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We prove that the set of leaps of the chain of m-integrable derivations of a curve X over a perfect field with geometrically unibranch singularities is finite. This result is a consequence of an affirmative answer to Seidenberg's question of extending, in positive characteristic, Hasse-Schmidt derivations of finite length of the local rings of X to their integral closures.

Introduction

Given a commutative algebra A over a commutative ring k, a k-derivation δ : A → A is said to be integrable if it extends up to a Hasse-Schmidt derivation D = (Id, D 1 = δ, D 2 , ...) (of infinite length) of A over k (see [START_REF] Matsumura | Integrable derivations[END_REF]). Integrable derivations form a submodule IDer k (A) ⊂ Der k (A) and one has the equality IDer k (A) = Der k (A) under two orthogonal hypotheses: when k contains the rational numbers or A is 0-smooth over k. More generally, for each integer m, we say that δ is m-integrable if it extends up to a Hasse-Schmidt derivation D = (Id, D 1 = δ, D 2 , ..., D m ) of A over k of length m, and m-integrable derivations form a submodule IDer k (A; m) ⊂ Der k (A). Modules IDer k (A; m) have been studied in [START_REF] Macarro | On the modules of m-integrable derivations in nonzero characteristic[END_REF]. We obtain a descending chain of submodules: 1 which becomes interesting when dealing with singularities in positive characteristics.

An integer s ≥ 2 is said to be a leap of A (over k) if we have a proper inclusion IDer k (A; s -1) IDer k (A; s). In [START_REF] Tirado Hernández | Leaps of modules of integrable derivations in the sense of Hasse-Schmidt[END_REF] it has been shown that, in prime characteristic p > 0, leaps of A only occur at powers of p, in [START_REF] Tirado Hernández | Integrable derivations in the sense of Hasse-Schmidt for some binomial plane curves[END_REF] these leaps have been computed for some binomial curves, and in [START_REF] Tirado Hernández | Leaps of the chain of m-integrable derivations in the sense of Hasse-Schmidt[END_REF] it is shown that leaps of irreducible algebroid plane curves over an algebraically closed field are not determined by their semigroup. The goal is to explore leaps as invariants of singularities.

Conjecturally, leaps are finite whenever A and k have some natural finiteness properties. This paper is devoted to prove this result when k is a perfect field of characteristic p > 0 and A is the coordinate ring of an irreducible affine curve over k with geometrically unibranch singularities. More precisely, we prove: Theorem (Theorem 4.7) Let k be a perfect field of prime characteristic p > 0 and let X be a curve over k. Suppose that, for every closed point x of X, the curve X is either regular or geometrically unibranch at x. Then, (Leaps k (X)) < ∞.

One of the main ingredients in the proof of this result is an afirmative answer to the question of extending Hasse-Schmidt derivations of finite length of A to its integral closure. This follows the work of A. Seidenberg. In fact, in [Se] he proved that, for characteristic p = 0, every Hasse-Schmidt derivation of infinite length in a domain A lifts to its integral closure A, althouth it is not true that every derivation on A lifts to a derivation in A. Applying the study of radicial morphism in [BePiRe], we prove in this paper: Theorem (Theorem 3.6) Let k be a perfect field of characteristic p > 0 and let A be the local ring of a curve over k at a closed point. Let α ∈ N be such that p α is greater than or equal to the maximun of the conductors of the branches of A. Then, for every n ∈ N, for every Hasse-Schmidt derivation of A of length np α , its truncation to order n can be uniquely extended to a HS-derivation of length n of A.

Let us comment on the content of the paper. In Section 1 we recall the basic notions and results about Hasse-Schmidt derivations and integrability. In Section 2 we recall some results on étale extensions that we need in the proof of the results in Section 4. In Section 3 we study the question of the extension of Hasse-Schmidt derivations of finite length to the normalization of our original algebra. In Section 4 we prove the main results of this paper.

Throughout this paper, all rings (and algebras) are assumed to be commutative.

Hasse-Schmidt derivations

Let k be a ring and A a k-algebra. We denote N := N ∪ {∞} and, for each m ∈ N, we write A[t] m := A[t]/ t m+1 . General references for the definitions and results in this section are [START_REF] Matsumura | Commutative Ring Theory[END_REF]§27], [START_REF] Macarro | On the modules of m-integrable derivations in nonzero characteristic[END_REF] and [START_REF] Macarro | On Hasse-Schmidt derivations: the Action of Substitution Maps[END_REF].

Definition 1.1. A Hasse-Schmidt derivation of length m (resp. ∞) 1 , or a HS-derivation of length m (resp. ∞) for short, of A over k is a sequence D := (D 0 , D 1 , . . . , D m ) (resp. D = (D 0 , D 1 , . . .)) of k-linear maps D n : A → A,
satisfying the following Leibniz type identities:

D 0 = Id A , D n (xy) = i+j=n D i (x)D j (y)
for all x, y ∈ A and for all n. We denote by

HS k (A; m) (resp. HS k (A; ∞) = HS k (A)) the set of HS-derivations of A (over k) of length m (resp. ∞).
The notion of Hasse-Schmidt derivations (of length ∞) was introduced in [HaSc]. Hasse-Schmidt derivations of A can be understood in terms of the space of arcs of Spec A. Recall that, given a k-scheme X, the space of arcs X ∞ of X is a (not of finite type) k-scheme whose B-rational points are the B-arcs on X (i.e. the k-morphisms Spec B t → X), for any k-algebra B. More precisely ( [Ba] Corollary 1.2, see also [ChNiSe] Ch.3), X ∞ := lim ← X n where, for n ∈ N, X n is the k-scheme of finite type whose B-rational points are the B-arcs of order n on X (i.e. the k-morphisms Spec B[t] n → X). In fact, the projective limit is a k-scheme because the natural morphisms j n,m : X m → X n , for m ≥ n, are affine morphisms. We denote by j n : X ∞ → X n , n ≥ 0, the natural projections. Note that this representability property states that, for every k-algebra B, we have a natural isomorphism

Hom k (Spec B, X ∞ ) ∼ = Hom k (Spec B t , X).
(2)

Note that the space of arcs of

A N k = Spec k[x 1 , . . . , x N ] is (A N k ) ∞ = Spec k[X 0 , X 1 , . . . , X n , . . .]
where for n ≥ 0,

X n = (X 1;n , . . . , X N ;n ) is an N -uple of variables. For any f ∈ k[x 1 , . . . , x N ], let ∞ n=0 F n t n be the Taylor expansion of f ( n X n t n ), hence F n ∈ k[X 0 , . . . , X n ]. If X ⊆ A N k is affine, and I X ⊂ k[x 1 , . . . , x N ] is the ideal defining X in A N k , then we have X ∞ = Spec k[X 0 , . . . , X n , . . .] / {F n } n≥0,f ∈I X .
Then, a HS-derivation (resp. a HS-derivation of X over k of length m) is an

A-arc ϕ D : X = Spec A → X ∞ (resp. ϕ D : X = Spec A → X m ) which makes commutative the following diagram X ∞ X = Spec A X . id E ¨¨¨B c ϕ D j 0 (for m ∈ N replace j 0 by j 0,m : X m → X). It is also equivalent, by (2), to a k-morphism φ D : Spec A t → X (resp. φ D,m : Spec A[t] m → X) given by φ D : A → A t , x → x + n≥1 D n (x) t n (resp. φ D,m : A → A[t] m , x → x + 1≤n≤m D n (x) t n ).
(3)

Any HS-derivation D ∈ HS k (A; ∞) (resp. D ∈ HS k (A; m)) can be understood as a power series n≥0 D n t n ∈ R t (resp.

m n≥0 D n t n ∈ R[t] m ), with R = End k (A). Actually, HS k (A; ∞) (resp. HS k (A; m)) is a multiplicative sub- group of the units of R t (resp. R[t] m ). The group operation is explicitly given by (D • E) n = i+j=n D i • E j ,
and the identity element is I with I 0 = Id A and I n = 0 for all n = 0. The inverse of D will be denoted by D * .

For 1 ≤ m ≤ n positive integers, the morphism j n,m : X m → X n induces τ n,m : HS k (A; n) → HS k (A; m) corresponding to the obvious truncation maps, which are group homomorphisms. We have the following identity of groups

HS k (A; ∞) = lim ←- n HS(A; n). An A-algebra map ψ : A t → A t (resp. ψ : A[t] m → A[t] n ,
where m, n ∈ N) will be called a substitution map whenever ψ(t) ∈ t . For each substitution map ψ and each HS-derivation [START_REF] Macarro | On Hasse-Schmidt derivations: the Action of Substitution Maps[END_REF]Proposition 10]). Definition 1.2 ( [START_REF] Brown | On the embedding of derivations of finite rank into derivations of infinite rank[END_REF][START_REF] Matsumura | Integrable derivations[END_REF][START_REF] Macarro | On the modules of m-integrable derivations in nonzero characteristic[END_REF]). Let n ∈ N and δ : A → A a k-derivation. We say that δ is n-integrable (over k) if there is a HS-derivation

D ∈ HS k (A; ∞) (resp. D ∈ HS k (A; m)), we know that ψ • D := ψ • φ D (resp. ψ • D := ψ • φ D,m ) is a HS-derivation of length ∞ (resp. n) (see
D ∈ HS k (A; n) such that D 1 = δ. A such D is called an n-integral of δ. The set of n-integrable k- derivations of A is denoted by IDer k (A; n). We say that δ is f -integrable (finite integrable) if it is n-integrable for all integers n ≥ 1. The set of f -integrable k-derivations of A is denoted by IDer f k (A). More generally, we say that a HS-derivation D ∈ HS k (A; m) is n-integrable, where m ≤ n, if there is a HS-derivation E ∈ HS k (A; n) such that τ n,m (E) = D.
A such E will be called an n-integral of D. The set of n-integrable HSderivations of A (over k) of length m is denoted by IHS k (A; m; n). We say that D is f -integrable (finite integrable) if it is n-integrable for all integers n ≥ m. The set of f -integrable HS-derivation of A (over k) of length m is denoted by

IHS f k (A; m).
The sets IDer k (A; m) and IDer f k (A) are A-submodules of Der k (A) and we have the following chain

Der k (A) = IDer k (A; 1) ⊃ IDer k (A; 2) ⊃ • • • ⊃ IDer f k (A) ⊃ IDer k (A; ∞).
Similarly, IHS k (A; m; n) and IHS f k (A; m) are subgroups of HS k (A; m) and

HS k (A;m)=IHS k (A;m;m)⊃IHS k (A;m;m+1)⊃•••⊃IHS f k (A;m)⊃IHS k (A;m;∞).
If k has characteristic zero, i.e., if Q ⊂ k, then any HS-derivation of A of any length is ∞-integrable, and so HS k [START_REF] Matsumura | Integrable derivations[END_REF]p.230]). However, these equalities are not always true in positive characteristic (see [START_REF] Matsumura | Integrable derivations[END_REF] Examples 1 to 3]) and, in this case we say that A has a leap. Namely: Definition 1.3. Let s ≥ 2 an integer. We say that A has a leap at s if the inclusion IDer k (A; s -1) IDer k (A; s) is proper. The set of leaps of A (over k) is denoted by Leaps k (A).

(A; m) = IHS f k (A; m) = IHS k (A; m; ∞). In particular, Der k (A) = IDer f k (A) = IDer k (A; ∞) (see
Let us recall the next theorem.

Theorem 1.4 ([Ti2] Theorem 4.1). Let k be a ring of prime characteristic p > 0, i.e. F p ⊂ k, and A a k-algebra. Then,

Leaps k (A) ⊆ {p α | α ∈ N, α ≥ 1}. If D := (D 0 = Id A , D 1 , D 2 , . . . , D m
) is a HS-derivation of length m, we know that the 1-component D 1 is a k-derivation, which will be m-integrable by definition. More generally, if D 1 = D 2 = . . . = D e-1 = 0, then D e is a k-derivation too, and if eq ≤ m, q ≥ 2, it is straightforward to see that (D 0 , D e , D 2e ) is a HS-derivation of length 2, in particular D e is 2-integrable. However, if q ≥ 3, it is not true in general that (D 0 , D e , D 2e , D 3e ) is a HSderivation of length 3, and the 3-integrability of D e is not clear at all. The following result gives an answer to this question in the case of a base ring of prime characteristic and will be used in next sections. It is a direct consequence of the previous theorem and Theorem 3.14 of [START_REF] Tirado Hernández | Leaps of modules of integrable derivations in the sense of Hasse-Schmidt[END_REF].

Proposition 1.5 ( [NaTi] Proposition 1.6). Let k be a ring of prime characteristic p > 0, e, s ≥ 1 two integers and D ∈ HS k (A; ep s ) a HS-derivation with

D 1 = D 2 = . . . = D e-1 = 0. Then, D e ∈ IDer k (A; p s ).
The following proposition will also be used throughout the paper. It comes from Corollary 2.3.5 and Theorem 2.3.6 of [START_REF] Macarro | On the modules of m-integrable derivations in nonzero characteristic[END_REF].

Proposition 1.6. Let k be a ring and A a finitely presented k-algebra. Then,

Leaps k (A) = p∈Spec A Leaps k (A p ) = m∈Specmax A Leaps k (A m ).

Leaps of a subspace of the module of derivations

In this subsection, we assume that k contains a field F and, for δ 1 , . . . , δ r ∈ Der k (A), we will denote δ 1 , . . . , δ r F the F -subspace of Der k (A) generated by δ 1 , . . . , δ r . Note that if there is no subscript, then δ 1 , . . . , δ r is the A-submodule of Der k (A) generated by δ 1 , . . . , δ r .

Definition 1.7. We say that a k-derivation leaps at s ∈ N if it is (s -1)integrable but not s-integrable and we say that an F -subspace C ⊂ Der k (A) produces a leap at s if there is δ ∈ C leaping at s.

Let us notice that if a k-derivation δ does not leap at any integer then δ ∈ IDer f k (A) and so, if an F -subspace C ⊂ Der k (A) does not produce any leap, then C ⊂ IDer f k (A). We will prove that if C is an F -subspace of Der k (A) of dimension r ∈ N, then it produces at most r leaps.

Lemma 1.8. Let C = δ 1 , . . . , δ r F ⊂ Der k (A). Let us assume that δ i leaps at s i , for all i ∈ {1, . . . , r}, and

s 1 < s 2 < • • • < s r . Then, given δ = λ 1 δ 1 + • • • + λ r δ r ∈ C \ {0}, with λ i ∈ F , we have that δ leaps at s m , with m = min{i | λ i = 0}. Therefore C produces exactly r leaps. Proof. Since δ i ∈ IDer k (A; s m -1), for all i ∈ {m, . . . , r}, we get δ = λ m δ m +• • •+ λ r δ r ∈ IDer k (A; s m -1). Similarly, we have δ -λ m δ m ∈ IDer k (A; s m+1 -1) ⊂ IDer k (A; s m ). If δ ∈ IDer k (A; s m ), then δ m = (1/λ m )(δ -(δ -λ m δ m )) ∈ IDer k (A; s m ) but δ m leaps at s m , so δ is not s m -integrable.
Lemma 1.9. Let C ⊂ Der k (A) be an F -subspace of dimension r. Then, C produces at most r leaps. So, if β is the largest leap that C produces, then

C ∩ IDer k (A; β) ⊂ IDer f k (A). Proof. If r = ∞ it
is trivial, so let us assume that C has finite dimension. Suppose that C produces at least r leaps and denote s 1 < s 2 < . . . < s r the r smallest leaps produced by C. We will prove that there exists an F -basis {δ 1 , . . . , δ r } of C such that δ i leaps at s i , for i ∈ {1, . . . , r}, and, from Lemma 1.8, we will obtain the result.

Let us consider {η 1 , . . . , η r } an F -basis of C. We will prove by induction on j that there exist δ 1 , . . . δ j ∈ C such that {δ 1 , . . . , δ j , η j+1 , . . . , η r } is an Fbasis of C and δ i leaps at s i for every i ∈ {1, . . . , j}. For j = 1 it is clear since one of the generators {η 1 , . . . , η r } leaps at s 1 , we may suppose it is η 1 , then let δ 1 := η 1 . Now suppose the assertion is true for j ≥ 1. Let δ j+1 = λ 1 δ 1 + . . . + λ j δ j + λ j+1 η j+1 + . . . + λ r η r ∈ C leaping at s j+1 . From Lemma 1.8, if λ i = 0 for all i ∈ {j + 1, . . . , r}, then δ j+1 would leap at s h , with h = min{i | λ i = 0} ≤ j. So we can assume that λ j+1 = 0 and, replacing η j+1 by δ j+1 , we get an F -basis {δ 1 , . . . , δ j+1 , η j+1 , . . . , η r } of C such that δ i leaps at s i for all i ∈ {1, . . . , j +1}. Doing this process, we obtain an F -basis {δ 1 , . . . , δ r } of C such that δ i leaps at s i for every i ∈ {1, . . . , r} and so, we get the result.

Example 1.10. Let k be a field of characteristic 2 and let [START_REF] Traves | Tight closure and differential simplicity[END_REF]Theorem 1.2]). Therefore the leaps of A are precisely the leaps produced by ∂ y , x∂ y k . Then, from Lemma 1.9 it follows that A has at most two leaps. In fact, A has precisely two leaps: 2 and 4.

A = k[x, y]/ y 2 - x 3 . Then we have Der k (A) = ∂ y . The A-module y∂ y , x 2 ∂ y is contained in IDer k (A) ([Na1, Proposition 2.2.4],
Proposition 1.11. Let k be a ring and A a k-algebra. Let us assume that k contains a field F and there exist n ≥ 1 and a finite-dimensional F -subspace

C of IDer k (A; n) such that any δ ∈ IDer k (A; n) can be written as δ = δ 1 + δ 2 where δ 1 ∈ C and δ 2 ∈ IDer f k (A).
Then A has a finite number of leaps. More precisely, let β be the largest leap that C produces (β

:= n if C produces no leap), then IDer k (A; β) = IDer f k (A).
Proof. If C does not produce any leap, the result is clear. Suppose that C has some leap. Then, by Lemma 1.9, it follows that C produces a finite number of leaps and n < β. We need to prove that IDer

f k (A) ⊃ IDer k (A; β). So, let δ ∈ IDer k (A; β) ⊂ IDer k (A; n). By hypothesis, we can write δ = δ 1 + δ 2 with δ 1 ∈ C and δ 2 ∈ IDer f k (A). Since δ is β-integrable, δ 1 ∈ IDer k (A; β) ∩ C ⊂ IDer f k (A) by Lemma 1.9. Hence, δ ∈ IDer f k (A).

On the relationship between finite and infinite integrability

In this subsection, k will be a ring of prime characteristic p > 0 and A a k-algebra such that (Leaps k (A)) < ∞. This implies that IDer k (A; p α ) = IDer f k (A) where p α is the largest leap of A over k (see Theorem 1.4). We will prove that IDer k (A) = IDer f k (A) in this case.

Lemma 1.12. Under the above hypotheses, IHS k (A; n; np α ) = IHS f k (A; n) for all n ≥ 1.

Proof. It is enough to show that IHS k (A; n; np α ) ⊂ IHS k (A; n; m) for all m > np α . Let us argue by induction on n. For n = 1 it is clear since D 1 ∈ IDer k (A; p α ) = IDer f k (A). Let us assume that the result is true for n -1 and we will prove it for n.

Let us consider D ∈ IHS k (A; n; np α ) and let D ∈ HS k (A; np α ) be an

np α -integral of D. Then τ n,n-1 (D) = τ np α ,n-1 (D ) ∈ IHS k (A; n -1; np α ) = HS f k (A; n -1
) by induction hypothesis. So, for each m > np α , there exists

E {m} ∈ HS k (A; m) an m-integral of τ n,n-1 (D) and D • τ m,np α E {m} * = (Id, 0, . . . , 0, D n -E {m} n , . . .) ∈ HS k (A; np α ). By Proposition 1.5, D n -E {m} n ∈ IDer k (A; p α ) = IDer f k (A). So, let us consider F {m} ∈ HS k (A; r) an r-integral of D n -E {m} n with nr ≥ m. Then E {m} • τ nr,m (ψ • F {m} ) ∈ HS k (A; m) is an m-integral of D, where ψ : A[t] r t → t n ∈ A[t] rn . Hence D ∈ IHS f k (A; n). Corollary 1.13. If D ∈ IHS k (A; n; np α ) then there is E ∈ IHS k (A; n + 1; (n + 1)p α ) an (n + 1)-integral of D.
Proof. By Lemma 1.12, D ∈ IHS f k (A; n). If we consider any (n + 1)p α -integral E ∈ HS k (A; (n + 1)p α ) of D, the HS-derivation E := τ (n+1)p α ,n+1 (E ) ∈ IHS k (A; (n + 1); (n + 1)p α ) is an (n + 1)-integral of D.

Proposition 1.14. Under the above hypotheses, we have that

IHS f k (A; n) = IHS k (A; n) for all n ≥ 1. In particular, IDer k (A) = IDer f k (A) = IDer k (A; p α ).
Proof. The inclusion IHS k (A; n) ⊂ IHS f k (A; n) is always true, so we have to prove the converse one. Let D {n} ∈ IHS f k (A; n). By Corollary 1.13, for each m > n, there is D {m} ∈ IHS k (A; m; mp α ) an m-integral of D {m-1} . Then, the HS-derivation defined as follows

E := lim ←- m≥n D {m} ∈ HS k (A) is an ∞-integral of D. Hence, D ∈ IHS k (A; n).

Étale extensions and derivations

One of the most important tools that we will use in the proof of our main result will be étale extensions, and some of their well-known properties will be reviewed in this section. For more details on this see [Ra] or [START_REF] Matsumura | Commutative Ring Theory[END_REF]Chapter 9]. Recall that k is a ring. For any k-algebra C, we will denote Ω C := Ω C/k the module of Kähler differentials of C over k and d C := d C/k the canonical derivation of C over k.

Recall [START_REF] Matsumura | Commutative Ring Theory[END_REF]p. 193], [START_REF] Raynaud | Anneaux Locaux Henséliens[END_REF]Chapitre I,Definition 2]) that an extension A → B is 0-étale (resp. 0-smooth) if, for all A-algebra C and for all ideal J of C with J 2 = 0, the canonical map Hom A-alg (B, C) → Hom A-alg (B, C/J) is bijective (resp. surjective). An extension A → B of rings is étale if it is 0-étale and B is a finitely presented A-algebra.

In terms of differentials, if ψ : A → B is étale then Ω B/A = 0 ([Ra, Chapitre III, Proposition 9]) and moreover we have an isomorphism of B-modules Hasse-Schmidt derivations behave well under 0-smooth and étale extensions. First, recall that if A is 0-smooth over k, then a HS-derivation of A over k of length m < ∞ can be extended to a HS-derivation of length ∞ [Ma2, Theorem 27.1]. Now, the following property of extending HS-derivations on étale extensions will be applied in section 4. See [START_REF] Traves | Differential Operators and Nakai's Conjecture[END_REF]Theorem 3.20], where the result appears for 0-étale extensions.

Ω A ⊗ A B ∼ -→ Ω B , d A a ⊗ b → bd B ψ(a) (4) 
Proposition 2.1. Let A → B be an étale extension of k-algebras and let η : X := Spec B → X := Spec A the induced k-morphism. Then, every D ∈ HS k (A; n) (resp. D ∈ HS k (A; ∞)) can be extended in a unique way to a HSderivation of length n (resp. HS-derivation) of B. Precisely for every ϕ n = ϕ D,n ∈ HS k (A; n) there exists ϕ n ∈ HS k (B; n) such that the following diagram is commutative [START_REF] Reguera | Towards the singular locus of the space of arcs[END_REF]p. 335]). From this the result follows. Now, let k be a perfect field. By a variety over k, we mean a reduced separated k-scheme of finite type.

X := Spec B X n X := Spec A X n . ϕ n ϕ n E E c c η n η Analogously for ϕ = ϕ D ∈ HS k (A; ∞). Proof. Since X → X is étale, we have X ∞ = X ∞ × X X , and X n = X n × X X for n ∈ N ([Gi, Lemma 8],
Let X be a regular k-variety of dimension d. Given a closed point x of X, there exists an open subset U containing x and an étale morphism U → A d k . More precisely, if A is a regular domain which is a finitely generated k-algebra of dimension d and a a maximal ideal of A, then, there exists f ∈ a and injective homomorphisms of k-algebras

k[u 1 , . . . , u d ] π -→ A f which is étale. Since Der k (k[u]) = IDer k (k[u]) = ∂ 1 , . . . , ∂ d where ∂ i = ∂
∂ui , we obtain: Proposition 2.2. Let k be a perfect field. Let A be a localization of a finitely generated k-algebra. If A is regular, then HS k (A; m) = IHS k (A; m; ∞) for all m ∈ N.

Proof. It follows from [START_REF] Matsumura | Commutative Ring Theory[END_REF]Theorem 27.1] since for localization of algebras of finite type over a perfect field k the concepts of smooth and regular are equivalent.

Corollary 2.3. With the previous notation we have 

Ω O X,x = O X,x du 1 , . . . , du d and Der k (O X,x ) = IDer k (O X,x ) = O X,x ∂ 1 , . . . ,
(O X,x ) is the O X,x -module dual of Ω O X,x .
Moreover, in the previous situation we have

O X,x ∼ = k u 1 , . . . , u d ⊗ k(x) ∼ = k(x) u 1 , . . . , u d (6) 
([Ra, Chapter VIII, Theorem 1], see also [START_REF] Hartshorne | Algebraic geometry[END_REF]Chapter III,Exercise 10.4]). In particular, O X,x ∼ = k u 1 , . . . , u d if k is algebraically closed.

Normalization and Hasse-Schmidt derivations

In [Se], A. Seidenberg proved that, if A is an integral domain containing Q, then every derivation on A extends to its integral closure A, or, which is equivalent, A t is integrally closed. He also gave a counterexample to this statement when char k = p > 0 (p a prime number). This example is the plane curve y p -x p -

x p+1 = 0 in A 2 k = Spec k[x, y]
where k is a field of characteristic p > 0 and the derivation is ∂ y . However, he showed that if one uses Hasse-Schmidt derivations of infinite length instead of derivations, one gets the corresponding result.

In this section we review the question of extending HS-derivations of finite length.

Lemma 3.1. Let k be a commutative ring of prime characteristic p > 0 and let A a k-algebra which is a domain. Denote by K the field of fractions of A. Let us assume that there is α > 0 such that A p α ⊂ A. Then, for every n ∈ N, for every D ∈ HS k (A; np α ), we have that τ np α ,n (D) can be uniquely extended to a HS-derivation of length n of A.

Proof. Since K is a localization of A, there is D ∈ HS k (K; np α ) a unique ex- tension of D to K. Denote by φ np α : A → A[t] np α and φ np α : K → K[t] np α the k-algebra homomorphism of D and D respectively (see (3)). We know that φ np α (K p α ) ⊂ K p α [t] np α because φ np α is a ring homomorphism. Note that K p α ∩ A = A p α
by the hypothesis. Hence,

φ np α A p α ⊂ A p α [t] np α . Thanks to this containment, for each a ∈ A, φ np α (a p α ) = i≤n D i (a) p α t ip α ∈ A p α [t] np α so, we deduce that D i (a) p α ∈ A p α
for all i ≤ n. Then, D i (a) ∈ A since A is the integral closure of A. Hence τ np α ,n ( D) sends A into itself and so, τ np α ,n (D) can be extended to a HS-derivation of length n of A.

Example 3.2. In the example given by A. Seidenberg in [Se], the ring is

A = k[x, y] / y p -x p -x p+1
where char k = p > 0. Therefore A = A[y/x] = k[u] where u = y/x -1, so that x = u p , y = u p (u + 1) mod y p -x p -x p+1 . Thus we have A p ⊂ A. By Lemma 3.1, every derivation δ which belongs to IDer k (A; p) can be extended to a derivation of A. However, the derivation ∂ y does not belong to IDer k (A; p).

Lemma 3.1 before suggests to consider radicial morphisms.

Let ρ : X → X be a morphism of schemes. We say that ρ is dominant if ρ(X ) = X. Equivalently, the induced map O X red → O X red is injective.

Suppose that X and X have finitely many irreducible components. We say that ρ : X → X is strongly dominant if ρ induces a surjective application from the set of maximal points {x 1 , . . . , x s } of X onto the set of maximal points {x 1 , . . . , x s } of X and there is an induced inclusion

Q(X red ) = s i=1 k(x i ) ⊆ Q(X red ) = s j=1 k(x j )
between total rings of fractions. We say that ρ is birational if it induces a bijection {x 1 , . . . , x s } → {x 1 , . . . , x s } and the above inclusion is an equality.

The morphism ρ : X → X is said to be radicial if every nonempty fiber ρ -1 (x) of ρ has only one element {x } and is such that the induced field extension k(x) ⊆ k(x ) is radicial, i.e. algebraic and separably closed ([EGAI, Chapter 1 Definition 3.5.4 and Proposition 3.5.8]). In other terms, if char k(x) = 0, we have k

(x) = k(x ); if char k(x) = p > 0, every λ ∈ k(x ) satisfies: λ p α ∈ k(x) for some α ≥ 0. ( 7 
)
We will apply the study on radicial morphisms in [BePiRe]: [START_REF] Benito | Small irreducible components of arc spaces in positive characteristic[END_REF]Lemma 4.1]) Let k be a perfect field. Let ρ : X → X be a finite, radicial and dominant morphism of k-varieties, with char k = p > 0.

Lemma 3.3. ([
There exists α ≥ 0 and inclusions

(O X ) p α ⊆ O X ⊆ O X .
Lemma 3.4. ([BePiRe, Lemma 4.5]) Let ρ : X → X be a finite and strongly dominant morphism of k-varieties. Let x ∈ X be such that {x} ⊆ X is not an irreducible component of X. Denote S • := Spec O X,x \{x} and assume that the following additional property holds:

the induced map S • × X X → S • is radicial. ( 8 
)
Then there exists an étale neighborhood e : Y → X of x such that, for every irreducible component

Y i of Y , the induced morphism Y i × X X → Y i is radicial.
From [START_REF] Benito | Small irreducible components of arc spaces in positive characteristic[END_REF]Lemma 4.1] and Lemma 3.1 before we obtain:

Corollary 3.5. Let k be a perfect field of characteristic p > 0, and let X = Spec A be a k-variety. Suppose that the normalization n : X → X is radicial.

Then there exists α ≥ 0 such that for every n ∈ N, for every D ∈ HS k (A; np α ), we have that τ np α ,n (D) can be extended to a HS-derivation of length n of A.

Recall that a local ring A is unibranch if A red is a domain and its normalization is also a local ring, or equivalently, its henselisation A h has a unique prime ideal (see [Ra, Chapitre IX, page 100, Definition 1]). A local ring A is geometrically unibranch if A red is a domain and its normalization is a local ring modulo radicial residual extension, or equivalently, its strict henselisation A hs has a unique prime ideal (see [Ra, Chapitre IX, page 100, Definition 2]). Given a scheme X and a point x in X, we say that X is unibrach (resp. geometrically unibranch) at x if the local ring O X,x is unibrach (resp. geometrically unibranch). Recall also that, if A is the local ring of a curve (i.e. a variety of dimension 1) at a closed point, then A is geometrically unibranch if and only if the normalization n : X → X = Spec A is radicial ([EGAIV, Ch. IV, paragraph before 6.15.4]). In fact, if A is the local ring of a curve at a geometrically unibranch point, it defines a divisorial valuation ν. Then, if c is the conductor of the semigroup of values ν(A) then we have A

p α ⊂ A whenever p α ≥ c ([BePiRe, proof of Lemma 4.5]).
In general, if A is the local ring of a curve X at a closed point x, each of the prime ideals of its strict henselization A st is called a branch of A. Then, each branch defines a divisorial valuation.

Applying also [START_REF] Benito | Small irreducible components of arc spaces in positive characteristic[END_REF]Lemma 4.5] we conclude: Theorem 3.6. Let k be a perfect field of characteristic p > 0 and let A be the local ring of a curve over k at a closed point. Let α ∈ N be such that p α is greater than or equal to the maximun of the conductors of the branches of A. Then, for every n ∈ N, for every D ∈ HS k (A; np α ), we have that τ np α ,n (D) can be uniquely extended to a HS-derivation of length n of A.

For the proof of Theorem 3.6 we need the following Lemma. See [START_REF] Matsumura | Integrable derivations[END_REF]Theorem 2] for an analogous result for HS-derivations of infinite length.

Lemma 3.7. Let A be a reduced Noetherian ring and p ∈ Ass(A). Then, for every n ∈ N, every D ∈ HS k (A; n) induces a HS-derivation in HS k (A/p; n). That is, there are canonical maps

HS k (A; n) -→ HS k (A/p; n) for n ∈ N.
Proof. Let p 1 , . . . , p s be the minimal prime ideals of the reduced Noetherian ring A. Let D ∈ HS k (A; n), n ∈ N, and let φ n := φ D;n : A → A[t] n the induced morphism. We have to show that p i is contained in the kernel of the morphism

A φ n --→ A[t] n → (A/p i )[t] n .
In fact, fix i, 1 ≤ i ≤ s, and take y ∈ ∩ j =i p j \ p i . Then p i = Ann (y) hence, given x ∈ p i , we have x • y = 0. Let us show that, for every m, 0 ≤ m ≤ n, we have D m (x) ∈ p i . We argue by induction on m. For m = 0 this is clear, D 0 (x) = x ∈ p i . Fix m, 0 ≤ m ≤ n, and suppose that the assertion is true for all m , 0 ≤ m ≤ m -1. Then x • y = 0 implies m r=0 D r (x) • D m-r (y) = 0 and, since D 0 (y) = y ∈ p i , the inductive hypothesis implies that D m (x) ∈ p i . Thus we have showed that D induces a HS-derivation D (i) in HS k (A/p i ; n). This concludes the proof.

Proof of Theorem 3.6: Let A be the local ring at a closed point of a curve over a perfect field k of characteristic p > 0. The normalization morphism n : X → X := Spec A satisfies the condition (8) since it is an isomorphism outside the closed point x of X. Therefore, from [START_REF] Benito | Small irreducible components of arc spaces in positive characteristic[END_REF]Lemma 4.5] it follows that there exists an étale neighborhood e : Y → X of x such that for every irreducible component Y i of Y , the induced morphism e i : [START_REF] Grothendieck | Éléments de Géométrie Algébrique (Rédigés avec la collaboration de Jean Dieudonné) IV. Étude locale des schémas et des morphismes de schémas, Seconde partie[END_REF]Chapitre IV,Lemme 6.14.1.1]). Applying Proposition 2.1 we conclude that it suffices to prove the result for Y .

Y i × X X → Y i is radicial. Note that Y i × X X is the normalization Y i of Y i ([
Let B = O Y and let p 1 , . . . , p s be the minimal prime ideals of B. For

1 ≤ i ≤ s let B i = B/p i , so that Y i = Spec B i , 1 ≤ i ≤ s, are the irreducible components of Y . Since e i : Y i = Y i × X X → Y i is radicial, B i is geometrically
unibranch. Let c i be the conductor of the semigroup it defines. Then, given α such that p α ≥ c i , for every n ∈ N, for every D (i) ∈ HS k (B i ; np α ), we have that τ np α ,n (D (i) ) can be extended to a HS-derivation of B i (Lemma 3.1). Now, let α ∈ N with p α ≥ sup{c i | 1 ≤ i ≤ s} and n ∈ N. Let D ∈ HS k (B; np α ) and denote by φ np α := φ D;np α : B → B[t] np α the induced morphism. Then, for 1 ≤ i ≤ s, D induces a HS-derivation in HS k (B i ; np α ), i.e. φ np α induces a morphism φ i;np α :

B i → B i [t] np α (Lemma 3.7). Since p α ≥ c i , there exists D (i) ∈ HS k (B i ; n) which extends τ np α ,n (D (i)
). That is, there exists φ i;n making the following diagram commutative

B i B i [t] n B/p i = B i B i [t] n φ i;n φ i;n E E T T
where the vertical arrows are inclusions and φ i;n denotes the morphism induced by τ np α ,n (D (i) ), i.e. the composition of φ i;np α with the projection

B i [t] np α → B i [t] n .
Note that we have proved that in the following diagram all the squares are commutative

s i=1 B i s i=1 B i [t] n s i=1 B i s i=1 B i [t] n B B[t] n (φ i;n ) s i=1 (φ i;n ) s i=1 φ n E E E T T T T
where the vertical arrows are inclusions and φ n denotes the morphism induced by τ np α ,n (D), i.e. the composition of φ np α with the projection B D). This concludes the proof.

[t] np α → B[t] n . Note also that B = s i=1 B i , therefore φ n := (φ i;n ) s i=1 : B = s i=1 B i -→ B[t] n = s i=1 B i [t] n denines a HS-derivation D ∈ HS k (B; n) which is an extension of τ np α ,n ( 
Remark 3.8. Corollary 3.5 can also be applied to irreducible varieties X over a perfect field k for which there exists a finite and dominant morphism X → X 0 which is generically purely inseparable with X 0 normal ([BePiRe, Remark 4.8]).

For example, hypersurfaces with equation of the form

X := Spec k[x 1 , . . . , x n , y] (y p α + f (x 1 , . . . , x n ))
, α ≥ 1.

In fact, note that, if X is the normalization of X, the hypothesis implies that the morphism X → X 0 is generically purely inseparable, hence radicial ( [START_REF] Benito | Small irreducible components of arc spaces in positive characteristic[END_REF]Example 4.4]). Therefore the morphism n : X → X is also radicial.

Finiteness of the set of leaps for unibranch curves

In this section we will prove that the set of leaps of a unibranch curve over an algebraically closed field k of prime characteristic p > 0 is a finite set. The result will be a consequence of Theorem 3.6, the study in section 1 and the following result. Proof. The first assertion follows from Corollary 2.3 and (6). For the second one, let us consider an ∞-integral of ∂ u ∈ Der k (A) and let φ : A → A t be its induced morphism (see (3)). Then, g

• φ := ψ • φ , with ψ : A t t → gt ∈ A t , defines an ∞-integral of g∂ u . It is enough to prove that g • ϕ(A) ⊂ A t . So, let us consider a ∈ A. Note that g • ϕ(a) = a + a 1 gt + a 2 g 2 t 2 + . . . ∈ A t
with a i ∈ A and, for each i ≥ 1, we have ν(a i g i ) ≥ ν(g i ) ≥ c, which implies that a i g i ∈ A. Then, g • ϕ(A) ⊂ A t and we have the result.

Let α > 0 be such that p α ≥ c. From Theorem 3.6, we know that if δ ∈ IDer k (A; p α ), then there exists a unique δ ∈ Der k (A) = IDer k (A) = ∂ u extending δ. That is, we have an injective map

η α : IDer k (A; p α ) → Der k (A) δ → δ which is a k-linear map. Let C α := η -1 α u i ∂ u | i = 0, . . . , c -1 k . (9) 
Note that C α does not depend on the regular parameter u. 1 ( ∂ u , u∂ u k ) = y∂ y , x∂ y k ⊂ IDer k (A; 2). It is well-known that y∂ y is ∞-integrable (see Example 1.10), so C 1 can only produce one leap and, thanks to Theorem 4.2, A has at most two leaps. In fact, it is easy to see that ∂ y ∈ Der k (A) es not 2-integrable and x∂ y ∈ IDer k (A; 2) is not 4-integrable, so Leaps k (A) = {2, 4}.

Example 4.4. Let us consider the example given by A. Seidenberg in [Se], i.e., A := k[x, y]/ y p -x p -x p+1 where k is an algebraically closed field of prime characteristic p > 0. In this case, A = k[u] where u = y/x -1 and its conductor is c = p 2 -p. Hence, we can consider C 2 = η -1 2 ( ∂ u , . . . , u p 2 -p-1 ∂ u k ) ⊂ IDer k (A; p 2 ). It is easy to see that C 2 does not produce any leap and, according to Theorem 4.2, A has at most 2 leaps. In fact, ∂ y ∈ Der k (A) is not p-integrable and y∂ y , x∂ y ∈ IDer k (A; p) are not p 2 -integrable, so Leaps k (A) = {p, p 2 }. Definition 4.5. Let X be a variety over a perfect field k. We define the set of leaps Leaps k (X) of X as the union of Leaps k (O X,x ) for all x ∈ X.

Remark 4.6. Note that for any affine open covering X = i X i , X i = Spec(A i ), Leaps k (X) = i Leaps k (X i ), and by Proposition 1.6, Leaps k (X) = i Leaps k (A i ) and Leaps k (X) is the union of Leaps k (O X,x ) for all closed points x ∈ X.

Theorem 4.7. Let k be a perfect field of prime characteristic p > 0 and let X be a curve over k. Suppose that, for every closed point x of X, the curve X is either regular or geometrically unibranch at x. Then, (Leaps k (X)) < ∞.

Proof. Let k be the algebraic closure of k and let X := X × k k. Note that, since k is perfect, X is a curve over k, i.e. a reduced separated k-scheme of dimension 1 [START_REF] Matsumura | Commutative Ring Theory[END_REF]Theorem 26.3]). Let x be a closed point of X and let x be its projection in X. If x is a regular point of X then x is a regular point of X and hence Leaps k (O X,x ) = ∅ by Proposition 2.2. Otherwise X is geometrically unibranch at x and then X is unibranch at x [START_REF] Grothendieck | Éléments de Géométrie Algébrique (Rédigés avec la collaboration de Jean Dieudonné) IV. Étude locale des schémas et des morphismes de schémas, Seconde partie[END_REF]Corollary 6.15.9]. Since Leaps k (X) = Leaps k (X) by [START_REF] Tirado Hernández | On the behavior of modules of m-integrable derivations in the sense of Hasse-Schmidt under base change[END_REF]Corollary 3.29] and Remark 4.6, the result follows from Theorem 4.2.

([ Ma2 ,

 Ma2 Theorem 25.1]). Even more, if A is a Noetherian ring and B an A-algebra of finite type then B is étale over A ⇔ B is flat over A and Ω B/A = 0 (5) ([Ra, Chapitre III, Proposition 9 and Chapitre V, Corollaire 2]).

Lemma 4. 1 .

 1 Let A be the local ring at a closed point of a curve over an algebraically closed field k of characteristic p > 0 and suppose that A is unibranch. Let ν be the divisorial valuation defined by A, let c be its conductor and let u ∈ A be a regular parameter. Then k[u] ⊂ A ⊂ k u , where the last inclusion is faithfully flat, and Der k (A) = IDer k (A) = ∂ u , where ∂ u|k[u] = ∂ u .For every g ∈ A such that ν(g) ≥ c we have (g∂ u ) |A ∈ IDer k (A).

Theorem 4. 2 .

 2 Let A be the local ring at a closed point of a curve over an algebraically closed field k of characteristic p > 0 and suppose that A is unibrach.Then (Leaps k (A)) < ∞.More precisely, if c is the conductor of the branch and p α ≥ c, then we haveIDer k (A; β) = IDer k (A) where β is the largest leap that C α produces (β = p α if C α produces no leap). Proof. Let α > 0 be such that p α ≥ c. By Theorem 3.6, given δ ∈ IDer k (A; p α ), there exists δ ∈ Der k (A) = IDer k (A) = ∂ u extending δ. Hence, we can write δ = (a 1 + a 2 )∂ u with a 1 , a 2 ∈ A such that a 1 = c-1 i=0 λ i u i and a 2 = i≥c λ i u i . Note that ν(a 2 ) ≥ c, so (a 2 ∂ u ) |A ∈ IDer k (A) by Lemma 4.1 and, since δ = δ |A = (a 1 ∂ u ) |A + (a 2 ∂ u ) |A , δ and (a 1 ∂ u ) |A have the same integrability, so (a 1 ∂ u ) |A is p α -integrable. Therefore (a 1 ∂ u ) |A belongs to C α .Applying Propositions 1.11 and 1.14 we conclude the result. Example 4.3. Let k be an algebraically closed field of characteristic 2 and let A := k[x, y]/ y 2 -x 3 . Then, A = k[u], where u = y/x, and its conductor is c = 2. Since p ≥ c, we can consider C 1 = η -1

  ∂ d where du i = d O X,x (u i ) and ∂ i denotes the derivation on O X,x which extends

	∂ ∂ui .
	Proof. It follows from (4), Proposition 2.2 and the fact that Der k

The HS-derivations are also called higher derivations, see[START_REF] Matsumura | Commutative Ring Theory[END_REF] §27].
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