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Abstract

In single-objective optimization, it is well known
that evolutionary algorithms also without further
adjustments can stand a certain amount of noise
in the evaluation of the objective function. In con-
trast, this question is not at all understood for multi-
objective optimization.

In this work, we conduct the first mathematical
runtime analysis of a simple multi-objective evolu-
tionary algorithm (MOEA) on a classic benchmark
in the presence of noise in the objective function.
We prove that when bit-wise prior noise with rate
p ≤ α/n, α a suitable constant, is present, the sim-
ple evolutionary multi-objective optimizer (SEMO)
without any adjustments to cope with noise finds
the Pareto front of the OneMinMax benchmark in
time O(n2 log n), just as in the case without noise.
Given that the problem here is to arrive at a pop-
ulation consisting of n + 1 individuals witness-
ing the Pareto front, this is a surprisingly strong
robustness to noise (comparably simple evolution-
ary algorithms cannot optimize the single-objective
OneMax problem in polynomial time when p =
ω(log(n)/n)). Our proofs suggest that the strong
robustness of the MOEA stems from its implicit di-
versity mechanism designed to enable it to compute
a population covering the whole Pareto front.

Interestingly this result only holds when the objec-
tive value of a solution is determined only once
and the algorithm from that point on works with
this, possibly noisy, objective value. We prove that
when all solutions are reevaluated in each itera-
tion, then any noise rate p = ω(log(n)/n2) leads
to a super-polynomial runtime. This is very differ-
ent from single-objective optimization, where it is
generally preferred to reevaluate solutions when-
ever their fitness is important and where examples
are known such that not reevaluating solutions can
lead to catastrophic performance losses.

∗Author-generated version.

1 Introduction
Many real-world optimization problems consist of multiple,
often conflicting objectives. For these, a single optimal so-
lution usually does not exist. Consequently, a common solu-
tion concept is to compute a set of solutions which cannot be
improved in one objective without worsening in another one
(Pareto optima) and then let a decision maker select one of
these.

Due to their population-based nature, evolutionary algo-
rithms (EAs) are an obvious heuristic approach to such prob-
lems, and in fact, such multi-objective evolutionary algo-
rithms (MOEAs) have been successfully applied to many
multi-objective problems [Zhou et al., 2011].

Evolutionary algorithms are known to be robust against
different types of stochastic disturbances such as noise or
dynamic changes of the problem instance [Jin and Branke,
2005]. Surprisingly, as regularly pointed out in the litera-
ture [Liefooghe et al., 2007; Gutjahr, 2012; Gutjahr and Pich-
ler, 2016], only very little is known on how MOEAs cope with
such stochastic optimization problems. In particular, while it
is known that single-objective evolutionary algorithms with-
out any specific adjustments can stand a certain amount of
noise in the evaluation of the objective function, we are not
aware of any such result in multi-objective optimization.

We approach this question via the methodology of math-
ematical runtime analysis [Neumann and Witt, 2010; Auger
and Doerr, 2011; Jansen, 2013; Doerr and Neumann, 2020].
This field, for more than twenty years, has significantly
enlarged our understanding of the working principles of
all kinds of randomized search heuristics, including both
MOEAs [Brockhoff, 2011] and single-objective evolutionary
algorithms solving stochastic optimization problems [Neu-
mann et al., 2020]. Despite this large amount of work, there
is not a single runtime analysis discussing how a standard
MOEA computes or approximates the Pareto front of a multi-
objective problem in the presence of noise (and this is what
we shall do in the present work). The only paper that conducts
a mathematical runtime analysis of a MOEA in a noisy set-
ting analyzes a combination of the adaptive Pareto sampling
frameworks with the simple evolutionary multi-objective op-
timizer (SEMO) [Gutjahr, 2012], so this algorithm definitely
is not anymore a standard MOEA.

To start closing this gap, we conduct a runtime analy-
sis of a simple MOEA, namely the SEMO, on the classic
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benchmark problem ONEMINMAX, in the presence of one-
bit prior noise. We prove that when the noise rate is at most
α/n, where α is a suitable constant, then the population of
this MOEA, despite the noise, after an expected number of
O(n2 log n) iterations witnesses the full Pareto front. This
is the same bound on the runtime that is known for the set-
ting without noise [Giel and Lehre, 2010; Covantes Osuna et
al., 2020]. We note that in comparable single-objective set-
tings, not much more noise can be tolerated. For example,
only for p = O(log(log(n))/n) it could be shown in [Dang-
Nhu et al., 2018] that the (1 + 1) EA retains its noise-free
O(n log n) runtime on the ONEMAX benchmark. Already
for p = ω(log(n)/n), the runtime is super-polynomial. Con-
sidering this and taking into account that the multi-objective
ONEMINMAX problem is naturally harder (we aim at a pop-
ulation containing exactly one solution for each Pareto opti-
mum), our result indicates that MOEAs cope with noise sur-
prisingly well.

However, our work also shows one important difference
to the noisy optimization of single-objective problems. Our
result above assumes that each solution is evaluated only
once, namely when it is generated. This possibly noisy ob-
jective value is stored with the solution unless the solution
is discarded at some time. This approach is natural in that it
avoids costly reevaluations, but it differs from the standards in
single-objective evolutionary computation. Being afraid that
a faulty fitness value can negatively influence the future op-
timization process, almost all works there assume that each
time a solution competes with others, its fitness is reevalu-
ated. That noisy fitness values without reevaluating solutions
can significantly disturb the optimization process was rigor-
ously shown for an ant-colony optimizer [Doerr et al., 2012a].

Given that in single-objective evolutionary computation it
is more common to assume that solutions are evaluated anew
when they compete with others, we also analyzed the runtime
of the SEMO on ONEMINMAX under this assumption. While
this avoids sticking to faulty objective values for a long time,
our mathematical runtime analysis shows that this approach
can only tolerate much lower levels of noise. We can prove
an O(n2 log n) runtime only for p ≤ β/n2, β a suitable con-
stant, and we prove that for p = ω(log(n)/n2) the algorithms
needs super-polynomial time to compute the full Pareto front
of the ONEMINMAX benchmark. So clearly, the reevalua-
tion strategy recommended in single-objective optimization
is less suitable in multi-objective optimization (in addition to
the significantly higher computational cost of a single itera-
tion).

Overall, this first runtime analysis work of a standard
MOEA in a noisy environment shows that MOEAs without
specific adjustments are reasonably robust to noise and that
such stochastic processes can be analyzed with mathemat-
ical means, but also that insights from the single-objective
setting can be fundamentally wrong in multi-objective noisy
optimization.

2 Previous Work
Given the success of evolutionary algorithms both in multi-
objective and in stochastic optimization, there is a large body

of literature on both topics. For the general picture, we refer
to the surveys [Zhou et al., 2011] and [Jin and Branke, 2005;
Bianchi et al., 2009].

Much less understood is the intersection of both areas,
that is, how MOEAs solve stochastic optimization problems,
see [Gutjahr, 2011, Section 4]. Interestingly, all works de-
scribed there adapt the MOEA to deal with the stochas-
ticity of the problem. This is justified for problems that
have a strong stochasticity known in advance. However, it
is known that evolutionary algorithms often can tolerate a
certain amount of stochastic disturbance, in particular, noisy
function evaluations without any adjustments (and hence,
without that the user has to be aware of this noise). In con-
trast to single-objective optimization, we are not aware of any
such result for MOEAs.

This being a theoretical work, we now describe the math-
ematical runtime analyses closest to our work. The math-
ematical runtime analysis of MOEAs was started in [Lau-
manns et al., 2002a; Giel, 2003; Thierens, 2003]. These and
most subsequent works regarded artificial toy algorithms like
the simple evolutionary multi-objective optimizer (SEMO) or
the global SEMO (GSEMO). The hope is that results proven
on such basic algorithms, or at least the general insights
drawn from them, extend to more realistic algorithms. That
this hope is not unrealistic can be seen, e.g., from the fact
that the runtimes shown for the SEMO on the LOTZ and
COCZ benchmarks in [Laumanns et al., 2002b] could much
later be proven also for the NSGA-II [Zheng et al., 2022;
Bian and Qian, 2022], the most prominent MOEA.

For our work, naturally, the results on the ONEMINMAX
benchmark are most relevant. In [Giel and Lehre, 2010], it
was proven that the SEMO finds the Pareto front of this
benchmark in an expected number of O(n2 log n) iterations.
A matching lower bound was proven in [Covantes Osuna
et al., 2020]. The O(n2 log n) upper bound also holds for
the GSEMO (never formally proven, but easy to see from
the proof in [Giel and Lehre, 2010]), the hypervolume-based
(µ + 1) SIBEA with suitable population size [Nguyen et al.,
2015], and the NSGA-II with suitable population size [Zheng
et al., 2022]. For the NSGA-III, a runtime analysis exists only
for the 3-objective version of ONEMINMAX [Doerr and Wi-
etheger, 2023], but it is obvious that this result immediately
extends to an O(n2 log n) bound in the case of two objec-
tives. The main argument in all these analyses (which is not
anymore true in the noisy setting) is that Pareto points cannot
be lost, that is, once the population of the algorithm contains a
solution with a certain Pareto-optimal objective value, it does
so forever.

Due to their randomized nature, it is not surprising that
EAs can tolerate a certain amount of stochastic disturbance.
In the first runtime analysis of an EA for discrete search
spaces in the presence of noise [Droste, 2004], Droste inves-
tigated how the (1 + 1) EA optimizes the ONEMAX bench-
mark in the presence of bit-wise prior noise with noise
rate p (see Section 3.2 for a precise definition of this noise
model). He showed that the runtime remains polynomial (but
most likely higher than the well-known O(n log n) runtime
of the noiseless setting) when p = O(log(n)/n). When
p = ω(log(n)/n), a super-polynomial runtime results. These
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bounds have been tightened and extended in the future, in
particular, an O(n log n) runtime bound for noise rate p =
O(log(log(n))/n) with implicit constant small enough was
shown in [Dang-Nhu et al., 2018]. The level of noise an algo-
rithm can stand depends strongly on the problem, for exam-
ple, for the LEADINGONES benchmark the (1 + 1) EA has
a polynomial runtime if and only if the noise rate is at most
p = O(log(n)/n2) [Sudholt, 2021]. We refer to [Neumann et
al., 2020] for more results.

We note that all these works regard the standard version
of the EA without any particular adjustments to better cope
with noise. It is well-studied that resampling techniques can
increase the robustness to noise [Akimoto et al., 2015; Qian
et al., 2018; Doerr and Sutton, 2019], however, this requires
the algorithm user to be aware of the presence of noise and
have an estimate of its strength.

Reevaluating solutions: When running a standard EA in
a noisy environment, there is one important implementation
choice, namely whether to store the possibly noisy fitness of a
solution or to reevaluate the solution whenever it becomes im-
portant in the algorithm. The latter, naturally, is more costly
due to the higher number of fitness evaluations, but since most
EAs generate more solutions per iteration than what they take
into the next generation, this often is only a constant-factor
performance loss. On the other hand, sticking to the objec-
tive value seen in the first evaluation carries the risk that a
single unlucky evaluation has a huge negative impact on the
remaining run of the algorithm.

The question which variant to prefer has not been discussed
extensively in the literature. However, starting with the first
runtime analysis of an EA in a noisy environment [Droste,
2004], almost all runtime analyses of EAs in a noisy envi-
ronment assume that each solution is reevaluated whenever it
plays a role in the algorithm, in particular, whenever solution
qualities are compared.

The only example we are aware of where this is done
differently is the analysis of how an ant-colony optimizer
(ACO) solves a stochastic shortest path problem in [Sud-
holt and Thyssen, 2012]. This work regards a variant of the
Max-Min Ant System [Stützle and Hoos, 2000] with best-so-
far pheromone update where the best-so-far solution is kept
without reevaluation. While this algorithm was provably able
to solve some stochastic path problems, it was not able to
solve others (except possibly in exponential time). The same
algorithm, but with the best-so-far solution being reevalu-
ated whenever it competes with a new solution, was analyzed
in [Doerr et al., 2012a] and it was shown to be able to solve
many problems efficiently which could not be solved by the
other variant.

Noisy evolutionary multi-objective optimization: While we
apparently have a good understanding on how EAs cope with
noise and how they can be used to solve multi-objective
problems, there has been very little research on how EAs
solve multi-objective problems in the presence of noise. The
only mathematical runtime analysis in this direction is [Gut-
jahr, 2012]. It analyzes how the adaptive Pareto sampling
framework together with a variant of the SEMO (called with
suitable noiseless instances) allows to solve noisy instances.
So like all other non-mathematical works on noisy heuris-

tic multi-objective optimization, e.g., [Teich, 2001; Ding et
al., 2006; Liefooghe et al., 2007; Boonma and Suzuki, 2009;
Fieldsend and Everson, 2015; Rakshit and Konar, 2015], this
work does not analyze how a standard MOEA copes with
noise, but proposes a specific way how to solve noisy multi-
objective optimization problems.

3 Preliminaries: Multi-objective Optimization
of the ONEMINMAX Benchmark in the
Presence of Noise

3.1 The ONEMINMAX Benchmark
In multi-objective optimization over a set X using an eval-
uation function g : X → Rd, we say that a vector x ∈ X
is a Pareto optimal solution if there is no y ∈ X with
g(x) ≺ g(y). We denote as X∗ the set of Pareto optimal vec-
tors, and define the Pareto front as g(X∗). Note that we will
use the partial order on Rd where x ⪯ y if and only if for all
i ∈ [1..d], we have xi ≤ yi. The induced strict ordering will
then be defined as x ≺ y ⇐⇒ (x ⪯ y ∧ x ̸= y).

The ONEMINMAX benchmark is a bi-objective optimiza-
tion problem defined over the decision space X = {0, 1}n.
It was introduced in [Giel and Lehre, 2010] as a bi-objective
version of the classic ONEMAX benchmark. The objective
function is defined as

g(x) = (f(x), n− f(x)),

where the first objective f(x) = ONEMAX(x) is the number
of ones in x. The goal of the algorithms analyzed in this paper
is to find a minimal subset of X which has a direct image by
g equal to the Pareto front of X for this benchmark. Since any
solution to the ONEMINMAX benchmark is Pareto optimal,
the Pareto front of this problem is X∗ = {(k, n − k) | k ∈
[0..n]}.

3.2 One-bit Noise
In this article, we consider that every evaluation of an objec-
tive vector is subject to noise. Let p ∈ [0, 1] be the noise rate
in the whole article.

We define the noisy vector evaluation function x̃ as the
vector x but where a random bit uniformly chosen has been
flipped with probability p. Each noisy evaluation is indepen-
dent from one another. This noise model is known as one-bit
noise.

For any function ϕ : X → Y , we define

ϕ̃(x) :=

{
X → Y
x 7→ ϕ(x̃)

.

It is therefore possible to replace the objective function g by
its noisy version g̃ in any evaluation.

3.3 Modified SEMO Algorithms for Optimizing
Noisy Objective Functions

When running an EA on a noisy problem, one can work with
the first noisy fitness value received for a solution or to reeval-
uate it each time it is relevant. We present two versions of the
same algorithm for these two possibilities. In all our algo-
rithms, populations Pt or P ′

t are multisets. This is necessary
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even for a SEMO algorithm (which stores at most one solu-
tion per objective value, and hence not multiple copies of an
individual) since the noise fitness may let copies of an indi-
vidual appear different due to their noise fitness.

SEMO Without Reevaluation
The first algorithm is the original SEMO algorithm, but it
evaluates values of an element entering the population only
once and save its value as long as this element stays in the
population.

In Algorithm 1, we store the noisy evaluations of elements
of Pt inWt. The functionWt can be seen as a map that asso-
ciates each element of Pt with its noisy value as computed at
the time of its addition.

Algorithm 1: SEMO without reevaluation
1 xinit is uniformly chosen from {0, 1}n
2 P0 ← {xinit}
3 W0(xinit)← g̃(xinit)
4

5 for t = 0 to∞ do
6 Choose xt uniformly from Pt

7 Sample x′
t from xt by flipping one uniformly

chosen bit in xt

8

9 w ← g̃(x′
t)

10

11 if there is no x ∈ Pt such that w ≺ Wt(x) then
12 Pt+1 ← {x′

t}
13 Wt+1(x

′
t)← w

14

15 foreach x ∈ Pt do
16 ifWt(x) ⪯̸ w then
17 Pt+1 ← Pt+1 ∪ {x}
18 Wt+1(x)←Wt(x)

19 else
20 Pt+1 ← Pt

21 Wt+1 ←Wt

Note that we state this algorithm in a general way to deal
with any multi-objective optimization. For ONEMINMAX,
this algorithm could be simplified, since the condition in line
11 is always true and the inequality in line 16 becomes an
equality.

SEMO With Reevaluation
We now describe a SEMO algorithm which reevaluates each
solution in each iteration. Reevaluations have been recom-
mended in noisy settings to avoid working with the same,
faulty fitness value for a long time. For the SEMO, this re-
quires some adjustments since now it does not suffice any-
more to integrate the new offspring into the existing popula-
tion. Due to the changing fitness values of individuals, it may
also happen that two old solutions appear equal, so one of the
two has to be removed.

This algorithm uses the elim function defined below. Given
a multiset E ⊂ X and a possibly random evaluation func-

Algorithm 2: SEMO with reevaluation
1 P0 ← {xinit}, where xinit is uniformly chosen from
{0, 1}n

2

3 for t = 0 to∞ do
4 Choose xt uniformly from Pt

5 Sample x′
t from xt by flipping one uniformly

chosen bit in xt

6

7 P ′
t ← Pt ∪ {x′

t}
8 Pt+1 ← elim(P ′

t, g̃)

tion h : X → Y where Y is a partially ordered set,
G := elim(E, h) will be a minimal sub-multiset of E that
Pareto-dominates E. Pareto-dominance meaning that for ev-
ery x ∈ E, there exists y ∈ G with h(x) ⪯ h(y), and min-
imality meaning that for every x, y ∈ G, h(x) and h(y) are
not comparable.

Algorithm 3: Elimination function elim. Inputs are
the initial set E and the evaluation function h. Output
is G, a minimal Pareto-dominant sub-multiset of E.

1 G← ∅
2 Temp← ∅
3

4 foreach x ∈ E selected in a random order do
5 vx ← h(x)
6

7 if there is no v ∈ Temp such that vx ≺ v then
8 foreach y in G with vy ⪯ vx do
9 G← G \ {y}

10 G← G ∪ {x}
11 Temp← Temp∪{vx}

12 return G

For ONEMINMAX, the elim function can be simplified,
with the condition in line 7 being always verified and the in-
equality in line 8 being an equality.

4 Runtime Analysis of the SEMO Without
Reevaluation

In this section, we analyze the expected number of iterations
of the main loop needed to reach the Pareto front in the SEMO
without reevaluation. Our main technical tool is drift analysis,
that is, a collection of mathematical tools that allow to trans-
late estimates for the one-step change Xt+1−Xt of a random
process (Xt) into estimates for hitting times of this process.
See [Lengler, 2020] for a recent survey on this method. Un-
fortunately, for reasons of space, we cannot present the proofs
of our results in full detail. They can be found in the long ver-
sion [Dinot et al., 2023].

We define the total time to reach the Pareto front as a stop-
ping time

Ttotal := min{t | f(Pt) = [0..n]}
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and show that there is a constant α such that for all noise rates
p ≤ α

n we have E[Ttotal] = O(n2 log(n)).

4.1 Observations on the SEMO Without
Reevaluation

The function Wt is the map from the elements of Pt to
their noisy evaluated value at the moment they entered the
population. We call Vt the first component of Wt, that is
Wt = (Vt, n− Vt). At time t, two situations can occur.

• The noisy value of the offspring x′
t is not in Vt(Pt), so

it is added to the population and no element is removed.

• There is an element x ∈ Pt such that Vt(x) = Vt+1(x
′
t),

so the value is already in the set. In that case, x will be
removed from the population and x′

t will be added.

From these observations, we deduce the two following lem-
mas.

Lemma 1. Vt(Pt) ⊂ Vt+1(Pt+1)

Proof. An element is removed from the population only if the
offspring has the same value.

Lemma 2. Vt is one-to-one.

Proof. It is true at time t = 0 because there is only one vector
in Pt. If it is true at time t, then the only possible collision is
with the offspring x′

t. In that case the element of the same
value will be removed from the population and the offspring
will be added. Vt+1 is still one-to-one. The result is true by
induction.

Another important lemma is the following.

Lemma 3. ∀t, ∀k ∈ [0..n], |{x ∈ Pt | f(x) = k}| ≤ 3.

Proof. If f(x) = k, then because of one-bit noise Vt(x) ∈
{k − 1, k, k + 1}. Since Vt is one-to-one, there are at most 3
elements of value k by f .

4.2 Time Needed to Find the Extreme Values
We define

Tex = min{t | {0, n} ⊆ Vt(Pt)},

the first time when the extreme values are noisily found.

Theorem 4. There is a constant α > 0 such that if p ≤ α
n ,

then
E[Tex] = O(n2 log(n)).

Proof. We denote as jt the minimum value of Vt(Pt)
and we introduce the potential function ℓt = jt −
1∃x∈Pt,Vt(x)=f(x)=jt+1. This variable equals jt+1, but with
a bonus downward if the unique element x with Vt(x) = jt
is correctly evaluated, that is f(x) = jt. We analyze the drift,
that is the expected change of the process ℓt.

We consider first the case where f(x) = jt.

• The probability of selecting x as a parent for mutation is
1

|Pt| . The probability that its offspring has a lower value

is jt
n (namely, selecting a 1 in x and flipping it to a 0).

The probability of correctly evaluating the offspring is
1− p. The overall probability of this event is jt(1−p)

n|Pt| . In
that case ℓt − ℓt+1 = 1. Therefore, when f(x) = jt, the
downward component of the drift is at least jt(1−p)

n|Pt| .

• For the upward component of the drift, since jt+1 ≤ jt
as stated in Lemma 1, a negative shift only happens if
the offspring x′

t is wrongly evaluated to jt. We would
have jt+1 = jt but 1∃x∈Pt+1,Vt+1(x)=f(x)=jt = 0 and
ℓt − ℓt+1 = −1. Since in general Vt(x) ∈ {f(x) −
1, f(x), f(x)+1}, the value of the offspring is jt− 1 or
jt + 1. The mutation is also one-bit, so the parent xt at
time t must be of value jt − 2, jt or jt + 2. The value
jt − 2 is not an option, as the noisy value of xt would
be lower than jt − 1 so strictly lower than jt, so there
is at most 6 elements verifying this property according
to Lemma 3. The probability of selecting one of those to
create the offspring is lower than 6

|Pt| . The probability
of this offspring to be wrongly evaluated to jt is lower
than p.

The total drift when f(x) = jt is jt(1−p)
n|Pt| −

6p
|Pt| .

Now consider the case where f(x) ̸= jt. In that case, ℓt −
ℓt+1 ≥ 0 so the drift can only be downward. With similar
arguments, we can show that in that case the drift is at least
jt(1−p)
n|Pt| which is greater than jt(1−p)

n|Pt| −
6p
|Pt| .

In both cases, the drift is greater than

jt(1− p)

n|Pt|
− 6p

|Pt|
.

This is enough to conclude by the multiplicative drift theo-
rem [Doerr et al., 2012b] that the lowest value is reached in
O(n2 log(n)) when p ≤ 1

14n . As a consequence of Lemma 1,
it will remain in Vt(Pt). Symmetrically, the time to reach the
highest value is identical.

4.3 Filling the Pareto Front Once the Extreme
Values are Found

To derive the total time, we additionally analyze the average
time to fill the full Pareto front after the extreme values are
found.

Theorem 5. We consider the same algorithm, but where the
extreme elements are initially in the set, that is 0, n ∈ V0(P0).
We note this event Y0. Then there exists a constant α > 0 such
that

EY0
[Ttotal] = O(n2).

Proof. The proof relies on the fact that since the extreme val-
ues have been found, we know there are elements x, y ∈ Pt

verifying Vt(x) = 0,Vt(y) = n so f(x) ≤ 1 and f(y) ≥
n− 1.

If
[
1..

⌊
n
2

⌋]
\ f(Pt) is non-empty, then let us define

m = min
([
1..

⌊
n
2

⌋]
\ f(Pt)

)
.
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Since x ∈ Pt,
[
0..

⌊
n
2

⌋]
∩ f(Pt) is non-empty. So there is an

element z ∈ Pt such that f(z) = m − 1. The probability
of selecting it to generate the offspring x′

t is 1
|Pt| ≥

1
n+1 .

The probability that this offspring ends up with a real value
m is n−f(z)

n ≥ 1
2 . The probability of evaluating correctly this

offspring is 1 − p. A symmetrical argument can be made for[⌈
n
2

⌉
..n− 1

]
\ f(Pt) which yields the same result.

Hence, we see that the variable counting elements in the
population that are not extreme elements and are correctly
evaluated features an upward drift of at least 1−p

2n . For the
downward drift, observe that no more than one element is
deleted at each step, and that elements that are correctly
evaluated can only be lost if the offspring is miss-evaluated,
which happens with probability p. Thus, the total drift on this
count variable is at least 1−p

2n − p.
As for the variable counting correctly evaluated extreme el-

ements, an argument similar to the proof of Theorem 4 shows
it features a positive drift component of at least 1

n+1
1
n (1− p)

and a negative drift of no more than 12p
n , and so a total drift

of at least 1
n+1

1
n (1− p)− 12p

n .
For a well-chosen constant α > 0, if p ≤ α

n then both drifts
are positive. By considering a weighted sum of the two count
variables, with a weight of 1 for the first and a weight of n
for the second, the additive drift theorem [He and Yao, 2001]
yields the desired result.

So, the total runtime of the SEMO without reevaluation is
O(n2 log(n)) +O(n2) = O(n2 log(n)) as announced.

We observe that this second phase of the run is finished
in a relatively short time. The reason for this is that once we
have the extremal elements in the population, we can gen-
erate missing solutions (in particular, those which have been
lost due to faulty fitness evaluations) from a neighboring so-
lution closer to the boundaries. This is relatively easy since
mutation has a constant probability to generate the desired
offspring from such a parent. Here we profit from the diver-
sity mechanism of the SEMO, which tries to keep one so-
lution per objective value in the population. This seems to
be the main reason for the relatively high robustness of the
SEMO to noise, and we would speculate that other MOEAs
profit from their diversity mechanisms (needed to construct
the whole Pareto front) in a similar fashion.

5 Runtime Analysis of the SEMO With
Reevaluation

In this section, we analyze the expected number of iterations
of the main loop needed to reach the Pareto front in the SEMO
with the SEMO with reevaluation 2. We define the stopping
time

Ttotal := min{t | g(Pt) is equal to the Pareto front}
= min{t | f(Pt) = [0..n]}

and show the following theorem.

Theorem. There is a constant β > 0 such that the following
holds. For all noise rates p ≤ β

n2 , the SEMO with reevalu-
ations finds the complete Pareto front of the ONEMINMAX

benchmark in expected time

E[Ttotal] = O(n2 log(n)).

We will assume in the whole section that p ≤ β
n2 , with

β > 0 a small enough constant. We use Pt for the population
at time t, P ′

t = Pt ∪{x′
t} for the population plus the mutated

vector. Lt is the cardinality of f(Pt) and L′
t the cardinality of

P ′
t. Some of these notations are already used in the definition

of Algorithm 2.

5.1 Time to Find the Extreme Values
Here, we define Tex = min{t | 0, n ∈ f(Pt)} in terms of real
values. Contrary to the other algorithm, these extreme values
can be lost because of the noisy reevaluations. We show that
still E[Tex] = O(n2 log(n)).

To prove this result, we consider the variable dt = n +
min f(Pt)−max f(Pt) and apply the multiplicative drift the-
orem [Doerr et al., 2012b] to it. We note that the mutation
step gives a drift (towards zero) of order at least dt

n2 , same
as in a non-noisy setting. Different from the noiseless case,
the selection can then lead to drift away from zero of order
O(p). Note that in any case, dt can change by at most one.
By our assumption on p the drift into the wrong direction is
small compared to the drift towards zero, so asymptotically
we have a “multiplicative” drift of order at least dt

n2 , which al-
lows a straight-forward application of the multiplicative drift
theorem to prove the announced result.

5.2 Computing the Pareto Front Once the
Extreme Values are Found

We deal with the last phase by regarding an artificially mod-
ified process of the original SEMO with reevaluation. We
denote this new process as the K-extreme values keeping
SEMO, K ∈ N ∪ {+∞}. This process is identical to the
SEMO with reevaluation, except that it will tzappend the ex-
treme elements to the population at the end of each iteration
if they have been lost and if less than K iterations have been
executed. Variables related to this new process feature a hat
and a super-index K (e.g. P̂K

t ). In the whole subsection, we
will use the event Z0 = ({0, n} ⊂ f(P0)). We also define Lt

as the cardinality of f(Pt).
By using the additive drift theorem [He and Yao, 2001] on

the variable L̂K
t , we show the following lemma.

Lemma 6.

PrZ0 [T̂
K
total ≥ K] = O

(
n2

K

)
.

The following lemma shows that the two algorithms be-
have in the same way with high probability.

Lemma 7. For any K ∈ N, we have

PrZ0
[Ttotal = T̂K

total] ≥ (1− p)10K .

Indeed, of the classical process does not lose its extreme
values in the K first iterations, then it is identical to the K-
extreme values keeping process.

We can finally deduce the last result.
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Lemma 8. There exist constants M > 0 and µ ∈ (0, 1)
such that for any n ∈ N, with t0 = Mn2 log(n) and any
distribution π of the initial population P0,

Prπ[Ttotal > t0] ≤ µ.

This lemma states that the probability for the process, start-
ing in any position, to end in time t0 = O(n2 log(n)) time
is bounded by a constant. Therefore, the average number of
phases of length t0 is constant, hence the final result.

6 Lower Bound on the SEMO With
Reevaluation

In this section, we will show that the previous β
n2 bound for

p for the SEMO with reevaluation to run in O(n2 log(n)) is
nearly tight. Namely, if p = ω( log(n)n2 ) and for some con-
stant λ ∈ (0, 1) we have p ≤ λ

n , then the runtime is super-
polynomial.

Here, we will use the notation from the previous section.
Our main ingredient for the proof will be the simplified drift
theorem [Oliveto and Witt, 2011; Oliveto and Witt, 2012]
used on the random sequence (Lt)t∈N, where Lt = |f(Pt)|.

In the whole proof, we will assume that p = ω( log(n)n2 ) and
that there exists a constant λ ∈]0, 1[ such that p ≤ λ

n .

Lemma 9. We denote an = max(n + 1 − βpn2, 3n
4 ), with

β > 0 to be determined. There exists a constant δ > 0 such
that E[Lt − Lt+1 | Lt, Lt ≥ an] ≥ δnp.

This lemma indicates the presence of a negative drift of
Lt. Indeed, when that variable is close to n, each wrong
evaluation will cause on average a deletion. This effect will
dominate the gains from the mutation if the noise rate is big
enough. We then show that

Pr[|Lt − Lt+1| ≥ j | Lt] = Oj→+∞(λj).

These are the two hypotheses for the Simplified Drift Theo-
rem, as stated in [Oliveto and Witt, 2012]. The theorem im-
plies the existence of a constant B > 0 such that Pr[Ttotal ≤
2Bpn2

] ≤ 2−Ω(pn2). As pn2 = ω(log(n)), this yields the final
result.

7 Conclusion
We conducted the first mathematical runtime analysis, and to
the best of our knowledge also the first analysis at all, aimed
at understanding how MOEAs without particular adjustments
behave in the presence of noise. Taking the SEMO algorithm
and the ONEMINMAX benchmark with one-bit noise as an
example simple enough to admit a mathematical analysis, we
show that noise rates up to p = O(1/n) can be tolerated with-
out suffering from an asymptotic increase of the expected
runtime (whereas runtime we regard the time it takes until
for the first time the population of the algorithm witnesses
the full Pareto front). This robustness is very close to the
p = O(log(log(n))/n) noise tolerance known for the much
simpler single-objective ONEMAX problem and suggests that
MOEAs, despite the more complex problem of finding the
whole Pareto front, can stand similar noise levels as single-
objective EAs.

Interestingly, our result only holds when solutions are eval-
uated only once and the algorithm then continues with this,
possibly faulty, objective value. If solutions are reevaluated
whenever they are compared to other solutions (here in each
iteration), then any noise rate p = ω(log(n)/n2) leads to
a super-polynomial runtime. This is in drastic contrast to
single-objective evolutionary computation, where the general
recommendation (backed up by an analysis of an ant colony
optimizer) is to reevaluate each solution when its fitness is
relevant so that a single faulty fitness evaluation cannot harm
the future optimization process for a long time.

From the proofs of our results we are optimistic that our
general finding that MOEAs without particular adjustments
are robust to a moderate amount of noise is not restricted
to the particular setting we analyzed, but holds for a broad
range of algorithms and benchmarks. A reasonable next step
to support this belief would be to regard the global SEMO al-
gorithm (using bit-wise mutation instead of one-bit flips) and
a bit-wise noise model (where the fitness observed for x is
the fitness of a search point obtained from x by flipping each
bit independently with probability q = p/n). With this scal-
ing, we would expect very similar results to hold as shown
in this work. We note that this appears to be a problem very
close to ours, but past research has shown that both global
mutation in MOEAs and bit-wise noise can render mathemat-
ical analyses much harder (different from the SEMO, there
is no good lower bound for the global SEMO on the LOTZ
benchmark [Doerr et al., 2013]; the first mathematical run-
time analysis in the presence of noise [Droste, 2004], namely
one-bit noise, was extended to bit-wise noise only more than
ten years later [Gießen and Kötzing, 2016] and with much
deeper methods).

A second interesting direction to extend this work would
be by regarding other problems. The ONEMINMAX problem
has the particular properties that all solutions lie on the Pareto
front and the one-bit flips are sufficient to explore the whole
front. Hence analyses for the COCZ or LOTZ benchmarks
having non-Pareto optimal solutions [Laumanns et al., 2004]
or the ONEJUMPZEROJUMP benchmark having larger gaps
in the Pareto front [Doerr and Zheng, 2021] would be very
interesting. Understanding how existing analyses for com-
binatorial optimization problems such as [Neumann, 2007;
Cerf et al., 2023] extend to the noisy setting could be a sub-
sequent step.

A third interesting direction for future research would be
to regard posterior noise models (where the noisy objective
value of a search point is its true objective value modified
in some stochastic way, e.g., by adding Gaussian noise). For
single-objective evolutionary algorithms, often comparable
results could be obtained with similar arguments [Gießen and
Kötzing, 2016; Dang-Nhu et al., 2018]. Since posterior noise
can lead to objective values that cannot be obtained as noise-
less fitness values, we have some doubts that our results ex-
tend to posterior noise as well. In particular, we would spec-
ulate that for posterior noise, different from what our result
suggests for prior noise, reevaluating search points is the bet-
ter strategy as otherwise it is not clear how to remove a noisy
objective value that cannot occur as noiseless one.
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Hoos. MAX-MIN ant system. Future Generation Com-
puter Systems, 16:889–914, 2000.

[Sudholt and Thyssen, 2012] Dirk Sudholt and Christian
Thyssen. A simple ant colony optimizer for stochastic
shortest path problems. Algorithmica, 64:643–672, 2012.

[Sudholt, 2021] Dirk Sudholt. Analysing the robustness of
evolutionary algorithms to noise: refined runtime bounds
and an example where noise is beneficial. Algorithmica,
83:976–1011, 2021.

[Teich, 2001] Jürgen Teich. Pareto-front exploration with
uncertain objectives. In Evolutionary Multi-Criterion Op-
timization, EMO 2001, pages 314–328. Springer, 2001.

[Thierens, 2003] Dirk Thierens. Convergence time analysis
for the multi-objective counting ones problem. In Evo-
lutionary Multi-Criterion Optimization, EMO 2003, pages
355–364. Springer, 2003.

[Zheng et al., 2022] Weijie Zheng, Yufei Liu, and Benjamin
Doerr. A first mathematical runtime analysis of the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II). In
Conference on Artificial Intelligence, AAAI 2022, pages
10408–10416. AAAI Press, 2022.

[Zhou et al., 2011] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-
Zheng Zhao, Ponnuthurai Nagaratnam Suganthan, and
Qingfu Zhang. Multiobjective evolutionary algorithms: A
survey of the state of the art. Swarm and Evolutionary
Computation, 1:32–49, 2011.

10

https://arxiv.org/abs/1712.00964
https://arxiv.org/abs/1806.08547

	Introduction
	Previous Work
	Preliminaries: Multi-objective Optimization of the OneMinMax Benchmark in the Presence of Noise
	The OneMinMax Benchmark
	One-bit Noise
	Modified SEMO Algorithms for Optimizing Noisy Objective Functions
	SEMO Without Reevaluation
	SEMO With Reevaluation


	Runtime Analysis of the SEMO Without Reevaluation
	Observations on the SEMO Without Reevaluation
	Time Needed to Find the Extreme Values
	Filling the Pareto Front Once the Extreme Values are Found

	Runtime Analysis of the SEMO With Reevaluation
	Time to Find the Extreme Values
	Computing the Pareto Front Once the Extreme Values are Found

	Lower Bound on the SEMO With Reevaluation
	Conclusion

