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INTRODUCTION

The determination of the dynamic response and aeroelastic stability of helicopter rotor blades is an important problem that has attracted the attention of several investigators. Such problems are inherently non-linear, and special attention must be given to a systematic formulation of the differential equations of motion of the system. Recent reviews of several aspects of rotorcraft dynamics and stability research have been presented by Ormiston and by Friedmann [1][START_REF] Ormiston | Investigations of hingelcss rotor stability[END_REF][START_REF] Friedmann | Recent developments in rotary wing aeroelasticity[END_REF][START_REF] Friedmann | Formulation and solution of rotary-wing acroel astic stability and response problems[END_REF]. Houbolt and Brooks [5] presented a comprehensive set of linear differential equations to describe the dynamics of rotating non-uniform pre-twisted blades. Further work by several other investigators, e.g. [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF][START_REF] Hodges | Stability of elastic bending and torsion of uniform cantiliver rotor blades in hover with variable structural coupling[END_REF][START_REF] Friedmann | Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight[END_REF][START_REF] Friedmann | Influence of modelling and blade parameters on the aeroelastic stability of a cantilever rotor[END_REF][START_REF] Rosen | Nonlinear equations of equilibrium for elastic helicopter or wind turbine blades undergoing moderate deformation[END_REF][START_REF] Peters | Flap-lag stability of helicopter rotor blades in forward flight[END_REF][START_REF] Hodges | On the nonlinear deformation geometry of Euler-Bernoulli beams[END_REF], established that non-linear terms not considered in [5] play a fundamental role in the response and stability of rotor blades.

The non-linear differential equations of motion of a rotor blade are quite complex, and efforts are still devoted to their formulation [START_REF] Ormiston | Investigations of hingelcss rotor stability[END_REF][START_REF] Friedmann | Formulation and solution of rotary-wing acroel astic stability and response problems[END_REF]. Hodges and Dowell [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF] developed a comprehensive set of equations with quadratic non-linearities to describe the dynamics of slender, rotating, exten sional rotor blades undergoing moderately large deformations. An ordering scheme based on a small parameter £ was used in [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF] to systematically neglect higher order terms in the equations. Some important linear terms of order £3 were kept in the equations, such as aerodynamic damping terms and inertia terms in the torsional differential equations of motion. Non-linear terms of order £3 were systematically neglected. The equations of motion developed in [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF] were used in [START_REF] Hodges | Stability of elastic bending and torsion of uniform cantiliver rotor blades in hover with variable structural coupling[END_REF] to investigate the stability of the elastic motion of a uniform cantiliver rotor blade in the hover flight condition. The dynamics of rotor blades with quadratic non-linearities was also addressed by Friedmann and his co-investigators, e.g. [START_REF] Friedmann | Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight[END_REF][START_REF] Friedmann | Influence of modelling and blade parameters on the aeroelastic stability of a cantilever rotor[END_REF][START_REF] Rosen | Nonlinear equations of equilibrium for elastic helicopter or wind turbine blades undergoing moderate deformation[END_REF]. The authors of [START_REF] Friedmann | Dynamic nonlinear elastic stability of helicopter rotor blades in hover and in forward flight[END_REF][START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF] seem to be the ones who pioneered the use of ordering schemes.

A set of order £3 non-linear differential equations of motion describing the ftexural-ftexural torsional motion of inextensional beams undergoing moderately large deformations was presented by Crespo da Silva and Glynn [START_REF] Crespo Da Silva | Non-linear ftexural-ftexural-torsional dynamics of inextensional beams. I: equations of motion[END_REF][START_REF] Crespo Da Silva | Non-linear flexural-flexural-torsional dynamics of inextensional beams. II: forced motions[END_REF](15) and used by the same authors to analyze the non-linear response of the system. They have considered non-rotating beams, and determined the effect of these non-linearities on the system's response for the case where the torsional frequencies of the beam are much larger than its bending frequencies. For such cases, the non-linearities in the differential equations of motion are cubic in£ rather than quadratic. The question that immediately *Professor. tResearch scientist and Theoretical Group Leader, Rotorcraft Dynamics Division. arises for the rotating rotor blade problem is whether these higher order non-linearities can also play a significant role in the equilibrium and stability of the elastic motion of the rotating blade.

In this paper, the work presented in [6, 7, 13, 15] is extended with the objective of formulating a systematic set of differential equations of motion for both extensional and inextensional rotating beams and helicopter rotor blades, with pre-cone and a pitch angle, including cubic non-linearities. The equations developed here are used in Part II of this paper to analyze the response of a helicopter rotor blade in hover and to determine the influence of several higher order non-linear terms in the equilibrium and stability of the elastic motion of the blade.

THE DYNAMIC SYSTEM AND BASIC ASSUMPTIONS

Consider an initially straight, pre-twisted, rotor blade of undeformed length R, mass m per unit length, and of closed cross section. Its maximum cross section dimension is assumed to be much smaller than R so that it may be approximated as a beam. A blade segment, both in its undeformed and deformed states, is shown in Fig. I. The (e, 17, O axes, with unit vectors indicated in bold type with a A, are the principal axes at the elastic center c. of the deformed blade cross section at x = x; it is assumed that the cross section is symmetric about the 17-axis. The e-axis is tangent at all times to the elastic axis of the blade. Prior to elastic deformations, c. is at location (x = x, y = 0, z = 0).

The (x, y, z) axes, with unit vectors also indicated in bold type with a A, are a set of hub-fixed rotating reference axes as shown in Fig. 2. The x-axis is coincident with the elastic axis of the undeformed blade. These axes rotate in space with angular velocity n about a direction perpendicular to the rotor hub.

The orientation of (x, y, z) relative to a set of inertial (X, Y, Z) axes, also shown in Fig. 2, may be described by first aligning (x, y, z) with (X, Y, Z) and then performing two successive rotations. The first rotation t/I = Ot (where t denotes time) about Z brings the (x, y, z) triad to its new orientation (X1 , Y1 , Z1 = Z), while a second rotation P-the blade's constant pre-cone angle about the negative Y1 direction (i.e., a clockwise rotation) brings (X1, Y1 , Z1) to the final orientation of (x, y, z). For simplicity, the blade root offset e1 shown in Fig. 2 will be taken to be zero. The angle a:, shown in this figure is the angle of attack of the rotor.

The principal axes (17, {) of the blade's cross section at c. make an angle (} (x, t/J) with two cross section non-principal axes (173, {3) shown in Fig. I. It is assumed that the geometric pitch angle of the blade, (} (x, t/I ), is given as

n O (x, t/I) =(J c + o,,(x) + L [Oic cos(it/I) + (}" sin(it/I)] (1)
1-1 where (J c is the constant collective pitch angle, O ,,(x) is a pre-twist angle that may be incorporated to the blade, and 01c and 011 (i = l, 2, ... , n) are the harmonic pitch components that may be introduced by a control system. When the blade is elastically undeformed, the non-principal 173 and C3 cross section axes are parallel to the rotating y and z axes, respectively.

Due to elastic deformations, the elastic center of the pitched undeformed blade's cross section at x = x shown in Fig. 1, moves from (x = x,y = 0, z = 0) to a new location whose coordinates relative to the rotating (x, y, z) axes are written, respectively, as Rx+ Ru(x, 1/1), Rv(x, 1/1) and Rw(x, 1/1). Here, (u, v, w) are the (i, y, i) components of the elastic displacement vector of the blade's cross section elastic center, non-dimensionalized by R.

In general, each cross section of the blade experiences the elastic displacements Ru (x, I/I), Rv (x, I/I) and Rw(x, I/I) of its elastic center c. and a rotation about c •. The orientation of the cross section principal axes ({, 17, C) centered at c. may be described by three successive rotations. The set of three-axes orientation angles shown in Fig. 3 is used here for this purpose. We begin this process by aligning(�, rj, C) with (i, y, i) and then performing the three successive rotations shown in Fig. 3. The first rotation tMx, I/I) about i brings (�, rj, () to (�1, rj1, (1 = i). The second rotation 8,, (x, I/I) about the negative direction (a clockwise rotation) of the new position rj1 of the rj unit vector brings(� .. rj., C1 ) to (�2, rj2 = rj1, (2). A third rotation Ox(x, I/I) about �2 =� brings this triad to (�. rj3, (3 ) . As indicated in Fig. 1, an additional rotation of the (�, rj3, (3) triad by an amount equal to the pitch angle() (x, I/I) about� brings the blade's cross section principal axes to their actual orientation in space.

The elements 111 of the transformation matrix [ T ] between (i, y, i) and (�, rj, (), defined as ill-rnrn � may be readily obtained with the aid of Fig. 3. As pointed out in [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF][START_REF] Hodges | On the nonlinear deformation geometry of Euler-Bernoulli beams[END_REF], the advantage of incorporating the pitch angle 8 (x, I/I) as described above, is that it simply shows up in the equations as an additive term to the third orientation angle Ox(x, I/I).

With the position vector of the elastic center C,, relative to the hub center 0, given as it follows that r, = R[(x + u)i + vy+ wi] � = 8r,/8(Rr) =[(I+ u')i + v'y + w'i] 8 x/8r = (ic8, + ysO,)cO,, +is(),,

where ( )' = o ( )/ox, and sB and c8 are used to denote sin B and cos B, respectively. The scalar quantity r denotes arc-length, non-dimensionalized by R, measured along the elastic axis. Since e is a unit vector, it follows from equation (4) that ox/or =[(1 +u') 2 +v' 2 +w' 2 1 -•12

(5)

By letting dots denote partial differentiation with respect to 1/1. i.e. ( f = o( )/ot/I, the angular velocity w(x, 1/1) of the principal axis system, relative to the inertial frame (i, �. t), is obtained 

where B1=B(x, 1/1) + B;r(x, 1/1), and �denotes "equal by definition". Similarly, the components of the elastic axis curvature vector C(x, I/I), non-dimensionalized by R, can be readily obtained from 

Although a total of six dependent variables (u, v, w) and (B ", By , B,) have been introduced, only four are needed to describe the motion. As seen from equation (4), the angles B, and By are related to the spatial derivatives of u, v and w as tan B, = v' / (l + u')

(8a) sin By= w'(ox/or) = w'[(l + u')2 + v'2 + w121-•12 (8b) 
The differential equations of motion for the blade will be developed here in terms of the elastic displacements u, v and w, and of the third orientation angle B". The extended form of Hamilton's principle [START_REF] Meirovitch | Analytical Methods in Vib rations[END_REF][START_REF] Meirovitch | Methods of Analytical Dynamics[END_REF][START_REF] Dym | Solid Mechanics, a Variational Approach[END_REF] will be used to obtain such equations and their boundary conditions. For this, the expressions for the kinetic and strain energies of the motion are formulated next.

Due to warping, the position of an arbitrary point P of the cross section through C� experiences a small axial displacement given approximately as -[RA (17, C)]( p� ox /or)!, where A (17, C) is the warp function, normalized by R, obtained by solving Laplace's equation for the cross section [START_REF] Dym | Solid Mechanics, a Variational Approach[END_REF].

In terms of the non-dimensional coordinates 17 and C (along the 17 and C axes, respectively), the position vector of P relative to the hub center 0 is then given as

rp = r, + R(11'1 + �e)-RAp�(ox/or)e (9) 
Assuming that the velocity of the hub center 0 is constant, which is an assumption valid for both cases of hover and non-accelerated forward flight, the kinetic energy of the motion of the blade is then calculated as

T=!02R3 f_0 ff p(drp/dt/l)'(drp/dt/l) d17 d( dx (10) 
A where p is the blade's material density at point P, and A is the undeformed blade's cross sectional area, normalized by R2• To simplify the formulation, it will be assumed that the blade's cross section has material symmetry about the 17-axis so that

ff p( d17 d( = ff p17( d17 d( = O A A
and that the warp function A(.,, , C) satisfies the following relations

ff pA df7 d( = ff pA17 d17 d( = 0 A A (1 la) (llb)
With the aforementioned assumptions, and making use of the elements t11 of the transformation matrix [T] defined by equation (2), the kinetic energy may be expressed as

T/(mn 2 R 3 ) = � J 0 1 M{(u -vcP) 2 + [v +(x + u)cp -wsP] 2 + (w +vsP) 2 } dx l f I ( • 2 • 2 • 2 ) dx . + 2 Jo )(W( + 1.,, w.,, + JcWc + L' e {(u -vcp)(i 2 1 -t22cP) + (w + vsP)(i 2 3 + t22sP) + [v + (x + u)cp -wsP](i22 + l 2 1cP -t 2 3sP)} dx + T* (12)
where m and M (x) are given as

mM(x) = R 2 ff p d17 dC; m = R 2 f0 1 ff p d ,, dC dx A A (13a, b)
Note that if the blade is uniform [ p (x) =constant] and with constant cross section along its span, M(x) =I. The contribution T* to the normalized kinetic energy depends on the warping function and is given in the Appendix. The quantities e and j « (oc = �. 17, Oare cross section integrals defined as me= R 2 ff P'I d17dC; m j.,, = R 2 ff pC2 d'I dC A A mjc = R 2 ff P'7 2 d17 dC; j( = j.,, + ic

(14a-d) A
To obtain the expression fo r the strain energy of the deformed blade, a strain tensor, represented here by a matrix [E] with elements iu is ' needed. As a measure of the deformation of the blade, the square of the distances between two infinitesimally close points on the blade, before and after deformation, is used [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF][START_REF] Dym | Solid Mechanics, a Variational Approach[END_REF]. The nonlinear strain-displacement relations for the deformed blade are sought for the case of large displacements but small enough strains so that Hooke's law relating the stresses at any point P is still valid. Because of the pre-twist of the blade, a strain definition and corresponding strain energy expression should be used that are appropriate for a curvilinear coordinate system [START_REF] Hodges | Torsion of pretwisted beams due to axial loading[END_REF]. However, according to the results of [START_REF] Hodges | Torsion of pretwisted beams due to axial loading[END_REF], the presentapproach (similar to that of [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF]) yields nearly identical results and is considerably simpler for slender beams with thin cross sections. Since comparison with results generated from the equations derived in [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF] is anticipated in Part II of this paper, it is somewhat advantageous to use the same approach. With these assumptions, the matrix [ i ] is determined as

dr,• dr,-dr,. • dr,. � 2R'[dr, W,, cl{ ] ( • {�] (IS)
where ''° = rp(u = v = w = 8" = 0). Neglecting in-plane cross section distortion [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF], the strain components are readily obtained by making use of equations ( 15), ( 9), ( 3) and [START_REF] Ormiston | Investigations of hingelcss rotor stability[END_REF]. With "u denoting the stresses acting on the blade, the strain energy is given as

U = � 3 
f :.0 ff [ u11 i11 + u22i22 + <133€33 + 2(u1 2i12 + u13i13 + u23€ 2 3)J d17 dC dx (16) A With the slender beam approximation, the blade's maximum cross section dimension is assumed to be much smaller than its length, and the normal stresses u 22 and u33 are neglected [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF].

Furthermore, considering blades with cross section symmetry about the 17-axis, and with an 

A A A A ff A d'1 d{ = ff '7 A d'7 d( = ff A ('12 + {2)d'7 d( = 0 A A A (1 7a) (17b)
Letting E and G denote, respectively, the material's Young and shear moduli, non dimensionalized by m 02, and defining the following cross section integrals 

D( = G ff [ ({ + oA /0'1 )2 + ('1 -oA /0()2) d,, d( A D• = E ff {2d'1 d(; De= E ff '12d'1 d{ A A I (= ff ( '12 + C2) d'7 d(; A =ff d'1 d{ ; A e" =ff '1 d'1 d{ A A A B, =ff ('7 2+{2)2d'7 d{; B 2 = ff '1('12+{2)d'1 d{ A A B 3 =ff {2 '1 d'7 dC; B 4 = B 2 -B 3 A (18a) (1 8b) (18c) (18d) (18e) 
A J,= ff cc,, -oA/oO,,oA/oC +<C +oA/ o,,)(A -,,oA/o,,)Jd,, dC (lSh) the strain energy is then obtained as given in equation [START_REF] Hodges | Torsion of pretwisted beams due to axial loading[END_REF]. The term U*, which includes most of the contribution due to warping, is given in the Appendix. The notation x + � ox /or is used for compactness. 

1 r• 1 f' U /(m02 R 3 ) = '2 J o [ D((p( -8')2 + D.p� + D,pnx+2 dx + S J o E A (1 -x+2)2 dx + � L' {1EB,(
The quantities D,, . De and D( defined by equations (18a, b) are, respectively, the torsional and flexural stiffnesses of the blade, normalized by m !22 R 4 , while /( is the polar moment of inertia for the cross section, referred to Ce and normalized by R4• The quantity eA is the normalized tension axis offset from the elastic axis. It is worth noting that the curvature components p(ox/or. p,,ox/or and p,ox/or appear directly in the expression for the strain energy. This is a direct consequence of defining U via the strain components formulated in terms of the increments dr, d'7 and dC for the deformed configuration.

DIFFERENTIAL EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The extended form of Hamilton's principle [START_REF] Meirovitch | Analytical Methods in Vib rations[END_REF][START_REF] Meirovitch | Methods of Analytical Dynamics[END_REF] is used to obtain the differential equations of motion for the blade and their boundary conditions. This principle may be expressed as

f � [c5 (T ) -c5 (U ) + c5W] di/I A (m!22R3)c5I = O Jp, ( 20 
)
where c5 W-which is not necessarily the variation of a function W, and hence the distinction in notation used for c5(U), for example-designates the virtual work done by the external and damping forces. Here, c5 W is expressed in terms of the virtual displacements of the non-dimensional variables u, v, w and ex as

c5W = m!22R 3 {c5W81!-o+ I (Quc5u + Q.c5v + Q,.c5w + Qe}ex)dx} (21)
The quantities Qu, Q. and Q., are the distributed forces associated with the virtual displacements Rc5u, Rc5v and Rc5w, respectively, normalized by m!22R, while Qe. is the distributed moment associated with the virtual rotation c5ex, normaliz.ed by m02R2• The terms c5W8 is included in equation ( 21) to account for the cases where the virtual work of the distributed forces acting on the system is also dependent on the variation of the spatial derivative of any of the variables u, v, w and ex. In such cases, an integration by parts in the expression for c5W immediately yields a c5 W8 term. The virtual variations c5e, and c5e., which appear implicitly in equation [START_REF] Biot | Increase of torsional stiffness of a prismatic bar due to axial tension[END_REF], may be obtained directly from equations (8a, b).

After performing a few integrations by parts in equation ( 20), the differential equations of motion can be cast in the forms given in equations (22a-d). The expressions for the quantities T,, Te , . .. , that appear in these equations, are given by equations (23a-g). '

{(Te + Ue )oev/ou' + (Te + Ue )oe,/ou' + T , (1 + u') + hu}' A G�(x, I/I)

1 1 ,, r r = M[u -2vcP + wsPcP -(x + u)c2P]+ e[i;, -2i2 2 cP + t23sPcP -t 2 1c2P -Qu1 (22a)
{(Te,+ Ue,)oe,/<Jv' + (Te, + Ue,)oe,/<Jv' Te.= U,, -J,)OJ11 0Jc -j(dJ( -e [{u -[2rJ -w sP + (x + u)cp]cP}t3,

+ T , v' + Ji.. }' A G;(x, 1/1) = M[v + 2ucP -2wsP -v] + e[ i� + 2i 2 1cP -2i23sP -t22]-Q. ( 22b 
+ [v + 2ucP -2wsP -v)t 3 2 + {w + [2v -wsP + (x + u)cPJsP}ce1c8,] (23b) 
Te , = Uc(J) cs91 -j,, (J) ,, c61 )" -ic(J)([(d, + cfJ)c6, -sfJs6, c6, J + (j,, (J) ,, s61 + ica>cc61 )[(6, + cfJ)s6, + sfJc6, c6, J

-e[{ii -[2v -wsfJ + (x + u)cfJJcfJ}c6, c6, + [v + 2ucfJ -2wsfJ -v] s6, c6, + { w + [ 2ti -wsfJ + (x + u)cfJJsfJ}s6, ]s61 (23c) 
T9 1 = [j((J) (s6, + (j,, (J) ,, s61 + ica>cc61 )c6, J" + [j(w(c6, s6, + j,, w,, (c61c61 -s61 s6, s61 )-ica>c(s61c6, + c61 s6, s6, )JsfJ -e[{ii 

+ G(J,, s61 + Jcc61 )P((P(-6')x+3c61}' !e -H;

The second term, E/([l -(ox/or)2] /2, that appears in the expression for U9 x is a tension-torsion coupling term that refl ects the increase in the effective torsional stiffness of the blade due to axial tension (19, 20). The term T. /(ox/or) 4 , given by equation (23a), is the coefficient of -(ox/or)o(ox/o r) that appear in the variation of U/(m0.2R3)-u•. Equations (22a-d) are a set of coupled non-linear partial differential equations satisfying the boundary conditions extracted from equation [START_REF] Hodges | Aeromechanical stability of helicopters with a bearingless main rotor-Part I: equations of motion[END_REF]. In general, they admit non-zero particular solutions which are either an equilibrium state ix =constant= ix, (ix = u, v, w, Ox) for the case of hover, or a steady state solution for the case of forward flight. Of special interest is the determination of these particular solutions, and the analysis of the stability of the perturbed motion about them. Due to the complexity of equations (22a-d), they will now be restricted to "moderately large" deflections to obtain a set of approximate differential equations that are more amenable to analysis. Toward this end, the non-linearities in those equations are expanded in Taylor series in an arbitrarily defined small parameter £, and the results truncated to a certain degree in £. It is well known that the resulting equations with polynomial non-linearities still retain relevant information about the motion [START_REF] Nayfeh | Non/war Oscillations[END_REF]. Here, the expansions will be carried to include terms up to order £ 3 •

To expand equations (22a-d), a small parameter £, of the order of the bending detlections, is introduced and an order of magnitude £" (n = 0, 1, 2, ... ) is assigned to the variables and parameters of the system [START_REF] Hodges | Stability of elastic bending and torsion of uniform cantiliver rotor blades in hover with variable structural coupling[END_REF]. For example, the blade's collective pitch angle is treated as an 0 (1) quantity, but the space and time varying components of O(x, Y,) are assumed to be small so that O,,(x) = 0(£), 01,,(Y,) = 0(£) and O;,(Y,) = 0(£). The flexural and torsional stiffness are also treated as 0(1) quantities. The distributed mass moments of inertia are usually very small quantities and will be treated as 0(£2). With '1=0(£) and C = 0(£), the following ordering scheme, which is consistent with equations (18a-h), is then used 0(1): x , 0., D., De, D(, El( 0(£): v, w, Ox, O,,, 01c, 013, sinp, e, e..,, EB 2 , EB3, EB4, ECr, GJ�, GJc 0(£ 2 ): A, j• , j,, j( , EB1 , EC1

In addition, u = 0(£2) and EA= O(c2).

From equations ( 5) and (23a), for example, the following expansions are obtained to 0(£3).

E { v '2 w '2 u'2 [ v ' 2 w'2 ] 2 } 2 A(I -x +2)= EA u' + 2 + 2 + 2 -2 u' + 2 + 2 +0(£ 4 ) (26a) T = EA u ' +-+-+--6 u' +-+- [ v '2 w '2 u'2 ( v '2 w '2 ) 2 • 2 2 2 2 2 -e.., {[ v" ( l -u ' -v 12 -w ; 2 ) -v ' u " )c0 1 + [ w" ( l -u ' -v � 2 -w' 2 ) -w ' (u" + v' v") ] s8 1 -6( u' + v � 2 + w;
2)cv"c0, + w" slJ,) } ]-D{0�2 + �1(0�(8� + 28') -HD.(v " slJ,-w" clJ,) 2 + Dc(v " c8, + w" s8.) 2] + 0(£3)

(26b)
After expanding the remaining terms in equations (23a-g), and noticing that the terms h,,,

(cc= u, v, w, 8") in equations (22a-d) due to the r• and u• terms given in the Appendix are of higher order, the following differential equations with polynomial non-linearities to 0 (£3) are obtained. Although sin p and cos p are related as sin2 p + cos2 p = 1, the 0 (1) quantity cos p is left in the equations as cP for compactness.

G � = { v' [ D,(v"s8,-w"c8,)s8, + D,(v"c8, + w"s8,)c8,-EAe,. ( u' + " � 2 + w2 12 )c8f J -w' [ D,(v"s8,-w"c8,)c8,+ D,(v"c8,+ w"s8,)s8,-EAe,.(u' + v ; + w ; 2 ).r0 , J -xe(v'c8,+ w's8c)c2P + T.(1 +u') } '

= M[u -2vcp + wspcp -(x + u)c2p] -e[(vc8,+ ws8,)' -(2d1 + sP)s8,cp -(v'c8c+ w's8,)c2Pl-QM + O(i3) G; = [ -v'w' {2x es8,c2P + [ D.
,(v"s8,-w"c8c)c8,-D,(v"c8c+ w"s8c)s8c + EAe,. ( u' + v � 2 + ;�sBc J} + j.,(v' s8, -(Mi' -2d1cp)c8,]s8c + j,(v'c8, +(Mi' -2d1cP)s8,]c8, + (j., -j,)spcps8cc8, '2)w" + w'(u" + v'v")]s8cc8c -2 �8;(8; + 28' )c8, -�E[ B3(v"s8, -w"c8,)2 + B 4 (v"c8, + w"s8c)2Jc8, -3EB3(v"s8c -w"c8,)(v"c8c + w"s8c)s8, -ECr(e; + v"w' )'s81 + G(J,s8c + J,c8,)8;(8; + 8') }']'

(27a) -e {[u -uc 2P + wsPcP + x(u' +�v12)c2P]c8, -(2v + xcp)c81cp + (v -v)(v'c8, + w's8,)} -{ w'Dc(B; + v"w') + w'[ECr(v"s8,-w"c8,)) ' + (D,s281 + D,c281)v" +(De -D.,)w"s81c81 -(D,,s28, + D,c28c)[v"(2u' +�v'2 + �w'2) + v'u"] E -(De -D,)[(2u' + v'2 + 2w
+ [ EAe ,. {( u' + v ; 2 + w ; 2 ) c01 -[ ( u' + v ; 2 + w ; 2 � Su' +�v'2+ 2w'2)-�J�. }T + { <u' +ii12 {v"(D., s28c+ Dcc28c) + (D,-D,,)w"s8,c8, ( v'2 w 12 ) ]' } ' -EAe,. u' + T + T c8c + T.v' = M[v -v -2wsp + 2ucPJ + e [ (c81 -v ; 2 c8c-v' w's8c)" . -c81 + ( v ; 2 c8,+ v'w' s8. ) -2(v'c8, + w' s8,)cp + d,(v's(}, -w' c8,)cp -2d, spco,]-Q. + 0(£4) (27b)
a: = [j,[ (v'c8c + w's8,)s8, + d1c28,cPJ -j,,((v's8c-w'c8,)c8, + d,c28,cPJ -jc(IJ1 + sp + w'cP)cp + (j,,s28, + j,c28,)(w'cP +sP)cp -e{[u -(ucP -wsp)cp +x (u' + v'2+�w12)c2P + v'(v -v)+ w'(w +xspcp)Js8c -(2v + xcfJ)sO,cfJ} + v"{D�(O� + v"w') + [ECt(v"sO, -w"c8,)] ' -w'[(D,s20. + Dcc20,)v" +(De -D,)w"s8.c8, -EAeA( u' + v ; 2 + w;2)c0. ]} + {< D, -Dc)v"sO,c8, -(D, -Dc)(v"(2u' + Jv'1 + w'2 + v'u'1s0,c8, -(D,c201 + Dcs201)w" E + (D,c20, + Dcs20,)[w"(2u' + v'2 + Jw'2) + w'(u" + v'v")] + 2 B 2 0�(0� + 28')s8, + iE[ B3(v"sO, -w" c8,)2 + B4(v" c8, + w"s8,)2] s8, -3EB3(v"s8, -w"c8,)(v"c8, + w"s0,)c8.} ' J -e{(v'sO, -w'c01)(2v +xcfJ)cfJ -(w + 2Vs{J +xs{J cfJ)c8, +(v-2ws{J -v +2ucfJ)s01} + (v"sO, -w"cO,>[(D, -D,)(v"c81 + w"s81) + EAe A ( u' + v ;2 + w 2 1 2 ) J + (EC,OZ) " -(ECt(v"sO, -w"c81)] " -ECtOZ(v"c8. -w"sO.) Equations (27a-d) are the expanded differential equations of motion for the blade. These equations may be reduced to a set of three integro partial differential equations in v, w and 8". For a rotor blade with the end x = I free, equation (27a) may be integrated with GM (x = I, l/I = l/I) = 0 to yield an expression for u' in terms of the remaining variables. To obtain such expressions, the integrated form of equation (27a) is first solved for T. to obtain equation (29a) -v' {J.'' [ c2v -wsp + xcP)cp + ;� ( x -�3) + Q.J dx + f' L" [ (v 'v' + w'w')" -!(v'2 + w'2 )c 2P] dx dx + { � [B 2 8;(8; + 28') + 3B3(v"s8. -w" c8.) 2 + 3B4(v"c8. + w" s8.) 2 ]s8.

-3EB3(v"s8. -w"c8,)(v" c8. + w"s8. c � [ v'2 + w'2 -(I -x2) �! ]}i.(vs8. -wc8.)'c8. + j,(vc8, + ws8.)'s8. -U . -i,) tJ.c 28,cfJ -ic< lJ. + sfJ + w' cfJ)cP + U .s 2 8. + i,c 2 8.)( w' cfJ + sf:l)cfJ J

[ I f " c 2p ( xl )] = w + (2v -wsfJ)sp + x -2 J o (v' 2 + w'2 ) dx + 2EA x -J sPcfJ -Q .. + 0 (£ 4 ) (30c)
The equations developed and presented here are used in Part II of this paper to analyze the response of a rotating blade in the presence of external excitations and accounting for higher order non-linearities. To complete the formulation of the equations for a helicopter rotor blade, the generalized aerodynamic forces are considered in the next section. The velocity "• of a point c. on the blade's elastic axis, relative to the hub center 0, may be obtained directly from equation (3) as "• = n dr,/dt/I =OR {(u -vcfJ)x + [v + (x + u)cfJ -wsfJ]y + (w + vsfJ)i} (31)

The rotation of the blade induces a "downwash" air flow with velocity -ORv ,Z = -ORv i(isP + ic/J) (see Fig. 2). Here, v , denotes the magnitude of the induced inflow velocity normalized by OR. If V1 denotes the magnitude of the constant forward velocity of the hub center 0, normalized by OR, the velocity v,10 of C, relative to the air is written in terms of the advance ratioµ A V1cos ex,= 0(1) and inflow ratio A. A V1sin a ,+ v 1= O(E) as [l l, 22, normalized by R. The distributed aerodynamic drag acting on the blade is also shown in Fig. 4 and is written in terms of the airfoil profile drag coefficient c dO as D.f = !p0Rcct10('1RU) 2 ((sa -tjca)

( ) ( 2 
"I c dO A 1:J.. A = (m'12R) "6 i tt U 2 (Csa -tjca)-(m'1 2 R) D({sa -tjca) (36).
Expressing sin a and cos a as (see Fig. 4) sin a = -U,/U; cos a = Ur/U 

) "I [ 2 (c ) c"° J F =-U,---xA. U,ro�--UUr ,, (38 
2 21t

(39a) (39b) 
The virtual work done by the aerodynamic loads consists of the virtual work done by F.f during a virtual displacement R (ic5 u + yc5 v + ww ), and of the virtual work done by M.f during a virtual rotation [ c5 0 . . + (s0y)c5 0, ]�. Its expression is then obtained as in equation (40

) (c5W)uro = (m02 R 3 ) J: (F,, tj + FeC) • (ic5 u + yc5v + ic5 w) + M.f [ c5 0 .. + (s0y)c5 0, ] dx = (m'22R 3 ){c5 Wa�:+1' [ (Qu)uroc5 u + (Q0)uroc5 v + (Q,.
)uroc5 w + (Q .. )....,c5 0 .. ] dx } (40) where ( Qu)aero = t 2 1F,, + tnFe-[ M.f (oO,/ou')w'ox/or]' (Qo)aero = t22F,, + l 32 Fc -[ M.f (o0,/0v')w'ox/or]' (Q,. )aero = l 23F,, + l 33 Fe ( Qe)....,=M .f

(4la) (4lb) (4l c) (4Id) 
The term c5 W8 = M.f [ (o0,/ou')c5 u' + (OO,/ov')c5 v']w'(ox/or) in equation (40) is included in the boundary condition for the system. If there are no other forces acting on the blade, � = (Qk)...., (k = u, v, w, B .. ).

To expand the generalized aerodynamic forces into polynomial non-linearities, the angle of attack, a, of the airfoil is assumed to be small so that U,= O(c). With Ur= 0(1), equations (39a, b) and (4la-d) indicate that the expansion for U, is needed to O(c 3 ), and the expansion for Ur to O(c 2 ). These quantities are then expressed as Up= U,1 + Un+ Un+ 0(£4) and Ur= Uro + Un+ Un.+ 0 (c 3 ), where UPI and Un denote the order £1 (i = 0, l, 2, ... ) term in the expansions for u, and Ur , respectively. With y/6 = 0(1), c = O(c), x.f = O(c) and c"°/(2 tt ) = 0( £ 2 ), the expansions for F,, and Fe are obtained as given in equations (42a-g) F,, = F,, 2 + F,, 3 + O(c 4 ); Fe= Fe1 + Fc 2 + Fe 3 + 0( £ 4 ) 

REMARKS AND DISCUSSION

A case of particular interest, for which the equations of motion presented here reduce to a simpler form, is that of an inextensional blade. For this case, no EA terms appear in the differential equations of motion as the blade behaves infi nitely stiff to axial extension. The equations of motion fo r this case may be obtained by taking the limit EA -+ oo in equations (27b-d), with u (x, Y,) obtained from equation (29) to recover the 0(£3) inextensionality constraint [START_REF] Hodges | On the nonlinear deformation geometry of Euler-Bernoulli beams[END_REF].

An alternate way to obtain the differential equations of motion for an inextensional blade via Hamilton's principle is to adjoin the inextensionality constraint to the Lagrangean of the motion by a Lagrange multiplier as in [START_REF] Crespo Da Silva | Non-linear ftexural-ftexural-torsional dynamics of inextensional beams. I: equations of motion[END_REF]15]. The advantage of using the limiting process mentioned above and presented in [START_REF] Hodges | On the nonlinear deformation geometry of Euler-Bernoulli beams[END_REF] is that both the extensional and inextensional cases may be investigated via the same equations of motion. It can be readily verified that the equations derived and presented here reduce to those in [13-1 5] when n = 0.

The differential equations of motion for an extensional blade were formulated in this paper in terms of the three elastic displacements u, v and w for any point on the blade's elastic axis, and an orientation angle Oz . The total angle of twist of the blade, </>,(x, Y,), may be obtained by first expressing the torsional component of the curvature vector, pc(x, t/l)ox /or defi ned by equation ( 7), as [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF][START_REF] Hodges | On the nonlinear deformation geometry of Euler-Bernoulli beams[END_REF][START_REF] Crespo Da Silva | Non-linear flexural-flexural-torsional dynamics of inextensional beams. II: forced motions[END_REF][START_REF] Peters | The effects of second order blade bending on the angle of attack of hingeless rotor blades[END_REF][START_REF] Nordgren | On computation of the motion of elastic rods[END_REF] (45)

and then integrating equation (45). Since <P,(x, 1/1) includes the non-elastic pitch angle O(x, 1/1), the elastic angle of twist of the blade, </> (x, I/I), is then </J(x, 1/1) = l z (q,; -O') dx + </J,(x = 0, Y, = 1/1) -O(x = 0, Y, = Y,)

= O;r(x, I/I) + f: 8;s6y dx = 8:r + lz v " w ' dx + o (£4)

(46) Equation ( 46) was used in [START_REF] Hodges | Stability of elastic bending and torsion of uniform cantiliver rotor blades in hover with variable structural coupling[END_REF] to obtain the differential equations of motion fo r the blade, with quadratic non-linearities, in terms of u, v, w and q,. With this approach, the expression for b P c • for example, simply becomes 6</J '. In this case, the term De( Pc -8')bPc = Dc </>'b</J, obtained from the variation of the strain energy, yields a single term Dc <P" in the b</J equation. In contrast, if Oz is used instead, the term De( Pc -O')b P c not only yields the term Dc <P" in the b8z equation, but also introduces some terms in equations (30b, c). The differential equations obtained here in terms of u, v, w and Oz reduce to those obtained in [START_REF] Hodges | Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades[END_REF][START_REF] Hodges | Stability of elastic bending and torsion of uniform cantiliver rotor blades in hover with variable structural coupling[END_REF] in terms of u, v, w, q,.

The present nonlinear equations are used in Part II of this paper to determine the equilibrium defl ections, and subsequently linearized to obtain the aeroelastic stability, of a single helicopter rotor blade for the hovering flight condition. The emphasis in Part II is to compare results with and without the cubic nonlinearities in the present equations. For simplicity, only uniform untwisted blades are considered.
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 2 Fig. I. Undeformed and deformed blade segment, and rotating unit vector triads.
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 3 Fig. 3. Three-axes orientation angles rotation sequence.

  directly from Figs 1, 2 and 3 as w = 0[ €11 + (l1, + c{J)sBy + s{JcBycB,]e + 0[(€1, + c{J)s81c9y -(}ycB1 -(c81sB, + sB1s9ycB,)s{J]lj + O[({}, + c{J)c81c8 Y + (}ysB1 + (sB1sB, -cB1s8ycB,)s{J]{

Fig. 3

 3 Fig. 3 and equation (6) as RC = [B;z -B;rj 1 + B!e] ox/or = [B; + B;sBy](ox/or)e + [B;sB,cBy-B;cB.J(ox/or)lj + [B;cB1c8y + B;sB.J(ox/or)( � [p� ! + p�lj + p,(](ox/or)(7)

  (18f) J.= ffc<,,-oA/oO<A-CoA/oO+<C+oA/o,,> CoA/o,,1d,,dC

  p� -8'2)2x+4-EB 2 pc( P� -8'2) x+3 -E(3B 3 p�p, + B.pl)x+3 + EC, 8�2 -2Ecr p.(p� -(}")} dx + L'G(J.p .+JcPc)(p(-8')p(x+ 3 dx+u•

2 - 2 -

 22 ) {(Te, + Ue,)oe7/o w ' + T. w' +h,.}'A G�(x, 1/1) = M[w + 2vsP + (x + u)sPcP -ws 2 P]+ e[i� + 2insP + t 2 1sPcP + t2l s2P 1-Q.. (22c) �-� + � + � =0 �� where T, = -x+4{D((P( -e')2 + (3 -2x+2)(D,p; + D c P D/ 2 + EI((I -2 x+2)(p� -e'2)/ EAeAp,(1-3x+2)/(2x+) + E(p� -e'2)x+ [ B1(p� -e'2)x+ -3B 2 pc)/ EA(I -x+2)/2-3E(3B3p;p, + B 4 pDx+ /2 + 3G(J,, p,, +lcPc)(p( -e')p ( x + } (23a)

  D((p(-0 ' ) + !El((l -x+l )p( + !EB1(p� -0 '2 )p(x+ 2 -EB 2 pcp(x+ + G(J •p• + J,p,)(2p(-O' )x+Jx+ 2 + (Ecr p� -Ec1o;y Hy= £ t (3 -x+ 2 )(D•p�c01 -D,p,s01) +!EB 2 (p� -0 '2 )x+ s61 + �E(B3p�+ B 4 pDx+ s01 -3EB3p.p,x+ c01 + G(J�c01 -J,s6 1) p{( p( -O ' )x+Jx+ 2 EQUATIONS OF MOTION EXPANDED TO 0(£3)

  x [< D,-D,)v"s0,c8,-(D,c28,+ Dcs28,)w" +EAeA(u' + v ; 2 +�)s6J + T.w'} ' = M[w +2VsfJ -ws2{J +(x + u)sfJ cfJ] +e[ (so, -w ; 2 s8,y• -(2ll1 + s{J)s8,s{J -(v'c8, + w'sO,)s{J cfJ ]-Qw + 0(£4) jc(li, + w'cfJ) +Uc-j,)[(2V' + cfJ)s01c8, -w'cW. JcfJ

  equations (26b) and (27b-d) the expansions for sin 01 and cos 01, truncated to the appropriate order, should be used. With 01 expressed as n 01 (x, l/I ) = o. + Ox(x, l/I) + 8,,(x) + L [01c cos(il/I) + 013 sin( il/I )]

  c 2p [ c 2p ]} -(I -x2) 4 v'2 + w'2 -(I -x 2 ) EA + i.(vs8. -wc8.) ' s8.+ ic(vc8.+ ws8.)'c8. + U.j,)(2iJ 1 + sfJ)cfJs8.c8J= v -v -2wsfJ -2(c/J) L " [ v' v' + w'w ' + ; A f." (WcfJ + Q.,) dx ] dx -Q0 + O(i4) (30b) G� = [[<D.-D, ) v ; s281 -(D.c 2 81 + D,s 2 81)w"J + (D.-Dc>{v 'w'w"' + [ v ; (v '2 +w'2)+ v'w'w" J + �! [ v-�(l-x2) v"]' } �c6.-(D.s28. + D,c 2 8.) w' (v'v")' -(D.c28. + D,s 2 8.) {�! [w -i(l -x2)w"]' + w'(w'w" ) ' } + v"[Dc(8; + v"w' ) + ECt(v'"s8. -w '"c8.)]

3 )

 3 )c8. -ECt(8; + v"w')' c81 + G(J.c8. -J,s8,)8;(8; + 8') } ' -w' {J" [ c2v -w sfJ + xcfJ)cfJ + ;� (x -� + Q.] dx + 1" So" [(v' ti' + w'w ' ) " -i(v'2 + w'2 )c 2f:I] dx dx -(l -x 2 )

•

  GENERALIZED AERODYNAMIC FORCES EXPANDED TOO(t:3) NON-LINEARITIES

  =v, + ORV1(-X ca , + Zsa ,) + ORv ;Z = v, -OR {µ[(ic P -isP)cl/I -ySl/f] -A.(isP + ic/J)} A OR(UR� + Urii +Up()[ �: ] = [T] [ v: � v :u�;�c:s; ::1/1] Up w + v sfJ + µs/Jcl/I + A.cp(32)(33) The aerodynamic forces and moments are modelled using quasi-steady strip theory based on Greenberg's extension of Theodorsen's theory in which only the Ur and Up components of the velocity v,10 are assumed to affect the aerodynamic loading [7, 23, 2 4 ). According to this theory, the lift Land aerodynamic moment MA per unit length along the blade may be written for quasi-steady aerodynamics as (34a, b) where the non-dimensional quantities L e, LNc and M,. are given by equations (35a-c). A refined expression for the steady induced inflow velocity in hover may be obtained by allowing the aerodynamic coefficients to be a function of angle of attack [2 5 ). L c = iu [ -up+ ( 1-x ,.)cot] L N c = J 4 c[-up+ ( �-x..c ) w{J

2 )JFig. 4 .

 24 Fig. 4. Aerodynamic forces acting on the airfoil, and the components of the normalized velocity U.

(

  37a, b) and combining equations (33a), (36) and (37a, b), the distributed aerodynamic force, F .f • acting on the blade is then obtained as given in equation (38) below where F .f /(m '22 R) = (Lesa -Dea )tj + (LNe +Leet% + Dsa ) ( � F,,.; +Fe(

F,, 2 =

 2 (y/6> ( u�, -�= u� J = o(c 2 ) (42c) F,, 3 = (y/6>[2u,1Un -(�-x.f )u, 1(l1 1 + w'cfJ + sfJ)-c : UroUn] = O(c 3 ) (42d)

  antisymmetric warp function, it follows that ff' d,, d( =ff,,, d,, d{ =ff ,,,2 d,, d( =ff , 3 d,, d{ = 0

  The terms h,. (a= u, v, w, 6")

	that appear in the left hand side of equations (22a-d) denote the small contributions due to T•-u•. The terms in equation (20) that were integrated by parts yield the following boundary condition equation
	{Guou + G . ov + G wow + H"o6" + E(C1 6 ;-Cf p,, )06�-ECf p,, (s6, ) o 8;

+ H, ( (08, /ou')ou' + (06, /ov')ov'J -H, [ (06,/ou')ou' + (06,/0v' )0v' + (06,/ow')ow'J -oWa }!.o = o (24)
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given below. T6 = [D.(v"s8c-w"c8c)] ' (w'c8c-v's8c) + x(v'c8c + w's8c)ec2/J + (v'c8c+ w'sOJ[EAe,{u' + v � 2 + w;2)-D c (v"c8c+ w"s8c)J + f" {u -[ 2v -ws{J + (x + u)cfJ]cfJ -e [ (v' -v'c2/J)c8c + (w' -281cp -sfJcfJ -w'c2{J)s8c] } dx (29a)

When equation (29a) is multiplied by [l + 6(u' + v'2/2 + w' 2/2) -u' /2 + (v12 + w'2}/4] , an expres sion for EA (u' + v'2/2 + w'2/2), which is needed to O(i2) in equations (27b, d), is obtained when Q" = O(i ) . Such expression is then used to eliminate this quantity from equations (27b-d) and to solve for the displacement u (x, t/I ). With u (x = 0, t/I = t/I) = 0, the solution for u (x, t/I) is obtained as given in equation (29b).

The integro partial differential equations in v, wand(}" with non-linearities to O(i 3 ) are obtained when u (x, t/I) and its derivatives are replaced in equations (27b-d) by the expressions obtained as described above. The resulting equations are written below as equations (30a-c) for the special simpler case of constant stiff nesses, e = eA = 0, and M = 1 (a uniform blade with constant cross section along its span). -!(w + µcl/fsP + A.cp)(Ot1 + w12)c0.

Making use of the expansions for sin 01 and cos O" and of equations (4la-d) and (3 5c), the expanded form of the generalized aerodynamic forces are then obtained as given in equations (44a-d) below. These expansions complete the formulation of the differential equations of motion for a helicopter rotor blade (Q ., ) ..., = (v'sO, -w'cO.)F,, + 0(£ 3 ) The strain energy contribution u• appearing in equation [START_REF] Hodges | Torsion of pretwisted beams due to axial loading[END_REF] is of the form u• = u: + � I II E{A4Hi + 4A 3 H2 (£i + H3) + 4A2(m +2£iH3) +2A2H 2 (H1 +L1)