N

N
N

HAL

open science

Simulating a Multi-Layered Grid Middleware

Quentin Guilloteau

» To cite this version:

‘ Quentin Guilloteau. Simulating a Multi-Layered Grid Middleware. 2023. hal-04101015

HAL Id: hal-04101015
https://hal.science/hal-04101015

Preprint submitted on 19 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04101015
https://hal.archives-ouvertes.fr

Simulating a Multi-Layered Grid Middleware

Quentin Guilloteau

Univ. Grenoble Alpes, Inria, CNRS, LIG, F-38000 Grenoble France*

Abstract

The study of grid or cluster middlewares is complex, and experiments on such systems are costly. This
cost can come from the number of resources required to deploy realistic experiments, or the time to replay
a significative workload. Simulation techniques can help reduce such cost to almost none and help perform
preliminary study at low cost, but they might also degrade the realism of the results. In this paper, we consider
the implementation in simulation of the CiGri grid middleware, in Batsim, a batch sheduler simulator. We are
particularly interested in the impact of simulation on signals of interest and their dynamics compared to the real
system in the optic of using this simulator to accelerate the first steps of future studies.

1 Introduction

Distributed experiments are complex and often require several machines for several hours or days. Such experiments
are time and resource consuming, but are nevertheless mandatory to validate research work. Deploying and running
long-lasting experiments during the exploring phases of research is an obstacle to careful and sane work and must
be addressed.

Simulation techniques are an adequate solution as they allow users to execute in reasonable time and on a single
laptop, experiments that would have taken hours on a production platform. In the context of High-Performance
Computing (HPC), most of the effort in terms of simulators is focused on tools to evaluate scheduling algorithms [4}
5,[12]. These solutions reduce considerably the time and computing power required to replay long scientific workloads
with a new scheduling strategy instead of deploying a modified batch scheduler and re-executing the jobs of the
workload, but have limitations in terms of realism due the underlying models.

Experiments on systems such a grid or cluster middlewares are also victim of high experimental costs and could
benefit from simulation techniques. However, due to this additional layer, the simulators cited above are not directly
equipped to simulate such systems.

In this paper, we present and evaluate BatCiGri, a simulator of the CiGri grid middleware within Batsim.
Section [2] details the studied middleware and the desired properties of its simulation. In Section [3] we present the
design of the simulation of the middleware as well as its calibration to better match reality. The evaluation of the
simulation is performed in Section [4

2 Motivating Example: the CiGr: middleware

2.1 Presentation

CiGri 6] is a grid middleware in production at the French Gricad meso-center B The goal of CiGri is to use the
idle resources of the meso-center. It interacts with several clusters managed by OAR |2| batch schedulers.

Users of CiGri submit Bag-of-Tasks applications to the middleware. Such applications are composed of thou-
sands of short, independent and similar tasks are classified as embarrassingly parallel which make them good can-
didates for “filling the holes” in the cluster schedules. Monte-Carlo simulations or parameter sweeps are examples
of Bag-of-Tasks applications.

Once the set of tasks submitted to CiGri, the middleware will submit sub sets of jobs to the different schedulers
of the grid. The jobs are submitted with the lowest priority (best-effort) in order to allow premium users of the
clusters to get the resources used by CiGri jobs if needed.

Figure [I] depicts the interactions between CiGri and different clusters of the grid.

*Firstname.Lastname@inria.fr
Thttps://gricad.univ-grenoble-alpes.fr/index_en.html

https://gricad.univ-grenoble-alpes.fr/index_en.html

| Bag-of-Tasks
]

Cigri

i Y P
4 Data ‘
FI|€S//
/
4 F vy A ﬁ‘

DDDDDD DDDDDD Compute nodes
O0004ag O0000Od (Resources)
Cluster 1 Cluster 2

Figure 1: Interactions between CiGri and the schedulers OAR of the computing grid. CiGri users submit Bag-of-
Tasks applications, whose jobs are then submitted to the different cluster schedulers of the computing grid. The
computing clusters are shared with users with more priority, thus CiGri jobs must be killed if one premium user
requires the resources.

2.2 Limitation of CiGri

One problem of CiGri is its submission algorithm. CiGri will submit a batch of jobs the one scheduler, and wait for
the completion of the batch to submit again. This strategy can lead to an underutilization of the cluster resources.
For example, CiGri might wait for the very last job of the previous submitted batch to terminate while there would
be plenty of idle resources. Moreover, one objective of CiGri is to harvest in a non-invasive fashion. Meaning that
the premium users of the different clusters must not notice the impact of the CiGri jobs on the platform. However,
once executing, the CiGri jobs are using the shared resources of the cluster (file-system, network, etc.), which can
have an impact on the performance of every other running jobs.

2.3 Feedback Loop Regulation

We address these limitations of the current CiGri submission algorithm by considering the problem from the point
of view of Autonomic Computing . One aspect of Autonomic Computing is the self-regulation of systems, where
the controlled systems is cyclically monitored via sensors, and then based on the sensors, the autonomic controller
will act on the system to direct it towards a desired state. The implementation of the decision process can be done
via multiple techniques (IA, rules, modelisation and optimal solving, etc.). But in our work EII, we implement
the autonomic controller with tools from Control Theory. Control Theory is a field from physical engineering for
the regulation of dynamic systems. It has been used for centuries on physical systems, and its properties have been
proven mathematically. Its usage on computing systems is only recent. To implement a controller with Control
Theory tools, the definition of the signals as well as their dynamic must be clearly identified and modeled.

To test our version of CiGri with our controllers, we deploy a modified CiGri as well as an instance of OAR and
compute nodes. In order to perform faithful evaluations, it is unreasonable to deploy on the entire Gricad meso-
center, and replay long workloads. We are thus interested in simulation techniques to reduce the experimental
costs.

However, one potential limitation of using simulation techniques in our case, is the inability to obtain the same
signals, or for the signals to have a different dynamic or properties.

2.4 Expected Properties of the Simulation

For the CiGri simulation to be useful from the point of view of Control Theory it must have the following properties:

e Jobs must have realistic execution times

e Best-effort jobs must be killed and release resources for the normal jobs

e The killing and releasing of the resources must happen in a realistic time

e Information about the usage of the platform and about the inner state of the scheduler must be accessible

3 BatCiGri

In this Section, we present a solution based on Batsim [4] to simulate CiGri: BatCiGri.

3.1 Hypotheses

We work under the following hypotheses: (i) there is only one cluster in the grid, and (éi) the only best-effort jobs
come from CiGri. Regular users of the cluster cannot submit best-effort jobs.

3.2 Batsim in a Nutshell

Batsim is a batch scheduler simulator which allows users to test their scheduling algorithms, i.e., how the jobs are
mapped to the resources. Batsim relies on Simgrid |3] for sound simulation models.
The remaining of this section presents two important concepts of Batsim: platforms and workloads.

Platforms Batsim platforms, similarly to Simgrid platforms, contain information about the underlying platform
of the simulation. It contains the number of hosts, the network topology, the speed of the links, the capacity of the
disks, etc.

Workloads Workloads contain information about the jobs that will participate in the simulation. There are two
main components: jobs and profiles. Profiles define the behavior of the jobs, i.e., the underlying simulation to
use (delay, parallel tasks, SMPI, etc.), execution times, SMPI trace to replay, etc. In a Batsim workload, a job
belongs to a profile. Each job must have an identifier, a submission time and a requested number of resources.
Listing [I] shows a simple example of Batsim workload.

A study of the CiGri jobs running on the Gricad platform |[7] gives a statistical description of the execution
times of those jobs. This allows us to use a delay model to represent the execution times.

3.3 Two Schedulers

CiGri requires two levels of scheduling. The first level is from CiGri to OAR for best-effort jobs, and then from
OAR to the nodes for normal users. Our simulation needs to capture these two levels.

To do so we will have two Batsim schedulers: one for the CiGri jobs and one for the priority jobs. Each scheduler
will manage their own workload but will schedule on the same platform.

As best-effort jobs need to have less priority on the normal jobs, we need a way to kill them. The CiGri scheduler
will thus only see the free resources of the cluster to perform its schedule of best-effort jobs. On the other hand,
the priority scheduler do not see the resources taken by CiGri jobs as occupied, and can decide to schedule jobs on
those resources. In this case, the CiGri scheduler must manage the killing of its jobs.

To be as close to reality, we used the same scheduling algorithms as the real system: conservative backfilling for
the priority jobs, and First-Come-First-Served (FCFS) for the CiGri jobs.

3.4 Broker

Batsim can only communicate with a single scheduler. However, as seen in the previous section, we have two
different schedulers. To deal with this limitation, we used the work done in |13] which implements a message broker
between Batsim and the schedulers.

The two schedulers connect to the broker and the broker connects to Batsim. It filters and redirect the message
between the different actors. The main of the work is to manage adaptation of the available resources for the
CiGri scheduler. When a priority job is submitted, Batsim sends a JOB_SUBMITTED message to the broker. The
broker will then forward this message to the priority job scheduler. If the allocation of resources returned by the
scheduler contains best-effort jobs, the broker will inform the CiGri scheduler by sending a REMOVE_RESQOURCES
message.

In this case, the CiGri scheduler must take care of the killing of the concerned jobs and their resubmission in its

. Prio. CiGri
1] { ’ Batsim ‘ ’ Broker ‘ ’ Scheduler ’ Scheduler
2 n j ob s n . [; E : .
3 { M JOB*SUBM'TTED{ JOB_SUBMITTED i
4 "id": 1,
= n 5 " . n 1 an
5 profile": cigri", EXECUTE_JOB
6 "res": 1, L T
7 "subtime": 0 : :
s } REMOVE_RESOURCES e
s . >
9 { :
10 "id": 2, KILL_JOB
n 3 n.eoonas in D F e
11 profile": "cigri", KILL_JOB ;
12 "res": 1, D
13 "subtime": 0 : :
} JOB_KILLED H : H
14 > > JOB_KILLED 1
15 { ; >
16 "id": 3, :
17 "profile": "cigri", e R ESOURCESfADDED ____________ L
18 "res": 1, . EXECUTE JOB i
19 "subtime": 0 = T
20 i ; :
21 iy [1JOB_COMPLETED | E
22 "nb_res": 32, ADD_RESOURCES R
23 "profiles": { o
- " 3 L H
24 cigri®: { RESOURCES_ADDED
25 "delay": 235.0, o T .
26 "type": "delay" : :
o7 } yP v |JOB_COMPLETED
28 } : :
29| } T

Listing 1: Example of Batsim workload with 3 jobs Figure 2: Sequence Diagram representing the killing of

belonging to the cigri profile. Each job requests one best-effort jobs when a new priority job is submitted, as

resource and are submitted at the start of the simulation. well as when a priority job finishes making its resources
idle and thus exploitable by CiGri.

queue. When a priority job terminates, its resources become free and thus available to the CiGri scheduler. Then,
the broker will send a ADD_RESOURCES message to CiGri to indicate the availability of new resources.
Figure [2| depicts the sequence diagram of a killing of a best-effort job due to a submission of a normal job.

3.5 The CiGrt Submission Loop

By taking advantage of the CALL_ME_LATER event of Batsim, we are able to simulate the cyclic behavior of CiGri.
At every cycle, the CiGri scheduler will read the value of the sensors, compute the control error, compute the
number of jobs to submit and submit them.

In our case, the sensor is the number of best-effort resources in waiting queue and the number of resources used
on the platform. The length of the waiting queue is internal information for the scheduler, whereas the number
of resources used is computed indirectly. Remember that the CiGri scheduler only sees the resources that are not
used by the priority scheduler. Thus, the number of resources currently used on the cluster is the total number of
resources minus the number of resources visible by CiGri and plus the number of resources used by CiGri jobs.

The remaining of the CiGri cycle is relatively straightforward and is shown in Listing[2] All the CiGri jobs are
available at the start of the simulation. This means that in the Batsim workload, they are submitted at time 0.

3.6 Workload Adjustments

The synchronization between the real experiments and the simulation is complex, and thus the simulation workload
needs to be adjusted to match the real workload.

Starting Delay of OAR Performed experiments showed that OAR needs about 1 minutes and 30 seconds to
start the first jobs after the first submission. This delay should be taken into account in the simulation. From the
point of view of the CiGri scheduler, this delay can be approximated by not starting the jobs submitting from the
first 3 CiGri cycles.

Histogram of the job overhead due to node (de)commission Comparison between the overhead data and Log—normal model

200 0.75
100 /
0.25 a
— Data
K i ===+ Model
0 | - —. 0.00 —
0 2 4

6 0 2 4 6

Count
Proportion
o
o
3

Job Overhead [s] Job Overhead [s]
(a) Histogram of the distribution of job overhead due to (b) Comparison between the empirical cumulative distri-
the commission and decommission of resources by OAR. bution function (CDF) of the overhead (solid) and the
Most of the overhead is around 2 and 3 seconds. CDF of the Lognormal model identified (dashed).

Figure 3: Distribution of the job overheads due to OAR commissioning and decommissioning the nodes of the
cluster. Figure [3b|shows the comparison between the data and the identified model.

1| def onRequestedCall(self):

2 # Controller Part ----------cmmmmm oo oo
3 occupied_resources = self.nb_total_resources - len(self.free_resources)

4 sensor = len(self.waiting_queue) + occupied_resources

5

6 self.controller.update_error (sensor)

7 self.controller.update_input ()

8 nb_resources_to_submit = self.controller.get_input ()

9 L e i i e it R
10

11 # Submission Part --- - - ---------------"--- - -
12 self .add_to_waiting_queue (nb_resources_to_submit)

13 to_schedule_jobs = self.to_schedule_jobs ()

14 L e i e e
15

16 if len(to_schedule_jobs) > 0:

17 # Ask Batsim to notify for the next cycle

18 self .bs.wake_me_up_at(self.bs.time() + self.cigri_period)

19 else:

20 self .bs.notify_registration_finished ()

Listing 2: Implementation of the CiGri submission loop in Batsim. It is triggered by the CALL_ME_LATER event. At

the end of each loop, we ask Batsim to notify us for the next loop (line 18).

Commission and Decommission Times Another source of divergence between simulation and real execution,
is the commission and decommission of the resources by OAR. This (de)commission time is required to set up the
computing nodes for the starting jobs, and to clean the nodes after the termination of the jobs. This delay is not
present in Batsim and must be considered for realism. We evaluated the (de)commission overhead by submitting
jobs which perform an identical and precise amount of work, and compare it to the execution time given by
OAR (i.e., termination time minus starting time). Figure |3a) shows the distribution of overheads in seconds. This
distribution shows that the overheads are mostly about 2 or 3 seconds and that the distributions has a long tail.
We performed a fitting of a Log-Normal law on the overheads’ data to retrieve a statistical model. The fitting
yielded that the overheads follow a distribution Lognormal(1.04,0.27). Figure [3b|shows the cumulative distribution
functions of the overhead (solid line) and the model (dashed line). This model allows us to generate Batsim workloads
containing this overhead in the execution time of the jobs.

Killing of Best-Effort Jobs In Batsim, when priority jobs are submitted, and they can be scheduled by killing
best-effort jobs, the best-effort jobs are immediately stop, and the priority jobs started instantaneously. In practice,
the priority jobs spend some time in the waiting queue while the best-effort jobs are being killed and the nodes

cleaned and set up. This delay can be taking into account in the description of the priority jobs. The execution
time in Batsim must also contain this delay.

4 Evaluation

In this Section, we evaluate the quality of the simulation.

4.1 Experimental Protocol

For both the real system and the simulated one we will conduct the same scenario. There are 500 CiGri jobs with
an execution time of 235 seconds. The submission loop of CiGri is called every 30 seconds in order to see how the
system respond to delay in the control input. After 2000 seconds, a priority job is submitted and takes half of the
resources of the cluster for 1800 seconds. The controller of CiGri aims to regulate the quantity wy + r around the
value 64 (which is the double of the number of resources in the cluster).

4.2 Experimental Setup

The real experiments were carried on the dahu cluster of Grid’5000 1] where the nodes have 2 Intel Xeon Gold
613 with 16 cores per CPU and 192 GiB of memory. The reproducibility of the deployed environment is ensured
by NizOS Compose [10].

We deploy 3 nodes: one for the OAR server, one for CiGri, and one for the OAR cluster. We do not deploy 32
nodes for the cluster, but instead deploy a single node and define 32 OAR resources.

4.3 Execution time

One of the motivation of this study if the cost in time in resources of experiments. Real experiments require
deploying 3 resources (around 10 minutes), and then to execute the scenario (around 1h20 minutes). In total, a
single execution of the scenario consumes around 9 CPU hours.

In comparison, a simulation requires a single CPU, and needs 2 seconds to complete, thus consuming approxi-
mately 5.5 x 10~% CPU hours

4.4 Signals Comparison

For the simulation of CiGri to be useful, we need the signals of interest to have the same properties and behave
the same in both simulation and real experiments. The signals of interest are:

e the number of best-effort resources in the waiting queue
e the number of currently used resources on the cluster

e the dynamic of a CiGri submission (i.e., the time it takes to see the impact of a submission)

Figure [4 shows the comparison of the signals of interested between experiments of the same scenario executed
in simulation (red) and deployed on real machines (blue). The signals appear to be in sync. The amplitude do
differ, as can be observed around 500 seconds. The real system is obviously more sensible to noise. This noise can
be noticed when looking at the used resources (top left graph on Figure . The cluster in the simulation is always
full, whereas the cluster during real experiments is not (e.g., at 1000, 2000, 4500 seconds).

4.5 Gantt Charts Comparison

Figurecompares the resulting Gantt charts of the experiment for the simulation (top) and real execution (bottom).
We notice that there are “gaps” in the real schedule (e.g., at time 1500 seconds on resource 24). These gaps create
a lag in the schedule which also impact the signals.

This lag comes from OAR scheduling algorithm. Once the OAR decided to start to compute a scheduler, if any
job arrives during the execution of the scheduler, those jobs will not be taken into account until the next schedule
call. Taking into account this lag in the simulation is complex, as Batsim is responsible for the management of the
simulation time, and because the time “stops” during the computation of the schedule.

Used Resources Number of CiGri jobs submitted

30+ [T ‘—”lll

204

404

204
104

Best-Effort Waiting Resources

100
60 A

751

404

50 1

204
254

0 -
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time [s]

— Batsim — Real

Figure 4: Comparison of the signals of interest for the same experiment executed in simulation with Batsim (red)
and deploy (blue). Signals appear to be in sync, but some amplitudes might differ.

5 Conclusion

Distributed experiments are complex and costly. Simulation techniques can help reduce the cost of such experiments.
However, simulators rely on models that can lose information compared to the real system. In this paper, we
implemented the essential behavior of CiGri, a grid middleware, in Batsim. Real experiments with CiGri requires
3 compute nodes for several hours, while simulation last a few seconds on a laptop. We compared the behavior and
similarities of signals of interest of our system in simulation and real experiments. We had to modify the workload
of the simulation to match the different overheads induced by the real system. Results showed satisfying quality of
signals in simulation.

In this paper, we only focused on the execution time part of the jobs. However, in our CiGri works Eﬂ we
control the submission of CiGri jobs to OAR in order regulate the load of a distributed file-system. Taking into
account a parallel file-system in Batsim is feasible . However, the current limitation of Batsim is the lack of
probe mechanism to sense internal information and states.

References

[1] Daniel Balouck et al. “Adding Virtualization Capabilities to the Grid’5000 Testbed”. In: Cloud Computing
and Services Science. Ed. by Ivan I. Ivanov et al. Vol. 367. Communications in Computer and Information
Science. Springer International Publishing, 2013, pp. 3—20. 1SBN: 978-3-319-04518-4. por1: [10.1007/978-3-
319-04519-1_1.

[2] N. Capit et al. “A batch scheduler with high level components”. en. In: CCGrid 2005. IEEE International
Symposium on Cluster Computing and the Grid, 2005. Cardiff, Wales, UK: IEEE, 2005, 776-783 Vol. 2. 1SBN:
978-0-7803-9074-4. pOI: [10.1109/CCGRID.2005.1558641. URL: http://ieeexplore.ieee.org/document/
1558641/ (visited on 05/25/2020).

https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1109/CCGRID.2005.1558641
http://ieeexplore.ieee.org/document/1558641/
http://ieeexplore.ieee.org/document/1558641/

Batsim

304

204

10

Real

Resources

30

204

10

T T T T T
0 1000 2000 3000 4000 5000

Figure 5: Comparison of the Gantt charts for the simulation (top) and real experiment (bottom) of the same
scenario. We observe a small lag, which is due to OAR, but both schedules are similar.

[10]

[11]

[12]

[13]

Henri Casanova et al. “Versatile, Scalable, and Accurate Simulation of Distributed Applications and Plat-
forms”. In: Journal of Parallel and Distributed Computing 74.10 (June 2014), pp. 2899-2917. URL: http:
//hal.inria.fr/hal-01017319.

Pierre-Frangois Dutot et al. “Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator”. In: 20th Workshop on Job Scheduling Strategies for Parallel Processing. Chicago, United
States, May 2016. URL: https://hal.archives-ouvertes.fr/hal-01333471.

Cristian Galleguillos, Zeynep Kiziltan, and Alessio Netti. “Accasim: an HPC simulator for workload man-
agement”. In: High Performance Computing: 4th Latin American Conference, CARLA 2017, Buenos Aires,
Argentina, and Colonia del Sacramento, Uruguay, September 20-22, 2017, Revised Selected Papers 4. Springer.
2018, pp. 169-184.

Yiannis Georgiou, Olivier Richard, and Nicolas Capit. “Evaluations of the lightweight grid cigri upon the
grid5000 platform”. In: Third IEEE International Conference on e-Science and Grid Computing (e-Science
2007). IEEE. 2007, pp. 279-286.

Quentin Guilloteau, Olivier Richard, and Eric Rutten. “Etude des applications Bag-of-Tasks du méso-centre
Gricad”. In: COMPAS 2022 - Conférence francophone d’informatique en Parallélisme, Architecture et Systéme.
Amiens, France, July 2022, pp. 1-7. URL: https://hal.archives-ouvertes.fr/hal-03702246.

Quentin Guilloteau et al. “Controlling the Injection of Best-Effort Tasks to Harvest Idle Computing Grid
Resources”. In: ICSTCC 2021 - 25th International Conference on System Theory, Control and Computing. lasi,
Romania, Oct. 2021, pp. 1-6. DOI:110.1109/ICSTCC52150.2021.9607292. URL: https://hal.inria.fr/hal-
03363709.

Quentin Guilloteau et al. “Model-free control for resource harvesting in computing grids”. In: Conference on
Control Technology and Applications, CCTA 2022. Trieste, Italy: IEEE, Aug. 2022. URL: https://hal.
archives-ouvertes.fr/hal-03663273.

Quentin Guilloteau et al. “Painless Transposition of Reproducible Distributed Environments with NixOS
Compose”. In: CLUSTER 2022 - IEEFE International Conference on Cluster Computing. Vol. CLUSTER 2022
- IEEE International Conference on Cluster Computing. Heidelberg, Germany, Sept. 2022, pp. 1-12. URL:
https://hal.science/hal-03723771.

Jeffrey O Kephart and David M Chess. “The vision of autonomic computing”. In: Computer 36.1 (2003),
pp- 41-50.

Dalibor Klusacek, Mehmet Soysal, and Frédéric Suter. “Alea—complex job scheduling simulator”. In: Par-
allel Processing and Applied Mathematics: 15th International Conference, PPAM 2019, Bialystok, Poland,
September 8—11, 2019, Revised Selected Papers, Part II 15. Springer. 2020, pp. 217-229.

Michael Mercier. “Contribution to High Performance Computing and Big Data Infrastructure Convergence”.
en. PhD Thesis. Universite Grenoble Alpes, 2019.

http://hal.inria.fr/hal-01017319
http://hal.inria.fr/hal-01017319
https://hal.archives-ouvertes.fr/hal-01333471
https://hal.archives-ouvertes.fr/hal-03702246
https://doi.org/10.1109/ICSTCC52150.2021.9607292
https://hal.inria.fr/hal-03363709
https://hal.inria.fr/hal-03363709
https://hal.archives-ouvertes.fr/hal-03663273
https://hal.archives-ouvertes.fr/hal-03663273
https://hal.science/hal-03723771

	Introduction
	Motivating Example: the middleware
	Presentation
	Limitation of
	Feedback Loop Regulation
	Expected Properties of the Simulation

	
	Hypotheses
	 in a Nutshell
	Two Schedulers
	Broker
	The Submission Loop
	Workload Adjustments

	Evaluation
	Experimental Protocol
	Experimental Setup
	Execution time
	Signals Comparison
	Gantt Charts Comparison

	Conclusion

