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Abstract
The coffee berry borer (CBB) Hypothenemus hampei (Coleoptera: Scolytidae) is the most impor-
tant insect pest affecting coffee production worldwide and generating huge economic losses. As
most of its life cycle occurs inside the coffee berry, its control is extremely difficult. To tackle
this issue, we solve an optimal control problem based on a berry age-structured dynamical model
that describes the infestation dynamics of coffee berries by CBB during a cropping season. This
problem consists in applying a bio-insecticide at discrete times in order to maximise the economic
profit of healthy coffee berries, while minimising the CBB population for the next cropping sea-
son. We derive analytically the first-order necessary optimality conditions of the control problem.
Numerical simulations are provided to illustrate the effectiveness of the optimal control strategy.
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I INTRODUCTION

Coffee berry borer (CBB), Hypothenemus hampei (Coleoptera: Scolytidae) is the most dam-
aging insect pest of coffee worldwide, affecting both the yield and quality of coffee products
[1, 5], and causing more than US$500 million in damages annually [6]. The CBB life cycle
is composed of five distinct stages: egg, larva, prepupa, pupa and adult [11]. It starts when
an adult (fertilised) female emerges from an infested berry to seek a new host. It selects and
bores a hole in a uninfested berry. It lay its eggs in internal galleries and remains inside the
coffee berry after oviposition until it dies. After hatching, the larvae feed on the coffee seeds.
Young females mate with their male siblings inside the berry. Male CBB do not fly and remain
inside the berry [8]. Fertilised females emerge from the infested berry, and the loop is closed.
The choice of a new host by colonising females depends mainly on the age of the coffee berry.
CBB attack immature and mature coffee berries from three months after flowering up to harvest
period, with a preference for older berries [9].
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In response to CBB attacks, integrated pest management programs for coffee plantation have
been developed, which involve several control strategies. Chemical control consists in applying
synthetic insecticides designed to kill the CBB during the colonisation of young coffee berries
[11]. Biological control is based on natural enemies or products derived from living organisms
and aims at maintaining CBB at an acceptable level of harmfulness. The main enemies of CBB
are parasitic Hymenoptera, certain entomopathogenic fungus and nematodes [5, 11]. Cultural
practices consist of various activities, such as sanitary harvesting, which is the elimination of
residual berries present on the branches of trees and on the ground [5, 11]. Finally, trapping
methods consist in using attractive traps to capture colonising females during their migration
flights [7].

The purpose of this work is to optimise CBB control strategies consisting in spraying a biocon-
trol agent or bio-insecticide at discrete times. It is based on a dynamical model describing the
interactions between CBB and coffee berries during a cropping season, which incorporates a
berry age structure to account for CBB preference for older berries [15]. To achieve this goal,
we formulate and solve an optimal impulsive control problem whose objective is to maximise
the profit, while minimising the CBB population for the next cropping season. We previously
studied a similar problem in [14], but the model did not include the berry age structure and the
control was continuous instead of impulsive. The present paper hence proposes two notable im-
provements compared to our previous work. Impulsive bio-insecticide spraying, in particular,
is more relevant for field implementation.

The remainder of the paper has the following structure. In Section II, we formulate the control
problem. In Section III, the first order necessary conditions for optimality are established.
Finally, results are illustrated by numerical simulations in Section IV.

II THE MODEL AND CONTROL PROBLEM STATEMENT

2.1 Coffee berry – CBB interaction model

In this study, we consider the epidemiological model proposed in [15] describing the infestation
dynamics of coffee berries by CBB. Coffee berries are characterised by their age and their epi-
demic status: s(t, a) and i(t, a) are respectively the age-specific density of healthy and infested
coffee berries at the time t and age a ∈ [0, a†], where a† is the maximal berry age. The CBB
population is divided in two groups, the colonising females denoted by y(t), which correspond
to the flying fertilised females looking for their host, and infesting females that are laying eggs
inside the berries. Although the sex ratio is largely female-biased [5], we assume that there are
enough males in each generation to fertilise young females. The infestation dynamics of coffee
berries by CBB are described by the following age-structured model:

∂ts(t, a) + ∂as(t, a) = −β(a)f(B, y)s(t, a)− µ(a)s(t, a),

∂ti(t, a) + ∂ai(t, a) = β(a)f(B, y)i(t, a)− ν(a)i(t, a),

ẏ(t) = −εf(B, y)∥βs(t, .)∥ − µyy(t) + ϕz(t),

ż(t) = εf(B, y)∥βs(t, .)∥ − µzz(t),

(1)

completed by the following boundary and initial conditions:

s(t, 0) = g(t), i(t, 0) = 0, s(0, a) = s0(a), i(0, a) = i0(a). (2)
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In this model, new healthy berries are produced at time-dependent rate g(t). The colonis-
ing CBB females infest the healthy berries at rate β(a)f(B, y), where β(.) is the berry age-
dependent infestation rate and f(., .) is an interaction function which depends on the total
healthy berries B(t) =

∫ a†
0

s(t, a)da and colonising females y. This creates a berry trans-
fer from healthy s(t, a) to infested berries i(t, a) and simultaneously, from colonising y(t) to
infesting females z(t) (with ∥βs(t, .)∥ =

∫ a†
0

β(a)s(t, a)da). The scaling parameter ε corre-
sponds to the number of colonising females per infested berry; usually, ε = 1 CBB/berry, since
super-parasitism is rarely observed in the plantation [9]. Infesting females lay eggs inside the
coffee berries, which go through their development cycle until fertilised adult females emerge
at rate ϕ. Colonising and infesting CBB females undergo mortality at rate µy and µz; healthy
and infested berries at the rate µ(a) and ν(a). This model relies on the following assumptions.

Assumption 1: Positivity and smoothness of the functions and parameters of system (1)

1. Parameters ϕ, ε, µy, µz and initial conditions y0, z0 are nonnegative.
2. g(.) ∈ L∞

+ (0,∞), β(.) ∈ L∞
+ (0, a†); boundary conditions s0(.), i0(.) ∈ L1

+(0, a†) and are
bounded.

3. Mortality rates µ(.), ν(.) ∈ L∞
+ (0, a†), ν(a) ≥ µ(a); moreover, there exists a real number

µ̃ > 0 satisfying µ(a) ≥ µ̃ for almost every a ∈ [0, a†].
4. Contact function f(., .) is bounded and C1–Lipschitz continuous for both arguments;

moreover, f(B, y) decreases with B and increases with y, with f(B, 0) = 0 and for
all y > 0, lim

B→+∞
f(B, y)B is finite.

(L1
+(I), ∥.∥) is the space of nonnegative measurable functions L1(I) equipped by the product

norm and (L∞
+ (I), ∥.∥∞) the space of nonnegative functions L∞(I) over the set I ⊂ R.

We then include in this model the possibility to apply a bio-insecticide at discrete times in
the coffee plantation. The bio-insecticide can for instance be based on the entomopathogenic
fungus Beauveria bassiana [13]. It prevents berry infestation: when a colonising CBB bores
its hole in a healthy berry and comes into contact with the bio-insecticide, it gets killed by the
biocontrol agent. To implement this control in the model, we introduce a new state variable
v(t), which corresponds to the bio-insecticide load in the plantation at time t. Note that variable
i(t, a), representing infested berries, does not appear in the remaining equations of system (1)
and is not affected by our control. Therefore, one can drop the i(t, a)–equation to control the
system dynamics. We then obtain the following controlled system:

∂ts(t, a) + ∂as(t, a) = −β(a)q(v(t))f(B, y)s(t, a) + µ(a)s(t, a),

ẏ(t) = −εf(B, y)∥βs(t, .)∥ − µyy(t) + ϕz(t),

ż(t) = εq(v(t))f(B, y)∥βs(t, .)∥ − µzz(t),

v̇(t) = −γv(t), for t ̸= tn,

∆v(tn) = v(t+n )− v(tn) = hn for t = tn,

s(t, 0) = g(t), s(0, a) = s0(a), y(0) = y0, z(0) = z0, v(0+) = v0.

(3)

The control hn ≥ 0 is applied periodically in the plantation at discrete times tn = nτ , where n ∈
{0, 1, 2, . . . , Nf} and τ is the application period, i.e. the time elapsed between two successive
applications. The t+n notation depicts the instant just after tn, so v(t+n ) = limj→0+ v(tn + j) is
the bio-insecticide load instantly after the control application. The bio-insecticide load persists
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in the plantation and decays with rate γ. Its initial condition v(0+) is nonnegative. As in [14],
function q(.) : R+ −→ R+ represents the modulation of the CBB infestation rate by the bio-
insecticide as follows: q(v) = 1 − ξv

v+k
, where ξ ∈ (0, 1) denotes the maximal effectiveness of

the bio-insecticide load and the positive constant k the load half saturation.

2.2 Optimal control problem

We now formulate the optimal control problem. The main goal of coffee growers is to produce
good quality coffee berries, that can be sold at a high price, with low control costs, so as to
maximise their profit. They also aim at reducing the CBB population at the end of the cropping
season, to limit the risk for the next season. We assume that the harvest takes place at the end of
the cropping season, denoted by tf . We also assume that (almost) all berries, and hence (almost)
all infesting females that are inside berries, are picked at tf , so that only colonising females
(y) remain in the plantation after harvest. Lastly, we assume that infested coffee berries have a
negligible monetary value, so that the yield consists only of healthy berries. We define the class
of admissible controls as:

M := {h = (hn) ∈ RNf+1 : 0 ≤ hn ≤ hmax,∀n ∈ {0, 1, 2, . . . Nf}},

where hmax represents the upper bound of control. The objective functional is defined for con-
trol h = (hn)n∈{0,1,2,...Nf} ∈ M as follows:

J (h) =

∫ a†

0

Θ(a)s(tf , a)da−
Nf∑
n=0

C(hn)− Cyy(tf ), (4)

subject to the impulsive evolution System (3). The first term is the coffee berry yield, where
function Θ(.) denotes the price of healthy berries, a bounded, continuous and increasing func-
tion of the berry age. The second term represents the control cost, where C(.) is a continuous
function of the control hn. The last term is a penalty on the CBB population that remains in the
plantation after harvest, weighted by constant Cy.

Our purpose is to maximise the objective functional over the admissible class of controls, i.e.
seek h⋆ = (h⋆

n)n∈{0,1,2,...Nf} that belongs to M so that:

J (h⋆) = max
h∈M

J (h). (5)

III OPTIMALITY CONDITIONS

We first establish the existence of an optimal solution to problem (5) in Theorem 1 (see proof
in Appendix 1.1) and then characterise the solution using the maximum principle method.

Theorem 1:
There exists an optimal control application h⋆ = (h⋆

n)n∈{0,1,2,...Nf} that belongs to M, which
maximises the objective functional J (.) subject to system (3).

Using the framework of [4] and [3], we derive the optimal control from a combination of the
state and the adjoint variables. We determine the adjoint equations by first introducing the sen-
sitivity functions. Let us denote p = (s, y, z, v) and define the solution map: h −→ p(h). The
sensitivity functions are defined by the Gâteaux derivatives: for h̄ ∈ RNf+1, (λs, λy, λz, λv) =
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limϵ→0+ ϵ−1
[
p(h+ ϵh̄)− p(h)

]
. Consequently, the sensitivity functions λs(t, a), λy(t), λz(t)

and λv(t), corresponding to the state variables s(t, a), y(t), z(t) and v(t), satisfy the following
equations:

∂tλs + ∂aλs = −q(v)[β(a)f(B, y)λs + βsfB(B, y)∥λs∥+ βsfy(B, y)λy]

+ qv(v)f(B, y)βsλv − µλs,

λ̇y = ϕλz − εf(B, y)∥βλs∥ − ε∥βs∥fy(B, y)λy − ε∥βs∥fB(B, y)∥λs∥ − µyλy,

λ̇z = q(v)[εf(B, y)∥βλs∥+ ε∥βs∥fy(B, y)λy + ε∥βs∥fB(B, y)∥λs∥]
− qv(v)εf(B, y)∥βs∥λv − µzλz,

(6)

and: {
λ̇v = −γλv for t ̸= tn,

λv(t
+
n ) = λv(tn) + h̄n for t = tn, n = 0, 1, 2, . . . Nf .

(7)

Functions fy(., .), fB(., .) and qv(.) represent the partial derivatives of functions f(., .) and q(.)
with respect to their arguments y, B and v. The sensitivity functions respect the following initial
and boundary conditions:

λs(t, 0) = 0, λs(0, a) = 0, λy(0) = λz(0) = λv(0) = 0. (8)

Next, we introduce Φs(t, a), Φy(t), Φz(t) and Φv(t), the adjoint variables corresponding to the
state variables s(t, a), y(t), z(t) and v(t) respectively. The adjoint equations are derived by us-
ing the adjoint operator associated with the sensitivity equations (6,7), together with appropriate
tranversality and boundary conditions. The adjoint equations are given by:

∂tΦs + ∂aΦs = q(v)[βf(B, y)(Φs − εΦz) + fB(B, y)(∥βsΦs∥ − ε∥βs∥Φz)]

+ [εβf(B, y) + ε∥βs∥fB(B, y)] Φy + µΦs,

Φ̇y = q(v)fy(B, y) [−ε∥βs∥Φz + ∥βsΦs∥] + ε∥βs∥fy(B, y)Φy + µyΦy,

Φ̇z = −ϕΦy + µzΦz,

Φ̇v = qv(v)f(B, y) [−∥βsΦs∥+ ε∥βs∥Φz] + γΦv,

(9)

and:

Φv(t
+
n ) = Φv(tn) for n = 0, 1, 2, . . . Nf , (10)

with the following tranversality conditions:

Φs(tf , a) = Θ(a), Φs(t, a†) = 0, Φy(tf ) = −Cy, Φy(tf ) = Φv(tf ) = 0. (11)

We obtain the following result about the characterisation of the optimal control strategy.

Theorem 2:
For any optimal control application h = (hn)n∈{0,1,2,...Nf} ∈ M, then the Gâteaux derivative
of J (.) is Dh̄J (h) =

∑Nf

n=0 [Φv(t
+
n )− C ′(hn)] h̄n, where C ′(.) represents the derivation of

function C(.) with respect to its argument h̄n and h̄ ∈ Vh, with the set Vh := {h̄ ∈ RNf+1 : ∃ϵ ∈
[0, 1]; h+ ϵh̄ ∈ M}.
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The method used to prove Theorem 2 is the impulsive maximum principle (see proof in Ap-
pendix 1.2), which gives the first order necessary optimality conditions [3, 4], but does not
provide an efficient way to compute the optimal control.

We now suppose that the control cost is C(hn) = ηh2
n, so that the objective functional (4) is

quadratic in control. For this particular cost function, Theorem 3 provides a means for comput-
ing the optimal control strategy (see proof in Appendix 1.3).

Theorem 3:
There exists an optimal control h⋆ = (h⋆

n)n∈{0,1,2,...Nf} ∈ M, with corresponding optimal
states s⋆(t, a), y⋆(t), z⋆(t) and v⋆(t), maximising the objective functional J (.) defined in (4).
Moreover, the characterisation of the optimal control h⋆ is given by:

h⋆
n = max

{
0,min

{
Φv⋆(t

+
n )

2η
, hmax

}}
, ∀n ∈ {0, 1, 2, . . . Nf}. (12)

IV NUMERICAL SIMULATIONS

We present numerical simulations illustrating the effect of the optimal control strategy on the
infestation process of coffee berries by CBB in the plantation. Some system parameters, in
particular those associated with the development cycle of the CBB and the infestation rate are
estimated from the literature [11]. More information is available in [12, 14, 15]. Our numeri-
cal approach is based on an extension of the forward-backward sweep method [10], originally
proposed to solve the optimal control of continuous ordinary differential equations with impul-
sive controls. The procedure consists of the following steps: first, the state equations in (3) are
solved using the forward semi-implicit finite difference in time and backward difference in age,
with an initial guess for the control variable. Second, the adjoint equations in (9) are solved
by backward semi-implicit finite difference in time and forward difference in age, using the
solutions of the state equations. Next, the control is updated with the new values of the state
and adjoint solutions given by Theorem 3. The algorithm is repeated until the states and control
converge.

In the simulations, a constant berry production rate g(t) ≡ g and an age-independent berry
mortality rate µ(a) ≡ µ are chosen. Furthermore, the infestation rate is defined by the following
function:

β(a) =

{
βmin 0 ≤ a < aβ,

βmin + βa(1− e−kβ(a−aβ)) aβ ≤ a ≤ a†,
(13)

its average value being β̄ = 1
a†

∫ a†
0

β(a)da. The CBB–berry interaction function f is modelled
by f(B, y) = y

y+αB+1
. More details on these functions are given in [15]. To apply Theorem 3,

we use a quadratic control cost C(hn) = ηh2
n. Moreover, we choose a sigmoid function to

model the price of healthy coffee berries according to berry age:

Θ(a) =
Θam

am + amΘ
, (14)

where Θ is the asymptotic price of healthy coffee berries, aΘ is the age at which berries are at
half asymptotic price and m ∈ N⋆ is the Hill constant. Note that with a finite age bounded by

a†, the maximum price that mature berries can reach is
Θam†

am† +amΘ
.
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Moreover, we use the following initial conditions. At the beginning of the cropping season,
flowering has not started yet. We also assume that there are only colonising females, as infesting
females were eliminated from the plantation when berries were picked during the preceding
harvest. So there are initially neither coffee berries nor infesting females, i.e. s0(a) = 0 for all
a ∈ [0, a†] and z(0) = 0. The number of initial colonising females is set at y(0) = 104 females.
We also assume that the control is absent in the plantation so the initial load is v(0) = 0.

We consider two periods for the bio-insecticide application in the plantation during the cropping
season in Figures 1 and 2: τ = 7 days (1 week, red curves) in and τ = 14 days (2 weeks,
magenta curves). All parameter values are given in Table 1.

Symbol Description Value
tf Duration of a cropping season 250 days
a† maximum age of coffee berry 250 days
g Production rate of new coffee berries 1200 berries.day−1

µ Natural mortality rate of healthy coffee berries 0.002 day−1

ε Colonising CBB per berry (scaling factor) 1 female.berry−1

β(a) Infestation function (13): day−1

βmin minimum infestation rate 0.004 day−1

βa age-dependent extra infestation rate 0.036 day−1

kβ infestation coefficient 0.035 day−1

aβ infestation threshold age 90 days
α CBB–berry interaction constant 0.7 female.berry−1

ϕ Emergence rate of new colonising females 2 day−1

µy Natural mortality rate of colonising females 1/20 day−1

µz Natural mortality rate of infesting females 1/27 day−1

ξ Bio-insecticide load maximal effectiveness 0.8
k Bio-insecticide load half saturation constant 200 g.day−1

γ Bio-insecticide decay rate 1/50 day−1

η Bio-insecticide cost 0.002 $.g−2

τ Bio-insecticide application period 7 or 14 days
hmax Maximal bio-insecticide application 180 g
Θ(a) Coffee berry price function (14): $.berry−1

Θ coffee berry asymptotic price 0.025 $.berry−1

aΘ berry age at half asymptotic price 120 days
m Hill constant 7 –

Cy Cost of remaining colonising females 10−4 $.female−1

Table 1: Model and control parameter values. Most parameter values are based on biological data col-
lected in the literature. See [12, 14, 15] for more details.

In Figure 1, panels (a–d) show the dynamics of the state variables, panel (e) the optimal bio-
insecticide application; panel (f) represents the effect of bio-insecticide load on the infestation
rate, that is σ(v) = 1 − q(v) = ξv

k+v
. Trajectories of colonising and infesting females increase,

both in the uncontrolled (dashed blue curves) and controlled (red and magenta curves) case.
Due to the CBB preference for older coffee berries, this growth starts slowly. In all cases,
the bio-insecticide (panel (e)) is applied at its maximal value at the beginning of the cropping
season and decreases progressively. Its effect (panel (f)) rapidly increases but remains below
its maximum value (ξ = 0.8), which denotes a trade-off between the control effectiveness and
its cost. The colonising (panel (b)) and infesting (panel (c)) female trajectories are much lower
when the optimal control is applied (red and magenta plain curves) than in the case without
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Figure 1: Simulation of system (3) without control (dashed blue curves) and with weekly (plain red
curves) and every 2 weeks (plain magenta curves) optimal bio- insecticide applications. The healthy
berry growth without pest is also represented in (a) (dash-dotted black curve).

Figure 2: Age distribution of the healthy coffee berries and their price (yield) at the end of the simulation
(t = tf ) with optimal bio-insecticide application every week (plain red curves) or every 2 weeks (plain
magenta curves), without control (dashed blue curves), and without pest (dash-dotted black curves).
Cases without control and with various constant age-independent infestation rates β are also represented
(blue shaded area delimited by βmin and βmax = βmin + βa, plain blue curve for average value β̄).
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control (dashed blue curve). Consequently, the healthy coffee berries (panel (a)) are notably
higher with control at the end of cropping season. The control is more effective when applied
weekly than every two weeks (Figure 1), both in terms of healthy berries and colonising females
at the end of the cropping season. However, this result could change if the control cost function
C in the objective functional (4) was modified, for instance if the bio-insecticide cost η was
higher or if C included fixed labour costs for each application.

Figure 2 illustrates the evolution of the final berry density and price of coffee berries as functions
of the berry age at harvest for bio-insecticide applications every week (red curves) and every
2 weeks (magenta curves). We observe a strong decrease of the mature coffee berries (≥ 90
days) without and with control (left panel) due to the berry age preference of CBB. However,
the price distribution of berries increases with berry age but remains considerably lower than in
the case without CBB (right panel). Without control (blue curves), one can observe the strong
impact of the infestation rate (blue shaded area), as well as the effect of CBB preference for
older berries: with the same average value for the infestation rate, the final berry density is
higher with (dashed curve) than without (plain curve) age preference. Indeed, in the former
case, young berries have a better chance to remain healthy.

V CONCLUSION

In view of the extent of damages caused by CBB in coffee plantations, we aimed in this work
at controlling the infestation dynamics of coffee berries by CBB. The control is based on the
application of a bio-insecticide at discrete and periodic times, to prevent CBB from infesting
healthy berries. The controlled model we used is a semi-discrete system with a continuous berry
age structure to represent the CBB preference for older berries. An optimisation problem was
formulated in order to maximise the yield of healthy coffee berries, while minimising the cost
of control, as well as the remaining CBB population for the next cropping season. We showed
the existence of an optimal control and gave its characterisation using the maximum principle.
Numerical simulations confirmed that the application of the bio-insecticide effectively controls
the CBB and considerably increases the yield and profit at the end of cropping season. Weekly
applications were found to be more efficient than applications every two weeks, both in terms
of CBB population reduction and profit maximisation.
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A APPENDIX: THEOREM PROOFS

1.1 Proof of Theorem 1

Let hm = max{hn,∀n = 0, 1, 2, . . . Nf}, we have the inequality v(t+n ) ≤ v(tn) + hm. Let w(t) be the solution
of the impulsive system{

ẇ(t) = −γw(t) for t ̸= tn,

∆w(tn) = w(t+n )− w(tn) = hm, for t = tn, n = 0, 1, 2 . . .

Then, for t ∈ (t+n , tn+1), we have from the first equation of system above w(t) = w(t+n )e
−γ(t−tn). Therefore we

get w(t+n+1) = w(t+n )e
−γτ +hm. As e−γτ < 1 , we deduce that the sequence (w(t+n ))n converges to a fixed point,

that is w(t+n ) → hm

1−e−γτ . Finally, we obtain the following periodic solution of w(t) = hme−γ(t−tn)

1−e−γτ ≤ hm

1−e−γτ .
Therefore, from the comparison principle [2], we get v(t) ≤ w(t) ≤ hm

1−e−γτ . Hence the state v is bounded. Since
function q verifies 1− ξ ≤ q(v) ≤ 1, then by the comparison principle and using the same approach as in [15], the
subsystem defined by the s(t, a), y(t) and z(t) variables has a unique nonnegative and bounded solution.

Since the state variables of system (3) are bounded, the objective functional J (.) is finite. So it is possible to define
d = suph∈M J (h) and thus, there is a maximising sequence (hj)j∈N so that the sequence (J (hj))j∈N converges
to d. Since the set M is compact, then there exists a sub-sequence still denoted by (hj)j∈N that converges to
h⋆ = (h⋆

n)n∈{0,1,2,...Nf} so that h⋆ belongs to M. As the objective functional J (.) is continuous, then it follows
that J (h⋆) = d. This achieves the proof. □
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1.2 Proof of Theorem 2

Let Q := [0, tf ] × [0, a†]. For any given h̄ ∈ Vh, there is ϵ > 0 small enough, such that hϵ := h + ϵh̄ ∈ M. Let
sϵ(t, a), yϵ(t), zϵ(t), and vϵ(t) be the solution of system (3) corresponding to the control strategy hϵ. Then, the
directional derivative of objective functional J (.) is given by

Dh̄J (h) = lim
ϵ→0+

ϵ−1[J (h+ ϵh̄)− J (h)] =

∫ a†

0

Θ(a)λs(tf , a)da−
Nf∑
n=0

C ′(hn)h̄n − Cyλy(tf ). (15)

Multiplying the equations of the sensitivity system (6) by the adjoint state variables Φs(t, a), Φy(t), Φz(t) and
Φv(t) respectively, and also the equations (9) by the sensitivities λv(t, a), λy(t), λz(t) and λv(t) respectively. We
derive the following relation:∫

Q

λs [∂tΦs + ∂aΦs] dadt +

∫ tf

0

λyΦ̇ydt+

∫ tf

0

λzΦ̇zdt+

∫ tf

0

λvΦ̇vdt

+

∫
Q

Φs [∂tλs + ∂aλs] dadt+

∫ tf

0

Φyλ̇ydt+

∫ tf

0

Φzλ̇zdt

+

∫ tf

0

Φvλ̇vdt = 0. (16)

We have the following relation:∫ tf

0

Φvλ̇vdt =

Nf−1∑
n=0

∫ tn+1

tn

Φvλ̇vdt+

∫ tf

tNf

Φvλ̇vdt

=

Nf−1∑
n=0

[Φvλv]
tn+1

t+n
−

Nf−1∑
n=0

∫ tn+1

tn

Φ̇vλvdt+ [Φvλv]
tf

t+Nf

−
∫ tf

tNf

Φ̇vλvdt

=

Nf−1∑
n=0

Φv(tn+1)λv(tn+1)−
Nf∑
n=0

Φv(t
+
n )λv(t

+
n )−

∫ tf

0

Φ̇vλvdt (since Φv(tf ) = 0)

=

Nf−1∑
n=0

Φv(tn+1)λv(tn+1)−
Nf∑
n=0

Φv(t
+
n )[λv(tn) + h̄n]−

∫ tf

0

Φ̇vλvdt

= −
Nf∑
n=0

Φv(t
+
n )h̄n −

∫ tf

0

Φ̇vλvdt (since Φv(tn) = Φv(t
+
n ) and Φv(t0) = 0). (17)

Integrating the equation (16) and taking into account the initial and boundary conditions of equations (6)–(9) and
also the relation (17), we get the relation:∫ a†

0

Θ(a)λs(tf , a)da− Cyλy(tf )−
Nf∑
n=0

Φv(t
+
n )h̄n = 0. (18)

Therefore,∫ a†

0

Θ(a)λs(tf , a)da−
Nf∑
n=0

C ′(hn)h̄n − Cyλy(tf ) = −
Nf∑
n=0

C ′(hn)h̄n +

Nf∑
n=0

Φv(t
+
n )h̄n. (19)

Hence Dh̄J (h) =
∑Nf

n=0 [Φv(t
+
n )− C ′(hn)] h̄n for all h̄ ∈ Vh. This achieves the proof. □

1.3 Proof of Theorem 3
Let h⋆ = (h⋆

n)n∈{0,1,2,...,Nf} ∈ M be the optimal impulsive control which maximises the objective functional
J (.) and let s⋆(t, a), y⋆(t), z⋆(t) and v⋆(t) be the corresponding state variables. Then, for an arbitrary but fixed
h̄ ∈ Vh⋆ and there is ϵ > 0 small enough such that J (h⋆ + ϵh̄) ≤ J (h⋆). It is derived from Theorem 2 that
Dh̄J (h⋆) =

∑Nf

n=0 [Φv⋆(t+n )− 2ηh⋆
n] h̄n ≤ 0. Since h̄n is arbitrary for n ∈ {0, 1, 2, . . . , Nf}, which implies that

h⋆
n =

Φv⋆ (t+n )
2η . By taking the lower and upper bounds into account, we obtain the optimal impulsive control (12).

This achieves the proof. □
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