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ABSTRACT

Context. The Gaia Early Data Release 3 contained the positions, parallaxes, and proper motions of 1.5 billion sources, some of which
did not show a good fit to the ‘single star’ model. Binarity is one of the causes of this.
Aims. Four million of these stars were selected and various models were tested to detect binary stars and to derive their parameters.
Methods. We used a preliminary treatment to discard the partially resolved double stars and to correct the transits for perspective
acceleration. We then investigated whether the measurements show a good fit to an acceleration model with or without jerk. We tried
the orbital model when the fit of any acceleration model was beyond our acceptance criteria. We also tried a Variability-Induced Mover
(VIM) model when the star was photometrically variable. A final selection was made in order to keep only solutions that probably
correspond to the real nature of the stars.
Results. Following our analysis, 338 215 acceleration solutions, about 165 500 orbital solutions, and 869 VIM solutions were retained.
In addition, formulae for calculating the uncertainties of the Campbell orbital elements from orbital solutions expressed in Thiele-
Innes elements are given in an appendix.

Key words. binaries: general – catalogs – astrometry – methods: data analysis

1. Introduction

Since the start of the Gaia satellite observations in summer 2014,
several data releases have been made available to the scientific
community. The astrometric parameters of more than one billion
stars have been determined three times with ever increasing pre-
cision, but these data still described the stars as single. The third
Data Release (DR3) and the Early third Data Release (EDR3)
are the first to have a significant number of observations cover-
ing a sufficiently long time span (about 33 months) to make it
worthwhile to use Gaia observations to search for binary stars.

The extension of the exploitation of Gaia observations to
binary stars reveals two difficulties in addition to the application
of the single star model. As with its predecessor Hipparcos, the
double-star candidates are covered by different numerical mod-
els, with uncertainty remaining as to whether any of them really
corresponds to a given star. Therefore, we have to solve the prob-
lem of choosing the model that best applies to a given star, as
well as the final acceptance of the solution. Before that, we have
to filter the input data to retain only those stars for which a suit-
able solution can be obtained.

† Deceased on 14 November 2021.

2. Treatment overview

2.1. Selection of stars to be processed

The astrometric processing of the Gaia Early Data Release 3
(EDR3, Gaia Collaboration 2021) left some 36.5 million stars
that were considered to be possibly double. These stars were
all brighter than G = 19, had a renormalised unit weight error
(RUWE; see Lindegren et al. 2021) of greater than 1.4, and were
observed over at least 12 visibility periods. These objects included
many pairs of stars that were resolved whenever the orientation
of the scan direction made this possible, and were seen as a sin-
gle photocentre otherwise. These so-called ‘partially resolved
double stars’ are likely to appear as unresolved binary stars of
extremely rapid orbital motion, and should be discarded wher-
ever possible. It is planned to apply a specific treatment to them
in future data releases, but for the moment we can only eliminate
them when possible. For this purpose, two quantities published
in Gaia EDR3 and coming from the astrometric binary-detection
processing (Lindegren et al. 2021) were used to establish two
additional criteria: the percentage of CCD observations where
image parameter determination (IPD) detected more than one
peak, called ipd_ f rac_multi_peak, must be less than or equal to
2, and ipd_go f _harmonic_amplitude, which is the amplitude of
the natural logarithm of the goodness-of-fit obtained in the IPD
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Fig. 1. Overall organisation of the astrometric treatment of binary stars,
as was eventually applied to the DR3. The cascade on the left side of
the figure is the ‘main processing’ referred to hereafter.

versus the scan position angle, must be less than 0.1. As a result,
the number of targets to be treated was reduced to 10.9 million.
In order to further reduce the number of partially resolved dou-
ble stars, a final selection was based on photometric properties.
As the pixels of the astrometric field are much smaller than those
of the blue and red photometers (BP and RP) windows, a compo-
nent of a close binary at the resolution limit appears less bright in
G magnitude (from the astrometric field) than one would expect
from its magnitude in the BP and RP fields. The corrected BP
and RP flux excess factor C∗ and its uncertainty σC∗ as defined
in Riello et al. (2021, Eqs. (6) and (18)) were taken into account.
The drastic condition |C∗| < 1.645 σC∗ , corresponding to a 90%
confidence interval, was applied and a selection of 4 115 743 stars
was finally obtained.

2.2. Overall organisation

The organisation of the astrometric binary star processing, as
it was finally realised, is summarised in Fig. 1. The input data
consist of the 4 115 743 selected stars, for which the following
information is used: the along-scan (AL) coordinates of each
transit of the astrometric field of view, the partial derivatives
of the single star astrometric model, the G magnitudes of the
transits, and the parameters of a preliminary single star solu-
tion, that is, the coordinate offsets, the parallax, and the proper
motion. The production of the astrometric data is described
in Lindegren et al. (2021), while the magnitude reduction is
explained in Riello et al. (2021). The data are complemented by
radial velocities, when available (Seabroke et al., in prep.).

The calculation of the astrometric solutions is done in the
so-called main processing, as explained hereafter. The data dis-

cussed above are ingested by the preprocessing, which pre-
pares them for the calculation of different types of solutions.
The solutions are calculated one after the other, starting with
a new calculation of the single star solution, followed by the
acceleration solutions, the orbital solution, and, finally, the
variability-induced mover (VIM) solutions if the star is photo-
metrically variable. As soon as a solution is considered accept-
able, the processing cascade is interrupted and the star goes
to post-processing. The post-processing essentially consists of
re-filtering the solutions, applying more stringent criteria than
those used after the solutions were calculated. When a solu-
tion is discarded by post-processing, it is replaced by the EDR3
single-star solution.

In practice, the software for managing the cascade of cal-
culation and acceptance of solutions is much more sophisticated
than the scheme shown in Fig. 1. Indeed, the solution that entered
the post-processing was sometimes a so-called ‘alternative’ solu-
tion (not to be confused with the ‘OrbitalAlternative’ solutions
in Holl et al. 2023): a solution that met poor acceptance crite-
ria, and which was retained because it was the solution that
best matched the observations at the end of the cascade. More
information on this aspect of the process is given at the end of
Sect. 2.3.2, but we can already highlight two things: First, that
we did not systematically try all the models to retain the one that
was the most suitable; this was motivated mainly by the objec-
tive to save computational time, but also by the fear of accept-
ing complex solutions for objects that could fall under a sim-
pler model (e.g., giving an acceleration solution for an orbital
binary is a less serious error than giving a false orbital solu-
tion for a binary that should only have an acceleration solution).
Despite its apparent mathematical simplicity, the VIMF model
has been placed at the end because it combines data of two kinds
(astrometric and photometric), which undermines the reliabil-
ity of the solutions. Secondly, post-processing consists only of
rejecting solutions, without trying to replace them with more
complex or alternative solutions. Ideally, the filters applied in
post-processing should be included in the main processing, but
this was not possible in the time available.

2.3. Criteria for the acceptance of solutions

We define hereafter two quality criteria, the goodness of fit
and the significance, which can be used to distinguish accept-
able solutions from those that are irrelevant or at least poten-
tially wrong. In order to decide whether or not a solution is
really plausible, we also consider astrophysical criteria and other
constraints, which allows us to identify some solutions as not
very plausible. These bad solutions allow us to delimit a quality
domain where they are absent or rare, and whose solutions will
be kept.

2.3.1. The goodness of fit

The goodness of fit indicates whether or not the model provides
predictions that are compatible with the actual measurements.
As in the preparation of the Hipparcos catalogue (ESA 1997,
Vol. 1, Sect. 2.1), we use the F2 estimator, which is given by the
formula:

F2 =

√
9ν
2

(χ2

ν

)1/3

+
2
9ν
− 1

 , (1)

where ν is the number of degrees of freedom, and χ2 is the
sum of the squared normalised residuals. For a solution derived
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through an adequate model, F2 is expected to obey the normal
distribution N(0, 1). This property is attributed to linear mod-
els (Stuart & Ord 1994), but we verified using simulations that
it also applies to the orbital model presented hereafter, when
the semi-major axis of the orbit is significantly larger than its
uncertainty. A large F2 means that the model is inadequate, or
that the uncertainties used to derive the χ2 are underestimated.
In practice, we know that this last possibility widely applies to
the astrometric transits used in DR3. Therefore, only very large
values of F2 indicate that the model cannot be accepted. Nev-
ertheless, assuming that the model is adequate, the uncertainties
may be revised in order to obtain a zero F2. The simplest correc-
tion method, as it keeps the relative weights of the transits and
therefore the solution of the model, consists in multiplying the
uncertainties of the observations by the coefficient:

c =

√√√
χ2

ν
(
1 − 2

9ν

)3 . (2)

It is worth noting that the correction by the coefficient c also
applies to the uncertainties of the model parameters. In addition
to the correction of uncertainties, F2 was also taken into account
for the selection of solutions. In the main processing, solutions
of F2 > 1000, if any, were rejected, but a stricter condition was
applied in the post-processing: whatever the model, purely astro-
metric solutions with uncorrected F2 > 25 were considered as
questionable, and were finally not retained.

Although similar in principle, this approach is slightly differ-
ent from that followed in the treatment of single star solutions for
EDR3 (Lindegren et al. 2021): Eq. (2) shows that the coefficient
c is equal to UWE × [1 − (2/9ν)]−3/2, which is approximately
equal to UWE. On the other hand, we do not apply a renormal-
isation, but this does not matter because we only consider stars
brighter than G = 19.

2.3.2. The significance

The significance is a dimensionless quantity that was already
introduced in the Hipparcos catalogue (ESA 1997, Vol. 1,
Sect. 2.3.3) in order to decide whether the use of a model includ-
ing additional parameters is really justified. When the additional
parameters are the coordinates of a two-dimensional vector, as is
the case for the acceleration models in Sect. 4, the significance,
s, is defined as the module of this vector divided by its uncer-
tainty. Therefore, s is calculated with the equation:

s =
1

σ1σ2

√
p2

1σ
2
2 + p2

2σ
2
1 − 2p1 p2ρ12σ1σ2

1 − ρ2
12

, (3)

where p1 and p2 are the coordinates of the additional vector char-
acterising the model (e.g., the acceleration), σ1 and σ2 are the
uncertainties of p1 and p2, respectively, corrected by the coeffi-
cient c derived with Eq. (2), and ρ12 is the correlation coefficient
between p1 and p2. The values of σ1, σ2, and ρ12 are all taken
from the variance-covariance matrix.

When the solutions were calculated, a preliminary selection
was made through basic filtering: the solutions of s > 12 and
F2 < 25 were considered good enough to be retained, with-
out trying other models. Otherwise, the solutions with s > 5
and F2 < 1000 were considered as ‘alternative’ solutions (see
Sect. 2.2), and the smaller F2 alternative was provisionally
accepted at the end of the cascade. The limit of 5 was adopted
empirically on the basis of initial tests of the data. Thresholds of

5 and 12, which amount to as many σs, seem exceptionally high
and are much higher than the thresholds of 3 and 4 that were
adopted on the basis of simulations for alternative solutions and
for direct acceptance, respectively. This is because, in reality, the
uncertainties on the transits of a star are certainly not all overes-
timated by the same coefficient; correcting the uncertainties by
a single coefficient is only a ‘stopgap’ measure, as it is not pos-
sible to separate transits with a correct original uncertainty from
those with a very underestimated uncertainty.

The set of solutions selected as above was then subjected to
a more severe filtering in order to keep only the most credible
solutions, as explained below for each model. The final selec-
tion criteria, resulting from main processing followed by post-
processing, are presented in Table 1. For the acceleration mod-
els and for the VIMF model, these are more severe than the
direct acceptance criteria, and they lead to the rejection of alter-
native solutions. However, all alternative solutions contribute to
the statistical properties of the main processing solutions, which
are presented hereafter, and are the basis for the choice of the
final criteria.

3. Preprocessing

3.1. Rejection of outliers

Each transit of a star through the Gaia astrometric instrument
comes down to the measurement of two coordinates, which give
its position relative to a reference point assigned to the star (see
Lindegren et al. 2021). Of these, only the coordinate along the
scan axis, hereafter referred to as the AL abscissa, w, is taken
into account, as it is considerably more accurate than the other.
The AL abscissae were measured along the nine CCD transits
that constitute each field-of-view (FoV) transit. As the duration
of the FoV transit is only a few seconds, while we are look-
ing for binary stars with periods of at least several days, the nine
CCD transits amount to nine measurements of the same quantity.
Outliers were therefore detected by intercomparison between
the CCD transits. In practice, each AL abscissa was compared
to the median of the nine values, and the transit CCD was
rejected when the difference exceeded five times the uncertainty
on the abscissa.

This rejection process was not the only one that was applied,
and subsequently transits were rejected after the calculation
of some astrometric solutions. The largest residual transit was
rejected when it exceeded five times the uncertainty, and the
solution was recalculated; however, this operation was subject
to three restrictions: (1) it was only done for linear models, that
is, the single star model and the two acceleration models; (2)
the χ2 of the solution should exceed the number of transits used
multiplied by 1.41; and (3) the proportion of rejected transits was
limited to 5%.

3.2. Correction of the perspective acceleration

The distance from the Sun and the apparent position of
a nearby star vary during the time-span of the Gaia mis-
sion, inducing slight changes in astrometric parameters, which
are usually assumed to be constant. These so-called ‘per-
spective effects’ were taken into account in the calculation
of the astrometric parameters of a few single stars in the
Hipparcos catalogue (ESA 1997). Dravins et al. (1999) and
Lindegren & Dravins (2003) showed that these effects are so
closely related to radial velocity that they could be used to mea-
sure it. For Gaia, Halbwachs (2009) showed that perspective
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Table 1. Properties of the different models and final conditions for the selection of solutions.

Model Dimension Significance Selection conditions
Significance F2 $/σ$ Other

Acceleration:
Constant 7 s7 =

g
σg

>20 <22 >1.2s1.05
7 –

Variable 9 s9 =
ġ
σġ

>20 <25 >2.1s1.05
9 –

Orbital(∗):

Eccentric 12 a0
σa0

>max
(
5, 158√

Pdays

)
<25 > 20 000

Pdays
σe < 0.079 ln Pdays − 0.244

Circular or 10 a0
σa0

>max
(
5, 158√

Pdays

)
<25 > 20 000

Pdays
–

Pseudo-circular
VIMF 7 D

σD
>20 <25 >30 –

Notes. (∗)These selection conditions do not apply to orbital solutions from main processing when they have been confirmed by a SB1 spectroscopic
solution, as explained in Gosset et al. (in prep.).

effects do not significantly affect the astrometric orbits of binary
stars; however, they do result in a ‘perspective acceleration’
of stars that could be mistaken for an acceleration due to
orbital motion.

The perspective acceleration is based on the radial proper
motion, µr, which is defined as the radial velocity, vr, divided by
distance. In practice, µr, expressed in yr−1, is related to vr and
parallax, $, by the following relationship:

µr = vr $ ×
24 π × yeardays

180 × aum
, (4)

where vr is in km s−1, $ is in mas, yeardays is the duration of the
year in days, and aum is the length of the astronomical unit (au)
in meters. Perspective acceleration changes the AL abscissa of a
star, w, by adding the following quantity:

∆w = −µr (t − T ) ×
(
∂w

∂$
$ +

∂w

∂µα∗
µα∗ +

∂w

∂µδ
µδ

)
, (5)

where t is the epoch in years, and T is an epoch close to the mid-
dle of the DR3 mission (in practice, T = 2016.0). The partial
derivatives of the abscissa with respect to the parallax and to the
proper motion coordinates are those of the five-parameter single
star model. If µr is unknown, then the abscissae are related to the
parameters by a system of non-linear equations. Fortunately, the
radial velocities of the bright stars are measured by Gaia, and
a calculation based on the single star model, ignoring the per-
spective acceleration, already gives a good approximation of the
parallax and of the proper motion. Therefore, µr may be deter-
mined from Eq. (4).

There are therefore two possible ways to take into account
the perspective acceleration: either multiply the partial deriva-
tives by µr(t − T ), as they are in Eq. (5), or correct the abscis-
sae by subtracting the perspective acceleration contribution, ∆w.
Because of its simplicity, we followed the latter method: ∆w was
calculated from Eq. (5) using preliminary values of $, µα∗, and
µδ, and was subtracted from the AL abscissa. This correction
was made for transits of all stars of known radial velocity when
they were closer than 200 pc, perspective effects being negligi-
ble beyond that. The astrometric binary solutions obtained for
stars whose measurements have been corrected for perspective
acceleration are identified by a flag in the solution tables.

3.3. New calculation of the single star solution

The above operations may have changed the transits to such an
extent that the star should no longer be considered a potential
binary. For this reason, the single-star solutions were recalcu-
lated, and were accepted when F2 was zero or negative. Of the
4 115 743 stars that entered the processing chain, only 28 left at
this stage. The rest were passed through the acceleration models.

4. The acceleration solutions

Acceleration models were already introduced in the reduction of
the Hipparcos catalogue in order to describe binary stars that
could not be covered by the orbital model because their period
was too long. Two models were considered: the constant acceler-
ation model, where the trajectory is a parabola, and the variable
acceleration model, which includes the time derivatives of the
acceleration. The calculation of the solutions from these models
was done with rejection of outliers, as explained at the end of
Sect. 3.1.

4.1. The constant acceleration model

Under the effect of the gravitational force, the two components
of a binary are accelerated towards each other. If they cannot be
resolved and the photocentre does not coincide with the barycen-
tre, the apparent motion of their photocentre is accelerated; when
the orbital period is much longer than the time interval covered
by the observations, the acceleration is nearly constant in inten-
sity and direction. These physical considerations are at the ori-
gin of the constant acceleration model. Each coordinate of the
photocentre varies with time according to a parabola. However,
fitting a parabola to the set of observations means setting the
mid-mission position of the star as given by the first two terms of
the solution, so that it is tangent to the parabola, and therefore far
from the mean position of the star. To provide a position closer to
the mean position of the star, we followed the method explained
in the Hipparcos catalogue (ESA 1997, Vol. 1, Sect. 2.3.3), and
the partial derivatives of the abscissa with respect to the acceler-
ation, (gα∗, gδ), are given by the following equations:

∂w

∂gα∗
=

1
2
∂w

∂α∗

[
(t − T )2 −

∆T 2

3

]
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∂w

∂gδ
=

1
2
∂w

∂δ

[
(t − T )2 −

∆T 2

3

]
, (6)

where T is 2016.0 as in Sect. 3.2, and ∆T is half the time interval
covered by the observation of the star. For simplicity, the same
value of ∆T was assumed for all stars, and we adopted half the
time between the start of the Gaia science mission and the last
DR3 observation, which, according to the information available
when the software was finalised, lead to ∆T = 1035/2 = 517.5 d,
or 1.417 yr. However, this is an overestimation: the last observa-
tion of the DR3 was made on 28 May 2017, three days later than
we had assumed, but, on the other hand, the astrometric data of
the first month of the Gaia scientific mission were not taken into
account (Lindegren et al. 2021). Moreover, the actual duration
covered by the observations of a star is necessarily shorter than
the duration covered by all the observations. For all these rea-
sons, ∆T should be rather of the order of 470 days. However,
the resulting shift in the mean position is very small: 0.06 mas
times the acceleration in mas yr−2. The significance of the con-
stant acceleration model is defined from the acceleration vector
and is derived from Eq. (3), as explained in Sect. 2.3.2.

4.2. The variable acceleration model

When the gravitational force is significantly changing over the
duration of the mission, but when the orbital period is still much
longer than the observation time span, the time derivative of the
acceleration, (ġα∗, ġδ), is added to the parameters of the model.
However, the introduction of these parameters could modify the
proper motion of the star. In order to derive a proper motion
corresponding to the average displacement of the photocentre
during the mission, the partial derivatives of the abscissa with
respect to ġα∗ and ġδ are given by the equations:

∂w
∂ġα∗

= 1
6
∂w
∂α∗

[
(t − T )2 − ∆T 2

]
(t − T )

∂w
∂ġδ

= 1
6
∂w
∂δ

[
(t − T )2 − ∆T 2

]
(t − T ),

(7)

where ∆T is the same as in Sect. 4.1 above. We emphasise that
the only effect of introducing ∆T is to produce a position and
proper motion similar to that which would result from applying
the single-star model. As acceleration models cannot locate the
barycentre of a binary, these parameters are still affected by the
orbital motion of the photocentre relative to the barycentre.

The significance of the variable acceleration model is defined
from the (ġα∗, ġδ) vector. As above, this is derived from Eq. (3),
as explained in Sect. 2.3.2. It is worth noting that the acceler-
ation models are both linear models, and that the solutions are
found by solving a system of linear equations by singular value
decomposition.

In the Hipparcos reduction, the constant acceleration solu-
tion was considered as acceptable when the acceleration was sig-
nificant, but the variable acceleration solution was always tried
and, when significant, was preferred to the constant acceleration
solution. We have kept this strategy, and, for that reason, the vari-
able acceleration model was tried first. The variable acceleration
solution was retained when it satisfied the conditions: s > 12
and F2 < 25. Otherwise, the constant acceleration solution was
derived, and was accepted when it satisfied the same conditions.
Because of this acceptance, no other models were tried. There-
fore, acceleration solutions were retained for many binary stars
with periods shorter than the duration of the Gaia mission. This
choice was originally made to save computing time; this reason
was no longer relevant at the time of processing the DR3, but

the strategy remained unchanged because the risk of producing
an orbit with an incorrect period was considered to be more seri-
ous than that of giving only a polynomial fit for a trajectory that
could be described by an ellipse. This is a matter of judgement
which may be considered questionable, and a different approach
will probably be taken in the next data release.

4.3. Selection of the acceleration solutions

To delimit a domain of acceptance of the solutions, for both
acceleration models, we consider the true acceleration projected
on the sky. This latter is referred to as Γ in the following and is
derived from the equation:

Γ =

√
g2
α∗ + g2

δ

$
. (8)

When the apparent acceleration is expressed in mas yr−2 and
when the parallax is in mas, Γ is obtained in au yr−2. In order
to estimate a maximum value for Γ, we consider a bright star
with a dark companion, so that the acceleration of the photocen-
tre is that of the bright star. Applying the law of gravitation, and
assuming that the distance between the components is approxi-
mately equal to the semi-major axis of the orbit of the bright star
around the companion, we deduce from Kepler’s third law that
the acceleration is then:

Γau yr−2 ≈ 4π2
 MM�

P4
yr

q3

(1 + q)2

1/3

, (9)

where P is the period, M the mass of the bright star, and q the
mass ratio, that is, the ratio between the mass of the dark com-
panion and M.

An upper limit on Γ is obtained when the bright star is a giant
solar-mass star with a companion still on the main sequence or
on the subgiant branch, with q slightly less than 1, and when
the period is twice the duration of the Gaia mission. Such a sys-
tem is not frequent, but is not exceptional in a sample bounded
by a limit in magnitude. With a period of 5.7 yr, the accelera-
tion may be as large as about 2.4 au yr−2 for a circular orbit; over
half a period, the average acceleration can then be as high as
2.0 au yr−2. However, this result is a rough estimate: we have
neglected the eccentricity, which will produce a larger acceler-
ation near the periastron, and we have assumed a period much
longer than the duration of the mission, whereas we know that
many solutions are for shorter periods. Considering the distribu-
tion of values obtained from the solutions (see Figs. 2a and b),
we see a concentration below Γ = 3 au yr−2, which we adopt
as the limit for an acceptable acceleration solution. Stars whose
acceleration is really beyond this limit are certainly very rare, but
they are also objects of great scientific interest, such as binaries
with a massive dark component, and for this reason we do not
reject them directly.

The following three conditions were introduced to restrict
the proportion of Γ larger than this limit: (1) As mentioned in
Sect. 4.2 above, the main processing was performed with the
threshold s > 12 for direct acceptance and s > 5 for the alterna-
tive solutions. In addition, conditions based on the significance
of the parallax were introduced for both levels:$/σ$ > 1.2 s1.05

for the constant acceleration model, and $/σ$ > 2.1 s1.05

for the variable acceleration model. These conditions were set
because they very effectively reduce the number of high accel-
erations; it is worth noting that they are not criteria based on
the quality of the solutions: reading them from right to left, they
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Fig. 2. Selection of the acceleration solutions. The left-hand panels correspond to solutions with constant acceleration, and those on the right to
those with variable acceleration. Panels (a) and (b): significance vs. acceleration diagrams from a processing trial without the selection based on
parallax error. The solutions with F2 below the final threshold are in blue, while those above are in orange. The solutions of 5 < s < 12 were
accepted in the absence of better solutions from another model, while the others were immediately accepted when s > 12 and F2 was below 22 (for
constant acceleration solutions) or 25 (for variable acceleration solutions). The number of solutions with a mean acceleration Γ > 3 au yr−2 falls
off when the significance exceeds 20. Panels (c) and (d): the F2 vs. s diagrams of the solutions finally selected in the post-processing. The black
dots are the remaining solutions with Γ > 3 au yr−2; they still correspond to the smallest significances, but this is essentially due to the filtering
based on the parallax error.

both mean that, for a given distance, the most significant solu-
tions are rejected. This results in rejecting the largest acceler-
ations because many of them are highly significant, and their
occurrence rate is therefore artificially reduced. However, it was
necessary to apply these criteria to avoid too much pollution
from partially resolved double stars. Another beneficial con-
sequence of this filter is that the short-period binaries whose
acceleration solution was rejected in this way were able to have
an orbital solution. Including alternative solutions, the main
processing yielded 808 992 constant acceleration solutions and
569 022 variable acceleration solutions. These solutions must be
filtered in the post-processing to keep only those that seem most
likely to be real. (2) The significance, s, must be over 20 for both
acceleration models. (3) The goodness of fit, F2, must be below
22 for the constant acceleration model, and below 25 for the vari-
able acceleration model. The limit is more severe for the constant
acceleration solutions so that the sequences of the Hertzsprung–
Russel (HR) diagrams deduced from the parallaxes of these solu-
tions are always thinner than those deduced from the single-star
model. Conditions (2) and (3) reduced the number of solutions
to 246 798 for constant accelerations, and 91 227 for variable
accelerations.

The two lower panels of Fig. 2 show the distributions of the
selected solutions in the F2 vs. s diagrams. Thanks to the paral-
lax filtering (item (1) above), the solutions with Γ > 3 au yr−2 are

very rare: 0.03% of the constant acceleration solutions, and 0.3%
for the variable accelerations. If filters (2) and (3) are applied to
a test sample unaffected by filter (1), the proportions of large
Γ are 3.1% and 5.6% respectively. Unless one is prepared to
sacrifice the vast majority of solutions, these high rates resist
the quality criteria we have tried; this issue is discussed fur-
ther in Sect. 7, taking into account the results of independent
investigations. Several origins have been considered for the high
acceleration solutions: short-period binaries, partially resolved
binaries, or outlier astrometric measurements. We can only con-
clude that the stars with acceleration solutions are most likely
genuine binaries, but the physical interpretation of the accelera-
tions is hazardous.

5. Orbital solutions

An orbital solution is calculated when the orbit has been
observed either in its entirety or over a sufficient portion to
extrapolate the missing part. The general case concerns elliptical
orbits; circular orbits are described by adapting it.

5.1. Calculation of the orbital solutions

The abscissa of an unresolved astrometric binary can be written
as in the following equation:
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w = wB +
∂wB

∂δ
(cos E − e) × A +

∂wB

∂α∗
(cos E − e) × B

+
∂wB

∂δ

√
1 − e2 sin E × F +

∂wB

∂α∗

√
1 − e2 sin E ×G, (10)

where wB is the abscissa of the barycentre, which is given by
the single-star model, A, B, F, and G are the Thiele-Innes (TI)
elements, whose definition is given in Eq. (A.1), e is the eccen-
tricity of the orbit, and E is the eccentric anomaly. E depends on
the observation epoch, but also on the orbital period, P, on e, and
on the periastron epoch, T0, and so the model is finally based on
12 unknowns: the five parameters of the single-star solution, and
A, B, F, G, P, e, and T0; the partial derivatives of w with respect
to the TI elements are given in Eq. (10), and those with respect
to P, e, and T0 can be found in Goldin & Makarov (2006).

The derivation of the orbital solutions is based on the
Levenberg–Marquardt algorithm, but this can only lead to the
solution if it starts from a good starting point. In practice, a cal-
culation starting from e = 0 often leads to the right result if
the period tested is close to the actual period, but scanning a grid
covering the space of P, e, and T0 is still necessary for finding the
solution. The period range tried is from 10 days to the duration
covered by the observations of the star divided by 0.6. The solu-
tions are calculated and published in terms of TI elements, but
the calculation of the elements usually used to describe an orbit,
which are the so-called Campbell elements (semi-major axis,
inclination of the orbit, position angle of the ascending node, and
periastron longitude), is presented in Appendix A, where the cal-
culations of their uncertainties are also given. The extension of
this calculation to the Thiele-Innes elements introduced by both
astrometric and spectroscopic orbits is presented in Appendix B.

The significance of the orbital model is defined as the semi-
major axis of the orbit, a0, divided by its uncertainty. This defini-
tion of the significance was adopted because a significant orbit is
expected to have a large semi-major axis, when, on the contrary,
an orbit with a semi-major axis close to or smaller than its uncer-
tainty may be obtained for a single star. The semi-major axis is
not explicitly a parameter of the orbital model that we have used,
but it may be derived from the TI elements thanks to Eq. (A.2).
Its uncertainty is derived from Eqs. (A.7) and (A.8).

5.2. Pseudo-circular and circular orbital solutions

Rare orbits (eight in total) have been directly calculated as cir-
cular and are given with e = 0. These calculations required spe-
cial arrangements, which were also adopted for orbits with very
small eccentricities, as explained below.

Preliminary calculations showed that the eccentricities below
0.006 were all at least three times smaller than their uncertain-
ties. For such solutions, the uncertainties of the TI elements are
also often very large, as is the uncertainty of T0, which can be
larger than the period. These anomalies arise from the indetermi-
nacy of the position of the periastron, affecting the TI elements
through their dependence on the longitude of the periastron,
ω (see Eq. (A.1)). They do not affect the validity of the solu-
tion, for which the Campbell elements calculated as explained
in Appendix A have correct uncertainties, except for ω, whose
uncertainty far exceeds 2π; however, they may confuse the user.

In order to limit these effects, orbits with an eccentricity
of less than 0.0005 were ‘pseudo-circularised’ in the following
way: The Campbell elements were derived, and the periastron
longitude, ω, was set to zero in order to place the periastron
on the ascending node. Therefore, the periastron epoch, T0, was
advanced by subtracting the time interval corresponding to the

orbit section between the ascending node and the initial perias-
tron, which for a circular orbit is P × ω/(2π). As the initial orbit
is not circular, this formula is an approximation that is only pos-
sible for very small eccentricities; this is why it was only done
for e < 0.0005. The TI elements were then recalculated, keeping
the semi-major axis, orbit inclination, and line-of-nodes position
angle of the initial solution.

After these transformations, the solution is based on only ten
unknowns: e is fixed, and only three of the four TI elements
remain, because ω = 0 implies that G = −AF/B, or F = −BG/A.
Therefore, G was no longer considered as an unknown pro-
vided that |B| > 10−5 mas. Otherwise, it was F that had to be
removed, but this did not happen in practice. Thus, the solution
variance-covariance matrix was recalculated for the ten selected
unknowns. This 10 × 10 matrix was inserted into the 12 × 12
matrix of orbital solutions, setting the unnecessary terms to zero.

In the end, this gives quite reasonable uncertainties for the TI
elements and for T0. However, the solution will give an uncer-
tainty and correlation terms that are zero for G, which is wrong
and needs to be corrected in order to deduce the uncertainties
of Campbell’s elements as explained in Appendix A. The uncer-
tainty of G, σG, is derived from the equation:

σG = |G|
[(
σA

A

)2
+

(
σB

B

)2
+

(
σF

F

)2

+2
(
ρABσAσB

AB
+
ρAFσAσF

AF
+
ρBFσBσF

BF

)]1/2
. (11)

The correlation coefficients relating G to the other TI elements
are:

ρAG = +1
ρBG = −1
ρFG = +1. (12)

These modifications must also be made to circular orbits if the
uncertainties of their Campbell elements are to be calculated.

5.3. Selection of the orbital solutions

The orbital solutions were first selected according to the thresh-
olds set out in Sect. 2.3.2, the significance being calculated as
explained in the previous section. In order to identify doubt-
ful solutions, we took the mass function into account, which is
derived from:

fM =
a0

3 × 365.252

P2$3 , (13)

where P is the period in days, and where a0 and $ are in the
same units; fM is therefore obtained in solar masses. Taking into
account that a0 refers to the orbit of the photocentre, the third
Kepler law gives the following expression:

fM =
‖F1M2 − F2M1‖

3

(F1 + F2)3(M1 + M2)2 , (14)

where F1 and F2 are the photometric fluxes of the brightest
and of the faintest component, respectively, and M refers to the
masses. When F2 is negligible compared to F1, this equation
becomes:

fM(F2 � F1) =
M1q3

(1 + q)2 , (15)
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Fig. 3. Selection of the astrometric orbital solutions. The first row refers to the solution obtained from a processing trial without the selection based
on parallax error. (a): period vs. mass function diagram, showing a clump of plausible solutions, bounded by fM ≈ 0.3 M�, and various sequences,
organised around particular periods, which cross the clump and extend well beyond. (b): period vs. ‘parallax significance’. The solutions with
fM < 0.3 M� are in green, and the large fM, which are well clustered around the same periods as in panel (a), are in black. The line is the
limit $/σ$ = 20 000/Pd, which was implemented in the main processing to discard the dubious solutions. The second row shows the density
map diagrams used to set up the post-processing filters to remove the concentrations still existing over specific periods. (c): period–eccentricity
uncertainty diagram; solutions above the red line were rejected. (d): period–significance diagram; solutions below the red line were rejected. The
third row shows properties of the DR3 solutions eventually selected after applying the post-processing filters. (e): the period–eccentricity diagram;
the black curve is the maximum eccentricity assuming that the periods shorter than 10 days are circularised. The black dots are the solutions with
fM > 0.3 M�. The astrometric-only orbital solutions are in green, while the solutions confirmed by a spectroscopic SB1 orbit from Gaia are in
purple. (f): histogram of periods; the proportion of solutions with mass function above 0.3 solar masses, in black, increases with period, as the gap
between these solutions and the totality, in green, is reduced (in order to highlight possible overdensities, the step size of the green histogram is
very fine; to avoid fluctuations in counts from small numbers, the black histogram was plotted by merging the count intervals into clusters of four,
and giving the mean value for each cluster).

where q = M2/M1 and where the index ‘1’ refers to the brightest
component.

Panel a of Fig. 3 shows the period vs. mass function diagram.
There are two kinds of false solutions: First of all, solutions of
fM > 0.3 M�. This limit appears rather large for dwarf stars, but
is roughly acceptable for binaries with a giant component and a

component still close to the main sequence, or for a triple system
with a massive pair as a secondary component. The second kind
are solutions with particular periods, which probably depend on
the 63-day precession period of the satellite. These solutions usu-
ally have a very large mass function, but they descend sufficiently
into the small fM range to contaminate plausible solutions.
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A large part of the last category of false solutions was dis-
carded by using a filter based on the parallax significance, as
indicated in Fig. 3b. This filter consists of selecting only the solu-
tions that satisfy the following condition:

$/σ$ = 20 000/Pd, (16)

and it allowed us to keep 179 234 astrometric orbits as a result
of the main processing.

Although the filter of Eq. (16) has rejected most of the large
mass function solutions, a few concentrations around particu-
lar periods still persist in the processing results (Figs. 3c and
d). Most of these remaining false solutions were eliminated in
the post-processing, where only solutions satisfying the follow-
ing two filters were selected: a filter based on the quality of the
eccentricity: σe < 0.079 ln P − 0.244, where P is in days; and a
filter based on the significance: s = a0/σa0 > 158/

√
P, where P

is again in days.
After these operations, about 166 500 orbits were retained,

and the concentrations along particular periods all disappeared,
as shown in Fig. 3e. Moreover, very few orbits have eccentrici-
ties beyond the ten-day circularisation limit, calculated accord-
ing to Halbwachs et al. (2005). The proportion of fM > 0.3 M�
is now about 1%, but it can be seen in Fig. 3f that it increases
considerably with period: for example, it is only 0.2% for peri-
ods of less than 1 year, but reaches 3.3% for periods longer than
1000 days.

Subsequently, all the main processing astrometric orbits
were compared to the SB1 spectroscopic orbits derived from
Gaia radial velocities (Gosset et al., in prep.). The matching of
the orbits of the two types resulted in nearly 30 950 combined
orbits, of which about 2470 were recovered after having been
rejected by the post-processing. At the same time, almost 3500
post-processing orbital solutions were rejected by the validation
(Babusiaux et al. 2023), or discarded as redundant with solutions
obtained with Markov chain Monte Carlo and Genetic Algo-
rithms (Holl et al. 2023). In the end, our contribution to the DR3
astrometric orbital solutions amounts to nearly 165 500 orbits.

6. The variability-induced movers

The variability-induced movers (VIMs) were first described by
Wielen (1996). These are defined as unresolved binary systems
containing one photometrically variable component. The result
is a photocentre which is moving between the components in
accordance with fluctuations in the total brightness of the sys-
tem. Simultaneously, it is following the orbital motion, if this
is perceptible over the duration of the mission. Several types of
VIM were expected from the Gaia astrometric and photomet-
ric measurements: when the orbital motion is not perceptible,
the system is a fixed VIM (VIMF hereafter). When the orbital
motion appears to be a motion of the components relative to
each other, in a straight line and at constant velocity, the sys-
tem is a VIM with linear motion, or VIML. This is followed by
VIM with acceleration (constant or variable; VIMA), and then
VIM with orbital motion (VIMO). Only VIMFs are described in
detail below, as the others could not be included in the DR3.

6.1. The VIM with fixed components model

The additional parameters specific to the VIMF model are the
coordinates of the photocentre, (Dα∗,Dδ), measured from the
variable component when the total photometric flux of the sys-
tem is equal to a reference flux, noted F̄ . In practice, F̄ is the

Fig. 4. ‘Parallax significance’ vs. D diagram of VIMF solutions
obtained from a processing trial; most false solutions of D > 100 mas
are eliminated if the selection criterion $/σ$ > 30 (to the right of the
vertical red line) is applied.

median flux of all transits of the system. The partial derivatives
of the abscissa with respect to Dα∗ an Dδ are given by the fol-
lowing equations:

∂w

∂Dα∗
=

∂w

∂α∗

(
F̄

F
− 1

)
∂w

∂Dδ
=
∂w

∂δ

(
F̄

F
− 1

)
, (17)

where F is the photometric flux of the transit. Therefore, the
position of the system and its proper motion also apply to the
photocentre when the total flux is F̄ .

The parameters of the VIMF model are therefore derived
from a linear system that is solved by singular value decomposi-
tion, but the uncertainty of each transit requires a dedicated cal-
culation, because it depends on the astrometric uncertainty of the
measured abscissa, σw, but also on the uncertainty of the photo-
metric flux, σF, on which an error from the model depends. For
each transit, this error, σmod, is calculated from the equation:

σmod = σF
F̄

F 2

∣∣∣∣∣∣
(
∂w

∂α∗
Dα∗ +

∂w

∂δ
Dδ

)∣∣∣∣∣∣ . (18)

The total uncertainty of transit is then given by the equation:

σVIMF =

√
σ2
w + σ2

mod. (19)

The σVIMF uncertainties are used to derive any VIMF solution,
as well as F2 and the correction coefficient c as explained in
Sect. 2.3.1. As σVIMF depends on Dα∗ and Dδ, and thus on the
VIMF solution, the calculation is iterative and the VIMF model
cannot be considered strictly linear. The significance of the solu-
tion is defined from the modulus of the (Dα∗,Dδ) vector, as
explained in Sect. 2.3.2. As far as the VIML model is concerned
hereafter, suffice it to say that it has two more parameters, which
are the time derivatives of Dα∗ and Dδ.

6.2. Selection of the VIMF solutions

The main criterion we have for estimating whether or not
a VIMF solution is plausible is the apparent distance D,
which separates the median photocentre from the variable
component. As the resolution of Gaia is at least 180 mas
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(Lindegren et al. 2021) and the components of a VIM should
never be separated, D must remain under a limit of no more than
100 mas; we are therefore looking for quality criteria here such
that this condition is met.

The F2 vs. D and significance vs. D diagrams obtained after
a first processing trial do not immediately show any limits in
F2 or significance that would allow almost only D < 100 mas.
Fortunately, a selection becomes possible when we consider the
‘parallax significance’, that is, the quantity $/σ$. It is clear
from Fig. 4 that the selection of solutions of parallax significance
greater than 30 rejects most excessive values of D. Therefore,
this criterion was applied in the main processing, in addition to
the criteria s > 12 and F2 < 25. As before, the criteria for select-
ing alternative solutions were s > 5 and F2 less than that of the
alternative solution that may have already been selected.

We obtained 2508 VIMF solutions from the main process-
ing. The F2 vs. D diagram of these stars is shown in Fig. 5a.
As for the previous models, solutions with F2 higher than 25
seem doubtful, because the proportion of large D values in them
increases, and, more strikingly, small D values become increas-
ingly rare as F2 increases. These solutions are therefore rejected,
which leaves 1660 solutions. The significance vs. D diagram of
these solutions shows a large scatter of D values when signif-
icance is below 20, and this scatter is exacerbated below 12.
However, the threshold was set at 20 as a precaution. Beyond
that, D increases with D/σD (Fig. 5b), which corresponds to a
value of σD that is approximately constant and close to one-tenth
of a milliarcsecond, which seems acceptable.

The 869 retained VIMF solutions following the above pro-
cessing have distances D below 40 mas, with three exceptions:
three solutions of significance close to 100, for which D is 55,
56, and 101 mas. These values are not unrealistic, and it seems
possible that all VIMF solutions are valid. Unfortunately, this
may also be due to the low effectiveness of using D to point out
dubious solutions, as the application of other VIM models has
shown below.

6.3. The other VIM models

As explained at the beginning of this section, four other VIM
models were tried, from VIML to VIMO. Contrary to the VIMF
model, the parameters of these models allow the estimation of
a minimum value for the mass of the systems. The result was
devastating: for all these models, the minimum masses are con-
centrated between 10 and 10 000 M�. We therefore decided to
remove these models from the mass processing cascade.

7. Discussion and conclusion

This first publication of astrometric binaries of different types
observed by Gaia was made under difficult conditions, because
the uncertainties of the measurements were often highly under-
estimated. However, we were able to calculate hundreds of
thousands of reliable solutions by keeping the weights of the
observations and correcting the uncertainties. Nevertheless, this
was done at the cost of a drastic selection based on very high
quality criteria, and it would be difficult to use the selected solu-
tions to deduce the statistical properties of binary stars, as the
sample is incomplete and biased.

Because of the cascade structure that leads to the testing
of different models, we may have retained solutions by direct
acceptance that would have been superseded by another model
had it been tried. This choice has the advantage of preserving the
quality of the orbital solutions, by assigning acceleration solu-

tions to partially resolved double stars that would have been pro-
cessed despite the filters set up to reject them. However, it was
done at the expense of the completeness of the orbital solutions,
and it is likely that some acceleration solutions actually corre-
spond to binaries with periods short enough to have an orbital
solution. Moreover, the quality criteria alone could not bring
the acceleration solutions to a reasonable rate of high acceler-
ation. Ulrich Bastian studied this problem long after the post-
processing was done, and he estimated that constant acceleration
solutions are only highly reliable when the parallax is greater
than 5 mas. This criterion leaves only 15 000 solutions, but none
with acceleration greater than 3 au yr−2. When only quality cri-
teria are applied, that is, when criterion (1) of Sect. 4.3 is not
applied, the restriction to parallaxes greater than 5 mas reduces
the Γ > 3 au yr−2 rate from 3.1% to less than 1%; this con-
firms the effectiveness of this extremely drastic selection. For
future data releases, it is hoped that the treatment of partially
resolved double stars – as well as testing all astrometric models
and choosing the one that is most compatible with the data – will
allow a wider selection of acceleration solutions.

The selection of orbital solutions was particularly severe in
order to reject orbits that are concentrated in certain periods,
which are likely to be produced by the satellite’s scanning law.
Despite these difficulties, about 165 500 astrometric orbits were
finally selected in DR3. The periods of the false orbits should be
different in the following data releases, as the precession spin has
been reversed during the last 6 months of observations, which
will be part of the DR4; however, if these noise-induced orbits do
not disappear at this time, they could be more difficult to detect,
being distributed over a larger number of periods. Furthermore,
the lack of one-year periods, which comes from a degeneracy
between parallactic and orbital motion, is expected to remain.

The acceleration and orbital models apply to unresolved
binaries with either components that do not vary photometri-
cally, or one component that is always much brighter than the
other. This limits their interest in the study of young stars, or
more generally, pulsating stars. VIM models extend the scien-
tific scope of astrometric binaries, provided that only one of the
components is photometrically variable. Unfortunately, the num-
ber of VIM solutions appears to be very modest, numbering only
a few hundred, limited to the VIMs with fixed components. This
rarity is partly due to the fact that the model has only been tried
at the end of the cascade, and we do not know how many accept-
able VIM solutions were lost due to the acceptance of a solution
of another type.

When both components are variable, the VIM solution can
be very degraded: When the brightnesses of the two stars vary
in the same direction, the displacement of the photocentre can
be very small while the brightness of the system varies greatly;
for the VIMF model, this is interpreted as a short D distance.
Conversely, if the brightness of one component increases while
that of the other decreases, the fluctuation in total brightness
may be small while the photocentre displacement is large. As the
luminosities of the components do not generally vary in phase,
one can expect VIMF solutions of large χ2, and therefore large
F2, with D values that can be minimal or, on the contrary, very
large. A large χ2 leads to a decrease in significance, thanks to the
coefficient c of Eq. (2), and, as a result, the pollution of VIMF
solutions by systems whose two components are photometrically
variable will be limited thanks to the high acceptance thresholds
that have been adopted.

Another difference between VIMFs and other solutions is
that the selection could only be adjusted on the basis of the
median distance between the photocentre and the photometric
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Fig. 5. Post-processing filtering of the VIMF solutions. Panel (a): F2 vs. D diagram of the 2508 solutions obtained from the main processing. The
proportion of large D, and therefore false solutions, increases gradually beyond F2 = 25, to the right of the vertical red line. Panel (b): significance
vs. D diagram of the 1660 solutions with F2 < 25; acceptable solutions cluster on a sequence of D increasing with significance; abnormally large
D solutions are rejected by restricting to significances greater than 20 (to the right of the vertical red line), leaving a final selection of 869 solutions.

variable component, excluding any dynamic criteria. Therefore,
these solutions should be considered with caution. In turn, it is
possible that some acceleration or orbital solutions have been
assigned to objects that should have received a VIM solution.
However, these cases are too rare to constitute detectable pol-
lution: Gaia Collaboration (2023) showed that, statistically, the
proper motions of acceleration solutions are affected by orbital
motion, which would not be the case for VIMFs. Similarly, if
VIMFs receive an orbital solution, the inclination of the solu-
tion must be 90 deg, and the distribution of inclinations does not
show an excess for this value.

Despite these limitations raised above, DR3 represents a
major step forward in the field of binary stars. The hundreds
of thousands of new astrometric orbits will be of considerable
importance in the future, compared to the less than 3000 visual
binary star orbits in the Sixth Catalog of Orbits of Visual Binary
Stars1. Such a change of scale could open a new era in the sta-
tistical study of binary stars, especially if the next data releases
are less affected by selection effects. Instead of looking at the
properties of pairs with a primary component of a given type, it
may be possible to consider pairs with a given total mass. Such
an approach would shed new light on the star formation process,
provided that the many biases affecting binary selection are taken
into account.
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Appendix A: Conversion of Thiele-Innes elements
(A, B, F,G) into Campbell elements (a, i,Ω, ω)
and calculation of the uncertainties

The Thiele-Innes (TI) elements A, B, F, and G are given by the
following equations (Binnendijk 1960; Heintz 1978):

A = a (cosω cos Ω − sinω sin Ω cos i)
B = a (cosω sin Ω + sinω cos Ω cos i)
F = −a (sinω cos Ω + cosω sin Ω cos i)
G = −a (sinω sin Ω − cosω cos Ω cos i),

(A.1)

where a, i, Ω, and ω are the Campbell elements. The definitions
of these elements and their calculations from A, B, F, and G are
given hereafter:

– a (or a0 for a photocentric orbit) is the semi-major axis of the
orbit, in the same unit as the TI elements.

– i is the inclination of the orbit, i.e. the angle between the
orbital plane and the plane of the sky. i ∈ [0, π/2] when the
orbital motion is in the direct sense, and i ∈ [π/2, π] when
the photocentre is revolving around the barycentre in a clock-
wise direction.

– Ω is the position angle of the ascending node. Here, the
ascending node is taken as the intersection between the
orbital plane and the plane of the sky in the direction where
the right ascension is increasing. Therefore, Ω ∈ [0, π].

– ω is the periastron longitude measured in the orbital plane
from the ascending node defined above. ω is measured in the
sense of the orbital motion.
Binnendijk (1960) gives the following method for converting

TI elements into Campbell elements:
The semi-major axis a, is derived from:

u = (A2 + B2 + F2 + G2)/2
v = AG − BF

a =

√
u +
√

(u + v)(u − v).
(A.2)

The angles Ω and ω are derived simultaneously. Preliminary
estimates, between −π and π, are derived as follows:

ω + Ω = arctan B−F
A+G (mod π),

ω −Ω = arctan B+F
G−A (mod π).

(A.3)

The exact values of ω + Ω are obtained (mod 2π), taking
into account that sin(ω + Ω) and (B − F) have the same sign.
Similarly, sin(ω−Ω) has the same sign as (−B−F). ω and Ω are
then derived from the equations:

ω =
(ω+Ω)+(ω−Ω)

2 (mod π),

Ω =
(ω+Ω)−(ω−Ω)

2 (mod π).
(A.4)

When Ω is negative, π must still be added to both Ω and ω.
After that, a correction of 2πmay still be applied in order to meet
the conditions Ω ∈ [0, π] and ω ∈ [0, 2π].

To derive the inclination i, we first need to calculate two
intermediate terms, called d1 and d2 hereafter:

d1 = ‖(A + G) cos(ω −Ω)‖
d2 = ‖(F − B) sin(ω −Ω)‖. (A.5)

In order to obtain the value of i, the calculation is different
depending on whether d1 is greater than d2, or the reverse:

if (d1 ≥ d2), i = 2 arctan
√
‖(A −G) cos(ω + Ω)‖ / d1

else, i = 2 arctan
√
‖(B + F) sin(ω + Ω)‖ / d2

. (A.6)

The uncertainties of a, i, Ω, and ω are derived by differen-
tiating the equations above, and by taking into account error
propagation. Hereafter, we denote σp the error on element p and
cov(X,Y) the term of the variance covariance matrix of the solu-
tion linking the elements X and Y , i.e. cov(X,Y) = ρXYσXσY ,
where ρXY is the correlation coefficient between X and Y . The
uncertainties are then given by the equations below.

To derive the uncertainty of a, the following intermediate
terms must be calculated from u and v derived in Eq. (A.2):

tA = A + (A u −G v) /
√

u2 − v2

tB = B + (B u + F v) /
√

u2 − v2

tF = F + (F u + B v) /
√

u2 − v2

tG = G + (G u − A v) /
√

u2 − v2.

(A.7)

The uncertainty of the semi-major axis is then:

σa = 1
2a × [ t2

Aσ
2
A + t2

Bσ
2
B + t2

Fσ
2
F + t2

Gσ
2
G

+ 2tAtBcov(A, B) + 2tAtFcov(A, F)
+ 2tAtGcov(A,G) + 2tBtFcov(B, F)
+ 2tBtGcov(B,G) + 2tF tGcov(F,G) ]1/2.

(A.8)

The uncertainties ofω and Ω are also derived using dedicated
intermediate terms. We first calculate the following:

k= (A + G)2 + (B − F)2

l = (G − A)2 + (B + F)2.
(A.9)

These terms are used to derive other intermediate terms ded-
icated to the calculation of the uncertainty of ω:

wA = (F − B)/k + (B + F)/l
wB = (A + G)/k + (G − A)/l
wF = −(A + G)/k + (G − A)/l
wG = (F − B)/k − (B + F)/l.

(A.10)

The uncertainty of ω, σω is then derived with the following
equation:

σω = [w2
Aσ

2
A + w2

Bσ
2
B + w2

Fσ
2
F + w2

Gσ
2
G

+ 2 ( wAwB cov(A, B) + wAwF cov(A, F)
+wAwG cov(A,G) + wBwF cov(B, F)
+wBwG cov(B,G) + wFwG cov(F,G) ) ]1/2 / 2.

(A.11)

The terms from Eq. (A.9) are also used to compute the
following intermediate terms, which are required to derive the
uncertainty of Ω:

OA = (F − B)/k − (B + F)/l
OB = (A + G)/k − (G − A)/l
OF = −(A + G)/k − (G − A)/l
OG = (F − B)/k + (B + F)/l.

(A.12)

The uncertainty of Ω is then:

σΩ = [O2
Aσ

2
A + O2

Bσ
2
B + O2

Fσ
2
F + O2

Gσ
2
G

+ 2 ( OAOB cov(A, B) + OAOF cov(A, F)
+OAOG cov(A,G) + OBOF cov(B, F)
+OBOG cov(B,G) + OFOG cov(F,G) ) ]1/2 / 2.

(A.13)

As in the derivation of i, the derivation of the uncertainty
of the inclination depends on a comparison between d1 and d2,
derived in Eq. (A.5) above.
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σi is derived as follows. We first calculate the terms:

q = sin Ω cos Ω
r = sinω cosω; (A.14)

if d1 ≥ d2, the continuation of the calculation is as explained
hereafter. An extra term, p1, is added to q and r:

p1 = cos(ω −Ω) cos(ω + Ω). (A.15)

The intermediate terms dedicated to the calculation of σi are
then:

hA = 2Gp1 + (G2 − A2) (qwA + rOA)
hB = (G2 − A2) (qwB + rOB)
hF = (G2 − A2) (qwF + rOF)
hG = −2Ap1 + (G2 − A2) (qwG + rOG),

(A.16)

and, still for d1 ≥ d2, σi is derived from the equation:

σi = [h2
Aσ

2
A + h2

Bσ
2
B + h2

Fσ
2
F + h2

Gσ
2
G

+ 2 ( hAhB cov(A, B) + hAhF cov(A, F)
+hAhG cov(A,G) + hBhF cov(B, F)
+hBhG cov(B,G) + hFhG cov(F,G) ) ]1/2

/ [ (tan(i/2) + tan3(i/2)) d2
1 ].

(A.17)

When d2 < d1, the additional term p2 is derived:

p2 = sin(ω −Ω) sin(ω + Ω). (A.18)

The intermediate terms dedicated to the calculation of σi are
now:

gA = (B2 − F2) (qwA − rOA)
gB = 2F p2 + (B2 − F2) (qwB − rOB
gF = −2Bp2 + (B2 − F2) (qwF − rOF)
gG = (B2 − F2) (qwG − rOG),

(A.19)

and, still for d1 < d2, σi is derived from the equation:

σi = [g2
Aσ

2
A + g2

Bσ
2
B + g2

Fσ
2
F + g2

Gσ
2
G

+ 2 ( gAgB cov(A, B) + gAgF cov(A, F)
+gAgG cov(A,G) + gBgF cov(B, F)
+gBgG cov(B,G) + gFgG cov(F,G) ) ]1/2

/ [ (tan(i/2) + tan3(i/2)) d2
2 ].

(A.20)

The four Campbell elements and their uncertainties are
therefore deduced from the solutions calculated in TI elements.
However, it is not possible to estimate the correlation coefficients
between the terms.

Appendix B: Conversion of Thiele-Innes elements
(C1, H1) into elements (a1, ω1) and calculation of
the uncertainties

The C1 and H1 elements are functions of the a1 and ω1 elements
that come from the spectroscopic orbit:

C1 = a1 sin i sinω1
H1 = a1 sin i cosω1,

(B.1)

from which it appears that:

a1 =

√
C2

1 + H2
1/ sin i

ω1 = arctan C1/H1,
(B.2)

knowing that sign(sinω1) = sign(C1) and sign(cosω1)
= sign(H1).

ω1 must be approximately equal to either ω or ω + π. This
ambiguity is due to differences in definition:ω is the longitude of
the periastron of the photocentre orbit, which, in the absence of
radial velocity, is measured from the node whose position angle
is between 0 and π. For its part, ω1 is the longitude of the perias-
tron of the orbit of the spectroscopically most visible component,
measured from the node where this component moves away from
the Sun. Therefore, the true orientation of the orbital plane will
depend on the position of the photocentre with respect to the
barycentre and the spectroscopic component: if the photocentre
is assumed to be between the barycentre and the spectroscopic
component, then the true ascending node and periastron of the
astrometric orbit are marked by the same angles as those of the
spectroscopic orbit. If ω and ω1 are significantly different, it is
necessary to add ±π to ω to make them roughly coincide, and
also to add π to Ω to take into account the change of reference
node.

Alternatively, the photocentre may be opposite to the spec-
troscopic component (this may occur, for example, when the
spectral type of the brightest component is very different from
the templates used for spectroscopic reduction, so that the spec-
troscopic orbit corresponds to the least bright binary compo-
nent). When this occurs, ω must be approximately equal to
ω1 ± π. If it is not, ±π must be added to ω and π must be added
to Ω for the orientation of the astrometric orbit to be completely
defined.

The calculation of the uncertainty of a1 depends on the values
of d1 and d2, given by Eq. (A.5). When d1 ≥ d2, we compute the
following terms:

qA
qB
qF
qG

 =


hA
hB
hF
hG

 × a1

tan i tan i
2

(
1 + tan2 i

2

)
d2

1

, (B.3)

where hA, hB, hF , and hG are taken from Eq. (A.16), and(
qC
qH

)
=

(
C1
H1

)
×

a1

C2
1 + H2

1

. (B.4)

The uncertainty σa1 is then calculated with equation:

σa1 = [q2
Aσ

2
A + q2

Bσ
2
B + q2

Fσ
2
F + q2

Gσ
2
G + q2

Cσ
2
C1

+ q2
Hσ

2
H1

+ 2 ( qAqB cov(A, B) + qAqF cov(A, F)
+qAqG cov(A,G) + qAqC cov(A,C1)
+qAqH cov(A,H1) + qBqF cov(B, F)
+qBqG cov(B,G) + qBqC cov(B,C1)
+qBqH cov(B,H1) + qFqG cov(F,G)
+qFqC cov(F,C1) + qFqH cov(F,H1)
+qGqC cov(G,C1) + qGqH cov(G,H1)
+qCqH cov(C1,H1) ) ]1/2.

(B.5)

When d2 > d1, these equations become:
rA
rB
rF
rG

 =


gA
gB
gF
gG

 × a1

tan i tan i
2

(
1 + tan2 i

2

)
d2

2

, (B.6)

where gA, gB, gF , and gG are taken from Eq. (A.19), and(
rC
rH

)
=

(
C1
H1

)
×

a1

C2
1 + H2

1

. (B.7)
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The uncertainty σa1 is then calculated with the equation:

σa1 = [r2
Aσ

2
A + r2

Bσ
2
B + r2

Fσ
2
F + r2

Gσ
2
G + r2

Cσ
2
C1

+ r2
Hσ

2
H1

+ 2 ( rArB cov(A, B) + rArF cov(A, F)
+rArG cov(A,G) + rArC cov(A,C1)
+rArH cov(A,H1) + rBrF cov(B, F)
+rBrG cov(B,G) + rBrC cov(B,C1)
+rBrH cov(B,H1) + rFrG cov(F,G)
+rFrC cov(F,C1) + rFrH cov(F,H1)
+rGrC cov(G,C1) + rGrH cov(G,H1)
+rCrH cov(C1,H1) ) ]1/2.

(B.8)

The uncertainty of ω1, σω1 , is derived from:

σω1 =
cos2 ω1

H2
1

[H2
1σ

2
C1

+ C2
1σ

2
H1
− 2C1H1 cov(C1,H1)]1/2. (B.9)
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