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Abstract

We studied numerically the dynamics of colliding rigid bodies in a Newtonian fluid. The
finite element method is used to solve the fluid-body interaction and the fluid motion
is described in the Arbitrary-Lagrangian-Eulerian framework. To model the interac-
tions between bodies, we consider a repulsive collision-avoidance model, defined by R.
Glowinski in [1]. The main emphasis in this work is the generalization of this collision
model to multiple rigid bodies of arbitrary shape. Our model first uses a narrow-band
fast marching method to detect the set of colliding bodies. Then, collision forces and
torques are computed for these bodies via a general expression, which does not depend
on their shape. Numerical experiments examining the performance of the narrow-band
fast marching method and the parallel execution of the collision algorithm are discussed.
We validate our model with literature results and show various applications of colliding
bodies in two and three dimensions. In these applications, the bodies either move due
to gravity, a flow, or can actuate themselves. Finally, we present a tool to create arbi-
trary shaped bodies in complex already discretized fluid domains, enabling conforming
body-fluid interface and allowing to perform simulations of fluid-body interactions with
collision treatment in these realistic environments. All simulations are conducted with
the Feel++ open source library.

Keywords: Fluid-structure interaction, rigid body motion, collision simulation, Feel++,
MSC 2010 65M60, 74F10, 76M10, 70E99

Introduction

Fluid flows laden with particles are common in industrial and biological processes, such
as fluidization, the cell transport in arteries, or the simulated motion of articulated micro-
swimmers in the human body. Due to the particle volume and the confined environments,
these processes are characterized by inter-particle interactions. The modeling of these in-
teractions, based on collision detection algorithms, and the computation of lubrication
and collision forces, is challenging for arbitrary shaped particles and add further com-
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plexity to the coupled fluid-solid interaction problem.

In recent years, various approaches simulating solid-solid or solid-wall interactions
have been developed and proposed in the literature. These approaches are based on
collision and lubrication forces, added to the system when solving the fluid-solid inter-
actions [2]. When the distance between solid surfaces is small, approximately the mesh
size of the computational grid, the fluid placed between the solids is squeezed out and
the hydrodynamics are not resolved. The resulting underestimation of the hydrodynamic
forces is compensated by a short-range repulsive correction given analytically and called
lubrication force. In [3], this lubrication force is defined by a constant expression and
in [4] its magnitude is inversely proportional to the distance between the solid surfaces.
In some approaches, the lubrication model allows avoiding the direct contact between
the solid surfaces [1]. Such contact avoidance schemes are frequently used in literature
to simulate the interactions between spherical bodies. In this paper, we will present the
generalization of these schemes for complex shaped and articulated bodies. The contact
avoidance models often require the adjustment of stiffness parameters, for which the opti-
mal values are not known. Over- or underestimation of these values can falsify the results.
To overcome this issue, the authors in [5] solve a minimization problem to determine the
minimal force magnitude ensuring a fixed separation distance between the solids at each
time step and in [6] the authors introduce the gluey particle method.

A collision force is applied, when the lubrication correction does not avoid the direct
contact between the solids. Common collision forces are based on the soft-sphere or hard-
sphere approach. When two solids are in direct contact or overlapping, the soft-sphere
approach defines the collision force according to the geometrical characteristics of this
contact [7]. The approach requires a small time step to resolve the collision process. In
contrast, the hard-sphere approach [3] assumes that the collision force is impulsive. Dur-
ing the collision process, the velocities of the interacting solids change instantaneously
at the time of contact. The magnitude of the new velocities depends on the pre-collision
velocities and some physical parameters.

For large fluid systems, efficient collision detection algorithms are mandatory. These
algorithms identify the pairs of solids that are actually interacting, before computing
the collision forces only for the respective pairs, which reduces the computational costs.
Most collision detection algorithms contain two phases, the broad-phase and the narrow-
phase. First, the broad-phase uses spatial partitioning or sorting methods to determine
the smallest possible set of neighbouring pairs that are likely to interact. In spatial parti-
tioning, the fluid system is divided into regions and all solids assigned to the same region
are considered as neighbours. The data structures employed for spatial partitioning and
neighbour detection are lists [8], trees [9], adapted for large number of solids, or hash
tables [10], efficient for solids with a wide range of sizes. The spatial sorting methods,
as the Sort and Sweep algorithm [11], sort the solids in space to determine overlapping.
Then, the narrow-phase detects whether these pairs are actually in contact by comput-
ing the distance between the solid surfaces. The distance computation being evident
for spherical solids, it is a challenging and often expensive task for complex shaped or
articulated bodies. In the literature, multiple analytical methods for specific geometries
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or general algorithms for arbitrary solid shapes are proposed [2]. Our model uses the fast
marching method [12] to track the distance between any pair of arbitrary shaped bodies.
Focusing on fluid systems containing up to one hundred solids, the implementation of a
broad-phase algorithm is not necessary. However, to avoid the high computational costs
associated to the fast marching method, we adapt a narrow-band approach, executable
in parallel.

The paper is organized as follows. Section 1 details the coupled problem describ-
ing the fluid-solid interaction. The collision model including the collision detection al-
gorithm based on the narrow-band fast marching method and the computation of the
contact avoidance lubrication force is presented in section 2. The performance verifica-
tion and the validation of the model are done in sections 3 and 4. Section 5 shows some
applications of the collision model, including simulations of single complex shaped and
articulated solids as well as spherical multi-bodies interactions. A summary and conclu-
sions are given in section 6.

1 Rigid body moving in a fluid

This section briefly describes the coupled fluid-rigid body interaction problem. A detailed
description is given in [13].

The fluid model The fluid model considered throughout the paper is incompressible
and Newtonian, and the motion of the fluid domain is modelled using the Arbitrary-
Lagrangian-Eulerian (ALE) formalism [14]. Let Ft ⊆ Rd, d ∈ {2, 3}, denote the domain
occupied by the fluid at time t, where t ∈ [0, T ] and T the final time of the simulation.
Let At : F0 → Ft be the ALE map mapping the reference fluid domain F0 to the current
domain Ft, defined as At(X) = A(t,X) = X + x(t,X) with x(t,X) the displacement of
the domain. Let u : Ft × [0, T ] → Rd and p : Ft × [0, T ] → R the fluid velocity and the
hydrostatic pressure. Let ρf and µ be the fluid density and dynamic viscosity, constant for
the considered fluid model. Finally, let σ ∈Md(R) be the fluid stress tensor and g ∈ Rd

the gravity acceleration. The ALE formulation of the Navier-Stokes equations partially
decouples the geometric evolution of the fluid domain from that of the fluid continuum.
Due to the change of frame, the ALE time derivative substitutes the Eulerian one ∂tu
as ∂tu = ∂tu|A − (∂tx · ∇)u = ∂tu|x − (uA · ∇)u in the momentum equation. The first
term of the ALE derivative corresponds to the time variation of the fluid velocity as seen
in the arbitrary frame, while the second contains the relative velocity between the fluid
continuum and the new reference frame. The Navier-Stokes equations in the ALE frame
are:

ρf∂tu|A + ρf

(
(u− uA) · ∇

)
u = −∇ · σ + ρfg, in Ft,

∇ · u = 0, in Ft.
(1)

The rigid body equations A rigid body moving in a fluid is described by the motion
of its center of mass, given by the Newton equation, and the rotation matrix between its
local frame and the laboratory frame, defined by the Euler equation. In this paper, the
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motion of a body is caused by fluid stresses and gravity, contact and lubrication forces that
act as external forces Fe and torques Te. Let S ⊂ Rd be the domain occupied by the body,
ρS ∈ R>0 its density and m =

∫
S ρS its mass. Let U : [0, T ] → Rd and ω : [0, T ] → Rd∗ ,

where d∗ = 1 if d = 2 or d∗ = 3 if d = 3, be the linear and angular velocity of the rigid
body as seen from the laboratory frame. Let xCM = m−1

∫
S ρSx be its center of mass,

xCM ∈ Rd, and I =
∫
S ρS(x − xCM) ⊗ (x − xCM) its inertia tensor, I ∈ Sd

∗
++ positive

definite and symmetric. We chose to describe the rotation matrix R(θ) : Θ → SO(d)
using Euler angles θ ∈ Θ, where Θ = [−π, π] if d = 2, or Θ = [−π, π]× [0, π]× [0, π/2] if
d = 3. The Newton and Euler equations, describing the dynamics of a three-dimensional
rigid body, are:

m
d

dt
U = Fe −

∫
∂S
−pn+ µ(∇u+∇uT )n,

d

dt
(RIRTω) = Te −

∫
∂S

[−pn+ µ(∇u+∇uT )n]× (x− xCM),

(2)

where n is the unit outward normal to ∂S and one has:

d

dt
θi = ωi, for i ∈ {x, y, z},

R = Rz(θz)Ry(θy)Rx(θx),

where R(θi) denotes the rotation matrix around axis i ∈ {x, y, z} of angle θi. If d = 2,
R(θ) has the form:

R(θ) =

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

while in three dimensions:

Rz(θz) =

cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

 , Ry(θy) =

 cos(θy) 0 sin(θy)
0 1 0

− sin(θy) 0 cos(θy)

 ,
Rx(θx) =

1 0 0
0 cos(θx) − sin(θx)
0 sin(θx) cos(θx)

 .
Fluid-solid interaction The interaction between the rigid body and the fluid is en-
sured by the balance of stresses by the Newton and Euler equations (2) and a coupling
condition at the interface, imposing the continuity of the velocities:

u = U + ω × (x− xCM) on ∂Ft ∩ ∂S. (3)

Finally, the definition of the At(X) requires the computation of the displacement
x(t,X) in the reference domain. In order to find x(t,X), we solve:

∇ · ([1 + τ(X)]∇Xx(t,X)) = 0 in F0,

x(t,X) = g(t,X) in ∂F0,
(4)

where g(t,X) =
∫ t
0
U + ω × (X − XCM) is the rigid displacement of S and τ(X) is a

space-dependent coefficient, related to the volume of the simplexes in the triangulation.
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Numerical solution The problem is discretized over a triangulation of the fluid do-
main. The discrete fluid velocity uh and pressure ph belong to the inf-sup stable Taylor-
Hood space, where P2 continuous finite elements are chosen for the velocity and P1

continuous finite elements for the pressure. The discrete ALE map Ath is also discretized
using P1 continuous finite elements. The coupling condition of the fluid-solid interaction
is encoded in the finite element test spaces, as proposed in [15], which leads to the con-
struction of an operator P that couples the velocities at the interface, at the discrete
level. In our computations, the interface is conforming and the solution of equation (4)
handles small mesh deformations, with τ(X) a piecewise constant coefficient, defined on
each element e of the mesh as τ

∣∣
e

= (1 − Vmin/Vmax)/(Ve/Vmax), where Vmax, Vmin and
Ve are the volumes of the largest, smallest and current element of the domain discretiza-
tion [16]. In case of larger domain deformations, we perform remeshing and preserve the
discretization of the interface at the same time.

2 Collision model

In this section, we will detail our collision model characterized by two phases: a collision
detection algorithm and a lubrication model. We do not add a scheme defining direct
contact between body surfaces, since our lubrication model avoids this kind of interaction.
We will first describe the three types of rigid bodies for which we have developed our
collision model. Then, we will detail the collision detection algorithm before defining the
lubrication force.

2.1 Rigid body types

We adjust the collision model for three different types of rigid bodies. First, we consider
spherical bodies in two and three dimensions. As collision models for spherical bodies are
common in literature, we use this case for validation. Then, we adapt this first model for
bodies of complex shape. In this paper, ellipses are used for the two-dimensional simula-
tions and ellipsoids for simulations in three dimensions. At last, we consider articulated
bodies, and in particular the three-sphere swimmer [17]. This type of swimmer is com-
posed of three spheres of the same size that are connected by rods. The swimmer extends
and retracts these rods to move. First the left sphere is retracted, then the right sphere.
Finally, the left sphere is extended before extending the right sphere. This sequence of
four movements result in a straight motion.

2.2 Collision detection

The first part of our model is a collision detection algorithm. Collision detection is an
important task since it allows identifying the pairs of bodies that are actually interacting.
Two bodies are interacting when the distance between their surfaces is smaller than the
width of the collision zone, denoted ρ. In absence of detection phase, collision forces are
computed for each pair of bodies present in the domain, independently of whether there
will be an interaction. Most collision detection algorithms include two phases. First, the
broad-phase identifies pairs of bodies in close neighborhood. Then, the distance between

5



the identified pairs is computed explicitly during the narrow-phase. According to this
distance, one concludes if collision forces are applied. Our collision detection algorithm
consists only of the narrow-phase. Thus, the distance between each pair of bodies is
computed. Depending on the body shape, this is done in two different ways. We will
first describe it for spherical and then for complex shaped or articulated bodies. Both
methods require some parameters defined in a pre-processing step, which will also be
described.

Algorithm 1 Pre-process phase

Input: Computational domain: mesh M
Output: Set of bodies identifiers: bodyIds, set of centers of mass: massCenters, set of bodies markers:
bodyMarkers, set of radii: radii, set of centers of mass of imaginary bodies: ImagmassCenters, and
the fluid marker: fluidMarker

for S in M.bodies do
bodyIds.append(S.id())
massCenters.append(S.massCenter())
bodyMarkers.append(S.boundary().name())

if type = spherical then
radii.append(S.radius())
ImagmassCenters.append(S.ImagmassCenters())

end if

end for

fluidMarker← Ft.boundary().name()

Spherical bodies The distance dij between the surfaces of two spherical bodies Si and
Sj, i 6= j, is determined by first computing the distance between their mass centers xCMi
and xCMj and then subtracting their radii ri and rj:

dij = ||xCMj − xCMi ||2 − ri − rj.

When this distance is smaller than a given parameter ρ, representing the width of the
collision zone (detailed in subsection 2.3), then the identifiers i, j and the distance dij are
stored in a collision map. Stored data is used during the phase where lubrication forces
are computed.
The same formula can be used to get the distance di between the surface of one body Si
and the boundary of the fluid domain ∂Ft:

di = ||xCMi′ − xCMi ||2 − 2ri.

where xCMi′ is the center of mass of the nearest imaginary body placed on the outside of
the fluid boundary [18]. This imaginary body has same radius as the real body. Again,
if di is smaller than the width ρ, then the data i and di are stored. The parameters
used in these two equations, i.e. body identifiers, mass centers and radii, are defined in
a pre-processing step given by algorithm 1.

Complex shaped or articulated bodies When considering complex shaped or ar-
ticulated bodies, then no explicit expression is provided to compute the distance between
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Algorithm 2 Collision detection algorithm for spherical bodies

Input: Output of pre-process phase
Output: Collision map

for i in bodyIds do

for j in bodyIds, j > i do
dij ← ||massCentersi −massCentersj ||2 − radiii − radiij
if dij ≤ ρ then

Store i, j and dij in collision map
end if

end for

for ImagCoord in ImagmassCentersi do
di ← ||massCentersi − ImagCoord||2 − 2radiii
if di ≤ ρ then

j ← −1
Store i, j, ImagCoord and di in collision map

end if
end for

end for

the surfaces. To deal with this issue, we use the fast marching method, based on a level
set algorithm introduced by J.A Sethian [12]. By applying it to a body Si, it returns the
distance field Di from that body to the rest of the domain. Thus, the distance field Di

is equal to zero at the body’s boundary and has a positive value elsewhere. Given the
distance fields Di and Dj, then the minimum distance between the surfaces ∂Si and ∂Sj
of the corresponding bodies is found by:

dij = || arg min
x∈∂Sj

Di(x)− arg min
x∈∂Si

Dj(x)||2.

The minima Xi = arg minx∈∂Si Dj(x) and Xj = arg minx∈∂Sj Di(x) represent the contact
points of the bodies Si and Sj, i.e. the coordinates of the surface points where the
bodies will interact. To get the minimal distance between a body surface and the domain
boundary, we use:

di = || arg min
x∈∂Ft

Di(x)− arg min
x∈∂Si

DFt(x)||2,

where DFt the distance field obtained by applying the fast marching method to the do-
main boundary ∂Ft\(∪i∂Si). The parameters that will be stored if dij ≤ ρ or di ≤ ρ, are
the identifiers, the minimal distance and the contact points.

When the fluid domain is large, the fast marching algorithm gets computationally
expensive, especially in three dimensions. To accelerate the method, we develop the
narrow-band approach, which computes the distance field only in a near neighborhood
of the body boundary. This neighborhood is set to a predefined threshold dmax. As
collision forces are only applied on a collision zone of width ρ, the threshold dmax can be
defined as function of ρ. Once the threshold distance dmax is reached, the narrow-band
approach assigns a default value δ to the distance field, corresponding to the maximum
value reached:
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Algorithm 3 Collision detection algorithm for complex shaped bodies

Input: Output of pre-process phase
Output: Collision map

for i in bodyIds do
Di ← narrow-band(bodyMarkersi, dmax = 1.5ρ)

end for
DFt ← narrow-band(fluidMarker, dmax = 1.5ρ)

for i in bodyIds do

for j in bodyIds, j > i do
dij ← ||Xj −Xi||2
if dij ≤ ρ then

Store i, j, dij , Xi and Xj in collision map
end if

end for

di ← ||XFt
−Xi||2

if di ≤ ρ then
j ← −1
Store i, j, di, Xi and XFt

in collision map
end if

end for

DNB
i =


0 , on ∂Si,
Di , for Di ≤ dmax,
δ , elsewhere .

The narrow-band algorithm can be executed in parallel. A performance study of this
approach is performed in section 3. In our implementation, the narrow-band fast march-
ing function takes as parameter the boundary marker of the concerned body. Therefore,
all boundary markers are stored during the pre-processing phase, presented in Algorithm
1.

When considering articulated bodies, the same formulas as for the complex shaped
case are applied to each component of the body. Thus, when considering a pair of three-
sphere swimmers, the distances between each sphere of one swimmer and all those of the
second are computed. All steps of the collision detection algorithm for both methods are
given by Algorithm 2 for spherical and by Algorithm 3 for complex shaped bodies. The
computation of the imaginary bodies centers is only possible when the dimensions of the
fluid domain, which must be rectangular, are known. For this reason, we have developed
a more generic algorithm for spherical bodies, where the distance between a body and
the fluid boundary is determined using the narrow-band approach. The initial algorithm
can still be used for simulations of spherical bodies in rectangular domains, because its
execution costs are lower.

2.3 Collision force

The second part of our collision model consists in the computation of collision forces.
The lubrication model is based on a short-range repulsive force, a scheme introduced by
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R. Glowinski [1]. The force is activated when the distance between two body surfaces is
less than the parameter ρ. This parameter represents the width of the collision zone, i.e.
the zone where collision forces must be applied to prevent the bodies from overlapping
and to avoid direct contact. The definition of the force is quite simple: it is parallel to
the vector that connects the contact points of the bodies and its intensity increases as
the distance decreases. We will first give the definition of this force for the simple case of
spherical bodies. Then, we detail the required modifications, in particular the addition
of its torque, for complex shaped and articulated bodies.

Spherical bodies For the repulsive force definition in the case of spherical bodies, we
rely on articles [19, 20, 18]. The force to model the interaction between two bodies Si
and Sj is given by:

−→
Fij =

1

ε

−−−−−−→
xCMj xCMi (ρ− dij)21dij≤ρ.

In the same way, the interaction between a body Si and the domain boundary ∂Ft is
defined by:

−−→
FiFt =

1

εF

−−−−−−→
xCMi′ xCMi (ρ− di)21di≤ρ.

Both equations contain a quadratic activation term. The vector connecting the mass
centers gives the direction of the force, and the stiffness parameters ε and εF describe its
intensity for body-body and body-domain interactions. Finding the optimal values for
these two parameters is not trivial, since their values depend on fluid and body properties.
We refer to the indications given by article [18]: when the width of the collision zone is
fixed to ρ = 0.5h ∼ 2.5h, where h is the mesh size, and the ratio between the body and
fluid density is equal to 1, then one can suppose ε ≈ h2 and εF ≈ ε

2
. As already mentioned,

these forces are only computed for pairs stored during collision detection phase, i.e. for
pairs whose distance is less than ρ, in which cases the indicator functions 1dij≤ρ ≡ 1 and
1di≤ρ ≡ 1. The total repulsion force applied on one body Si is defined by:

−→
Fi =

∑
(i,j)|dij≤ρ

−→
Fij +

∑
i|di≤ρ

−−→
FiFt ,

for all pairs Si - Sj and Si - ∂Ft present in the collision map after detection algorithm.

The total repulsion force
−→
Fi is added to the external forces

−→
Fe of the Newton equation in

(2), describing the linear velocity of the body Si.

Complex shaped or articulated bodies For the case of non-spherical bodies, the
direction of the vector connecting the mass centers xCMi and xCMj no longer corresponds
to that of the vector connecting the contact points Xi and Xj. Thus, the equations are
slightly modified:

~Fij =
1

ε

−−−→
XjXi(ρ− dij)21dij≤ρ, ~FiFt =

1

εF

−−−−→
XFtXi(ρ− di)21di≤ρ.

The values of the parameters ε and εF have to be chosen smaller than those of the
previous system. These modified expressions imply that the collision forces will lead to
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Algorithm 4 Collision force algorithm for spherical bodies

Input: Output of pre-process phase and collision map
Output: Set of collision forces: F, and set of collision torques: T

for pair in collision map do
if pair.j = −1 then

FiFt ← 1
εF

(massCenterspair.i − pair.ImagCoord)(ρ− pair.di)
2

Fpair.i.add(FiFt
)

else
Fij ← 1

ε (massCenterspair.i −massCenterspair.j)(ρ− pair.dij)
2

Fpair.i.add(Fij), Fpair.j .add(−Fij)
end if

end for

body rotations. The torque to model these rotations is added to the external torques Te
of the Euler equation in (2), and is defined by:

−→
Ti = −

−−−−→
xCMi Xi ×

−→
Fi .

This torque is computed for each body present in the collision map. The same approach
is used for articulated bodies. The forces and torques are added for each element of the
collision map. The algorithms given by Algorithm 4 and 5 illustrate the implementation
of the lubrication model for spherical and complex shaped bodies.

Algorithm 5 Collision force algorithm for complex shaped bodies

Input: Output of pre-process phase and collision map
Output: Set of collision forces F, and set of collision torques T

for pair in collision map do
if pair.j = −1 then

FiFt ← 1
εF

(pair.Xi − pair.XFt)(ρ− pair.di)
2

Fpair.i.add(FiFt)

Tpair.i.add(−(pair.Xi −massCenterspair.i).cross(FiFt
))

else
Fij ← 1

ε (pair.Xi − pair.Xj)(ρ− pair.dij)
2

Fpair.i.add(Fij), Fpair.j .add(−Fij)
Tpair.i.add(−(pair.Xi −massCenterspair.i).cross(Fij))

Tpair.j .add(−(pair.Xj −massCenterspair.j).cross(−Fij))
end if

end for

3 Numerical experiments

3.1 Performance of narrow-band approach

The following test illustrates the performance of the narrow-band approach of the fast
marching method, in two and three dimensions. The geometry consists in two spheres of
same center but different radii. The radius of the inner and outer sphere is respectively
set to ri = 0.1 and ro = 2.0. First, we use the fast marching method to determine the
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distance field from the inner sphere boundary to the outer sphere boundary. This is equiv-
alent to perform the narrow-band approach on the inner sphere by setting the threshold
distance dmax to dmax = ro − ri = 1.9. Then, we continue to apply the narrow-band ap-
proach on the inner sphere but considering smaller thresholds. For the two-dimensional
test the thresholds are set to dmax = {0.0625, 0.125, 0.25, 0.5, 1.0}, and we fix the mesh
size to h = 0.01. The mesh contains E2D = 294918 elements. In three dimensions, the
mesh has E3D = 1385385 elements, using a size equal to h = 0.05. The set of thresholds
is dmax = {0.125, 0.25, 0.5, 1.0}.

The table 1 shows the execution time of the narrow-band approach for the different
thresholds as well as the speed-up in two and three dimensions. We add the number of
band elements Eb, i.e. the number of mesh elements in the zone where the distance field is
actually computed, and the element ratio EnD

Eb
, where n the dimension. It can be observed

that the execution time decreases significantly when considering smaller thresholds. This
test illustrates the importance of the narrow-band approach for our collision model.

Threshold dmax Band elements Eb Element ratio E2D

Eb
Execution time in 2D Speedup

1.9 294918 1.00 1.959 s /
1.0 89898 3.28 0.722 s 2.71
0.5 27082 10.89 0.411 s 4.76

0.25 9430 31.27 0.316 s 6.20
0.125 4104 71.86 0.276 s 7.09

0.0625 2262 130.38 0.261 s 7.50

Threshold dmax Band elements Eb Element ratio E3D

Eb
Execution time in 3D Speedup

1.9 1385385 1.00 22.851 s /
1.0 254365 5.45 5.869 s 3.89
0.5 43784 31.64 2.368 s 9.65

0.25 10238 135.32 1.815 s 12.59
0.125 4537 305.35 1.759 s 12.99

Table 1: Results of performance test for the narrow-band approach in two and three
dimensions. The table shows the execution time and speedup for different threshold
values dmax.

3.2 Performance of the parallel collision algorithm

The aim of this second numerical experiment is to observe the performance of the parallel
implementation of the collision algorithm using the narrow-band fast marching method
as well as to analyze the execution time proportion attributed to the collision model
during the fluid-solid interaction resolution. The choice of the preconditioners, a direct
LU solver in two dimensions and a block preconditioner in 3D, are detailed in [13]. We
consider different numbers of spherical bodies distributed in a rectangular domain filled
with a steady fluid. No gravity is applied and the magnitude of the collision forces is
chosen close to zero, such that the bodies do not move during the simulation. Each
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domain configuration is simulated for ten time iterations in sequential and in parallel,
using different numbers of processors. For each case various information are displayed:
the number of bodies, the number of mesh nodes, the number of body-body and body-wall
interactions during each iteration as well as the speed-up of the collision algorithm (pre-
process phase, collision detection algorithm, and computation of collision force) after the
ten iterations. This speed-up Tnp1

TnpN
is given by the ratio between the sequential execution

time and the parallel execution time, when running the simulation on N processors. The
results are given in tables 2 and 3.

Bodies Mesh nodes Body-body Body-wall Tnp1

Tnp4

Tnp1

Tnp16

Tnp1

Tnp24

1 16462 0 1 3.14 8.22 11.04
25 17780 0 16 1.88 2.06 2.12
49 18284 28 24 1.90 2.08 2.15
81 18813 72 32 1.92 2.09 2.13

100 19139 100 36 1.81 2.01 2.10

Table 2: Results of the parallelization performance of the collision algorithm in two dimen-
sions. The table shows the speed-up of the execution time when running the simulations
in parallel.

Bodies Mesh nodes Body-body Body-wall Tnp1

Tnp4

Tnp1

Tnp16

Tnp1

Tnp24

1 17073 0 1 2.23 6.49 7.99
27 18213 0 26 1.94 3.99 5.03
64 18789 0 56 1.98 3.98 5.22

125 20301 70 98 1.99 3.59 5.13

Table 3: Parallelization performance in three dimensions. The sequential execution time
is compared to the execution time of the simulation when running it in parallel using
different numbers of processors.

One can observe that the parallel execution reduces the execution times; the speed-up
increases with an increasing number of processors. For multiple interactions, the speed-up
remains almost constant independently of the number of bodies. The execution time spent
in collision detection represents the majority of the total execution time of the algorithm.
For the simulations conducted in this section, the execution time of the detection phase
represents 99% of the total collision time. The difference in speed-ups between the two
and three-dimensional case could be explained by the larger execution time taken by the
distance computation, since the number of node-node connections in 3D is, on average,
larger than in 2D. Furthermore, the execution time of the two-dimensional collision model
represents up to 20% of the total time for the fluid-solid interaction resolution, when
considering multiple interactions and using a direct solver. In three dimensions, using a
block preconditioner, the proportion associated to the collision algorithm does not exceed
5%.
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4 Validation

To validate our model we consider the motion of a circular solid in an incompressible
Newtonian fluid in two and three dimensions.

For the validation in 2D, we consider a rigid body of radius r = 0.125cm and density
ρS = 1.25

g
cm3 is initially located at (1cm, 4cm) in a channel of width 2cm and height

6cm. Under the effect of gravity g = 981cm
s2 the particle is falling towards the bottom

of a channel filled with a fluid of density ρf = 1
g

cm3 and viscosity µ = 0.1
g

cm s. Both
fluid and particle are at rest at time t = 0.0s. The mesh size and time step used in
this simulation are respectively fixed at h = 0.01cm and ∆t = 0.001s. The width of the
collision zone is set to ρ = 0.015cm. One can use a stiffness parameter for particle-fluid
domain interaction εF <

h2

2
, for the results shown in the figures we used εF = 5 ∗ 10−6.

In figure 1, we plot the time evolution of four quantities and compare them to literature
results Wan and Turek [18], Wang, Guo and Mi [19]. These quantities are the vertical
coordinate of the center of mass ycm, the vertical translational velocity vy, the Reynolds
number Re and the translational kinetic energy Et defined by:

Re =
2rρS

√
v2x + v2y
µ

and Et = 0.5πr2ρS(v2x + v2y),

where vx the horizontal translational velocity. One can observe that all results are in
good agreement. The small differences before and after collision can be explained by
different definitions of collision parameters and numerical methods.

We perform the same simulation for the 3D validation. Initially, a sphere of radius
r = 0.75cm and density ρs = 1.12

g
cm3 is located at (0cm, 12.75cm, 0cm) in a computa-

tional box of dimensions [−4cm, 4cm]× [0cm, 15cm]× [−4cm, 4cm]. The box is filled with
a fluid of density ρf = 0.962

g
cm3 and viscosity µ = 1.13

g
cm s. The mesh size and the time

step are set to h = 0.1cm and ∆t = 0.01s. Regarding the lubrication force parameters,
we fixed the width of the collision zone to ρ = 0.2625cm and the stiffness parameter to
εF = 5 ∗ 10−6. The comparison of the present results to literature results [21] is given in
figure 2. We obtain the same results for the vertical coordinate of the center of mass and
the vertical translational velocity.

5 Applications

5.1 Isolated object

In this subsection we simulate the interaction between a complex shaped body falling
under the effect of gravity and the boundary of the computational domain filled with an
incompressible Newtonian fluid in two and three dimensions.

For the first case, we consider a two-dimensional ellipse located in a channel of width
L = 16

130
cm and infinite length. The channel contains a fluid of density ρf = 1.195

g
cm3

and viscosity µ = 0.305
g

cm s. The ellipse’s long and short axis are respectively set to
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(a) t = 0.0s (b) t = 0.5s (c) t = 0.75s (d) t = 1.0s

Figure 1: Evolution of the vertical position of mass center, vertical translational velocity,
Reynolds number and translational kinetic energy. The red line are the present results, the
green dotted and blue dotted lines correspond to results respectively taken from [19] and
[18]. The streamlines and body position at four different time instants are represented.
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Figure 2: Comparison of the vertical position of the center of mass and vertical trans-
lational velocity observed in present results, red line, to literature results [21], dotted
line.

a = 0.1cm and b = 0.05cm. Its density is equal to ρS = 1.35
g

cm3 . Due to its initial
orientation, set to θ = π

3
with respect to the horizontal axis, the ellipse will collide with

the right and left walls. To model these collisions the length of the lubrication zone is
fixed at ρ = 0.05cm and a stiffness parameter of εF = 10−5 is used. The simulation is
performed using a mesh size h = 0.001cm and a time step ∆t = 0.001s. Figure 3a shows
the trajectory of the ellipse comparing it to literature [22]. This trajectory allows to
observe that the ellipse first performs oscillations between the right and left wall before
reaching a horizontal position, at the instant given by the black point. Then, it performs
rotations close to a single wall. In present results, these rotations are taking place near
the left wall, but in the reference article, they happen near the right wall. Given that the
ellipse is in a horizontal position at the beginning of these rotations, any small difference
in the collision model or the numerical resolution techniques can explain this difference.
To show that the present results remain close to literature, we consider in figure 3b the
symmetric trajectory for the rotations of [22]. This test case allows us to validate our
implementation for the case of arbitrarily shaped bodies.

The second case represents the simulation of a three-dimensional ellipsoid of density
ρS = 1.25

g
cm3 and axis of length a = 0.4cm and b = c = 0.2cm falling in a rectan-

gular computational domain filled with a fluid of density ρf = 1
g

cm3 and viscosity µ =

0.01
g

cm s. The dimensions of the domain are set to [0cm, 1cm]× [0cm, 8cm]× [0cm, 0.4cm]
and at t = 0s the ellipsoid is located at (0.5cm, 6cm, 0.2cm) with its long axis oriented
in vertical direction. The mesh size and time step of this simulation are h = 0.0125cm
and ∆t = 0.001s. The interactions between the ellipsoid and the boundary of the com-
putational domain are modelled by defining a collision zone of width ρ = 0.04cm and a
stiffness parameter εF = 3∗10−6. The evolution of the horizontal position of the sphere is
shown in figure 4, and is compared to literature results [23]. The trajectories before and
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(a) Trajectory (b) Trajectory with symmetric results

Figure 3: The left graph plots the trajectory of the ellipse center of mass. The red line
corresponds to the present results and the blue dotted line represents the literature results
[22]. The right graph shows the same trajectory but compares it to rotations happening
on the other wall.

after the first interaction between the ellipsoid and the boundary of the computational
domain, at time t ≈ 0.45s, are in good agreement.

Figure 4: Evolution of the horizontal position of the center of the ellipsoid. The dotted
line shows the literature results [23] and the red line represents the present results.
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5.2 Multiple objects

Two disks falling in an incompressible fluid Collisions between two spherical bod-
ies placed on a same vertical line and falling under the effect of gravity, in a channel filled
with incompressible Newtonian fluid, are known as the drafting, kissing and tumbling
phenomenon. We consider two disks of radius r = 0.1cm and density ρS = 1.01

g
cm3

placed in a fluid domain of dimensions [0cm, 2cm] × [0cm, 8cm]. To have a slight asym-
metry, necessary to speed up the insurgence of the phenomenon, the coordinates of the
upper disk S1 center are fixed at (0.999cm, 7.2cm) and those of the lower disk S2 center
at (1.0cm, 6.8cm). The fluid density and viscosity are respectively given by ρf = 1.0

g
cm3

and µ = 0.01
g

cm s. The simulation is performed on the time interval [0s, 5s] with a time
step equal to ∆t = 0.001s and a mesh size set to h = 0.01. To model the drafting,
kissing and tumbling phenomenon as in [24], one fixes the width of the collision zone
at ρ = 0.0225cm and uses stiffness parameters for the disk-disk and disk-fluid domain
collisions given by ε = 7 ∗ 10−5 and εF = 5 ∗ 10−5. Figure 5 shows the results of the
simulation. When both disks are next to each other, the motion of the lower disk reduces
the fluid pressure behind it and therefore the resistance of the fluid for the upper disk.
As a result, the upper body falls faster until it collides with the lower one. The collision
forces cause the separation of the disks which then move in opposite directions. Figure 5
also compares the vertical and horizontal position of the two disks over time to literature
[24]. It can be observed that the results of the collision phase have same behavior. In the
present simulation, the bodies fall faster to the bottom, therefore the separation phase
takes place sooner than in literature results. This explains the differences on the graphes.

100 disks falling in an incompressible fluid We simulate the interactions between
100 circular particles in two dimensions. The particles of radius r = 0.03125cm and
density ρS = 1.1

g
cm3 are placed in a vertical channel of height 2cm and width 1cm which

is filled with a fluid of density ρf = 1.0
g

cm3 and viscosity µ = 0.01
g

cm s. At the beginning
of the simulation, the fluid and the particles are at rest. Then the particles move towards
the bottom of the domain under the effect of gravity. The initial configuration is given
by the first figure of 6. We run the simulation on a time interval [0s, 5.5s] and use a
time step fixed at ∆t = 0.002s. The mesh size is given by h = 0.01cm. The collision
force is defined on range ρ = 0.025cm. According to simulations of multiple objects
interactions in the literature [25], the force intensity must be important to prevent the
objects from overlapping. For this reason, we use stiffness parameters fixed at ε = 5∗10−6

and εF = 10−7. Figure 6 shows the position of the 100 particles at four time instants.
Due to the collision forces, the particles near the domain walls fall slower towards the
bottom than the central particles. During the simulation the particles settle one onto the
other on the bottom of the channel. At final time, almost all particles are in a stationary
position and packed in a hexagonal lattice. Article [26] illustrates the same simulation
but with different values of the parameters.

Two objects in a flow For this application we consider the motion of two circular
particles in a symmetric stenotic artery in two dimensions. In contrast with the previous
test cases, the particles do not fall under the effect of gravity, but the motion of the
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(a) t = 1.5s (b) t = 2.5s (c) t = 3.0s (d) t = 4.0s

Figure 5: The upper figures show the position of the two disks as well as the streamlines
at four different time instants. The lower graphs compare the evolution of the disks
horizontal and vertical position to literature [24]. The solid lines correspond to present
results and the dotted one to literature results.

particles is due to a pressure difference between the inlet and the outlet. This simulation
is presented in [27] and [28].

The geometry, given in figure 7, is a channel of length L = 32d and width w = 8d.
The centerlines are represented by dotted lines. The diameter d of the particles is set to
d = 8.5∗10−4cm. To create the stenosis, the authors of [27] and [28] add two symmetrical
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(a) t = 0.0s (b) t = 1.5s (c) t = 2.0s (d) t = 3.5s

Figure 6: Streamlines and position at four different time instants of 100 disks falling
under the effect of gravity in an incompressible Newtonian fluid.

Figure 7: Geometry of symmetric stenotic artery

protuberances shaped like semicircles. The radius of these protuberances depends on the
width of the stenosis throat, which is fixed at b = 1.75d. The fluid viscosity is set to
µ = 0.01cm2

s and both fluid and particle densities are equal to ρf = ρS = 1
g

cm3 . At
time t = 0, the fluid and the particles are at rest. Then the particles move towards the
protuberances due to the pressure difference ∆p = 541Pa between the inlet and outlet
of the channel. The two particles are initially located at 8d to the left of the vertical
centerline and asymmetrically with respect to the horizontal centerline: h = 2d + d

4000

and h′ = 2d. This slight asymmetry allows them to cross the stenosis throat. The
mesh size and time step of the simulation are respectively set to h = 6.07 ∗ 10−5cm
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and ∆t = 10−5s. The time interval is [0.0s, 0.01s]. Collision forces are applied when
the particles are close to the protuberances. The width of the collision zone is fixed at
ρ = 0.0003cm and the stiffness parameters of the particle-particle and particle-domain
interactions are given by ε = 10−11 and εF = 7.5∗10−12. Figure 8 shows the trajectory of
the two particles: they have a similar motion (snapshots 1-9) until they get close to the
stenosis throat (snapshot 10). Since the width of the stenosis throat is too small to allow
both particles to pass simultaneously, the upper particle stops and changes direction due
to collision forces. Snapshot 11 shows that it moves back to allow the lower particle
passing the throat. Finally, the upper particle follows the lower particle through the
artery (snapshots 11-17). The same particle behavior is present in the cited articles. The
particle trajectory after passing the stenosis throat depends on the initial configuration
and the definition of collision parameters.

Figure 8: Position of two particles at different time instants.

Three-sphere swimmer in a Stokes flow For the last test case, we consider the
tilted three-sphere swimmer placed close to the boundary of a horizontal channel in a
Stokes regime. The radius of the swimmer spheres is set to r = 1cm and the length of
its rods to l = 10cm. The height and width of the computational domain are fixed at
h = 150cm and w = 40cm. The mass center of the central sphere is initially located
at (15cm, 10cm), and the density of the swimmer is given by ρS = 0.1

g
cm3 . The fluid

has a density equal to ρf = 1
g

cm3 and a viscosity of µ = 1cm2

s . The mesh size is set to
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h = 0.3cm and the time step to ∆t = 0.1s. Due to the orientation of the swimmer at
t = 0s and due to its swimming strategy, leading to a straight motion, the swimmer gets
closer to the boundary of the channel. Once its right sphere arrives in the collision zone of
width ρ = 0.03cm, lubrication forces, defined by a stiffness parameter set to εF = 5∗10−8,
are applied onto the swimmer, who starts to change direction. The swimmer rotates until
its left sphere enters the collision zone, where the repulsive force applied on this sphere
forces the swimmer to move upwards, away from the boundary. This behavior of the
three-sphere swimmer close to the boundary is shown in figure 9.

Figure 9: Behavior of the three-sphere swimmer close to the boundary of the computa-
tional domain.
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Reproducibility

The validation benchmarks and all applications illustrated in this paper are available in
a public GitHub repository [29]. All the results can be reproduced.

6 Conclusions

In this paper, we presented a repulsive collision-avoidance model for arbitrary-shaped
bodies, where the definitions of force direction and magnitude are based on the compu-
tation of the distance function using the narrow-band fast marching method. The model
is validated against literature results, with which we find good agreement. Various appli-
cations of two and three-dimensional cases are illustrated. In the appendix, we present
a tool for the insertion of solid bodies into meshed domains, which allows simulations
where the conforming treatment of the fluid-solid interface is required. Determining the
optimal values for the collision parameters is still an open problem which could be tackled
by anticipating the moments of collision and controlling the displacement of the bodies.
The extension of this work to elastic bodies and collisions with multiple contact points
will be the subject of an upcoming paper.

A Insertion of arbitrary solids into discretized fluid

domains

In biological processes, such as particle transport in blood vessels, solid bodies move in
geometrically complex domains. The reconstruction of such environments for numeri-
cal simulations is often image-based rather than relying on a CAD description, which
complicates the mesh-fitted definition of solid bodies inside these environments. Hence,
we have developed a tool allowing the insertion of arbitrary bodies in meshed domains
with the identification of their geometric and material properties. The tool relies on
the MMG library [30] feature that allows remeshing from a level-set function: given the
initial triangulated environment and a level-set description of the solid body, it outputs
a new triangulation that includes the solid, and where the interface between the two is
conforming. In addition to this, we are able to insert multiple objects simultaneously,
with prescribed position and orientation, and ensure that physical markers associated to
the fluid and the solids are correctly transferred onto the new mesh.

The capabilities of the tool are illustrated in figures 10 and 11. Figure 10 shows
a two-dimensional environment of complex geometry where a collection of objects have
been successfully inserted without changes to their shapes. In particular all corners of the
rectangular body have been recovered. Figure 11 illustrates a simpler three-dimensional
domain where multiple bodies have been again successfully inserted. All three resulting
meshes can be used for the simulation of fluid-solid interaction with collision treatment,
as described in the first part of the paper.
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Figure 10: Creation of two-dimensional bodies inside a complex discretized environment.

(a) Three-sphere swimmer (b) Complex shaped bodies

Figure 11: Two cases showing the insertion of bodies in three dimensions.
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