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How large the number of redundant copies should be to make a rare event probable

The redundancy principle provides a framework to study how rare events are made possible with probability 1 in accelerated time, by making many copies of similar random searchers. However, what is a large n? To estimate large n with respect to the geometrical properties of a domain and the dynamics, we present here a criterion based on splitting probabilities between a small fraction of the exploration space associated with an activation process and other absorbing regions where trajectories can be terminated. We obtain explicit computations especially when there is a killing region located inside the domain that we compare with stochastic simulations. We also present examples of extreme trajectories with killing in dimension 2. For a large n, the optimal trajectories avoid penetrating inside the killing region. Finally we discuss some applications to cell biology.

Introduction. The redundancy principle in biology expresses the need of having many redundant copies of the same particles (molecules, proteins, ions, etc.) moving randomly to trigger a rare event such as a physiological function. The key step consists in a small target being found by the fastest particles, falling into extreme statistics [1,2]. The target can be a single receptor, channel, or activator molecule or a complex ensemble of receptors, channels, or activator molecules [3,4]. The large copy number is used to transform such a rare event, which would take a very long time compared with the other time scales involved in the system, into a fast event triggered by the fastest particles arriving at a hidden target. This principle is at the basis of many cellular processes such as signal transduction [START_REF] Fain | Sensory transduction[END_REF] or specific promoter gene selection in the nucleus [START_REF] Alberts | Essential cell biology[END_REF]. In general, the arrival time of the fastest particle is studied by extreme statistic approaches [START_REF] Bray | [END_REF][START_REF] Schehr | First-passage phenomena and their applications[END_REF][START_REF] Majumdar | [END_REF][10]. The redundancy theory [3,[START_REF] Holcman | Stochastic Narrow Escape in Molecular and Cellular Biology: Analysis and Applications[END_REF][START_REF] Coombs | [END_REF][13] applies not only to the molecular level but also to cells such as spermatozoa [14] (Fig. 1). Yet, theoretical computations for the time of these rare events for diffusion or anomalous diffusion [15,16] often rely on asymptotic approaches based on Laplace's method, when the number of players n is large. However, this method does not provide an order of magnitude for the number n. Laplace's method and related approaches provide a formal expansion and do not allow a comparison of n with physical quantities, as it assumes that we begin with an n that is large. The goal of this paper is to propose a computational framework to compare large n with the scales originating from the stochastic dynamics and the small subspace configuration defining rare events. We first present the framework to quantify large values of n using the probability of finding a small target. Second, to illustrate this framework, we estimate the order of magnitude for the number of copies in two cases: (1) when the search by the fastest Brownian particle has multiple choices to escape and (2) when there is a degradation source that interferes with the exploration of the space. When the killing process occurs in a subregion of the domain, we obtain an explicit expression for the escape (or splitting) probability and an estimate of n. Interestingly, the fastest trajectories concentrate along the shortest path or solution of a variational problem, as obtained by the large deviation principle [START_REF] Freidlin | Markov processes and differential equations: asymptotic problems[END_REF][START_REF] Freidlin | Random perturbations of dynamical systems[END_REF]: For large n, the optimal trajectory avoids the killing region while staying sufficiently close. Finally, we discuss several applications in cellular biology. Compensating a rare event by increasing the copy number n. To make a rare event probable when it is triggered by the arrival at a small target, one possibility is to increase the copy number n of the independent identical Brownian particles. We consider here the continuous case, but the dynamics could occur on a discrete ensemble, a graph, or any other topological structures, and the target is a small fraction of the phase space. There are at least two fates for Brownian particles: Either they find the small target after a long time, or they get lost through a different absorbing window or are simply degraded by a killing field. Hence we propose a criterion to estimate the copy number n based on the splitting probability P s , here defined as the conditional probability of finding the desired target before degradation or hitting a different absorbing window happens. Now the probability that at least one out of n Brownian particles successfully escapes is 1 -(1 -P s ) n , and for this event to occur with probability 1 we need that

1 -(1 -P s ) n ≈ 1.
(1)

Thus if the probability P s is small, then the number n needs to be large enough to compensate, yielding the following elementary criterion:

n ≈ 1 P s . (2) 
In general the splitting probability P s is small and almost constant far away from the narrow target window [4,[START_REF] Schuss | [END_REF]20]. In the rest of this paper, we present specific estimates for n in comparison with geometrical and dynamical characteristics.

Defining the stochastic model. The stochastic dynamics follows

ẋ = b(x) + √ 2B(x) ẇ for x ∈ Ω, (3) 
where b(x) is a smooth drift vector, B(x) is a diffusion tensor, and w is a vector of independent standard Brownian motions. A killing field k(x) is added in the domain Ω with boundary ∂Ω = ∂Ω a ∪ ∂Ω r , where ∂Ω r is reflecting and ∂Ω a = ∪ Nw k=1 ∂Ω a k is an absorbing region composed of N w well-spaced narrow windows. The transition probability density function (pdf) of the process x(t) with killing is the pdf of the trajectories that have neither been killed nor been absorbed in ∂Ω a by time t, satisfying

p(x, t | y) dx = Pr{x(t) ∈ x + dx, τ k > t, τ e > t | y}, (4) 
where τ k (τ e ) is the time for one particle to be killed (absorbed). The pdf is the solution of the Fokker-Planck equation (FPE) [START_REF] Schuss | Diffusion and Stochastic Processes. An Analytical Approach[END_REF] 

∂p(x, t | y) ∂t = L x p(x, t | y)-k(x)p(x, t | y) for x, y ∈ Ω, (5) where 
L x p(x, t | y) = d i,j=1 ∂ 2 σ i,j (x)p(x, t | y) ∂x i ∂x j - d i=1 ∂b i (x)p(x, t | y) ∂x i , (6) 
and σ(x) = 1 2 B(x)B T (x). The flux density vector is given by L x p(x, t | y) = -∇ • J (x, t | y), where the components of the flux density vector are i = 1, 2, . . . , d

J i (x, t | y) = - d j=1 ∂σ i,j (x)p(x, t | y) ∂x i + b i (x)p(x, t | y). (7) 
The initial and boundary conditions are (10) where n(x) is the outward unit vector normal to ∂Ω. Large n when there are several absorbing patches. We first consider the case of N w absorbing patches with neither drift nor killing processes interfering with the dynamics inside the domain Ω. Here the large number n can be estimated by the reciprocal of the splitting probability of reaching the first small target ∂Ω a1 , which triggers a key event, before any other exit sites ∂Ω a k with k > 1, where no action is taken. Setting b(x) = 0 and k(x) = 0, we find that the splitting probability P (x) when starting in x ∈ Ω is the solution of the boundary value problem [START_REF] Karlin | A Second Course in Stochastic Processes[END_REF] ∆P (x) = 0, x ∈ Ω, [START_REF] Holcman | Stochastic Narrow Escape in Molecular and Cellular Biology: Analysis and Applications[END_REF] where ∆ is the Laplacian operator, and with P (x) = 1 on ∂Ω a1 and P (x) = 0 on Ω a k for k > 1 and no-flux boundary condition imposed on the reflecting part ∂Ω r .

p(x, 0 | y) = δ(x -y) for x, y ∈ Ω (8) p(x, t | y) = 0 for t > 0, x ∈ ∂Ω a , y ∈ Ω (9) J (x, t | y) • n(x) = 0 for t > 0, x ∈ ∂Ω r , y ∈ Ω,
The solution depends on the local geometry near the windows [START_REF] Holcman | Stochastic Narrow Escape in Molecular and Cellular Biology: Analysis and Applications[END_REF]. In dimension 2 for well-spaced absorbing windows of size ε k with a smooth boundary, the splitting probability to the first window is approximated to leading order by P s = 1/ log(ε1) k 1/ log(ε k ) . Absorbing windows could be found at the end of a funnel or cusp-shaped narrow passages affecting both the search time and the splitting probability. If each window is located at the end of a cusp of curvature l k , then

P s = √ ε1/l1 k √ ε k /l k
. Similar asymptotic formulas in dimension 3 are P s = 1/ε1 k 1/ε k for narrow windows located on a flat boundary and

P s = √ ε 3 1 /l1 k √ ε 3 k /l k
when they are located at the end of a cusp. To conclude, the large number of stochastic particles n depends on the size of the critical window to be reached versus the other exits. For equal-size windows we get n ∼ O(N w ), and the copy number is of the order of the number of windows.

Large n when searching for a narrow target with a killing field. We now estimate the large number n when there is a killing field that can destroy particles at an exponential rate before they arrive at the target, thus leaving few particles alive. To calculate the splitting probability P s of reaching the absorbing boundary ∂Ω a before being killed, we integrate the Fokker-Planck equation ( 5) with respect to time, and upon introducing p(x|y) = ∞ 0 p(x, t|y)dt we get the boundary value problem

L x p(x | y) -k(x)p(x | y) = -δ(x -y) for x, y ∈ Ω p(x | y) = 0 for x ∈ ∂Ω a , y ∈ Ω J (x | y) • n(x) = 0 for x ∈ ∂Ω r , y ∈ Ω, (12) 
which, after setting y = 0 and defining p(x) ≡ p(x|0), reduces to

D∆p(x) -k(x)p(x) = -δ(x) for x ∈ Ω (13) p(x) = 0 for x ∈ ∂Ω a ∂ p(x) ∂n = 0 for x ∈ ∂Ω r ,
where D is the diffusion coefficient. The splitting probability P s is then given by We then take Ω to be a disk of radius R, with on the boundary a single narrow absorbing target ∂Ω a of radius a that is centered in x a . Brownian particles can only be destroyed within a sub-region Ω ϵ consisting of a small disk of radius ϵ centered in x ϵ , located on the radial segment connecting the origin to the absorbing window (Fig. 2A). Thus inside Ω ϵ the killing field is equal to a large constant, while outside it vanishes, and using the indicator function we write k(x) ≡ kI Ωϵ (x). In the limit of small radius ϵ, we can approximate the solution of ( 13) within the killing region by a constant, yielding, for the splitting probability, the following relation:

P s = Ω Pr{τ e < τ k | δ(y)} dy = 1- Ω k ( 
P s ≈ 1 -πϵ 2 p(x ϵ ) . (15) 
We evaluate below p(x ϵ ), using the 2-D Neumann-Green's function G(x; y), the solution of

D∆G(x; y) = 1 |Ω| -δ(x -y) , x, y ∈ Ω, (16) 
with the boundary conditions: ∂G(x, y)/∂n = 0 , x ∈ ∂Ω , y ∈ Ω and Ω G(x; y)dx = 0. For a disk domain of radius R, the solution is [START_REF] Cheviakov | [END_REF][24][25] G(x; y) = -

1 2πD log 1 R ∥x -y∥ + V (x; y) , (17) 
where V (x, y) is the regular part when ∥y∥ < R, given by

V (x; y) = - 1 2πD log 1 R 2 x∥y∥ - y ∥y∥ - 1 2R 2 ∥x∥ 2 + ∥y∥ 2 + 3 4π . (18) 
By applying Green's identity to the solutions of ( 13) and ( 16) we obtain that

p(y) = 1 |Ω| Ω p(x)dx + ∂Ωa G(x, y)D ∂ p ∂n dx + G(0, y) -k Ωϵ G(x, y)p(x)dx , (19) 
and upon using the identity p(x a ) = 0 as well as the radii ϵ and a as small parameters, we can calculate the asymptotic formula

p(x ϵ ) = 1 kπϵ 2 log R a + 9 8 + πD (G(0, x ϵ ) -G(0, x a ) -G(x a , x ϵ )) D kϵ 2 + 1 2 log R ϵ + log R a + 11 8 + πD (V (x ϵ ; x ϵ ) -2G(x ϵ , x a )) . ( 20 
)
Then, substituting ( 20) within ( 15) yields the expression below for the splitting probability:

P s = D kϵ 2 + 1 2 log R ϵ + 1 4 + πD (V (x ϵ ; x ϵ ) -G (x a ; x ϵ ) + G (0; x a ) -G (0; x ϵ )) D kϵ 2 + 1 2 log R ϵ + log R a + 11 8 + πD (V (x ϵ ; x ϵ ) -2G (x a ; x ϵ )) . ( 21 
)
This formula reveals the role of each parameter and in particular, for large 1 kϵ 2 , we get

P s ≈ D kϵ 2 + 1 2 log R ϵ D kϵ 2 + 1 2 log R ϵ + log R a . ( 22 
)
To study the range of validity of the asymptotic solution ( 21) we compare with stochastic simulations for 1000 runs, with discrete time step ∆t = 0.001. Brownian particles are released at the origin of a disk of radius R = 2, and a parameter sweep of the killing rate k is performed over the range [1 10 25 50 75 90].

The other geometrical parameters are as indicated in the caption of Fig. 2. We also compute the splitting probabilities directly by solving the system ( 13) with the finite-element solver COMSOL [START_REF]COMSOL Multiphysics (Version 5.2a)[END_REF]. This is done by approximating the killing field by a smooth function k(x) ≡ k 2 1 + tanh ϵ-∥x-xϵ∥ Γ with Γ = 0.0001 controlling the slope and approximating the Dirac delta function δ(x) by a 2-D Gaussian

1 2πσ 2 exp -x T x 2σ 2
with small variance σ = 0.01. Good agreements between the numerical and asymptotic solutions are obtained both when the killing region is well separated from the boundary and when it is tangent to the boundary (Fig. 2B). To conclude, the number of redundant copies should be of the order of

n ≈ D kϵ 2 + 1 2 log R ϵ + log R a D kϵ 2 + 1 2 log R ϵ , (23) 
which not only decreases with the radius a of the absorbing window but also depends on the killing parameters. Note that this formula is valid for k fixed with ϵ tending to zero. Optimal exit paths for the fastest particle with a killing field. In the absence of a killing field, according to the large deviation principle [START_REF] Freidlin | Markov processes and differential equations: asymptotic problems[END_REF], the fastest particles use a path toward the absorbing window well concentrated near the shortest geodesic as the number of particles increases. With a killing region, we expect a deviation such that the shortest geodesic should avoid this area when the killing rate is large. To estimate this optimal path of the fastest particle, we use arguments from the large deviation principle. We recall that the fluctuations of the diffusion process with small-amplitude noise D around the deterministic function F are given by the action functional in the time interval [0, T ], [START_REF] Schehr | First-passage phenomena and their applications[END_REF][START_REF] Majumdar | [END_REF][START_REF] Weber | [END_REF],

Pr max

t∈[0,T ] |x(t) -F (t)| > D ≍ exp - S F (T ) D , (24) 
where x(t) is a Brownian motion with diffusion coefficient D and zero mean and

S F (T ) = 1 4 T 0 | Ḟ (s)| 2 ds. (25) 
To account for the killing field k(x), we use the Feynman-Kac representation for the solution of the FPE

p(x, T ) = E f (x(T )) exp - T 0 k(x(s))ds x(0) = x , (26) 
where f is the initial distribution, here corresponding to the Dirac delta centered at the origin. The survival probability is given by

∞ 0 Ω p(x, t)dx n dt ≈ ∞ 0 {x(s) paths from 0 to ∂Ωa} exp -n 4D t 0 | ẋ(s)| 2 ds -n t 0 k(x(s))ds dD(x(s)) dt. (27) 
The contribution of the integral for large n occurs at the minimum of the functional:

min {x(0)=x, X(T )∈∂Ωa } 1 4D t 0 | ẋ(s)| 2 ds + t 0 k(x(s))ds . (28) 
Applying Euler's Lagrange principle, we obtain that the minimum occurs along the optimal trajectory, the solution of the differential equation:

-ẍ + 2D∇k(x(s)) = 0, (29) 
with x(0) = x and x(T ) ∈ ∂Ω a . As shown by the Brownian simulations, the trajectories of the fastest particles starting from the origin are concentrated along the path of the solution of Eq. ( 29). The optimal paths avoid the killing region as the killing rate increases (Fig. 3A). Interestingly, as the killing region become tangent to the absorbing window, the density of the fastest particles spreads around the origin and also inside the entire domain (yellow) (Fig. 3B). To conclude, the large deviation principle allows us to derive an optimal problem from which we show that the fastest trajectories avoid the killing region. Discussion and concluding remarks. Multiplying the number of copies of random molecules, ions, proteins, or cells is a key process to make a rare event frequent. It is at the basis of the redundancy principle [3]. Although the principle acknowledges that a large number is needed, it does not specify the order of magnitude. In this paper, we presented a computational framework to estimate the number of copies to guarantee that the rare event will at least occur with one arrival particle. The rare event is described by the splitting probability to find the activation before escaping through a much more probable place, or before being degraded. Explicit and asymptotic computations of the probability allow us to determine the role of the geometry and the dynamics in the estimation of the large number of copies n. In the process of neuronal transmission at synapses, the splitting probability between small receptors located on the post synaptic region and the lateral opening of the synaptic cleft is of the order of P act ≈ 10 -3 . Interestingly, the number of neurotransmitters is of the order of a few thousand (2000-3000) [START_REF] Kandel | Principles of neural science[END_REF]. Modulating this number is key for controlling neurotransmission, and a reduction by 20% [START_REF] Juge | [END_REF] resulting from a ketogenic diet can stop some epileptic crises. However, the most classical example is certainly the fertility process, where hundreds of millions of spermatozoa are required to guarantee that fertilization is possible: The large number compensates for the long distance, which cannot be recovered by other mechanisms such as chemotaxis, rheotaxis, or thermotaxis [30].

Here the large redundancy is particularly required, as a decline by 1020% is associated with infertility. Finally, it would be interesting to generalize the present large n estimation approach to different random motions (fractional Brownian motion, Levy flight), or any other anomalous diffusion processes.
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 1 FIG. 1. Fastest escape trajectory under splitting or killing. (A) The fastest trajectory can escape trough exit 1 (relevant choice) or through exit 2 (bad choice). (B) The fastest calcium ions can arrive at the base of a dendritic spine's type domain or be absorbed on their way. (C) The fastest spermatozoa can arrive directly at the egg or be degraded.
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 213 FIG. 2. Splitting probability vs killing. (A) Scheme of the domain: a disk Ω of radius R containing a killing region Ωϵ (red) of size ϵ. Particles starting at the center either can escape through a window ∂Ωa (blue) of narrow radius a and centered in xa or can be terminated (red) inside the domain Ωϵ. (B) Splitting probability vs the killing rate k when the killing region is located inside (left) and tangent to (right) to the absorbing window for stochastic simulations (red line), the asymptotic solution (21) (dashed blue line) and the numerical solution of the partial differential equation (13) (dashed black line). The parameters are R = 2, D = 1, ϵ = 0.25, a = 5πR/180, xa = (R, 0) T , and xϵ = (1, 0) T (left) or xϵ = (1.75, 0) T (right).