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Abstract
The study of grid or cluster middlewares is complex, and experiments on such systems are costly. This

cost can come from the number of resources required to deploy realistic experiments, or the time to replay
a significative workload. Simulation techniques can help reduce such cost to almost none and help perform
preliminary study at low cost, but they might also degrade the realism of the results. In this paper, we consider
the implementation in simulation of the CiGri grid middleware, in Batsim, a batch sheduler simulator. We are
particularly interested in the impact of simulation on signals of interest and their dynamics compared to the real
system in the optic of using this simulator to accelerate the first steps of future studies.

1 Introduction
Distributed experiments are complex and often require several machines for several hours or days. Such experiments
are time and resource consuming, but are nevertheless mandatory to validate research work. Deploying and running
long-lasting experiments during the exploring phases of research is an obstacle to careful and sane work and must
be addressed.

Simulation techniques are an adequate solution as they allow users to execute in reasonable time and on a single
laptop, experiments that would have taken hours on a production platform. In the context of High-Performance
Computing (HPC), most of the effort in terms of simulators is focused on tools to evaluate scheduling algorithms [4,
5, 12]. These solutions reduce considerably the time and computing power required to replay long scientific workloads
with a new scheduling strategy instead of deploying a modified batch scheduler and re-executing the jobs of the
workload, but have limitations in terms of realism due the underlying models.

Experiments on systems such a grid or cluster middlewares are also victim of high experimental costs and could
benefit from simulation techniques. However, due to this additional layer, the simulators cited above are not directly
equipped to simulate such systems.

In this paper, we present and evaluate BatCiGri, a simulator of the CiGri grid middleware within Batsim.
Section 2 details the studied middleware and the desired properties of its simulation. In Section 3 we present the
design of the simulation of the middleware as well as its calibration to better match reality. The evaluation of the
simulation is performed in Section 4.

2 Motivating Example: the CiGri middleware

2.1 Presentation
CiGri [6] is a grid middleware in production at the French Gricad meso-center 1. The goal of CiGri is to use the
idle resources of the meso-center. It interacts with several clusters managed by OAR [2] batch schedulers.

Users of CiGri submit Bag-of-Tasks applications to the middleware. Such applications are composed of thou-
sands of short, independent and similar tasks are classified as embarrassingly parallel which make them good can-
didates for “filling the holes” in the cluster schedules. Monte-Carlo simulations or parameter sweeps are examples
of Bag-of-Tasks applications.

Once the set of tasks submitted to CiGri, the middleware will submit sub sets of jobs to the different schedulers
of the grid. The jobs are submitted with the lowest priority (best-effort) in order to allow premium users of the
clusters to get the resources used by CiGri jobs if needed.

Figure 1 depicts the interactions between CiGri and different clusters of the grid.
∗Firstname.Lastname@inria.fr
1https://gricad.univ-grenoble-alpes.fr/index_en.html
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Figure 1: Interactions between CiGri and the schedulers OAR of the computing grid. CiGri users submit Bag-of-
Tasks applications, whose jobs are then submitted to the different cluster schedulers of the computing grid. The
computing clusters are shared with users with more priority, thus CiGri jobs must be killed if one premium user
requires the resources.

2.2 Limitation of CiGri

One problem of CiGri is its submission algorithm. CiGri will submit a batch of jobs the one scheduler, and wait for
the completion of the batch to submit again. This strategy can lead to an underutilization of the cluster resources.
For example, CiGri might wait for the very last job of the previous submitted batch to terminate while there would
be plenty of idle resources. Moreover, one objective of CiGri is to harvest in a non-invasive fashion. Meaning that
the premium users of the different clusters must not notice the impact of the CiGri jobs on the platform. However,
once executing, the CiGri jobs are using the shared resources of the cluster (file-system, network, etc.), which can
have an impact on the performance of every other running jobs.

2.3 Feedback Loop Regulation
We address these limitations of the current CiGri submission algorithm by considering the problem from the point
of view of Autonomic Computing [11]. One aspect of Autonomic Computing is the self-regulation of systems, where
the controlled systems is cyclically monitored via sensors, and then based on the sensors, the autonomic controller
will act on the system to direct it towards a desired state. The implementation of the decision process can be done
via multiple techniques (IA, rules, modelisation and optimal solving, etc.). But in our work [8, 9], we implement
the autonomic controller with tools from Control Theory. Control Theory is a field from physical engineering for
the regulation of dynamic systems. It has been used for centuries on physical systems, and its properties have been
proven mathematically. Its usage on computing systems is only recent. To implement a controller with Control
Theory tools, the definition of the signals as well as their dynamic must be clearly identified and modeled.

To test our version of CiGri with our controllers, we deploy a modified CiGri as well as an instance of OAR and
compute nodes. In order to perform faithful evaluations, it is unreasonable to deploy on the entire Gricad meso-
center, and replay long workloads. We are thus interested in simulation techniques to reduce the experimental
costs.

However, one potential limitation of using simulation techniques in our case, is the inability to obtain the same
signals, or for the signals to have a different dynamic or properties.

2.4 Expected Properties of the Simulation
For the CiGri simulation to be useful from the point of view of Control Theory it must have the following properties:

• Jobs must have realistic execution times

• Best-effort jobs must be killed and release resources for the normal jobs
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• The killing and releasing of the resources must happen in a realistic time

• Information about the usage of the platform and about the inner state of the scheduler must be accessible

3 BatCiGri

In this Section, we present a solution based on Batsim [4] to simulate CiGri : BatCiGri.

3.1 Hypotheses
We work under the following hypotheses: (i) there is only one cluster in the grid, and (ii) the only best-effort jobs
come from CiGri. Regular users of the cluster cannot submit best-effort jobs.

3.2 Batsim in a Nutshell
Batsim is a batch scheduler simulator which allows users to test their scheduling algorithms, i.e., how the jobs are
mapped to the resources. Batsim relies on Simgrid [3] for sound simulation models.

The remaining of this section presents two important concepts of Batsim: platforms and workloads.

Platforms Batsim platforms, similarly to Simgrid platforms, contain information about the underlying platform
of the simulation. It contains the number of hosts, the network topology, the speed of the links, the capacity of the
disks, etc.

Workloads Workloads contain information about the jobs that will participate in the simulation. There are two
main components: jobs and profiles. Profiles define the behavior of the jobs, i.e., the underlying simulation to
use (delay, parallel tasks, SMPI, etc.), execution times, SMPI trace to replay, etc. In a Batsim workload, a job
belongs to a profile. Each job must have an identifier, a submission time and a requested number of resources.
Listing 1 shows a simple example of Batsim workload.

A study of the CiGri jobs running on the Gricad platform [7] gives a statistical description of the execution
times of those jobs. This allows us to use a delay model to represent the execution times.

3.3 Two Schedulers
CiGri requires two levels of scheduling. The first level is from CiGri to OAR for best-effort jobs, and then from
OAR to the nodes for normal users. Our simulation needs to capture these two levels.

To do so we will have two Batsim schedulers: one for the CiGri jobs and one for the priority jobs. Each scheduler
will manage their own workload but will schedule on the same platform.

As best-effort jobs need to have less priority on the normal jobs, we need a way to kill them. The CiGri scheduler
will thus only see the free resources of the cluster to perform its schedule of best-effort jobs. On the other hand,
the priority scheduler do not see the resources taken by CiGri jobs as occupied, and can decide to schedule jobs on
those resources. In this case, the CiGri scheduler must manage the killing of its jobs.

To be as close to reality, we used the same scheduling algorithms as the real system: conservative backfilling for
the priority jobs, and First-Come-First-Served (FCFS) for the CiGri jobs.

3.4 Broker
Batsim can only communicate with a single scheduler. However, as seen in the previous section, we have two
different schedulers. To deal with this limitation, we used the work done in [13] which implements a message broker
between Batsim and the schedulers.

The two schedulers connect to the broker and the broker connects to Batsim. It filters and redirect the message
between the different actors. The main of the work is to manage adaptation of the available resources for the
CiGri scheduler. When a priority job is submitted, Batsim sends a JOB_SUBMITTED message to the broker. The
broker will then forward this message to the priority job scheduler. If the allocation of resources returned by the
scheduler contains best-effort jobs, the broker will inform the CiGri scheduler by sending a REMOVE_RESOURCES
message.
In this case, the CiGri scheduler must take care of the killing of the concerned jobs and their resubmission in its
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1 {
2 "jobs": [
3 {
4 "id": 1,
5 "profile": "cigri",
6 "res": 1,
7 "subtime": 0
8 },
9 {

10 "id": 2,
11 "profile": "cigri",
12 "res": 1,
13 "subtime": 0
14 },
15 {
16 "id": 3,
17 "profile": "cigri",
18 "res": 1,
19 "subtime": 0
20 }
21 ],
22 "nb_res": 32,
23 "profiles": {
24 "cigri": {
25 "delay": 235.0,
26 "type": "delay"
27 }
28 }
29 }

Listing 1: Example of Batsim workload with 3 jobs
belonging to the cigri profile. Each job requests one
resource and are submitted at the start of the simulation.

Batsim Broker

JOB_SUBMITTED

KILL_JOB

Prio.
Scheduler

CiGri
Scheduler

JOB_SUBMITTED

EXECUTE_JOB

REMOVE_RESOURCES

KILL_JOB

JOB_KILLED

EXECUTE_JOB

JOB_KILLED

RESOURCES_ADDED

JOB_COMPLETED
ADD_RESOURCES

RESOURCES_ADDED

JOB_COMPLETED

Figure 2: Sequence Diagram representing the killing of
best-effort jobs when a new priority job is submitted, as
well as when a priority job finishes making its resources
idle and thus exploitable by CiGri.

queue. When a priority job terminates, its resources become free and thus available to the CiGri scheduler. Then,
the broker will send a ADD_RESOURCES message to CiGri to indicate the availability of new resources.

Figure 2 depicts the sequence diagram of a killing of a best-effort job due to a submission of a normal job.

3.5 The CiGri Submission Loop
By taking advantage of the CALL_ME_LATER event of Batsim, we are able to simulate the cyclic behavior of CiGri.
At every cycle, the CiGri scheduler will read the value of the sensors, compute the control error, compute the
number of jobs to submit and submit them.

In our case, the sensor is the number of best-effort resources in waiting queue and the number of resources used
on the platform. The length of the waiting queue is internal information for the scheduler, whereas the number
of resources used is computed indirectly. Remember that the CiGri scheduler only sees the resources that are not
used by the priority scheduler. Thus, the number of resources currently used on the cluster is the total number of
resources minus the number of resources visible by CiGri and plus the number of resources used by CiGri jobs.

The remaining of the CiGri cycle is relatively straightforward and is shown in Listing 2. All the CiGri jobs are
available at the start of the simulation. This means that in the Batsim workload, they are submitted at time 0.

3.6 Workload Adjustments
The synchronization between the real experiments and the simulation is complex, and thus the simulation workload
needs to be adjusted to match the real workload.

Starting Delay of OAR Performed experiments showed that OAR needs about 1 minutes and 30 seconds to
start the first jobs after the first submission. This delay should be taken into account in the simulation. From the
point of view of the CiGri scheduler, this delay can be approximated by not starting the jobs submitting from the
first 3 CiGri cycles.
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Figure 3: Distribution of the job overheads due to OAR commissioning and decommissioning the nodes of the
cluster. Figure 3b shows the comparison between the data and the identified model.

1 def onRequestedCall(self):
2 # Controller Part ----------------------------------------------------------------------
3 occupied_resources = self.nb_total_resources - len(self.free_resources)
4 sensor = len(self.waiting_queue) + occupied_resources
5

6 self.controller.update_error(sensor)
7 self.controller.update_input ()
8 nb_resources_to_submit = self.controller.get_input ()
9 # --------------------------------------------------------------------------------------

10

11 # Submission Part ----------------------------------------------------------------------
12 self.add_to_waiting_queue(nb_resources_to_submit)
13 to_schedule_jobs = self.to_schedule_jobs ()
14 # --------------------------------------------------------------------------------------
15

16 if len(to_schedule_jobs) > 0:
17 # Ask Batsim to notify for the next cycle
18 self.bs.wake_me_up_at(self.bs.time() + self.cigri_period)
19 else:
20 self.bs.notify_registration_finished ()

Listing 2: Implementation of the CiGri submission loop in Batsim. It is triggered by the CALL_ME_LATER event. At
the end of each loop, we ask Batsim to notify us for the next loop (line 18).

Commission and Decommission Times Another source of divergence between simulation and real execution,
is the commission and decommission of the resources by OAR. This (de)commission time is required to set up the
computing nodes for the starting jobs, and to clean the nodes after the termination of the jobs. This delay is not
present in Batsim and must be considered for realism. We evaluated the (de)commission overhead by submitting
jobs which perform an identical and precise amount of work, and compare it to the execution time given by
OAR (i.e., termination time minus starting time). Figure 3a shows the distribution of overheads in seconds. This
distribution shows that the overheads are mostly about 2 or 3 seconds and that the distributions has a long tail.
We performed a fitting of a Log-Normal law on the overheads’ data to retrieve a statistical model. The fitting
yielded that the overheads follow a distribution Lognormal(1.04, 0.27). Figure 3b shows the cumulative distribution
functions of the overhead (solid line) and the model (dashed line). This model allows us to generate Batsim workloads
containing this overhead in the execution time of the jobs.

Killing of Best-Effort Jobs In Batsim, when priority jobs are submitted, and they can be scheduled by killing
best-effort jobs, the best-effort jobs are immediately stop, and the priority jobs started instantaneously. In practice,
the priority jobs spend some time in the waiting queue while the best-effort jobs are being killed and the nodes
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cleaned and set up. This delay can be taking into account in the description of the priority jobs. The execution
time in Batsim must also contain this delay.

4 Evaluation
In this Section, we evaluate the quality of the simulation.

4.1 Experimental Protocol
For both the real system and the simulated one we will conduct the same scenario. There are 500 CiGri jobs with
an execution time of 235 seconds. The submission loop of CiGri is called every 30 seconds in order to see how the
system respond to delay in the control input. After 2000 seconds, a priority job is submitted and takes half of the
resources of the cluster for 1800 seconds. The controller of CiGri aims to regulate the quantity wk + rk around the
value 64 (which is the double of the number of resources in the cluster).

4.2 Experimental Setup
The real experiments were carried on the dahu cluster of Grid’5000 [1] where the nodes have 2 Intel Xeon Gold
613 with 16 cores per CPU and 192 GiB of memory. The reproducibility of the deployed environment is ensured
by NixOS Compose [10].

We deploy 3 nodes: one for the OAR server, one for CiGri, and one for the OAR cluster. We do not deploy 32
nodes for the cluster, but instead deploy a single node and define 32 OAR resources.

4.3 Execution time
One of the motivation of this study if the cost in time in resources of experiments. Real experiments require
deploying 3 resources (around 10 minutes), and then to execute the scenario (around 1h20 minutes). In total, a
single execution of the scenario consumes around 9 CPU hours.

In comparison, a simulation requires a single CPU, and needs 2 seconds to complete, thus consuming approxi-
mately 5.5× 10−4 CPU hours

4.4 Signals Comparison
For the simulation of CiGri to be useful, we need the signals of interest to have the same properties and behave
the same in both simulation and real experiments. The signals of interest are:

• the number of best-effort resources in the waiting queue

• the number of currently used resources on the cluster

• the dynamic of a CiGri submission (i.e., the time it takes to see the impact of a submission)

Figure 4 shows the comparison of the signals of interested between experiments of the same scenario executed
in simulation (red) and deployed on real machines (blue). The signals appear to be in sync. The amplitude do
differ, as can be observed around 500 seconds. The real system is obviously more sensible to noise. This noise can
be noticed when looking at the used resources (top left graph on Figure 4). The cluster in the simulation is always
full, whereas the cluster during real experiments is not (e.g., at 1000, 2000, 4500 seconds).

4.5 Gantt Charts Comparison
Figure 5 compares the resulting Gantt charts of the experiment for the simulation (top) and real execution (bottom).
We notice that there are “gaps” in the real schedule (e.g., at time 1500 seconds on resource 24). These gaps create
a lag in the schedule which also impact the signals.

This lag comes from OAR scheduling algorithm. Once the OAR decided to start to compute a scheduler, if any
job arrives during the execution of the scheduler, those jobs will not be taken into account until the next schedule
call. Taking into account this lag in the simulation is complex, as Batsim is responsible for the management of the
simulation time, and because the time “stops” during the computation of the schedule.
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Figure 4: Comparison of the signals of interest for the same experiment executed in simulation with Batsim (red)
and deploy (blue). Signals appear to be in sync, but some amplitudes might differ.

5 Conclusion
Distributed experiments are complex and costly. Simulation techniques can help reduce the cost of such experiments.
However, simulators rely on models that can lose information compared to the real system. In this paper, we
implemented the essential behavior of CiGri, a grid middleware, in Batsim. Real experiments with CiGri requires
3 compute nodes for several hours, while simulation last a few seconds on a laptop. We compared the behavior and
similarities of signals of interest of our system in simulation and real experiments. We had to modify the workload
of the simulation to match the different overheads induced by the real system. Results showed satisfying quality of
signals in simulation.

In this paper, we only focused on the execution time part of the jobs. However, in our CiGri works [8, 9] we
control the submission of CiGri jobs to OAR in order regulate the load of a distributed file-system. Taking into
account a parallel file-system in Batsim is feasible [13]. However, the current limitation of Batsim is the lack of
probe mechanism to sense internal information and states.
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Figure 5: Comparison of the Gantt charts for the simulation (top) and real experiment (bottom) of the same
scenario. We observe a small lag, which is due to OAR, but both schedules are similar.
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