can be easily adapted for the systems where mean free path can 

be obtained analytically (for example, for cylindrical or slit pore geometry) or numerically (for instance, 

with the use of Monte-Carlo approach to solve phonon Boltzmann Transport Equation 22,23).  

In conclusion, we performed MD simulations and KT modelling of thermal conductivity in porous silicon 

for different specific surface areas. We found a significant reduction of TC for large specific surface ratio. 

In the latter case the prediction based on the Minnich and Chen model fails. Thus, Santaló's formula used 

to evaluate the mean free path in a Lorentz gas was adopted to approximate the mean free path in high 

porosity silicon. This formula considers the dependence of the mean free path with the porosity itself. 

Specifically, such dependence arises due to the necking effect – decreasing the distance between pores. 

The analytical KT model with the mean free path estimation by the Santaló's formula predicts well the 

variations of thermal conductivity for higher porosity. Thus, we can state the crucial impact of the volume 
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fraction of the composite components at the nanoscale on the phonon mean-free reduction. The latter 

should be considered for thermal engineering in nanoelectronics, where the components' size is currently 

trending to several nanometers24. 
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