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Geometry effects on the droplet shock-induced
cavitation
Kevin Schmidmayer1*, Luc Biasiori-Poulanges2

Abstract
Assessment of geometry effects affecting shock-induced cavitation within a droplet is investigated
for the first time. To do this, we use a thermodynamically well-posed multiphase numerical model
accounting for phase compression and expansion, which relies on a finite pressure-relaxation rate
formulation and which allow for heterogeneous nucleation. These geometry effects include the shape
of the transmitted wave front, which is related to the shock speed to droplet sound speed ratio, and the
droplet geometry (cylindrical versus spherical). Phenomenological differences between the column and
the droplet configurations are presented. In addition, the critical Mach number for cavitation appearance
is determined for both cases: between M = 1.8 and M = 2 for the column, and between M = 2 and
M = 2.2 for the droplet. Based on the transmitted wavefront geometry, with Mach number varying from
1.6 to 6, two cavitation regimes have been identified and the transition has been characterised: an
exponentially (M < 4.38) and a linearly (M > 4.38) increasing bubble-cloud volume. On more applied
aspects, we also investigate the influence of the bubble cloud on the interface disruption and compare
the results against the pure liquid droplet test case. A parallel with the technique of effervescent
atomization is eventually presented.
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1. Introduction

Liquid droplets are well known to experience aerody-
namic fragmentation upon interaction with a plane shock
wave [1, 2]. More recently, it has been shown that in
the very early stages of the shock–droplet interaction –
long before the droplet starts to deform and break up
– the growth of cavitation bubbles inside the droplet
may occur [3, 4, 5, 6]. Such a process is likely to oc-
cur in a large spectrum of applications, as a desired
or adverse effect, ranging from raindrop impact on air-
craft [7], to combustion and detonation of multiphase
mixtures [8], through ink-jet printing or liquid jet-based
physical cleaning [9, 10], to name but a few. Because the
experimental characterisation of the shock-induced cavi-
tation within a droplet is particularly challenging [11],
recent research efforts have focused on the development
of models and numerical methods to account for phase
change or gas phase growth within the liquid phase. Us-
ing a model incorporating phase change, Kyriazis et

al. [4] recently simulated the high-speed droplet impact
on a solid substrate as experimented by Field et al. [12].
Laying the groundwork for the numerical simulation of
shock-induced droplet cavitation, authors successfully
showed the ability of such models to simulate the growth
of bubbles. Comparing the numerical results with the ex-
perimental observations however displayed a large over-
estimation in the size of the bubble cloud. This is a direct
consequence of the thermodynamic-equilibrium assump-
tion which corresponds to an instantaneous equilibrium
of pressures, temperatures, velocities and chemical po-
tentials. Indeed, this approach, analogous to infinite
relaxation rates for the pressures, temperatures, veloci-
ties and chemical potentials, enables the instantaneous
expansion of the gas phase when subjected to a tensile
wave [13, 14]. Very recently, Forehand et al. [15] mod-
elled and studied shock-induced cavitation in cylindrical
and spherical droplets and were able to well capture
the initial wave dynamics. However, their investigation
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also did not align with the experiments conducted by
Sembian et al. [3] on cylindrical droplets regarding the
activity of the bubble cloud. As a result, the authors’
conclusions only suggest that, like cylindrical droplets
and like previous studies suggested, cavitation can occur
for spherical droplets.

Within the context of heterogeneous nucleation, we
recently introduced, assessed and validated a thermo-
dynamically well-posed multiphase numerical model
accounting for phase compression and expansion, which
relies on a finite pressure-relaxation rate formulation [6].
Upon validation, we exploited the model to describe
the phenomenology of the shock-induced cavitation at
relatively low shock-wave Mach number (1 < M < 3)
and for a cylindrical droplet, for which experimental
results have already been reported [3, 12]. The bubble-
cloud activity was for the first time successfully captured.
Accordingly, to our knowledge, there are currently no
experimental or numerical studies available in the liter-
ature that examine the impact of cavitation events on
interface disruption and atomization for cylindrical or
spherical droplets, regardless of whether they present
low or high Mach numbers.

Consequently, we extend herein our previous work
through parametric simulations aiming to evaluate for
the first time the geometry effects on the droplet shock-
induced cavitation process. These geometry effects in-
clude the shape of the transmitted wave front, which
is related to the ratio of the shock speed to the droplet
sound speed, and the droplet geometry (cylindrical ver-
sus spherical). Based on the transmitted wavefront ge-
ometry, two cavitation regimes have been identified and
the transition has been characterised. On more applied
aspects, we also investigate the influence of the bub-
ble cloud1 on the interface disruption and compare the
results against the pure liquid droplet test case. A par-
allel with the technique of effervescent atomization is
eventually presented. Note that this work only considers
heterogeneous cavitation, i.e., no phase change. The
droplet initially contains pre-existing nuclei modelled as
a liquid–gas mixture. Considering the difference in the
acoustic impedance between both phases, such a mod-
elling enables to simulate each phase response, within
the mixture, to compression and expansion effects.

2. Problem description

1Note that in this work, the “shock-induced bubble cloud” termi-
nology stands for the liquid–gas mixture.

2.1 Phenomenology
The shock-induced cavitation within a liquid droplet is
initiated with the interaction of the shock wave with the
droplet at time t = 0. Upon interaction, the shock is trans-
mitted to the droplet, while part of the incident shock is
diffracted around the droplet. It results in a compression
wave propagating within the droplet in the stream direc-
tion. We refer to this wave as the transmitted wavefront
or transmitted sound wave, denoted TSW. As a con-
sequence of the large water-to-air acoustic impedance
ratio, the TSW reflects at the droplet interface as a con-
verging expansion wave. This first internal reflection
of the TSW is denoted TSWr. As it propagates within
the droplet, the TSWr generates low pressure regions
in the internal flow field which, under some conditions,
result in the cavitation and growth of bubbles forming a
cloud. This bubble cloud eventually collapses and gener-
ates a spherical shock wave (CiS, for collapse-induced
shock) originating from the cloud center. Upon reach-
ing the droplet interface, the CiS similarly reflects as
an expansion wave which, under some conditions, may
also result in the cavitation and growth of bubbles. Note
that when the expansion wave reflects at the droplet in-
terface, it transforms into a compression wave. In this
work, we focus on the effects of the TSW geometry
on the shock-induced cavitation phenomenology. The
parametric equations of the TSW read [5]

xM = [clt −nRd(1− cosα)]cos(θ −α)−Rd cos(α),

yM = [clt −nRd(1− cosα)]sin(θ −α)+Rd sin(α),

(1)

where n is the water-to-air sound speed ratio cl/cg and
Rd is the droplet radius. The incident and refraction
angles, α and θ , are related by the fundamental law of
refraction, sinθ = nsinα . More details can be found
in [5, 6].

2.2 Problem dimensions
The Mach number M of the shock wave, the Weber
number We, and the Reynolds number Re are defined as

M =
Us

c
, We =

ρU2d0

σ
and Re =

ρUd0

µ
. (2)

Us is the incident shock wave velocity, c is the gas sound
speed in the pre-shocked state, ρ is the density of the
post-shocked gas, U is the post-shocked gas velocity,
µ is the dynamic viscosity of the gas, σ is the surface
tension coefficient and d0 is the diameter of the droplet.
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Herein, we report high values of We, ranging from
∼ 104 to ∼ 106, and Re, from ∼ 106 to ∼ 107, for Mach
numbers from 1.6 to 6. This indicates that the inertial
forces dominate the flow over the surface tension and the
viscous forces, respectively. These effects are therefore
neglected in our modelling.

In order to facilitate the description of the shock-
induced cavitation within a droplet, we use dimension-
less parameters. Unless otherwise specified, non-dimen-
sionalization of the space and time variables, L and T , is
done using the initial droplet diameter d0 = 22 mm and
the sound speed in water cl

L̃ =
L
d0

and T̃ = T
cl

d0
, (3)

where ( ·̃) denotes a non-dimensional quantity. Note
that the time shown in the figures starts from the first
interaction of the shock wave with the interface. We also
define the dimensionless volume

V ∗ =
Vc

Vd
, (4)

where Vc =∑i αg,iVi and Vd are the volumes of the bubble
cloud and of the droplet, respectively. αg is the volume
fraction of gas within the droplet and Vi is the volume of
the i-th cell. Cylindrical and spherical droplet volumes
are identical in the beginning of the simulation to allow
for better comparison. Since the initial radius is the
same in both configurations, the depth of the cylindrical
droplet is adapted in order to match the volume of the
spherical droplet.

3. Numerical modelling

We use herein the modelling proposed by Biasiori-Poulanges
& Schmidmayer [6] which is a slightly modified version
of the modelling proposed by Schmidmayer et al. [16] to
simulate the compression and expansion of each phase
within the liquid–gas mixture, while ignoring phase
change. The modification is only related to the form
of the pressure-relaxation terms (right-hand side). The
details of this modelling are provided below for the self-
consistency of the paper.

3.1 Governing equations
The thermodynamically well-posed, pressure- and temperature-
disequilibrium, multi-component flow model conserves

mass, momentum and total energy. It reads for N phases

∂αk

∂ t
+u ·∇αk = δ pk,

∂αkρk

∂ t
+∇ · (αkρku) = 0,

∂ρu
∂ t

+∇ · (ρu⊗u+ pI) = 0,
∂αkρkek

∂ t
+∇ · (αkρkeku)+αk pk∇ ·u =−pIδ pk,

(5)

where αk, ρk, pk and ek are the volume fraction, density,
pressure and internal energy of each phase, respectively,
and for which k indicates the phase index. The mixture
density and pressure are

ρ =
N

∑
k=1

αkρk and p =
N

∑
k=1

αk pk, (6)

while the mixture total energy is

E = e+
1
2
∥u∥2, (7)

where e is the mixture specific internal energy

e =
N

∑
k=1

Ykek (ρk, pk) . (8)

In (8), ek (ρk, pk) is defined via an equation of state
(EOS) and Yk are the mass fractions

Yk =
αkρk

ρ
. (9)

Herein, we consider two-phase mixtures of gas (g) and
liquid (l), in which the gas is modelled by the ideal-gas
EOS

pg = ρg(γg −1)eg, (10)

and the liquid is modelled by the stiffened-gas (SG) EOS

pl = ρl(γl −1)el − γlπ∞,l, (11)

where γ and π∞ are model parameters [17]. Herein,
similarly to [6], we use γg = 1.4, γl = 2.35 and π∞,l =
109. The interfacial pressure is defined as

pI =
∑

N
k

(
pk ∑

N
j ̸=k z j

)
(N −1)∑

N
k zk

, (12)
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where zk = ρkck and ck are the acoustic impedance and
speed of sound of the phase k, respectively.

For the pressure-relaxation terms between the phases,
following Biasiori-Poulanges & Schmidmayer [6], δ pk
reads

δ pk = µαk

N

∑
j ̸=k

α j (pk − p j) . (13)

Note that µ is a finite constant parameter which can be
selected in the ]0,∞] range. However, for a given mixture
and flow regime, only one value within this range accu-
rately reproduces the physics. This value changes from
one configuration to another and must be determined by
comparison with appropriated experimental data.

Since pressures are in disequilibrium here, the to-
tal energy equation of the mixture is replaced by the
internal-energy equation for each phase. Nevertheless,
the conservation of the mixture total energy can be writ-
ten in its usual form

∂ρE
∂ t

+∇ · [(ρE + p)u] = 0. (14)

We note that (14) is redundant when the internal energy
equations are also computed. However, in practice, we
include it in our computations to ensure that the total
energy is numerically conserved, and thus preserve a
correct treatment of shock waves.

Based on the hyperbolic study, the mixture speed of
sound, also called frozen speed of sound, is derived as

c2 =
N

∑
k=1

Ykc2
k , (15)

which is found to be in agreement with previously re-
ported expression [18].

We also recall that the model is in velocity equilib-
rium, respects the second law of thermodynamics and
is hyperbolic with eigenvalues either equal to u or u± c,
where u is the velocity in the x-direction.

3.2 Numerical method
We numerically solve Eq. (5) using a splitting procedure
between the left-hand-side terms associated with the
flow and the right-hand-side terms associated with our
relaxation procedure.

The left-hand-side terms are solved by an explicit
finite-volume Godunov scheme where, to ensure the
conservation of total energy, a procedure correcting the
non-conservative terms of the internal-energy equations

is required and it uses the mixture total-energy rela-
tion (14). The method corrects the total energy before
the relaxation procedure, during the flux computation of
the hyperbolic step, and therefore allows finite or infinite
relaxations [16].

The relaxation terms (system of ordinary differential
equations) are integrated with a first-order, explicit, Euler
scheme with time-step subdivisions [16]. The number
of subdivisions is adapted at each time step to verify the
volume-fraction and pressure constraints. During this
procedure, if the pressures are completely relaxed, i.e. a
unique pressure for all phases, we terminate the Euler
scheme and we perform from the initial state an infinite-
relaxation procedure [18] to guarantee a unique pressure
and better estimate the solution. This also assures a
faster computation.

A second-order-accurate MUSCL scheme with two-
step time integration is used [19], where the first step is
a predictor step for the second and the usual piece-wise
linear MUSCL reconstruction [20] with the monotonized
central (MC) [21] slope limiter is used for the primitive
variables.

In order to resolve the wide range of spatial and
temporal scales of wavefronts and interfaces, an adaptive
mesh refinement technique is employed [22]. The cell i
is refined when the following criterion is fulfilled

|XNb(i, j)−Xi|
min(XNb(i, j)−Xi)

> ε, (16)

where X is a given flow variable. The criterion is tested
for all neighboring cells, denoted by the subscript Nb(i, j),
where the j-th cell is the corresponding neighbor of the
i-th cell. The threshold is conservatively set to ε = 0.02.
The above refinement criterion is tested for density, ve-
locity, pressure and volume fraction and refines the cell if
the criterion is fulfilled for any of these variables. In ad-
dition, neighboring cells of refined cells are also refined
to prevent oscillations as well as loss of precision.

This modelling is implemented in ECOGEN [19],
which has been validated, verified and tested for finite-
relaxation rate in various setups such as droplet shock-
induced cavitation, gas bubble dynamics problems, in-
cluding free-space and near-wall bubble collapses, and
liquid–gas shock tubes. Using infinite-relaxation rate, it
has also been validated for surface-tension problems as
well as column and droplet breakup due to high-speed
flow (see, e.g., [6, 16, 23] and references therein).
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3.3 Computational setup
The calibration of the pressure-relaxation rate, µ , was
done by Biasiori-Poulanges & Schmidmayer [6] against
the experiment of Sembian et al. [3], where a Mach
2.4 planar shock wave interacts with a cylindrical water
droplet (column) of 22 mm in diameter. In this exper-
iment, the growth of a bubble cloud has been imaged.
The calibrated pressure-relaxation rate was found to be
µ = 3.5 for an initial air volume fraction in water of
αg = 10−6. This corresponds to the pre-existing nuclei
in non-purified water. We recall that considering the dif-
ference in the acoustic impedance between both phases,
the modelling enables to simulate each phase response,
within the mixture, to compression and expansion effects,
i.e. heterogeneous cavitation (without phase change). µ

was again validated against a second experiment of Sem-
bian et al. [3] with M = 1.75, for which no bubble cloud
has been recorded. Note that the results presented herein
are based on the assumption that this calibration on the
cylindrical droplet of Sembian et al. also works for
spherical droplets with the same initial purity (nucleus
concentration). Regardless, the phenomenology would
be qualitatively unaffected as it is mostly governed by
the internal wave dynamics and geometry effects.

Figure 1. Computational setup corresponding to a planar
shock wave interacting with a water droplet. The four
blue segments aligned on the droplet vertical axis show
the locations of the probes used to plot the pressure
profiles in Fig. 3.

The two-dimensional (2D) computational setup, cor-
responding to a planar shock wave interacting with a
water droplet, is shown in Fig. 1, where the x-axis is the
axis of symmetry on which the center of the droplet of
radius Rd = 11 mm is located. Cylindrical axi-symmetry
is used to model the spherical droplet while it is dis-
abled to model the cylindrical droplet. Simulations are
performed in a [6Rd × 3Rd] rectangular computational
domain. A symmetric boundary condition is applied

to the bottom side of the computational domain, and
non-reflective boundary conditions are imposed to the
remaining boundaries. The droplet is initially located
at the center, and is assumed to be in mechanical equi-
librium with the surrounding air. The initial droplet is
resolved by 100 cells per diameter. Adaptive mesh refine-
ment (AMR) composed out of two grid levels, leading
to 400 cells per diameter, and adapted to follow the flow
discontinuities is used. The AMR level is selected based
on the analysis of the grid sensitivity [6]. The shock
wave is initialized inside the domain, and travels from
left to right in air at atmospheric conditions. For the
incident shock Mach number M, the initial flow field is
determined from the Rankine–Hugoniot jump relations
using a downstream density of 1.204 kg/m3 and a 1 atm
pressure. The water has a density of 1028 kg/m3. This
was calculated to agree with the sound speed in water cal-
culated from the experimental observations of Sembian
et al. [3] (≈ 1512 m/s), when using the Eq. 11.

In addition, note that a 3D simulation has been car-
ried out on a coarser mesh to assess the quality of the 2D
axi-symmetric approximation and only marginal differ-
ences were observed, arising from differences in numer-
ical dissipation. Indeed, differences should emerge for
longer observation times where surface tension and vis-
cosity play a role. Hence, for computational saving rea-
sons, 2D axi-symmetric simulations are only performed
herein to represent a spherical droplet.

Further, note that the computation of the bubble
cloud volume in the axi-symmetric configuration takes
into account the volume of each cell, Vi, with a cylindri-
cal revolution.

4. Results and Discussion

4.1 Column versus droplet
4.1.1 Phenomenological differences for Mach 2.4
In order to assess the phenomenological differences be-
tween the cylindrical and the spherical droplet, we take
the case where the incident shock wave travels at Mach
2.4.

The first phenomenological difference concerns the
wave dynamics. The geometrical difference influences
the shape and amplitude of the reflected shock wave
from the impingement of the incident shock wave on the
droplet, and, more importantly, of the transmitted sound
wave (TSW) within the droplet. Fig. 2 depicts these
shape differences with the help of numerical schlieren
(i.e., the exponential of the negative, normalized density
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Figure 2. Comparison of the wave dynamics before complete convergence of the rarefaction waves. Incident shock
wave propagates at M = 2.4. Schlieren is presented for both the column and the droplet.

gradient [24, 25]). We observe that the reflected shock
wave is delayed in the spherical droplet case. This behav-
ior is explained by the fact that the reflected shock wave
travels spherically (i.e. with two curvature angles), while
it is cylindrically reflected (i.e. with one curvature angle)
in the case of the column. Regarding the TSW, almost
no influence of the curvature angles is observed by only
looking at the schlieren images. Indeed, the positions of
the waves are matching between the two cases. However,
pressure profiles presented in Fig. 3 show that the TSW,
which is a compression wave, has a weaker amplitude in
the case of the droplet. This indicates that the additional
curvature angle induces a weaker energy transmission
of the incident shock wave towards the interior of the
droplet. We also note that the initial compression jump
of the TSW is followed by a slowly decreasing pressure.
Then the TSWr, which are rarefaction waves, focus and
generate a sudden drop in pressure. This pressure drop is
observed for the column in Fig. 3 but not for the droplet.
This difference is explained by a peculiar phenomenon
happening in the case of the droplet. Fig. 4 presents
pressure fields in two configurations, pure water and
water with initial nuclei, for both the column and the
droplet. In the case of pure water, cavitation is absent.
Hence, the peculiar event is easier to elucidate. During
the focus of the TSWr (t̃ = 1.22 and 1.25), we observe
higher amplitudes of negative pressures for the droplet.
Although the amplitude of the TSW is weaker for the
droplet, this phenomenon is expected since the addi-
tional curvature angle induces a stronger focus of the
TSWr. At t̃ = 1.29, the peculiar phenomenon appears
for the droplet case. Instead of having primarily one
low-pressure point (tension) as for the column, we ob-

serve two low-pressure points with short but sufficient
distance from one another to generate compression in
between. This compression then travels and counter-
balances the rarefaction wave propagating in direction
of the center of the droplet (t̃ = 1.32). For this reason,
in opposition of the column case, no sudden pressure
drop is observed at the center of the droplet but rather a
sudden compression (t̃ = 1.56). Note that the compres-
sion is also observed after the rarefaction wave for the
column, although with lower pressures. When nuclei
are initially present, this phenomenon is weakened since
a significant part of the energy is absorbed by the gas
phase to generate the bubble cloud.

The second phenomenological difference concerns
the bubble cloud resulting from these wave dynamics.
In fact, in the case of the spherical droplet, one could
think that this more pronounced curvature would induce
a stronger focus of the TSWr and therefore a greater
cavitation phenomenon. However, contrary to appear-
ances, although the focus is stronger, it appears that the
combination, of (i) the lower transmitted energy within
the droplet with (ii) the peculiar wave-dynamics phe-
nomenon explained above, counterbalances this focus.
This results, as shown in Fig. 5, in a smaller volume
of bubble cloud for the droplet compared to the col-
umn. Notably, the maximum bubble-cloud volume for
the droplet is ≈ 23% of the one for the column. Further,
note that the bubble clouds of both configurations start to
grow at the same time and with very similar growth rates.
However, the growth phase is longer for the column case.

Fig. 6 presents at longer time instants the internal
structure in regard of the wave dynamics and of the
bubble-cloud activity, through the numerical schlieren
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Figure 3. Pressure profiles over time for four probes
placed on the r axis from the droplet center, as pictured
by the blue segments in Fig. 1. The results for the column
and the droplet are presented for an incident shock wave
propagating at M = 2.4.

and the volume fraction of gas, respectively. We observe
that the TSWr are more mitigated for the droplet, and the
dynamics and position of the cloud is captured. For the
droplet, the bubble cloud is no longer present from the
image at t̃ = 1.48. One can also note that the shock wave
which could be emitted by the collapse of the bubble
cloud (CiS) is not perceptible in the case of the droplet,
whereas it is observed, although weak, for the column.

Consequently, these phenomenological differences,
here depicted for a Mach number of 2.4, indicate that
cavitation is in general less likely to occur in the spheri-
cal droplet case. The aim of the next section is therefore
to confirm it and to evaluate the critical Mach number
for shock-induced cavitation.

4.1.2 Critical Mach for cavitation appearance
In order to assess the critical Mach number presenting
the first signs of cavitation appearance, it is necessary to
define an indicator offering more information that a sim-
ple threshold of volume of gas phase. In consequence,
we consider the relative variation of volume between
two consecutive simulations:

δV ∗
max =

V ∗
max,p −V ∗

max,p−1

V ∗
max,p−1

, (17)

where V ∗
max is the maximum bubble-cloud volume reached

during the simulation. Subscript p denotes the evaluated
Mach-number point and p−1 is therefore the preceding
point (e.g., p for the simulation at M = 1.8 and p−1 for
the simulation at M = 1.6).

Fig. 7 presents V ∗
max and δV ∗

max from M = 1.6 to 3.
Results from the simulations (markers) are completed by
splines. The first observation is that the cloud volume is
significantly larger for all Mach numbers in the case of
the column compared to the droplet, but for below M =
1.8 where no cavitation is detected in both configurations.
From δV ∗

max, we note for the column (droplet) that the
volume is increased by 64% and 264% (48% and 179%)
at M = 1.8 and M = 2 (M = 2 and M = 2.2), respectively.
This indicates that cavitation is very slightly starting at
M = 1.8 for the column (M = 2 for the droplet). Since
it started from a very small gas volume composed of
only nuclei, we do not consider it sufficient to call it a
cavitation phenomenon. However, based on the sudden
and significant increase in volume between M = 1.8
and M = 2 for the column (M = 2 and M = 2.2 for the
droplet), we can consider cavitation to first appear within
this range, which is represented with a shaded area for
each configuration.

Moreover, vertical lines represent the first observa-
tions of collapse-induced shock waves (CiS). One can
note that the CiS are observed for larger Mach numbers
than for the first cavitation observations: M = 2.3 and
M = 2.5 for the column and droplet, respectively. In
fact, the smaller bubble-cloud volume combined with
the milder pressure field around the cloud didn’t allow
for a shock wave to be emitted at the end of the collapse
of the cloud. In addition, as expected, a CiS is observed
for a lower Mach number for the column compared to
the droplet. However, one could have expected simi-
lar cloud volume for the first CiS apparition between
both configurations, but they present V ∗ ≈ 3.2x10−5 and
V ∗ ≈ 1.6x10−5, respectively. This is explained by the
fact that the cloud covers the entire thickness of the
column and cylindrically collapses, whereas it presents
higher concentration of bubbles/gas content and spheri-
cally collapses for the droplet.

In conclusion, we can confirm the indication of the
previous section, i.e. cavitation is less likely to occur in
the droplet case.

4.2 High Mach numbers
The influence of the Mach number on the internal pres-
sure field is twofold: (i) the transmitted energy increases
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Figure 5. Evolution of the bubble-cloud volume for
the column and the droplet. The incident shock wave
propagates at M = 2.4.

with M, and (ii) the geometry of the transmitted front
changes from concave to convex. In the context of
shock-induced cavitation, the two effects combine and
affect the growth of the gas phase in the droplet. As
shown in the bottom graph of Fig. 8, V ∗

max is constant
and equals to zero for 1.0 < M ≲ 2.2. This is due to
incident shock waves not strong enough to generate cav-
itation upon reflection and amplification. At high Mach
number, M ≳ 4.5, V ∗

max exhibits a linear behavior, while
for 2.2 ≲ M ≲ 4.5 stands out as a transitional region.
This latter region is a direct consequence of the change
in the geometry of the transmitted wavefront (see top

graph, Fig. 8) from concave to convex with an infinite
radius of curvature, R → ∞, appearing for M = 4.38.
This critical Mach number corresponds to a shock speed
equals to the sound speed in water, n = cl/us = 1. Con-
sequently, the fundamental law of refraction reduces to
sinθ = sinα , where α and θ are the incident and refrac-
tion angles, respectively. According to the geometrical
ray acoustics, the transmitted rays to the droplet are then
aligned with the incident rays and propagate at the same
speed which results in a plane wavefront. For n > 1 the
acoustic rays diverge and propagate faster than the shock
wave outside, which draw a spherically diverging (con-
cave) shock. Conversely, n < 1 results in a spherically
converging (convex) shock. The shape of the TSW as
a function of the shock-wave Mach number is shown
in Fig. 9. The linear trend reported at high Mach num-
bers are consistent with the small variation in R (see
the dotted-dashed blue line, bottom graph of Fig. 8).
The dimensionless volume V ∗

max depends on the pressure
induced by the expansion wave which corresponds to
the first reflection of the transmitted wave (TSWr). The
intensity of the expansion wave is related to its focus-
ing, which depends on the shape of the TSW and the
geometry of the reflector, here the droplet back face. For
two TSW with relatively same R, the amplification rate
during the expansion wave focusing is nearly equal since
the shape of the TSW and the geometry of the reflector
are both conserved. Consequently, the only transmit-
ted energy acts on V ∗

max, which approximately linearly
increases over M ≳ 6. For large variation in R, that is
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Figure 6. Comparison of the internal structure between the column and the droplet until the bubble-cloud collapse.
The incident shock wave propagates at M = 2.4. The numerical schlieren is displayed and overlaid with the volume
fraction of gas (white-to-blue colormap), with an opacity function to render translucent surfaces.

for 3 ≲ M ≲ 5, the amplification rate strongly varies as
the geometrical configuration for the TSWr significantly
changes2.

Fig. 10 shows the variation of the time-dependent
gas volume within the droplet. It reports both an increase
in V ∗ over M as well as a phase shift in the temporal
location of the maximum gas volume experienced by the
droplet. Both the increase in the volume and the phase
shift are related to the M-dependent transmitted energy,
as discussed previously with Fig. 8. Dissociating the
role of the TSW geometry on the phase shift from the
contribution of the energy transmitted is not straightfor-
ward. However, we here assume the TSW shape to not
drive the phase shift as the time required to complete the
focusing is fixed by the non-deviated ray propagating
along the droplet axis.

4.3 Bubble-cloud influence on the droplet inter-
face

In order to study the potential influence of the bubble
cloud on the droplet interface and its consequence on the
atomization process, we focus on the highest Mach num-
ber: 6. Indeed, we observed the largest cloud volume for
this Mach number and it is therefore expected to observe
its greatest influence on the droplet dynamics, at least at
the back of the droplet where the cloud is located.

To assess this influence, we compare in Fig. 11 the
results given by a simulation with a droplet of water con-
taining initial nuclei, to the results given by a simulation

2Note that the present numerical model does not account for the
ionization of air. At low hypersonic regimes, the air temperature
increases as the molecular bonds of the air molecule increase their
vibration. In the high hypersonic regimes, the high temperature of air
(> 2000◦C) results in the atom dissociation of the oxygen molecules.
During the ionization process, atoms lose electrons to form a plasma
which could strongly affect the aerodynamic and hydrodynamic
processes. The critical Mach number for which ionization should
occur is not clear, but most probably around 8.

involving pure water (no bubble-cloud appearance). At
t̃ = 0.79, results are almost identical, in particular in
regard of the position and strength of the waves. Later,
at t̃ = 1.74, we observe the bubble cloud for the sim-
ulation containing initial nuclei. Note that the TSW
reflections are completely absorbed by the cloud during
its formation. Whereas waves continue to propagate
for the pure-water case with potential perturbation of
the interface at the front of the droplet. The cloud then
collapses until t̃ ≈ 3.37 where it reaches its minimum
volume and emits a shock wave (CiS). At this time, we
observe a shift of the position of the back of the droplet
between the two cases. In fact, the cloud during its col-
lapse pulls the back of the droplet. During the rebound
phase, this shift is reduced until almost no difference
is observed and it remains as it is a posteriori. Indeed,
only a small activity of the cloud is afterwards noticed.
This leads to the assessment of the global disruption of
the interface caused by the cloud. At t̃ = 5.09, from
Fig. 11 with the schlieren or from Fig. 12 where inter-
face contours are superposed, only marginal differences
of interface dynamics are observed. In other words, the
bubble cloud, although significantly impacting the wave
activity, did not impact the overall deformation and dis-
ruption of the interface known to be mainly governed by
the interface instabilities such as Kelvin–Helmholtz or
Rayleigh–Taylor instabilities [23]. This indicates that the
cloud activity, for this unique impulse scenario (a unique
incident shock wave), does not play a role within the
atomization process. Note that similar conclusions were
observed for M = 3, therefore they are not presented here.
In addition, although using a different numerical mod-
elling, this result is consistent with the previous work of
Nykteri & Gavaises [26] mentioning that the fragmenta-
tion of a 1.9 mm droplet exposed to a M = 2.64 shock
wave is not altered by the presence of the bubble cloud.
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Figure 7. Evolution and variation (δ ) of the maxi-
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Mach number. The shaded areas represent Mach-number
ranges where we observed the first signs of cavitation
appearance. Dash-dotted vertical lines represent the first
observation of a collapse-induced shock wave (CiS). The
coloring of the shaded areas and of the vertical lines is
consistent with the column and droplet configurations.

When relating this result to effervescent atomization,
this seems counter intuitive. Effervescent atomization is
a method of atomization that involves inserting a small
amount of gas into the liquid before it is atomized. This
technique leads to significant improvements in perfor-
mance in terms of smaller drop sizes and/or lower injec-
tion pressures [27]. As a result, one could have guessed
that the presence of the bubble cloud would also have
led to improved atomization. Thereby, in order to bet-
ter mimic such technique, we propose an additional test
case where a bubble is initially placed within the droplet.
We assume that this bubble could have been voluntarily
placed there or simply created during a previous pulse
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y1 = a1M + b1
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Figure 8. The top graph shows the variation of the
transmitted wavefront curvature over M, where R is the
radius of curvature of the wavefront and R∗ = R/Rd .
The dashed red line locates the critical Mach number
M = 4.38 from which the wavefront is plan. For lower
M, the transmitted wave is spherically diverging and
for higher M it is a spherically converging. The bottom
graph shows the effect of the Mach number on V ∗

max.

(incident shock wave). Hence, we choose the volume of
the bubble to equal the maximum volume of the bubble
cloud of the previous simulation with nuclei. At M = 6,
V ∗

max ≈ 3.865x10−3, this leads to a bubble of initial ra-
dius Rb ≈ 1.726 mm, to compare with the 11 mm-radius
droplet. We place this bubble approximately at the lo-
cation of the bubble-cloud collapse point, i.e. 8.5 mm
from the center of the droplet, on the right.

Fig. 13 presents a comparison for different time in-
stants between a droplet with and without an initial bub-
ble inside the droplet. The incident shock wave propa-
gates once again at M = 6 and the water contains initial
nuclei. At t̃ = 0.88, we observe especially TSW reflec-
tion (rarefaction wave) from the impingement of TSW
(compression wave) on the bubble. This TSW–bubble
interaction induces the collapse of the bubble, the later
occurring until t̃ ≈ 3.2. At t̃ = 1.31, the bubble cloud
is formed in both configurations. In the case with the
bubble, the cloud surrounds the bubble with a small
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Figure 9. Shape of the transmitted wavefront (TSW) as
a function of the shock-wave Mach number when the
on-axis transmitted ray reaches the droplet center.

layer of almost pure water separating the bubble and the
cloud. Note that the outer shape of the cloud is simi-
lar in both cases. At t̃ = 3.2, the cloud and the bubble
have collapsed and CiS are observed. In addition, the
formation of a thin jet is taking place at the back of
the droplet. Indeed, similarly to bubble collapse near
rigid or free surfaces or bubble collapse induced by a
shock wave [28, 29, 30], the non-spherical collapse of
the present bubble induces a jet, here directed toward
the back of the droplet. This jet is more prominent at
t̃ = 5.09. Whereas, also here, the cloud activity starts
to fade. Fig. 14 shows the contours at the same latest
time and allows a better observation of the jet but also of
the well-known shape of a bubble jetting. Note that we
measure an average speed of the jet of ≈ 107 m/s over
a duration of t̃ ≈ 2.06 (30 µs), with jet speed starting
approximately 40% above this value and slowly decreas-
ing over time. In comparison to the case without the
initial bubble, we note a significant difference of the
droplet contour at the back of the droplet where the jet
takes place, but almost none elsewhere. This perturba-
tion of the interface from the back is expected to play
a key role in the atomization process and will certainly
increase its speed. However, the complete assessment
for longer times is out of the scope of the paper and
implies to take into account viscous and surface tension
effects, while also computing 3D simulations since axi-
symmetry breaks for longer times [23, 31]. Furthermore,
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Figure 10. Growth of the gas phase within the droplet
as time proceeds and as a function of the Mach number.

this problem is a toy problem and it would make more
sense to invest time and resources on real-world appli-
cations where multiple pulses are encountered and may
result in enhanced atomization due to these cavitation
events. In many applications, successive shocks may
be transmitted to the droplet. It typically happens when
a shock wave is reflected at one or multiple walls, un-
der the droplet exposure to a pulsed source, or when
the droplet–shock interaction is followed by the droplet
high-speed impact. This latter example occurs during
supersonic flights, when raindrops interact with shock
waves (e.g., the detached bow shock) before impacting
the aircraft structure and cause rain erosion damage [8].

One should note that we undertook as well a simu-
lation where the bubble was placed in the center of the
droplet, resulting in marginal differences with respect
to interface disruption. This indicates that the change
in water volume to gas volume (≈ 0.3865%) is not the
main reason interface disruption differs. Hence, the po-
sition of the cloud is important, although this position
is, most of the time, not practically controlled and is
directly linked to the shape and size of the droplet.

5. Conclusion
Shock-induced cavitation within a column and within
a droplet have been presented with phenomenological
differences arising, which constitutes the first studied
geometry effect. We observed that the energy transmitted
within the droplet is smaller than within the column.
This, combined with a peculiar wave dynamics involving
a compression wave to appear between two low-pressure
points (tension), indicates that cavitation is less likely
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Figure 12. Interface-contour comparison at t̃ = 5.09
between a pure-water droplet and a droplet of water
containing initial nuclei. Incident shock wave propagates
at M = 6. Contour is taken for αl = 0.5.

to occur for a droplet. The latter was then confirmed
over a large Mach-number range. In addition, the critical
Mach number for cavitation appearance was found to
be between M = 1.8 and M = 2 for the column, and
between M = 2 and M = 2.2 for the droplet.

The second geometry effect is linked to the shape of
the transmitted front which changes from concave to con-
vex when increasing the Mach number. The transition
between the two appears for M = 4.38, corresponding
to a shock speed equaling the sound speed in water. This
gives rise to two regimes of cavitation: an exponentially
(M < 4.38) and a linearly (M > 4.38) increasing bubble-
cloud volume.

Finally, the study of the bubble-cloud influence on
the droplet interface concluded that, counter intuitively,
the cloud has only marginal effect on the disruption of
the interface and therefore on the atomization process
when the droplet is subjected to a unique pulse (unique
shock wave). However, exercising with a toy model,
where there initially is a bubble within the droplet, strongly

suggests that the presence of cavitation events within
the droplet will enhance the atomization process when
the droplet is subjected to multiple pulses. This result
draws parallels with the technique of effervescent atom-
ization. Ultimately, if time and resources are invested
for real-world applications where multiple pulses are
encountered, three-dimensional, viscous and surface ten-
sion effects should certainly be added to the modelling to
assess interface disruption at longer times and therefore
to assess atomization performance.
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