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Odile DIOU, Nicolas TSAPIS, Elias FATTAL 

Targeted nanotheranostics for personalized cancer therapy 

 

Abstract 

Introduction: The development of nanomedicine, during the last 10 years have given rise to novel 

delivery systems among which multifunctional platforms called nanotheranostics that are designed 

to simultaneously diagnose and cure cancer. These systems can be built using the large panel of 

biocompatible and biodegradable materials. The recent advances of imaging modalities even enable 

targeted nanotheranostics to probe molecular structures on specific cells opening the doors to 

personalized cancer therapy. 

 

Areas covered: This review presents the different requirements nanotheranostics should fulfill to 

achieve an optimized anticancer therapy. It focuses on two imaging modalities: MRI and 

ultrasonography used to visualize drug delivery, release and efficacy. The advantages and limitations 

of these two methods are considered. The review will enable the readers to virtually tune a 

nanotheranostic system according to the nature of the targeting tissue and the availability of imaging 

modality.  

 

Expert opinion: Despite great perspectives, described for nanotheranostic systems in personalized 

cancer therapy, the imaging techniques still face technological issues, such as high sensibility and 

good spatial and temporal resolutions. Active targeting should consider better specificity and low 

immunogenicity of the ligand selected, to be more efficient. 

 

Keywords: nanotheranostics, 1H MRI, 19F MRI, ultrasonography, chemotherapy, stimuli-sensitive 

release, drug efficacy monitoring, personalized medicine 
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Introduction 

Cancer results from uncontrolled growth of mutated cells in the body. The disease is characterized by 

1) a rapid proliferation of genetically altered cells, which access to immortality, 2) the invasion of 

adjacent tissues by creating a network of anarchical blood vessels (angiogenesis) and in some cases 

3) the spreading of malignancy in other parts of the body (metastasis). According to the most recent 

numbers, provided by the GLOBOCAN project, 7.6 million people have died from cancer (13% of all 

death) in 2008.Pessimistic predictions, from the International Agency for Research on Cancer; raise 

the number of cancer incidence from 12.7, in 2008, to 21.3 million in 2030. By now, the methods, 

used for detection and treatment, lack effectiveness and specificity and most of the anticancer drugs 

induce side effects. Furthermore, when the treatment fails, the absence of satisfying modality for 

treatment monitoring and feedback slows down the decision making to change the strategy.  

 

Nanotheranostic systems were recently developed to overcome these problems. The word 

theranostic was first mentioned in the literature in 2002 and has been the topic of around 270 

papers during this last decade. Nanotheranostic platforms are designed to image nanocarriers 

biodistribution, to survey and map the extent of disease, to deliver the treatment and to monitor in 

real time the mechanism of action and the efficacy of treatment [1-2]. In brief, treatment will be 

tailored to « Administer the right drug to the right patient at the right moment” [3]. 

 

Nanotheranostic systems typically consist of a carrier, an imaging label and a bioactive molecule, 

such as a target-specific entity or chemotherapeutic drug (Figure 1). The carrier at best should be 

made of biodegradable and biocompatible materials, because the mechanisms of degradation and 

elimination are more predictable and toxicity is better controlled. This is the case of liposomes and 

the majority of polymeric nanoparticles whereas other types of materials, with unknown biological 

issues, have been used to design dendrimers, carbon nanotubes or Metal Organic Frameworks. The 

carrier also provides an optimal biodistribution, and delivers two payloads: the imaging probe 

(metallic nanoparticles, quantum dots, fluorophores…) and the bioactive molecule (peptides, 

proteins, nucleic acids or chemotherapeutic drugs). Many reviews already referenced the numerous 

possible combinations of these three elements, their synthesis and features [4-6].  

 

This review will focus on nanotheranostics in combination with two complementary and non invasive 

imaging modalities: Ultrasonograpy and Magnetic Resonance Imaging (MRI). Ultrasonography is cost-

effective, portable and provides real-time anatomical information. Magnetic Resonance Imaging 

imparts deep penetration into soft tissues with high contrast and better sensitivity. Both of these 
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techniques have been used to directly treat, activate or monitor the therapy. A special attention will 

be given here to 19F MRI, which is a recently developed but very promising technique. It offers 

excellent signal to noise ratio and eases the quantification of contrast agent or therapeutic molecules 

[7]. 19F MRI is not commonly used in clinics because radiofrequency coils, tuned for Fluorine are not 

commercialized yet, their construction building process is still at the academic stage [8]. 19F MRI can 

be combined with 1H MRI to obtain anatomical information [9].  

 

We will first present the physiological barriers, encountered by the nanotheranostics after systemic 

administration and how they can be overcome. We will then discuss the different strategies, which 

are currently developed for tumor targeting and show how nanotheranostics can report the tumor 

condition. Finally, we will provide an overview of the therapeutic approaches to treat malignant 

tissues. In brief, the different abilities of nanotheranostic systems will be described at each step, 

from injection to evaluation of treatment efficacy. 

  

1. Nanotheranostics overcome the physiological barriers 

After intravenous injection, nanotheranostic systems are subjected to several physiological 

processes and mass transfers within the body. They may be removed or destroyed before reaching 

the targeted disease site. It is therefore very important to understand the role of physiological 

barriers in order to predict the fate of exogenous nanotheranostics and their biodistribution.  

 

Nanotheranostics are usually prepared as suspension in water or buffer solution. In vitro 

stability measurements, assessed in different media, allow predicting stability issues that could arise 

after administration [10]. Aggregation, hydrolysis or cleavage of the nanotheranostic may indeed 

occur in the vascular compartment in the presence of salts, proteins and enzymes. Micelle-based 

carriers may also collapse upon dilution in the blood stream [11]. Nanotheranostics below 10nm are 

filtered out from the blood stream by rapid clearance through the glomerular capillaries of kidneys. 

Up to 500nm and depending on the surface properties of the nanotheranostic system (charges, 

hydrophilicity, shape) opsonization may occur, followed by macrophage uptake and segregation in 

organs such as liver, spleen and bone marrow. Different strategies were used to reduce the 

opsonization process including surface modification with polymers either natural, as polysaccharides 

(dextran, heparin, chitosan) [12-13] or synthetic, as polyethylene glycol (PEG) [14]. Extending the 

plasmatic half life increases the probability for nanotheranostic systems to accumulate passively in 

the tumor by the Enhanced Permeation and Retention (EPR) Effect, which consists in the escape 

through leaky vasculature and the maximal retention due to defectuous lymphatic drainage. An 

interesting study about PEGylated liposomes (90nm) labeled with gadolinium (Gd) chelates (1H MRI 
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probe) and loaded with siRNA demonstrated that the nanotheranostic accumulation in the tumor 

was sufficient after 24 hours to reduce the growth of malignant cells [15]. Nanotheranostic systems 

consisting in hyperbranched-star amphiphilic fluoropolymers micelles were designed for 19F MRI and 

doxorubicin (Dox) delivery [16-17]. Because of their smaller size, these micelles may extravasate 

more efficiently through fenestrated neovessels than larger particles. As shown by authors, they 

presented high loading capacities of Dox and good Signal to Noise Ratios (SNR) in MRI [16-17]. 

Unfortunately, the imaging acquisition was time consuming, due to the limited 19F concentration in 

the tumor and not transposable to clinics (several hours). The same strategy was further developed 

using PEG grafted Poly(acrylic acid)-b-Poly(styrene)-co-Poly(2,3,4,5,6-pentafluorostyrene) (PAA-b-

(PS-co-PPFS)), to increase the Fluorine content on the polymer backbone, thus facilitate the imaging 

and to enhance the stealthiness of the micelle. However this strategy revealed to be deceitful again, 

in terms of signal intensity with MRI [18].  

Passive targeting encounters some limitations. In most cases, the proportion of 

nanotheranostics, which effectively reaches the tumor site, is rather low compared to the injected 

dose [19]. Moreover, hydrophilic PEGylated surfaces certainly protect the nanotheranostics from 

plasma proteins adsorption but also hamper internalization. Finally the degree of tumor 

vascularization and porosity of vessels depend on the tumor type and the stage of development [5]. 

All the strategies to concentrate nanotheranostic systems in tumors cannot rely only on the EPR 

effect (Figure 2). Other strategies are needed to increase nanoparticle distribution within the tumor. 

2. Nanotheranostics targeting the malignant cells 

Active targeting overcomes the limitations above mentioned, by specifically attracting and/or 

binding nanotheranostics to malignant tissues hence increasing their local concentration. Different 

physical, chemical or biological approaches can be considered to, respectively, attract 

nanotheranostics by applying an external driving force (magnet); attach targeting ligands to the 

surface or to benefit of cells recruitment in the inflammatory tumor site. 

The possibility to target a solid tumor with liposomes loaded with Superparamagnetic Iron 

Oxide (SPIO) nanoparticles by using an external gradient magnetic field was reported by several 

authors [20-21]. The magnet is typically positioned over the subcutaneously implanted tumor, 

leading to an accumulation of the nanotheranostics. In one case, particles’ concentration was 

increased by 2.9 times [20]. In another case, the enhancement of the negative contrast was 

observed. The signal intensity decreased by 57 ± 12% instead of only 20 ± 5% without magnetic 

guidance [22]. This physical approach, added to the EPR effect, enhances nanotheranostic 

accumulation in the tumor. Nevertheless, this type of targeting is difficult to translate into clinics in 

situations where the magnet needs to be implanted because of the depth of the tumor site. This is 
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the reason why the main approach consisting in targeting malignant tissue at the molecular scale, 

without the need of physical means, was importantly considered. 

 

The most commonly developed chemical approach of active targeting is based on the ligand-

receptor recognition that allows molecular imaging (Figure 2). The type of ligand used in 

nanotheranostic systems includes peptides [23-24], proteins [25], aptamers [26] or small molecules 

such as folic acid [27]. Advantages of active targeting are numerous. Non specific binding is avoided 

or at least minored compared to ligand-receptor interactions. An interesting 19F MRI nanoprobe was 

developed by Takaoka et al. in which a head-ligand, such as biotin, coupled with CF3 tail groups 

formed controlled aggregates in water. When specific recognition of the protein occurred, the 

aggregate disassembled, the CF3 groups recovered mobility hence the 19F MRI probe was turned on 

[28]. Another advantage resides in the possibility to distinguish bound from unbound nanosystem by 

properly setting the imaging parameters. The 19F signal of vitronectin modified Perfluoro Crown Ether 

(PFCE) emulsion circulating in the bloodstream was suppressed by a well-chosen diffusion weighted 

MRI sequence, underlying the selective targeting of integrins αvβ3 in vivo [29]. The number of 

targeting ligands on one nanosystem can be optimized to benefit from cooperative effect as noticed 

by Anderson et al. with a highly echogenic decafluorobutane bubbles covalently coupled to a cRGD 

(cyclic Arg-Gly-Asp) peptide. They numbered ≈8.2x106 molecules of cRGD/bubble, which exhibited a 

fivefold higher adhesion to immobilized integrins, relative to non-targeted bubble or aspecific-

targeted bubble [30]. Marsh et al. characterized in vitro and ex vivo, the interaction between 

biotinylated Perfluorooctyl bromide (PFOB) nanoemulsion and avidin surfaces. They showed that 

multivalency increased the density of bound nanotheranostics to a surface, thus creating an extra 

reflective layer, which enhanced the imaging capabilities of the contrast agent for ultrasonography 

[31]. Finally, active targeting increases cellular uptake of nanotheranostics because it favors receptor-

mediated endocytosis, as noticed by Kok et al. with a cRGD-nanoemulsion of PFCE. These authors 

studied the intracellular trafficking of their system by 1H and 19F MR imaging and spectroscopy. The 

targeted emulsion was internalized into vesicles in the perinuclear region whereas non targeted 

emulsions were more evenly distributed within the cytoplasm [32]. The only downside aspect of 

active targeting is that it is often based on a probabilistic hypothesis. Biomarkers such as RGD 

peptides or folic acid are overexpressed by endothelial cells on neovessels or epithelial cells. Jokerst 

et al. considered that the differential of expression, between targeted and non-targeted tissues, of 2 

to 10 was sufficient to ensure active targeting [33]. Nevertheless, healthy tissues may be affected. 

The expression level of the biomarkers also highly depends on the genetic pool of the patient and the 

disease development. Instead of overexpressed receptors, one should prefer, when it is possible, 

exclusive receptors for malignant cells, such as glypican (GPC), which is absent on normal adult tissue 
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but highly expressed (80%) on hepatocellular carcinoma. Park et al. chose this strategy and 

evidenced the specific uptake by Hep G2 cancer cells using PEGylated SPIO nanoparticles coated with 

anti-GPC3 antibody [34].   

 

Cell therapy was recently considered as a new approach to achieve active targeting. The first 

strategy exploits the tumor homing properties of mesenchymal stem cells. As a wounded site, the 

tumor microenvironment consists of many signaling factors characteristic of an inflammatory site, 

such as vascular endothelial growth factor, fibroblast growth factor, interleukin-6, cyclophilin-B [35]. 

Stem cells are then recruited to contribute to the healing process and promote tumorigenesis. They 

can be employed as nanoparticle carriers to actively deliver the therapeutic payload and the imaging 

agent to the tumor site. Indeed, stem cells were expanded and incubated in vitro with SPIO 

nanoparticles. These 1H MRI contrast agents were internalized by endocytosis, entailing the cells 

themselves to serve as imaging agents. The labeling was almost 100% effective and had no effect on 

cell viability and proliferation [36]. Stem cells were also loaded either with PFCE or PFOB 

nanoemulsions. Once injected together, it was possible to differentiate and accurately quantify the 

two types of stem cells in vivo, because of the unequivocal and unique spectral signature of PFCE and 

PFOB via 19F MR spectroscopy [37-38] (Figure 3). 

 

Dendritic cells (DCs) are mainly used for cancer immunotherapy which can be loaded with 

relevant antigens as well as nanoparticles. After injection into patients, the DCs migrate to lymph 

nodes and stimulate T cells to activate an immune response. The functionality of DC strongly 

depends on their migratory ability. During one first clinical trial, the DCs were loaded with SPIO and 

administered to patients with melanoma. In spite of a very elegant protocol, the quantification of 

cells was hardly possible with MRI alone, thus requiring the additional use of scintigraphy [39]. 19F 

MRI, which allows absolute quantification, was suggested to avoid the use of invasive imaging 

method. In this attempt, a commercially available Perfluorocarbon (PFC) emulsion (CS 1000 Celsense, 

USA) was taken up by DCs, without cell toxicity and without the need of electroporation or transfer 

agents. The authors demonstrated the advantage of fluorinated contrast agent over typical 1H MRI 

contrast agents, such as iron oxide or gadolinium, to suppress the background signal and improve the 

detection sensitivity of cells [40]. Macrophages or monocytes were also used for cell trafficking after 

in vivo injection. They were loaded with PFCE emulsion and shown to detect and monitor by 19F MRI, 

graft rejection after solid organ transplantation [41] and with Perfluorohexane (PFH) emulsion to 

image the cell capture by atherosclerotic plaque using ultrasonography [42].  
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3. Nanotheranostics for tumor reporting 

Nanotheranostic systems targeted to neovessels should characterize the extent of 

angiogenesis and the delineation of the solid tumor [30, 43]. Moreover, they should provide clear 

information about the specific tumor microenvironment (hypoxia, pH, enzymatic functions and 

hypercalcaemia). Indeed, poorly organized tumor vasculature and high oxygen demand of 

proliferative tumor cells are responsible for the common hypoxia of solid tumors. Hypoxic tumor cells 

are more resistant to radiotherapy and chemotherapy than their well-oxygenated counterparts [44]. 

Thus, mapping and understanding the degree of oxygenation in the targeted area is critical before 

considering the therapeutic aspects. As a matter of fact, PFCs combined with 19F MRI were widely 

used for this purpose because of their high ability to dissolve oxygen. As oxygen possesses a 

paramagnetic effect [45], the partial pressure of dissolved O2 (pO2) in PFCs is linearly correlated with 

the 19F longitudinal relaxivity (r1) of PFCs at a given temperature. Oxymetry studies were developed 

with hexafluorobenzene [46-47] directly injected into the tumor or with PFOB or perfluorodecalin 

encapsulated within nanoemulsions injected intravenously [48-49]. Thanks to the good spatial 

resolution of 19F MRI, Diepart et al. evidenced heterogeneities in terms of oxygen consumption 

within the tumor and claimed they were able to anticipate the resistance to treatment of the poorly 

oxygen-supplied regions [47]. 

Other features of the tumor are its stimulated enzymatic activity [50] and acidic 

microenvironment. Indeed, protons are highly produced due to the intense metabolic activity of the 

tumor (glycolysis, glutaminolysis, ATP hydrolysis). Moreover, they are retained at high level, because 

of the poor lymphatic drainage, thus decreasing the local pH [51]. Numerous nano-19F MRI probes 

were designed to respond accordingly to this pH variation. Oishi et al. developed a pH-sensitive 

PEGylated nanoparticle, containing a fluorinated gel core. At neutral pH, the probe was turned off 

because of the packed structure of the core, which hinders the motion of 19F. At acidic pH, the 

fluorinated core recovered flexibility and the probe was turned on [52]. Mizukami et al. benefited of 

the strong metabolic activity of the tumor. They engineered 19F MRI probe composed of a Fluorine 

containing group and a Gd-chelate, separated by a hydrolase cleavable linker, which was 

demonstrated to be sensitive to protease, caspase-3 and β–galactosidase. The interaction of the 

paramagnetic gadolinium with the 19F moiety causes a shortening of the T2 by paramagnetic 

relaxation enhancement and, as a consequence the 19F MR signal is attenuated. After hydrolysis by 

enzymes and subsequent release of Fluorine group, the 19F signal increased [53]. Finally, Calcium 

plays a significant role as a secondary messenger in cellular signaling pathways. Cell transition from 

normal to malignant state is a multi stage process characterized by a major reorganization of active 

and passive Ca2+ cellular transport through pumps, exchangers and canals [54]. Atanasijevic et al. 

developed a calcium-sensitive 1H MRI contrast agent: nanoparticles loaded with calmodulin (calcium 
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binding protein) and SPIO. In the presence of calcium ions, nanoparticles aggregated and created 

tranverse relaxivity changes (r2) on MR imaging [55]. 

 

4. Nanotheranostics for cancer therapy 

Once targeted, imaged and mapped, tumors should be treated and malignant cells eliminated. To 

achieve this goal, three different strategies may be considered: i) mechanical ablation (by surgery or 

physical external input), ii) chemotherapy or iii) biological disruption using gene therapy for instance.  

 

As for surgery, nanotheranostic systems, containing an imaging probe, diagnose the tumor 

type, location and margins. As a matter of fact, the use of imaging methods can be considered as a 

stage of treatment, when it monitors and guides the tumor resection. Intraoperative imaging during 

surgery is particularly interesting because it assesses the extent of the tumor in real-time, improves 

the completeness of tumor removal and reduces injury to the surrounding healthy tissues [43]. 

Unfortunately, some patients are unable to undergo surgical resection because of their poor physical 

condition or in case the tumor is not accessible. Thermal ablation might be an alternative solution to 

treat them. This method consists in applying a focused beam of thermal energy on tumor tissues, 

implying protein denaturation and coagulation necrosis. High Intensity Focused Ultrasounds (HIFU) 

can generate this energy. The technology has been used on thousands of patients for the treatment 

of uterine fibroids, liver, breast, pancreatic and other cancers [56]. It was moreover shown that the 

administration of US contrast microbubbles (Optison®) considerably lowered the energy threshold, 

by a factor of 12, for tissue damage with HIFU. Without contrast agents, an increase of 11.4°C was 

necessary to induce necrotic lesions, with 50% chance, whereas only a 5.9°C heating was required 

with Optison®. US contrast microbubbles enhanced the local energy absorption involving other 

mechanical mechanisms, like cavitation [57]. Furthermore to accurately estimate the ablation 

margins by ultrasonography, during the ablation procedure, heat-sensitive decafluoropentane 

bubbles which become hyperechogenic above 55°C, were engineered [58]. The thermal energy can 

also be produced by an alternative high-frequency magnetic field mediated by exothermic injected 

magnetic particles, so called Magnetic Fluid Hyperthermia (MFH). Well-targeted to the tumor, the 

magnetic nanoparticles should precisely direct and control the heating at the cellular scale [59]. 

Several studies evidenced a significant reduction in tumor growth in mice [60-61]. MFH-based clinical 

trial was successfully conducted by Jordan et al. with patients affected by prostate carcinoma. After 

injection of SPIO nanoparticles, the radio-frequency treatment was monitored by 1H MRI and 

Computed Tomography [62].  

Traditionally, nanotheranostics are designed to carry chemotherapeutics such as doxorubicin, 

placlitaxel and so forth. Drugs are incorporated by physical entrapment, in the aqueous or 
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hydrophobic compartment of the carrier, or by chemical conjugation. These formulations led to a 

considerably increased local concentration of drug in the tumor, compared to free drug injections 

[63-64]. Well-targeted, the nanotheranostic can release its payload in the tumor, by passive diffusion 

or self-degradation (e.g. hydrolysis for PLGA nanoparticles). Several nanotheranostic systems already 

proved their efficacy in vivo, in terms of tumor growth reduction. Among them, the SPIO platforms 

are highly represented [65-66]. Yu et al. designed crosslinked SPIO nanoparticles functionalized with 

aptamers and loaded with doxorubicin. They evidenced a 53% relative signal enhancement in the 

tumor 2 hours after injection, persisting even 48 hours later, and a reduction of the tumor growth by 

a factor two (Figure 4). Rapoport et al. used PFCE nanoemulsions loaded with paclitaxel to image, by 

19F MRI, and to treat orthotopically inoculated pancreatic tumor. They underlined their difficulties to 

attribute the 19F MR signal to the tumor, liver tissues or liver metastases. A better specific targeting 

approach would solve this problem. Nevertheless they demonstrated the high therapeutic potential 

of their system by a substantial tumor regression and metastases suppression using ultrasound 

mediated chemotherapy (Figure 5) [67]. Instead of the usual drugs, Soman et al. reported the 

delivery of a cytolytic peptide: melittin, by a PFOB lipid nanoparticle, imaged by 19F MR molecular 

imaging [68]. Moreover, the system allowed accumulation of melittin in murine tumors in vivo and a 

dramatic reduction in tumor growth without any apparent signs of toxicity [69]. Imaging the drug 

release is of utmost importance to achieve effective treatment. This is easily done in vitro or ex vivo  

[70-72] but the examples are scarcer in vivo. Onuky et al. visualized by 1H MRI in xenograft mice, the 

release of 5-Fluorouracil from PLGA nanoparticles, carrying additional two imaging probes: Gd-DTPA 

and SPIO [73]. Viglianti et al. performed a particularly relevant and meticulous analysis of the release 

of doxorubicin from liposomes, co-encapsulated with manganese as the MRI contrast agent. They 

linearly correlated the increase of longitudinal relaxivity (r1) by MR spectroscopy to the doxorubicin 

local concentrations in the tumor, by confronting the HPLC and histological measurements (Figure 6). 

This method is a promising approach for imaging drug efficacy and real-time evaluation of 

chemotherapeutic protocols [74].  

 

Beside passive approaches, active control of release is possible through several means. It is 

possible at first to exploit the high enzymatic activity and acidic conditions of the tumor 

microenvironment. This effect was exploited by Castelletto et al. by covalently binding a drug to a 

micellar carrier. The drug was released by hydrolytic cleavage due to chymotrypsin [75]. pH-sensitive 

nanoparticles of fluorinated dendrimers, imaged by 19F MRI, were disassembled at pH 6, enabling 

controlled release of physically entrapped payload [76]. Acidic pH can affect the drug molecule itself. 

For example, protonation of doxorubicin (Dox) increased its water solubility, thus weakened 

interactions with hydrophobic targeted SPIO nanoparticle and speeded up the release [77]. 
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Some authors also demonstrated the huge benefit of ultrasounds on the release of Dox from 

polymeric nanobubbles of Perfluoropentane (PFP), hence increasing tumor inhibition in vivo [78]. 

Several other groups used ultrasounds as an external force to actively trigger drug release [30, 79]. 

Two different effects should be considered apart: the assimilated sonoporation and the direct 

cavitation. In the first case, the drug was loaded within a liquid/solid nanoparticle. The application of 

oscillating Low Frequencies US, created air bubbles nuclei within the particle (in membrane or 

aqueous core of liposome for example). These small air bubbles cavitated, thus opening transient 

pores through the drug carrier, allowing small therapeutic molecules to diffuse in more efficiently 

[80-81]. In the second case, the drug was initially encapsulated in a nanoparticle containing a gaseous 

core. The nanotheranostic system underwent oscillations followed by a cavitation process, exploded, 

and released its therapeutic payload [70].  

Finally, the external input of energy may induce a phase transition in the nanotheranostic. 

Many PFC liquid core nanoparticles were designed to become gaseous when insonified, because of 

the combined effects of local increased acoustic pressure and temperature. This phenomenon is 

called the Acoustic Droplet Vaporization (ADV). Several groups evidenced the droplet to bubble 

conversion, followed by cavitation, inducing the release of camptothecin or thrombin for example 

[82-83]. Usually PFP or PFH are used for ADV because of their low boiling points: T=29°C and T=59°C 

respectively. Nevertheless, Rapoport and Mohan reported ADV with their PFCE-core nanoparticles, 

while the boiling point of PFCE is 146°C. In another way, phase transition can concern the carrier 

instead of the imaging agent. This concept was applied to liposomes, which undergo a gel-to-liquid 

phase transition at a critical temperature. Above this temperature, the mobility of lipids is increased 

within the membrane and small molecules can diffuse throughout. The heating stimulus can be 

provided either by pulsed-HIFU [84-85] or by hyperthermia with an oscillating magnetic field [86]. 

Langereis and Grüll monitored, by MR-HIFU, the controlled release of drug from a temperature-

sensitive liposome with commutative imaging capabilities. Chemical Exchange Saturation Transfer 

(CEST) signal is replaced by 19F MRI signal upon reaching the melting temperature of the lipid 

membrane, after sonication [87-88]. 

 

Gene delivery is seriously considered for cancer therapy because more than just regulating its 

propagation, it tackles the disease from the causes and origins. DNA delivery, mediated by a plasmid, 

aims to replace a damaged gene with a functional counterpart, to restore normal cell function or to 

induce a new function. On the contrary, SiRNA delivery aims to knockdown the expression of 

proteins such as oncogenes. Many nanotheranostics were designed to deliver plasmid DNA or siRNA 

[89-91]. Magnetic nanoparticles targeted to breast adenocarcinomas using the EPPT (Glu-Pro-Pro-

Ther) peptide, were loaded with siRNA to induce apoptosis of malignant cells, and thus reduced 
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significantly the tumor growth [24]. 3D cultured breast cancer cells, which well-mimic the in vivo 

conditions and provide reproducible and controlled experimental conditions were imaged by 19F MRI. 

This study allowed Bartusik et al. to distinguish the more efficient therapeutic formulation of 

Herceptin-targeted emulsions containing a core of PFC and lipoplex, complexing the plasmid [92-93]. 

Lee et al. used manganese doped iron oxide nanoparticles for SiRNA delivery. They underlined the 

problem to monitor the intracellular transfection by 1H MRI. This requires indeed probing the deep 

inside of the cell structure and MRI spatial resolution is not low enough: innate limit is 100µm. 

Fluorescent imaging was needed for subcellular trafficking [94].  

Conclusion 

Nanotheranostic systems provide a unique opportunity to hinder devastating effects of cancer, which 

affects millions of people yearly. They can be designed to specifically interact with malignant cells, 

image them, trigger a therapeutic response and monitor it in real-time. The treatment protocol 

(dosing, type and time) can be adjusted based on tumor and off-target tissue accumulation. The 

nanotheranostics will be upgraded from preclinical research to clinical application if the toxicity 

issues are better predicted and the scale-up and engineering of these complex structures are 

profitable. Microfluidic platforms were already mentioned to synthesize, in reproducible manner, a 

substantial batch of nanoparticles and screen their biophysicochemical features [95]. 

 

Expert Opinion 

In the last 20 years, progress in formulation science and physico-chemistry has allowed the 

controlled and reproducible production of nanoparticles. Additional knowledge in organic and 

biomolecular chemistry has rendered possible surface modification (i.e. decoration) of nanoparticles, 

reducing their clearance by the immune system and making them more compatible with in vivo uses. 

By this multidisciplinary approach, multifunctional nanocarriers were designed and imaging probes, 

as well as therapeutic agents were custom-built incorporated. Cancer is a worldwide public health 

concern and significant health care resources are spent on diagnosis. Sooner the detection of the 

tumor better is the chance of remission without relapse. In this context, nanotheranostics offer a 

panel of solutions for the development of personalized cancer therapy. MRI and ultrasonography are 

used to detect a broad range of cancers (breast, colon, brain…). Nevertheless the use of these 

techniques in combination with nanotheranostics agents is challenging, mostly because the local 

concentration reached in the tumor is often below the sensibility detection range. Indeed, 

echogenicity suffer from the downscaling to nanometer range of contrast agents. That is the reason 

why commercialized ultrasound contrast agents still consist in microbubbles. Concerning MRI, an 

interesting move was made toward the Fluorine imaging. In this case, there is no endogeneous 



12 
 

background signal and the signature of exogeneous fluorinated contrast agent is unique and specific, 

lowering the detection sensibility to 1mM. But MRI still lack of spatial resolution. Computed 

tomography based Fluorine may be a solution but many researchers prefer to focus on fluorescence 

imaging. The therapeutic efficacy of nanotheranostics was successfully demonstrated, mostly in an 

indirect way, considering for instance the tumor regression. Nevertheless, direct imaging of drug 

release at the targeted site still remains difficult. The choice of the targeted strategy should be 

seriously considered. However, to achieve this goal, the specificity of biomarkers should be improved 

and ligands that do not induce immunogenic response should be designed. Finally, to provide 

personalized medicine, the patient condition should be considered. The intravenous administration 

requires hospitalization, which generates important costs and is less flexible than ambulatory care. 

Thus it would be interesting to develop needleless approaches of nanotheranostic administration. 

The pulmonary route is attractive because it is non invasive and allow both local treatment for lung 

cancer and systemic drug absorption via lung capillaries. Additional to personalized medicine, 

ensuring convenience and improving the quality of life would be optimistic promises to numerous 

patients. 
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