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Impact on traffic of delayed information in navigation systems
Tommaso Toso, Student Member, IEEE, Alain Y. Kibangou, Member, IEEE, Paolo Frasca, Senior Member, IEEE

Abstract—Nowadays many car drivers resort to navigation
apps to decide which route to take. To be efficient, these
applications increasingly use real-time data rather than historical
data. However, delay is unavoidable since data collection, com-
munication, and processing are necessary before their usage in
the App. For this purpose, we introduce a macroscopic dynamic
traffic assignment model to describe the behaviour of drivers in
choosing which route to follow to reach their destination. We
assume that a part of the drivers follows the directions of a
navigation App, whose directions are based on delayed traffic
data. Through the stability analysis of the model, we show and
quantify the excessive level of delay in traffic data that can be
detrimental to the efficiency of the network by being responsible
for the appearance of oscillating trajectories and unsatisfied
demand.

Index Terms—Delay systems, Traffic control, Transportation
networks.

I. INTRODUCTION

Navigation Apps are extremely popular nowadays among
users of transportation networks, given the ease of access
via smartphone and the propensity to use them due to the
increasing number of congestion events over time. Considering
the importance of the phenomenon and the obvious power of
such Apps to influence drivers’ decisions, thus traffic patterns,
studying their impact is crucial. In this paper, the focus is
on how the delay between data collection and the provision
of route recommendations synthesized from them can bring
potential losses in network efficiency and create unsatisfied
traffic demand. Intuitively, excessive delay should lead to
oscillations and unstable behaviors of the traffic patterns, as
suggested by the theory of time-delay systems [7].

In the literature, almost all relevant works within the macro-
scopic dynamic routing framework present models in which
the route choice is based on the current state of traffic and no
delay is considered [2], [4], [5], [6]. It is worth to mention
that in [1] the authors propose a framework that allows for
dynamic routing of drivers based on delayed information, but
they do not elaborate on the effects caused by the latter. In [9],
[12], by using a microscopic traffic model, it was shown that
information based on floating car data, which is intrinsically
affected by delay, can lead to oscillating trajectories of the
system, thus impacting the system efficiency.
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In this work, we present a macroscopic dynamic traf-
fic assignment model aiming to study traffic at an origin-
destination pair connected by two alternative non intersecting
homogeneous routes, where homogeneous means that the two
routes have the same length and free-flow speed but can have
different capacities. We assume that a given fraction of drivers
relies on recommendations of a navigation App. The model
describes traffic evolution on the two routes. The varying be-
havior of the app-informed drivers is captured by routing ratios
determining drivers’ choice. Routing ratios take into account
both drivers’ inclination to follow the App recommendations
and, differently from previous work in literature, the delay
affecting information, i.e., routing ratios depend on a retarded
state of the system. Through some manipulations, we trace the
system back to a scalar ordinary differential equation (ODE)
in terms of the difference between the travel times on the two
routes, from which, through its stability analysis, we are able
to deduce implications from the traffic point of view.

Briefly, the main results we found imply that delay affecting
information is detrimental in terms of the network efficiency,
i.e., it induces instability (oscillating behavior) and unsatisfied
demand. In addition, the system becomes more sensitive
to smaller and smaller value of delay, as the demand, the
fraction of app-informed drivers, and drivers’ compliance to
recommendations increase.

The paper is organized as follows. Section II provides the
definition of the model and its main features. In Section III,
the stability analysis of the system is carried out and an
interpretation from a road traffic point of view is provided.
Section IV contains numerical simulations before concluding
the paper in Section V.

Notation: Let Rd (Rd
+) be the space of real-valued (non-

negative-valued) vectors of dimension d. We denote by
C([a,b],D) the set of continuous functions χ : [a,b]→ D with
the norm ||χ||C = maxω∈[a,b] |χ(ω)|. Given a domain D ⊆Rd

and an autonomous system of delay differential equation
˙y(t) = g(y(t),y(t − θ)), θ > 0, with g : D2 → Rd , admitting

a unique solution x : R+ → Rd with initial condition x(ω) =
χ(ω), ω ∈ [−θ ,0], we say that X ⊆D is an invariant region
of the system if χ(ω) ∈ X implies that x(t) ∈ X , ∀t ≥ 0.

II. MODEL DEFINITION

A. Network geometry

Consider an origin-destination pair connected by two alter-
native non intersecting routes, see Figure 1. For each route
i = 1,2, the positive values Ci, Bi Fi, Li represent the critical
density (veh/km), the jam density (veh/km), the maximum
capacity (veh/h) and the length (km), respectively. The demand
is assumed to be a constant flow φ > 0 that enters the network
from the origin node and aims to reach the destination node



Fig. 1. Graph representation of the origin-destination pair considered.

through the two routes. We assume that it does not exceed the
network capacity:

φ < F1 +F2. (1)

This assumption ensures that the network is well-dimensioned
and able to withstand the traffic demand. The traffic density xi
on the i-th route evolves according to the following equation:

ẋi(t) =
1
Li

(min{φRi(x(t −θ)),Fi}− vixi(t)) , (2)

for i = 1,2, where Ri(xi(t − θ)) ≥ 0 and vi = Fi/Ci stand
respectively for the routing ratio and the free-flow speed of
the i-th route, while x(t) = (x1(t),x2(t))T represents the state
of the network. We assume routing ratios to be Lipschitz
continuous and to depend on a delayed state of the system, i.e.,
the demand splitting at the origin node at time t is determined
by the state of the system at time t −θ for some nonnegative
delay θ .

The minimum operator in (2) ensures that an inflow higher
than the route capacity cannot enter it. Observe that the right-
hand side of (2) is Lipschitz continuous. Hence, there exists
an unique solution to (2) that continuously depends on the
initial data for every initial condition x(ω), ω ∈ [−θ ,0], where
x(ω) ∈ C([−θ ,0],P) and P := [0,C1] × [0,C2] [7][Section
1.3.1].

Proposition 1. P is an invariant region for (2).

Proof. Since vi = Fi/Ci, we can observe that xi(t) =Ci implies
that the second term in (2) is equal to Fi, thus ẋi(t) ≤ 0 for
i = 1,2. Therefore trajectories cannot exit region P.

Remark 1 (Free-flow dynamics). Proposition 1 implies that,
starting from a free-flow initial condition, the density dynamics
will remain in free-flow for all times. This represents a
limitation of the model at hand, in that it does not allow us
to describe scenarios in which one of the two route becomes
congested during the dynamics.

B. Modeling the routing ratios

To take into account the influence of route recommendations
on the demand splitting, routing ratios should depend on
travel time, which is typically modeled as a strictly increasing
functions of road density [1], [2], [10]. In this paper, we model
travel time as follows:

τi(xi(t)) = ai
xi(t)
Bi

+
Li

vi
, ai > 0, (3)

i = 1,2. The choice of affine travel time functions is largely
used in the dynamic traffic assignment literature, especially
when considering a free-flow regime [8], [14]. The constant

term in (3) corresponds to the free-flow travel time, while the
coefficient ai is such that aiCi/Bi is the time added to the route
travel time when the route density reaches the critical density
Ci [8]. We model routing ratios assuming that a fraction α ∈
[0,1] (which we will refer to as penetration rate) of the user
demand is influenced by the App recommendations, whereas
the remaining fraction gets split according to given ratios r0 =
(r0

1,r
0
2), where r0

i ≥ 0, r0
1+r0

2 = 1. Therefore, we define routing
ratios as follows:

R1(d(t −θ)) := (1−α)r0
1 +α

1

1+ r0
2

r0
1

exp
(
− 1

η
d(t −θ)

) ,
R2(d(t −θ)) = 1−R1(d(t −θ)),

(4)

and
d(t) := τ2(x2(t))− τ1(x1(t))

denotes the difference between the traveling times. The second
term, describing the behaviour of the app-informed drivers,
takes the form of the logit dynamics [3], [4], [5] and is a
function of the delayed state of the system: 1/η > 0 is the so
called drivers’ compliance, which quantifies the tendency of
drivers to actually follow the App recommendations. Indeed,
when 1/η → 0, i.e., drivers’ compliance is very low, drivers do
not really exploit information and the demand splitting stays
close to r0. On the contrary, when 1/η → +∞, all drivers
tend to take the shortest travel time route. Notice from (4)
that the fraction of user demand directed towards each route
is non negative, i.e., 0≤Ri(d(t−θ))≤ 1, ∀x(t−θ)∈ [0,B1]×
[0,B2], i = 1,2, and route recommendations direct an higher
quantity of demand on the shortest travel time route (according
to delayed data), i.e., they advise to take the route with the
shortest travel time.

C. Unsatisfied demand

When on route i the fraction of user demand φRi is less
than the capacity Fi, then the first term of (2) is not saturated
and the demand is able to enter the route freely. Instead, when
φRi is more than Fi, then the first term of (2) is saturated and
part of the demand is unable to enter the route. We refer to
the latter situation as unsatisfied demand. Then, each route is
characterized by two possible modes that can be made explicit
by rewriting (2) as follows:

ẋi(t) =


φRi(d(t −θ))− vixi(t)

Li
, if Ri(d(t −θ))≤ Fi

φ
,

Fi − vixi(t)
Li

, if Ri(d(t −θ))> Fi
φ
,

(5)

where the second equation is associated to the unsatisfied
demand regime. Notice that (1) implies that the two routes
cannot present unsatisfied demand simultaneously.

D. Reducing the model to a 1-dimensional dynamics

We make the following assumption of homogeneity of the
two routes.

Assumption 1 (Free-flow speeds and route lengths). The free-
flow speed and the route length are the same for both routes:

vi = v, Li = L, i = 1,2. (6)



From now on, we will work on this special case. Assump-
tion 1 refers to a scenario in which the two routes are of
similar length and subject to the same speed limit but can
have different capacities, e.g., two different routes in a urban
road network.

Now, let us multiply ẋi(t) by ai/Bi, i = 1,2 in (2), and then
subtract the first equation from the the second one. Thanks to
Assumption 1, we get the following scalar delay-differential
equation in d(t):

ḋ(t) =− v
L

d(t)+ρ(d(t −θ)), (7)

where

ρ(d(t −θ)) :=
1
L

(
a2

B2
min(F2,φ(1−R1(d(t −θ))))

− a1

B1
min(F1,φR1(d(t −θ)))

) (8)

is a globally Lipschitz continuous function with Lipschitz
constant K = αφ

4ηL

(
a2
B2

+ a1
B1

)
. Recalling Remark 1, the state

space of (7) is given by [−a1C1/B1,a2C2/B2].
Observe that because of the one-to-one correspondence

between R1(d(t)) and d(t), any conclusion about the stability
of the trajectories of d(t) will be valid for the stability of the
trajectories of R1(d(t)), as well.

III. STABILITY ANALYSIS

This section contains an analysis of the stability of (7). First,
we will show that (7) admits a single equilibrium point. Then,
we provide sufficient conditions for the global asymptotic
stability of (7) ∀θ ≥ 0, using a Lyapunov approach. Finally,
by means of a local analysis, we give sufficient conditions for
the system to become unstable when the delay θ is sufficiently
large. Particular emphasis is placed on the link between the
above conditions and the parameters φ , α and 1/η .

A. Uniqueness of the equilibrium point
Proposition 2. The dynamics (7) admits a unique equilibrium
point.

Proof. Define g(d) := Lρ(d)/v. We see that d∗ is an equilib-
rium of (7) if and only if is a fixed point of g(d). Now, g(d)
is a continuous and strictly decreasing function in d. Hence, it
admits a unique fixed point, i.e., (7) has a unique equilibrium
point d∗.

B. Delay-independent global asymptotic stability
We now provide a condition for the delay-independent

global asymptotic stability (GAS) of (7).

Theorem 1 (Delay-independent GAS). The unique equilib-
rium point d∗ of the dynamics (7) is globally asymptotically
stable for all θ ≥ 0 if K < v/L.

Proof. For convenience, consider the dynamics obtained by
shifting (7) so that d∗ corresponds to the origin of the system.,
so take u(t) = d(t)−d∗ and

u̇(t) =− v
L

u(t)−σ(u(t −θ)), (9)

where σ(u(t)) := ρ(u(t)+d∗)−ρ(d∗). Clearly, the asymptotic
properties of (7) coincides with those of (9). Define now the
following Lyapunov functional:

V (t) :=
1
2

u2(t)+
v

2L

∫ t

t−θ

u2(s)ds. (10)

First of all, notice that

1
2
|u(t)|2 ≤V (u(t))≤ 1

2

(
1+

vθ

L

)
max

s∈[t−θ ,t]
|u(s)|2.

We find that

V̇ (t) = u(t)u̇(t)+
v

2L

(
u2(t)−u2(t −θ)

)
≤

≤− v
2L

u2(t)− v
2L

u2(t −θ)+K|u(t)||u(t −θ)|=

=−
(
|u(t)| |u(t −θ)|

) v
2L −K

2

−K
2

v
2L

 |u(t)|

|u(t −θ)|

 .

If the matrix defining the quadratic form above is positive
definite, then there exists γ > 0 such that V̇ (t) < −γ|u(t)|2
and global asymptotic stability of (7) comes from [7][Theorem
3.1]. The matrix is positive definite if and only if v/L>K.

The inequality K < v/L can be rewritten equivalently as
follows:

φ <
4ηvB1B2

α(a2B1 +a1B2)
=: Φ. (11)

Then, some considerations can be made about Theorem 1.
First of all, the delay-independent condition (11) for the GAS
of (7) is expressed in terms of an upper bound on the user
demand. This upper bound on the user demand depends on
both the penetration rate α and drivers’ compliance 1/η .
Specifically, the upper bound in (11) is decreasing in α and
1/η . Therefore, we can say that if enough drivers receive the
route recommendations and follow them accurately, then the
system becomes sensitive to delay, in the sense that delays can
destabilise it.

C. Instability and oscillations for large demand and delay

When the user demand exceeds the upper bound in (11),
i.e., v/L < K, it might be that stability is lost for sufficiently
large values of delay. In the following, we investigate this
possibility by performing a local stability analysis around the
unique equilibrium point d∗ of the system to deduce sufficient
conditions for d∗ to be unstable.

We will focus on a relevant subset of the parameter set, in
which the following three facts hold.

1) There is no unsatisfied demand when the penetration rate
is zero, which is equivalent to

φr0
i < Fi, i = 1,2. (12)

2) There is no unsatisfied demand at equilibrium, which is
equivalent to

1− F2

φ
< R1(d∗)<

F1

φ
. (13)

3) The user demand φ and the penetration rate α are large
enough to allow unsatisfied demand to emerge on one



of the two routes. This requirement will be satisfied by
the following condition:

φ > Fi, α > α i :=
Fi −φr0

i

φ(1− r0
i )
, i = 1,2. (14)

Assumption 2. Conditions (12), 13 and (14) are satisfied.

Theorem 2 (Local stability). Suppose Assumption 2 holds.
Then, the following assertions hold true for dynamics (7):

1) if |ρ ′(d∗)| < v
L , then d∗ is asymptotically stable for all

θ ≥ 0.
2) if ρ ′(d∗)<− v

L , then d∗ is asymptotically stable for θ <
θ ∗ and unstable for θ > θ ∗, where

θ
∗ :=

1√
(ρ ′(d∗))2 − v2

L2

arccos
(

v
Lρ ′(d∗)

)
, (15)

undergoing a Hopf bifurcation at d = d∗ when θ = θ ∗.

Proof. Assumption 2 ensures that no terms of (8) are saturated
at equilibrium. Then, (7) can be rewritten as follows:

ḋ(t) =− v
L

d(t)+
φ

L

(
a2

B2
−
(

a1

B1
+

a2

B2

)
R1(d(t −θ))

)
. (16)

Since the inequalities in (13) are strict, we are able to find
a neighborhood I ⊂ R of d∗ where (7) takes the form (16),
with a differentiable right-hand side. Therefore, we are able
to perform a local stability analysis within I by analysing the
linearization of (16) in I. The statement follows after applying
[13][Theorem 2.3] to (7).

This result provides a necessary and sufficient condition for
instability. However, it involves several conditions that cannot
easily be tested because the equilibrium d∗ is not known in
closed form. In order to obtain more readable and testable
conditions, we begin by deriving a sufficient condition to
replace (13), always assuming to be in a sufficiently small
neighborhood of d∗ where (7) reads as (16), as in the proof
of Theorem 2. To this purpose, one can readily verify that
condition (13) is equivalent to

dFC < d∗ < dCF , (17)

where

dCF := η log
(

r0
2

r0
1

γ1

αφ − γ1

)
, dFC := η log

(
r0

2

r0
1

αφ − γ2

γ2

)
,

with γi := Fi − (1 − α)φr0
i , i = 1,2. Next, we derive the

sufficient condition.

Lemma 1. Given φ > 0 satisfying (12) and (14). Then, (17) is
satisfied for all α >max{α1,α2} and 1/η > 0, if the following
condition hold:

r0
1 <

a2B1

a1B2 +a2B1
<

F1

φ
or r0

2 <
a1B2

a1B2 +a2B1
<

F2

φ
. (18)

Proof. See Appendix.

We now make the following assumption, testable on the
system parameters.

Assumption 3. Conditions (12), (14) and (18) are satisfied.

Finally, we combine Theorem 2 with the following lower
and upper bounds on the absolute value of ρ ′(d).

Lemma 2. Suppose that Assumption 2 holds. Then, the
following inequalities hold:

Q < |ρ ′(d∗)|< K, Q := min(|ρ ′(dCF)|, |ρ ′(dFC)|) (19)

where

|ρ ′(dCF)|=
φ

ηL

(
a1

B1
+

a2

B2

)
γ1

(
1− γ1

α

)
,

|ρ ′(dCF)|=
φ

ηL

(
a1

B1
+

a2

B2

)
γ2

(
1− γ2

α

)
.

(20)

Proof. See Appendix.

We thus get the following result only involving testable
conditions.

Corollary 1. Under Assumption 3, the following assertions
hold:

1) if K < v
L , then d∗ is asymptotically stable for any θ ≥ 0.

2) if v
L < Q, then the second assertion of Theorem 2 holds

and the critical delay value satisfies

θ
∗ < θ

∗
Q :=

1√
Q2 − v2

L2

arccos
(
− v

LQ

)
. (21)

Proof. The first assertion follows trivially from the first asser-
tion of Theorem 1 and the second inequality in (19). Similarly,
the second assertion follows directly from the second assertion
of Theorem 2, the first inequality in (19) and the fact that θ ∗

is an increasing function of ρ ′(d) when ρ ′(d)<−v/L.

The first assertion of Corollary 1 is in fact a special case
of Theorem 1, which stated that K < v/L implies the delay-
independent global asymptotic stability of d∗. Instead, the
second assertion provides a sufficient condition for the unique
equilibrium point d∗ to be unstable and an upper bound for
the critical delay θ ∗, which are explicitly written as functions
of the system parameters.

We can easily deduce from (20) that Q is increasing in α

and 1/η and therefore θ ∗
Q is decreasing α and 1/η . This fact

provides us with some indications about the qualitative be-
havior of θ ∗ with respect to the above mentioned parameters,
suggesting that increases in the penetration rate and in drivers’
compliance reduce the delay threshold after which the system
equilibrium is sure to loose its stability. One can also verify
that θ ∗ is decreasing in φ , even though the relevance of this
observation is tempered by the fact that too large demand can
lead outside the set of assumptions under consideration.

Overall, the results provided in this section are consistent
with those presented in Section III-B: increases in φ , α and
1/η negatively affect the system stability.

Remark 2. Assumptions 2 and 3 have two interesting features.
First, they select a set of parameters large enough to include
realistic traffic scenarios, as will be demonstrated in the next



section. Second, they focus on a very interesting situation in
which, despite not having unsatisfied demand both at equilib-
rium and in the absence of informed drivers, the destabilising
effect of delays might cause demand dissatisfaction on one of
the two routes, as we are going to show in the next section.

IV. NUMERICAL EXAMPLE AND DISCUSSION

Consider the network in Figure 1 characterized by the
following parameters:

F1 = 1200 veh/h, F2 = 600 veh/h,
C1 = 24 veh/km, C2 = 12 veh/km,
B1 = 120 veh/km, B2 = 60 veh/km,

a1 = a2 = 0.1 h (6 min), r0
1 = 0.66, r0

2 = 0.34,

and assume that the network is subject to a constant user
demand of φ = 1750 veh/km, the length of the two routes
is L = 1.5 km and the average free-flow speed is 50 km/h.
The parameters of the two routes were chosen to represent
a two-lane urban route and a one-lane urban route. Consider
also two possible values of α , 0.33 and 0.66, and two values
of 1/η , 100 and 200. We observe that these parameters satisfy
Assumption 2, meaning there is no unsatisfied demand both
at equilibrium and in absence of informed drivers.

Finally, consider two realistic [15], [16] values of θ , 1 and
8 minutes. The numerical simulations in Figure 2 show the
system behavior for these values of delay in three different
cases:

• α = 0.33, 1/η = 100: in this case, K ≈ 24.06, which is
less than v/L ≈ 33.33, and φ < Φ ≈ 2666 veh/h. Hence,
Theorem 1 holds and, as shown in the plots in the first
column of Figure 2, the delay increase does not alter the
stability of the equilibrium point of the system.

• α = 0.66, 1/η = 100: in this case, K ≈ 48.13 and
φ > Φ ≈ 1333 veh/h. Hence, Theorem 1 is no longer ap-
plicable. Moreover, Q ≈ 40.50 and exceeds v/L ≈ 33.33.
Hence, by Corollary 1, sufficiently high delays can desta-
bilise the system. Indeed, since θ ∗

Q ≈ 6 min and 24 s,
for θ = 8 min the equilibrium point is unstable and the
trajectory is oscillating.

• α = 0.33, 1/η = 200: similarly to the previous case,
the decrease of noise destabilises the equilibrium point
when the system is affected by a delay of 8 minutes.
Consistently with Corollary 1, in this case K ≈ 48.13
and Q ≈ 37.23, which are both greater than v/L = 33.33,
φ > Φ ≈ 1333 veh/h and θ ∗

Q ≈ 7 min and 42 s.
In the second and third cases, the excessive delay affecting
recommendations destabilises the equilibrium point of the
system and causes trajectories to oscillate, i.e., the incoming
informed drivers split between the two routes in an unsteady
and periodic way. Moreover, this oscillating behavior causes
periodic demand dissatisfaction, thus negatively affecting the
network performance.

Remark 3 (Effects of unsatisfied demand on oscillations). The
saturation of the supply functions, i.e., the occurrence of un-
satisfied demand, is not the cause of oscillations, considering
that, as shown in Figure 2, oscillations can arise starting from

initial conditions with no supply saturation. Instead, the only
cause of oscillations is information delay.

Remark 4 (Comparison with [2]). Another macroscopic traffic
model exhibiting oscillating trajectories was proposed in [2].
Their model does not account for information delays and oscil-
lations are due to different reasons: in fact, the model [2] does
not enjoy a key monotonicity property [11], which prevents
oscillations and is satisfied by our model (2) when θ = 0.

V. CONCLUSION

In this paper, we have mathematically described how delays,
which affect routing recommendations by navigation Apps,
influence the traffic flow between an origin-destination pair
that is connected by two alternative non-intersecting paths
with the same length and free-flow speed. The proposed model
shows that an excessive delay can destabilise the equilibrium
of the system and give rise to oscillating trajectories, provided
the penetration rate and the user demand are large enough. We
emphasized how the system becomes more susceptible to delay
when the user demand, the penetration rate of the App and the
drivers’ compliance increase. Depending on their magnitude,
oscillations can generate unsatisfied demand and thus seriously
deteriorate the functioning of the traffic network.

Future work is mainly headed towards two kinds of ex-
tensions of the model. On the one hand, we want to study
more complex network topologies, e.g., featuring more than
two alternative paths, paths with different lengths and free-flow
speeds, and richer traffic dynamics to describe non free-flow
conditions. On the other hand, we want to extend the results to
more general classes of routing ratios. Such extensions would
underline the generality of delay as a key cause of instability
and oscillations in traffic flows.

APPENDIX A
PROOF OF LEMMA 1

First, observe that (14) ensures that dCF and dFC are well-
defined. Then, the first condition of Assumption 2 is equivalent
to dFC < 0 < dCF . For φ fixed, one can define a family of
functions {ρα j ,ηk},α j > max{α1,α2}, ηk > 0, observing that
all of them attain the same value γ at d = 0:

γ :=
φ

L

(
a2

B2
−
(

a1

B1
+

a2

B2

)
r0

1

)
.

It holds that γ > 0 when the first inequality in (18) holds,
whereas γ < 0 when the second does. As pointed out in the
proof of Proposition 2, the equilibrium point of (7) satisfies
to d∗ = Lρ(d∗)/v, i.e., it is the value of d at which Lρ(d∗)/v
and the identity line intersect. Define d∗

α j ,ηk
as the equilibrium

point associated to the function ρα j ,ηk . Suppose that (18)
holds, so that γ > 0 and βCF := ρ(dCF) < 0. Since neither
βCF nor γ depend on α and η , then 0 < d∗

α j ,ηk
< dCF , for

all α j ∈ (max{α i, i = 1,2},1], ηk > 0. The proof is complete
after observing that we can apply the same process when (18)
holds, so that γ < 0 and βFC := ρ(dCF)> 0.



Fig. 2. Each column of plots is associated with different values of the pair of parameters α, 1/η , each line with different delay θ . The red dashed lines
delimit the states for which unsatisfied demand is absent (in-between) or present (outside).

APPENDIX B
PROOF OF LEMMA 2

The second inequality is trivial, since K is the Lipschitz
constant of ρ(d). For the first inequality, if we define U1(d) :=
R1(d)− (1−α)r0

1, then

ρ
′(d) =

αφ

ηL

(
a1

B1
+

a2

B2

)
U1(U1 −1), ρ

′′(d) =
ρ ′(1−2U1)

η
.

We see that |ρ ′(d)| increases for U1(d) ∈ (0,1/2) and de-
creases for U1(d) ∈ (1/2,1), i.e., |ρ ′(d)| increases for d <
U−1

1 (1/2) = η log(r0
2/r0

1) and decreases for d > U−1
1 (1/2),

where U−1
1 is the inverse of U1(d). From (17), |ρ ′(d∗)| is

greater than at least one between |ρ ′(dCF)| and |ρ ′(dFC)|.
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