
HAL Id: hal-04101015
https://hal.science/hal-04101015

Preprint submitted on 19 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulating a Multi-Layered Grid Middleware
Quentin Guilloteau

To cite this version:

Quentin Guilloteau. Simulating a Multi-Layered Grid Middleware. 2023. �hal-04101015�

https://hal.science/hal-04101015
https://hal.archives-ouvertes.fr

Simulating a Multi-Layered Grid Middleware

Quentin Guilloteau

Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble France∗

Abstract
The study of grid or cluster middlewares is complex, and experiments on such systems are costly. This

cost can come from the number of resources required to deploy realistic experiments, or the time to replay
a significative workload. Simulation techniques can help reduce such cost to almost none and help perform
preliminary study at low cost, but they might also degrade the realism of the results. In this paper, we consider
the implementation in simulation of the CiGri grid middleware, in Batsim, a batch sheduler simulator. We are
particularly interested in the impact of simulation on signals of interest and their dynamics compared to the real
system in the optic of using this simulator to accelerate the first steps of future studies.

1 Introduction
Distributed experiments are complex and often require several machines for several hours or days. Such experiments
are time and resource consuming, but are nevertheless mandatory to validate research work. Deploying and running
long-lasting experiments during the exploring phases of research is an obstacle to careful and sane work and must
be addressed.

Simulation techniques are an adequate solution as they allow users to execute in reasonable time and on a single
laptop, experiments that would have taken hours on a production platform. In the context of High-Performance
Computing (HPC), most of the effort in terms of simulators is focused on tools to evaluate scheduling algorithms [4,
5, 12]. These solutions reduce considerably the time and computing power required to replay long scientific workloads
with a new scheduling strategy instead of deploying a modified batch scheduler and re-executing the jobs of the
workload, but have limitations in terms of realism due the underlying models.

Experiments on systems such a grid or cluster middlewares are also victim of high experimental costs and could
benefit from simulation techniques. However, due to this additional layer, the simulators cited above are not directly
equipped to simulate such systems.

In this paper, we present and evaluate BatCiGri, a simulator of the CiGri grid middleware within Batsim.
Section 2 details the studied middleware and the desired properties of its simulation. In Section 3 we present the
design of the simulation of the middleware as well as its calibration to better match reality. The evaluation of the
simulation is performed in Section 4.

2 Motivating Example: the CiGri middleware

2.1 Presentation
CiGri [6] is a grid middleware in production at the French Gricad meso-center 1. The goal of CiGri is to use the
idle resources of the meso-center. It interacts with several clusters managed by OAR [2] batch schedulers.

Users of CiGri submit Bag-of-Tasks applications to the middleware. Such applications are composed of thou-
sands of short, independent and similar tasks are classified as embarrassingly parallel which make them good can-
didates for “filling the holes” in the cluster schedules. Monte-Carlo simulations or parameter sweeps are examples
of Bag-of-Tasks applications.

Once the set of tasks submitted to CiGri, the middleware will submit sub sets of jobs to the different schedulers
of the grid. The jobs are submitted with the lowest priority (best-effort) in order to allow premium users of the
clusters to get the resources used by CiGri jobs if needed.

Figure 1 depicts the interactions between CiGri and different clusters of the grid.
∗Firstname.Lastname@inria.fr
1https://gricad.univ-grenoble-alpes.fr/index_en.html

1

https://gricad.univ-grenoble-alpes.fr/index_en.html

Figure 1: Interactions between CiGri and the schedulers OAR of the computing grid. CiGri users submit Bag-of-
Tasks applications, whose jobs are then submitted to the different cluster schedulers of the computing grid. The
computing clusters are shared with users with more priority, thus CiGri jobs must be killed if one premium user
requires the resources.

2.2 Limitation of CiGri

One problem of CiGri is its submission algorithm. CiGri will submit a batch of jobs the one scheduler, and wait for
the completion of the batch to submit again. This strategy can lead to an underutilization of the cluster resources.
For example, CiGri might wait for the very last job of the previous submitted batch to terminate while there would
be plenty of idle resources. Moreover, one objective of CiGri is to harvest in a non-invasive fashion. Meaning that
the premium users of the different clusters must not notice the impact of the CiGri jobs on the platform. However,
once executing, the CiGri jobs are using the shared resources of the cluster (file-system, network, etc.), which can
have an impact on the performance of every other running jobs.

2.3 Feedback Loop Regulation
We address these limitations of the current CiGri submission algorithm by considering the problem from the point
of view of Autonomic Computing [11]. One aspect of Autonomic Computing is the self-regulation of systems, where
the controlled systems is cyclically monitored via sensors, and then based on the sensors, the autonomic controller
will act on the system to direct it towards a desired state. The implementation of the decision process can be done
via multiple techniques (IA, rules, modelisation and optimal solving, etc.). But in our work [8, 9], we implement
the autonomic controller with tools from Control Theory. Control Theory is a field from physical engineering for
the regulation of dynamic systems. It has been used for centuries on physical systems, and its properties have been
proven mathematically. Its usage on computing systems is only recent. To implement a controller with Control
Theory tools, the definition of the signals as well as their dynamic must be clearly identified and modeled.

To test our version of CiGri with our controllers, we deploy a modified CiGri as well as an instance of OAR and
compute nodes. In order to perform faithful evaluations, it is unreasonable to deploy on the entire Gricad meso-
center, and replay long workloads. We are thus interested in simulation techniques to reduce the experimental
costs.

However, one potential limitation of using simulation techniques in our case, is the inability to obtain the same
signals, or for the signals to have a different dynamic or properties.

2.4 Expected Properties of the Simulation
For the CiGri simulation to be useful from the point of view of Control Theory it must have the following properties:

• Jobs must have realistic execution times

• Best-effort jobs must be killed and release resources for the normal jobs

2

• The killing and releasing of the resources must happen in a realistic time

• Information about the usage of the platform and about the inner state of the scheduler must be accessible

3 BatCiGri

In this Section, we present a solution based on Batsim [4] to simulate CiGri : BatCiGri.

3.1 Hypotheses
We work under the following hypotheses: (i) there is only one cluster in the grid, and (ii) the only best-effort jobs
come from CiGri. Regular users of the cluster cannot submit best-effort jobs.

3.2 Batsim in a Nutshell
Batsim is a batch scheduler simulator which allows users to test their scheduling algorithms, i.e., how the jobs are
mapped to the resources. Batsim relies on Simgrid [3] for sound simulation models.

The remaining of this section presents two important concepts of Batsim: platforms and workloads.

Platforms Batsim platforms, similarly to Simgrid platforms, contain information about the underlying platform
of the simulation. It contains the number of hosts, the network topology, the speed of the links, the capacity of the
disks, etc.

Workloads Workloads contain information about the jobs that will participate in the simulation. There are two
main components: jobs and profiles. Profiles define the behavior of the jobs, i.e., the underlying simulation to
use (delay, parallel tasks, SMPI, etc.), execution times, SMPI trace to replay, etc. In a Batsim workload, a job
belongs to a profile. Each job must have an identifier, a submission time and a requested number of resources.
Listing 1 shows a simple example of Batsim workload.

A study of the CiGri jobs running on the Gricad platform [7] gives a statistical description of the execution
times of those jobs. This allows us to use a delay model to represent the execution times.

3.3 Two Schedulers
CiGri requires two levels of scheduling. The first level is from CiGri to OAR for best-effort jobs, and then from
OAR to the nodes for normal users. Our simulation needs to capture these two levels.

To do so we will have two Batsim schedulers: one for the CiGri jobs and one for the priority jobs. Each scheduler
will manage their own workload but will schedule on the same platform.

As best-effort jobs need to have less priority on the normal jobs, we need a way to kill them. The CiGri scheduler
will thus only see the free resources of the cluster to perform its schedule of best-effort jobs. On the other hand,
the priority scheduler do not see the resources taken by CiGri jobs as occupied, and can decide to schedule jobs on
those resources. In this case, the CiGri scheduler must manage the killing of its jobs.

To be as close to reality, we used the same scheduling algorithms as the real system: conservative backfilling for
the priority jobs, and First-Come-First-Served (FCFS) for the CiGri jobs.

3.4 Broker
Batsim can only communicate with a single scheduler. However, as seen in the previous section, we have two
different schedulers. To deal with this limitation, we used the work done in [13] which implements a message broker
between Batsim and the schedulers.

The two schedulers connect to the broker and the broker connects to Batsim. It filters and redirect the message
between the different actors. The main of the work is to manage adaptation of the available resources for the
CiGri scheduler. When a priority job is submitted, Batsim sends a JOB_SUBMITTED message to the broker. The
broker will then forward this message to the priority job scheduler. If the allocation of resources returned by the
scheduler contains best-effort jobs, the broker will inform the CiGri scheduler by sending a REMOVE_RESOURCES
message.
In this case, the CiGri scheduler must take care of the killing of the concerned jobs and their resubmission in its

3

1 {
2 "jobs": [
3 {
4 "id": 1,
5 "profile": "cigri",
6 "res": 1,
7 "subtime": 0
8 },
9 {

10 "id": 2,
11 "profile": "cigri",
12 "res": 1,
13 "subtime": 0
14 },
15 {
16 "id": 3,
17 "profile": "cigri",
18 "res": 1,
19 "subtime": 0
20 }
21],
22 "nb_res": 32,
23 "profiles": {
24 "cigri": {
25 "delay": 235.0,
26 "type": "delay"
27 }
28 }
29 }

Listing 1: Example of Batsim workload with 3 jobs
belonging to the cigri profile. Each job requests one
resource and are submitted at the start of the simulation.

Batsim Broker

JOB_SUBMITTED

KILL_JOB

Prio.
Scheduler

CiGri
Scheduler

JOB_SUBMITTED

EXECUTE_JOB

REMOVE_RESOURCES

KILL_JOB

JOB_KILLED

EXECUTE_JOB

JOB_KILLED

RESOURCES_ADDED

JOB_COMPLETED
ADD_RESOURCES

RESOURCES_ADDED

JOB_COMPLETED

Figure 2: Sequence Diagram representing the killing of
best-effort jobs when a new priority job is submitted, as
well as when a priority job finishes making its resources
idle and thus exploitable by CiGri.

queue. When a priority job terminates, its resources become free and thus available to the CiGri scheduler. Then,
the broker will send a ADD_RESOURCES message to CiGri to indicate the availability of new resources.

Figure 2 depicts the sequence diagram of a killing of a best-effort job due to a submission of a normal job.

3.5 The CiGri Submission Loop
By taking advantage of the CALL_ME_LATER event of Batsim, we are able to simulate the cyclic behavior of CiGri.
At every cycle, the CiGri scheduler will read the value of the sensors, compute the control error, compute the
number of jobs to submit and submit them.

In our case, the sensor is the number of best-effort resources in waiting queue and the number of resources used
on the platform. The length of the waiting queue is internal information for the scheduler, whereas the number
of resources used is computed indirectly. Remember that the CiGri scheduler only sees the resources that are not
used by the priority scheduler. Thus, the number of resources currently used on the cluster is the total number of
resources minus the number of resources visible by CiGri and plus the number of resources used by CiGri jobs.

The remaining of the CiGri cycle is relatively straightforward and is shown in Listing 2. All the CiGri jobs are
available at the start of the simulation. This means that in the Batsim workload, they are submitted at time 0.

3.6 Workload Adjustments
The synchronization between the real experiments and the simulation is complex, and thus the simulation workload
needs to be adjusted to match the real workload.

Starting Delay of OAR Performed experiments showed that OAR needs about 1 minutes and 30 seconds to
start the first jobs after the first submission. This delay should be taken into account in the simulation. From the
point of view of the CiGri scheduler, this delay can be approximated by not starting the jobs submitting from the
first 3 CiGri cycles.

4

0

100

200

0 2 4 6
Job Overhead [s]

C
ou

nt
Histogram of the job overhead due to node (de)commission

(a) Histogram of the distribution of job overhead due to
the commission and decommission of resources by OAR.
Most of the overhead is around 2 and 3 seconds.

0.00

0.25

0.50

0.75

1.00

0 2 4 6
Job Overhead [s]

P
ro

po
rt

io
n

Data

Model

Comparison between the overhead data and Log−normal model

(b) Comparison between the empirical cumulative distri-
bution function (CDF) of the overhead (solid) and the
CDF of the Lognormal model identified (dashed).

Figure 3: Distribution of the job overheads due to OAR commissioning and decommissioning the nodes of the
cluster. Figure 3b shows the comparison between the data and the identified model.

1 def onRequestedCall(self):
2 # Controller Part --
3 occupied_resources = self.nb_total_resources - len(self.free_resources)
4 sensor = len(self.waiting_queue) + occupied_resources
5

6 self.controller.update_error(sensor)
7 self.controller.update_input ()
8 nb_resources_to_submit = self.controller.get_input ()
9 # --

10

11 # Submission Part --
12 self.add_to_waiting_queue(nb_resources_to_submit)
13 to_schedule_jobs = self.to_schedule_jobs ()
14 # --
15

16 if len(to_schedule_jobs) > 0:
17 # Ask Batsim to notify for the next cycle
18 self.bs.wake_me_up_at(self.bs.time() + self.cigri_period)
19 else:
20 self.bs.notify_registration_finished ()

Listing 2: Implementation of the CiGri submission loop in Batsim. It is triggered by the CALL_ME_LATER event. At
the end of each loop, we ask Batsim to notify us for the next loop (line 18).

Commission and Decommission Times Another source of divergence between simulation and real execution,
is the commission and decommission of the resources by OAR. This (de)commission time is required to set up the
computing nodes for the starting jobs, and to clean the nodes after the termination of the jobs. This delay is not
present in Batsim and must be considered for realism. We evaluated the (de)commission overhead by submitting
jobs which perform an identical and precise amount of work, and compare it to the execution time given by
OAR (i.e., termination time minus starting time). Figure 3a shows the distribution of overheads in seconds. This
distribution shows that the overheads are mostly about 2 or 3 seconds and that the distributions has a long tail.
We performed a fitting of a Log-Normal law on the overheads’ data to retrieve a statistical model. The fitting
yielded that the overheads follow a distribution Lognormal(1.04, 0.27). Figure 3b shows the cumulative distribution
functions of the overhead (solid line) and the model (dashed line). This model allows us to generate Batsim workloads
containing this overhead in the execution time of the jobs.

Killing of Best-Effort Jobs In Batsim, when priority jobs are submitted, and they can be scheduled by killing
best-effort jobs, the best-effort jobs are immediately stop, and the priority jobs started instantaneously. In practice,
the priority jobs spend some time in the waiting queue while the best-effort jobs are being killed and the nodes

5

cleaned and set up. This delay can be taking into account in the description of the priority jobs. The execution
time in Batsim must also contain this delay.

4 Evaluation
In this Section, we evaluate the quality of the simulation.

4.1 Experimental Protocol
For both the real system and the simulated one we will conduct the same scenario. There are 500 CiGri jobs with
an execution time of 235 seconds. The submission loop of CiGri is called every 30 seconds in order to see how the
system respond to delay in the control input. After 2000 seconds, a priority job is submitted and takes half of the
resources of the cluster for 1800 seconds. The controller of CiGri aims to regulate the quantity wk + rk around the
value 64 (which is the double of the number of resources in the cluster).

4.2 Experimental Setup
The real experiments were carried on the dahu cluster of Grid’5000 [1] where the nodes have 2 Intel Xeon Gold
613 with 16 cores per CPU and 192 GiB of memory. The reproducibility of the deployed environment is ensured
by NixOS Compose [10].

We deploy 3 nodes: one for the OAR server, one for CiGri, and one for the OAR cluster. We do not deploy 32
nodes for the cluster, but instead deploy a single node and define 32 OAR resources.

4.3 Execution time
One of the motivation of this study if the cost in time in resources of experiments. Real experiments require
deploying 3 resources (around 10 minutes), and then to execute the scenario (around 1h20 minutes). In total, a
single execution of the scenario consumes around 9 CPU hours.

In comparison, a simulation requires a single CPU, and needs 2 seconds to complete, thus consuming approxi-
mately 5.5× 10−4 CPU hours

4.4 Signals Comparison
For the simulation of CiGri to be useful, we need the signals of interest to have the same properties and behave
the same in both simulation and real experiments. The signals of interest are:

• the number of best-effort resources in the waiting queue

• the number of currently used resources on the cluster

• the dynamic of a CiGri submission (i.e., the time it takes to see the impact of a submission)

Figure 4 shows the comparison of the signals of interested between experiments of the same scenario executed
in simulation (red) and deployed on real machines (blue). The signals appear to be in sync. The amplitude do
differ, as can be observed around 500 seconds. The real system is obviously more sensible to noise. This noise can
be noticed when looking at the used resources (top left graph on Figure 4). The cluster in the simulation is always
full, whereas the cluster during real experiments is not (e.g., at 1000, 2000, 4500 seconds).

4.5 Gantt Charts Comparison
Figure 5 compares the resulting Gantt charts of the experiment for the simulation (top) and real execution (bottom).
We notice that there are “gaps” in the real schedule (e.g., at time 1500 seconds on resource 24). These gaps create
a lag in the schedule which also impact the signals.

This lag comes from OAR scheduling algorithm. Once the OAR decided to start to compute a scheduler, if any
job arrives during the execution of the scheduler, those jobs will not be taken into account until the next schedule
call. Taking into account this lag in the simulation is complex, as Batsim is responsible for the management of the
simulation time, and because the time “stops” during the computation of the schedule.

6

Ref

Best−Effort Waiting Resources Sensor Output (Waiting + Used)

Used Resources Number of CiGri jobs submitted

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

0

20

40

0

25

50

75

100

0

10

20

30

0

20

40

60

Time [s]

Batsim Real

Figure 4: Comparison of the signals of interest for the same experiment executed in simulation with Batsim (red)
and deploy (blue). Signals appear to be in sync, but some amplitudes might differ.

5 Conclusion
Distributed experiments are complex and costly. Simulation techniques can help reduce the cost of such experiments.
However, simulators rely on models that can lose information compared to the real system. In this paper, we
implemented the essential behavior of CiGri, a grid middleware, in Batsim. Real experiments with CiGri requires
3 compute nodes for several hours, while simulation last a few seconds on a laptop. We compared the behavior and
similarities of signals of interest of our system in simulation and real experiments. We had to modify the workload
of the simulation to match the different overheads induced by the real system. Results showed satisfying quality of
signals in simulation.

In this paper, we only focused on the execution time part of the jobs. However, in our CiGri works [8, 9] we
control the submission of CiGri jobs to OAR in order regulate the load of a distributed file-system. Taking into
account a parallel file-system in Batsim is feasible [13]. However, the current limitation of Batsim is the lack of
probe mechanism to sense internal information and states.

References
[1] Daniel Balouek et al. “Adding Virtualization Capabilities to the Grid’5000 Testbed”. In: Cloud Computing

and Services Science. Ed. by Ivan I. Ivanov et al. Vol. 367. Communications in Computer and Information
Science. Springer International Publishing, 2013, pp. 3–20. isbn: 978-3-319-04518-4. doi: 10.1007/978-3-
319-04519-1_1.

[2] N. Capit et al. “A batch scheduler with high level components”. en. In: CCGrid 2005. IEEE International
Symposium on Cluster Computing and the Grid, 2005. Cardiff, Wales, UK: IEEE, 2005, 776–783 Vol. 2. isbn:
978-0-7803-9074-4. doi: 10.1109/CCGRID.2005.1558641. url: http://ieeexplore.ieee.org/document/
1558641/ (visited on 05/25/2020).

7

https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1109/CCGRID.2005.1558641
http://ieeexplore.ieee.org/document/1558641/
http://ieeexplore.ieee.org/document/1558641/

5

13

36

54

3

7
9

15
17
20

26

30

40

48
50

60

64
66
68

22
24

28

34

38

42
44
46

56
58

62

32

52
12

4

6

8

21
23

19

55

29

31

33

41

47

51

53

59

25

27

63

35

39

43

69

45

14

16

57

61

65

49

37

67

70

74

71

72

73

75

76

79

80

81
91

95

98

77

78

82

84

85

87

88

93

94

96

86

89

99

100

97

83

90

92

101

102

103

104

105

107

108

109

120

121

113

110

125

112

114

117

118
106

122

123

111

115

116

119

127

128

130

126
132

129

131

133

124

136

137

134

139

140

141
150

143

138

146

155

147

148

157

142

151

144

152

153

154

145

149

162

159

160

161

156
165

158

163

164

166

167

168

169

171

173

179

175

172

176

174

177

180

182

170

185

186

187

188

178

181

183

191
194

189

190

184

192

196

193
195

198

197

199

200

205

207

203

210

201

202

213

214

204

206

215

216

208

217

209

218

211

219

221

223

224

212

226

220

225
222

227
228

229

230

231

232

233

234

238

239

244
248

249

250

251

253

254

256

259
260

235

237

241

236

242

240

243

247

245

246

252

255

257
258

261

262

263

264

269

265

266

267

268

270

271
273

272

276

274

275

277

278

279

280

284

282

283

285

281

286

288
287

290

289

291

292

293

294

295

296

298

297

299
301

303

300

302

304

231#1

305

232#1

233#1

234#1

238#1

239#1

248#1

244#1

250#1

249#1

251#1

253#1

254#1

256#1

307
259#1

260#1

306
308

310

309

311

312

314

313

317

315

316

318

319

320
321

324

322

323

325

326

327

328

332

330

331

329

334

333

335

336

338

337

340

341

339

342

345
343

344
347

346

348
350

349

351

352
354

353
355

356

357

358

1

361
362

360
359

363

365
364

367

368

366

371
370

369

373

372

374

405

375

387
389

393
395

399
401
403

377
379
381
383
385

397

391

376
378

382

386

380

384

394

390

388

392

396
398

400

404

402

406

414

408

410

412

422

416

407

418
419
420
409

411

413

415

417

421

423

426

424

425

428
432

427

431

430

429

433
434

435

436

437

438

439

440

442

444

443
441

446

448

450

451

452

453

449

447

454

445

456

455
457

461

460

462

459

458

464

465

463

466

467

468

469

470

472

473

478

475
476

471

474

479

481

482

483

477

480

484

485

486

489

487

488

490

491

492

494

495

493

497

496
498

499

500

42

284

189

245
118

121

266

1

423

43

163

91

485

123
382

193

237

236

221

77

79

105

71

516

216

165

222

48

518

182

302
302
302
302
302
302
302
302
302
302
302
302
302
302
302

302
180

179

129

99

173

103

82

155

158

252

63

275

119

120
217

253

297

190

491
279

191

468

223 255

107

74

35

242

38
37

289

395

30

75

391

34

36

83

385
157

72

212
366

194

97

167

109

241

198

86

492

283

125

128

162

70

249

69

374

140
40
41

318

176
80

84

81

238

269

240

102
3
2

89

66

519220

314

227

154

186

195

124

174

114

58

22

49
50

122

17

19

95

521

334

202

108

304

367

65

51
52

23

26

32

287

197

126
127

39

160

343

170

523

146

224

320

113

305

153

301

322

112
111

169

168

183

90

85

264

201

15

133

12

14
13

116

292

336
159
150

309

100

149
110

200

244

397

141

130

131

520

44
45

226
533

293

27316

172

178

229

272

372

76

473

263

281

306

161

254

20

47

4

33

73

21

204

132

207

192

117

24
25

432

300

274
175

7

31

60

515

239

104

98

145

138

106

101

139 267

199

428
345

352

325

286

5

177

62

398

29

209

147

332

380

134

142

148

228

211

214

67

6

78

526

136

152

230

295

184

151

185

68

429

59

327

115

64

53

56

137

243

262

326

8

290
144
143

88

87

92

368

213

188

187

135

303

61

296

218 346

11

166

233

270

349

347

531

93

94

96

181

219

196

268

210

251

417

373

246

10

164
505

156

377

312

54
55

257

171

313

344

350

206

232

225

235

234

502

57

288 369

406

9

341

532

376

311
27
28

298

310

319

205

231

203

483

285

522

18

46

248

405

294

215

487
351

208

365

383

360

315

393

324

277

353

425
331

278

282

501

421

335

261

370

371

258

316

265

348

358

276 291
329

506

378

399

271

328
307

280

340

337

431

357

361

362

247

317

256
299

356

446

321

308

342

338

507

330

339

333

422

404
259

260

323

250

359

364

415

443

474

513

499

354

363

508

386
484

475

418
419
424

477

430

384

494

511

381

527

355

528

469

387

375

411
412

416

401

379

441

510

500

453

460

456

470

427

390

394

392

458

389

396

481

448

517

490

400

402
403

451

407

388

503

413

459

466

449

482

524

476

525493

433

434

408
409

463

447

435

471

479

452

410

414

489

454

426

509

472

455

457

504

444
445

462

464

436
437

488
442

461

530

529

486

498

440
465

438
439

450

467

497

420

512

495

480

478

514

496

Real

Batsim

0 1000 2000 3000 4000 5000

0

10

20

30

0

10

20

30

Time [s]

R
es

ou
rc

es

CiGri Priority

Figure 5: Comparison of the Gantt charts for the simulation (top) and real experiment (bottom) of the same
scenario. We observe a small lag, which is due to OAR, but both schedules are similar.

8

[3] Henri Casanova et al. “Versatile, Scalable, and Accurate Simulation of Distributed Applications and Plat-
forms”. In: Journal of Parallel and Distributed Computing 74.10 (June 2014), pp. 2899–2917. url: http:
//hal.inria.fr/hal-01017319.

[4] Pierre-François Dutot et al. “Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator”. In: 20th Workshop on Job Scheduling Strategies for Parallel Processing. Chicago, United
States, May 2016. url: https://hal.archives-ouvertes.fr/hal-01333471.

[5] Cristian Galleguillos, Zeynep Kiziltan, and Alessio Netti. “Accasim: an HPC simulator for workload man-
agement”. In: High Performance Computing: 4th Latin American Conference, CARLA 2017, Buenos Aires,
Argentina, and Colonia del Sacramento, Uruguay, September 20-22, 2017, Revised Selected Papers 4. Springer.
2018, pp. 169–184.

[6] Yiannis Georgiou, Olivier Richard, and Nicolas Capit. “Evaluations of the lightweight grid cigri upon the
grid5000 platform”. In: Third IEEE International Conference on e-Science and Grid Computing (e-Science
2007). IEEE. 2007, pp. 279–286.

[7] Quentin Guilloteau, Olivier Richard, and Éric Rutten. “Étude des applications Bag-of-Tasks du méso-centre
Gricad”. In: COMPAS 2022 - Conférence francophone d’informatique en Parallélisme, Architecture et Système.
Amiens, France, July 2022, pp. 1–7. url: https://hal.archives-ouvertes.fr/hal-03702246.

[8] Quentin Guilloteau et al. “Controlling the Injection of Best-Effort Tasks to Harvest Idle Computing Grid
Resources”. In: ICSTCC 2021 - 25th International Conference on System Theory, Control and Computing. Ias, i,
Romania, Oct. 2021, pp. 1–6. doi: 10.1109/ICSTCC52150.2021.9607292. url: https://hal.inria.fr/hal-
03363709.

[9] Quentin Guilloteau et al. “Model-free control for resource harvesting in computing grids”. In: Conference on
Control Technology and Applications, CCTA 2022. Trieste, Italy: IEEE, Aug. 2022. url: https://hal.
archives-ouvertes.fr/hal-03663273.

[10] Quentin Guilloteau et al. “Painless Transposition of Reproducible Distributed Environments with NixOS
Compose”. In: CLUSTER 2022 - IEEE International Conference on Cluster Computing. Vol. CLUSTER 2022
- IEEE International Conference on Cluster Computing. Heidelberg, Germany, Sept. 2022, pp. 1–12. url:
https://hal.science/hal-03723771.

[11] Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”. In: Computer 36.1 (2003),
pp. 41–50.

[12] Dalibor Klusáček, Mehmet Soysal, and Frédéric Suter. “Alea–complex job scheduling simulator”. In: Par-
allel Processing and Applied Mathematics: 13th International Conference, PPAM 2019, Bialystok, Poland,
September 8–11, 2019, Revised Selected Papers, Part II 13. Springer. 2020, pp. 217–229.

[13] Michael Mercier. “Contribution to High Performance Computing and Big Data Infrastructure Convergence”.
en. PhD Thesis. Universite Grenoble Alpes, 2019.

9

http://hal.inria.fr/hal-01017319
http://hal.inria.fr/hal-01017319
https://hal.archives-ouvertes.fr/hal-01333471
https://hal.archives-ouvertes.fr/hal-03702246
https://doi.org/10.1109/ICSTCC52150.2021.9607292
https://hal.inria.fr/hal-03363709
https://hal.inria.fr/hal-03363709
https://hal.archives-ouvertes.fr/hal-03663273
https://hal.archives-ouvertes.fr/hal-03663273
https://hal.science/hal-03723771

	Introduction
	Motivating Example: the middleware
	Presentation
	Limitation of
	Feedback Loop Regulation
	Expected Properties of the Simulation

	
	Hypotheses
	 in a Nutshell
	Two Schedulers
	Broker
	The Submission Loop
	Workload Adjustments

	Evaluation
	Experimental Protocol
	Experimental Setup
	Execution time
	Signals Comparison
	Gantt Charts Comparison

	Conclusion

