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In this work, we address the problem of 4D facial expressions generation. This is usually addressed by animating a neutral 3D face to reach an expression peak, and then get back to the neutral state. In the real world though, people show more complex expressions, and switch from one expression to another. We thus propose a new model that generates transitions between different expressions, and synthesizes long and composed 4D expressions. This involves three sub-problems: (i) modeling the temporal dynamics of expressions, (ii) learning transitions between them, and (iii) deforming a generic mesh. We propose to encode the temporal evolution of expressions using the motion of a set of 3D landmarks, that we learn to generate by training a manifold-valued GAN (Motion3DGAN). To allow the generation of composed expressions, this model accepts two labels encoding the starting and the ending expressions. The final sequence of meshes is generated by a Sparse2Dense mesh Decoder (S2D-Dec) that maps the landmark displacements to a dense, per-vertex displacement of a known mesh topology. By explicitly working with motion trajectories, the model is totally independent from the identity. Extensive experiments on five public datasets show that our proposed approach brings significant improvements with respect to previous solutions, while retaining good generalization to unseen data.

INTRODUCTION

G ENERATING dynamic 3D (4D) face models is the task of synthesizing realistic 3D face instances that dynamically evolve across time with varying expressions or speech-related movements, while keeping the same identity. This can be useful in a wide range of graphics applications, spanning from 3D face modeling to augmented and virtual reality for animated films and computer games. While recent advances in generative neural networks have made possible the development of effective solutions that operate on 2D images [START_REF] Fan | Controllable image-to-video translation: A case study on facial expression generation[END_REF], [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF], the literature on the problem of generating facial animation in 3D is still quite limited, with few examples available [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF], [START_REF] Otberdout | Sparse to dense dynamic 3D facial expression generation[END_REF] Performing faithful and accurate 3D facial animations requires addressing some major challenges, in terms both of 3D face modeling, and temporal dynamics. Related to the former, as we wish to animate a 3D face of an individual, its identity should be maintained across time. Also, the applied dynamic deformation should be controllable, corresponding to a specific expression/motion, and should be applicable to any 3D face. Incidentally, these are major challenges in 3D face modeling, which require disentangling structural face elements related to the identity, e.g.,
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• S. Berretti and A. Del Bimbo are with Media Integration and Communication Center (MICC), Univ. of Florence, Italy. E-mail: {stefano.berretti, alberto.delbimbo}@unifi.it Manuscript received July 14, 2022; revised ???? Fig. 1. 3D dynamic facial expression generation: A GAN generates the motion of 3D landmarks from a pair of expression labels, i.e., one starting and one ending labels and noise; A decoder expands the animation from the landmarks to a dense mesh, while keeping the identity of a neutral 3D face.

nose or jaw shape, from deformations related to the movable face parts, e.g., mouth opening/closing. Modeling the temporal dynamics of expressions, instead, gives rise to other challenges. First, expressions are very personal, and different individuals might perform the same expressions differently; for example, it is difficult to find two people laughing in the same exact way. So, for the sake of realism, one should be able to generate diverse motions even for the same expression. Furthermore, dynamic expressions have been always standardized in a way that they are supposed to start from a neutral configuration, reach (onset) a peak of the expression (apex), and then get back (offset) to neutral [START_REF] Zhang | A high-resolution spontaneous 3d dynamic facial expression database[END_REF], [START_REF] Cosker | A facs valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[END_REF], [START_REF] Ranjan | Generating 3D faces using convolutional mesh autoencoders[END_REF]. However, this is not the case in the real world, where people might switch from one expression to another dynamically, so that a sequence could start from or end to a non-neutral configuration. This implies considering the sequence as a transition between two expressions. Some previous works tackled the problem of neutral-to-apex generation by capturing the facial expression of a subject frameby-frame and transferring it to a target model [START_REF] Cao | Displaced dynamic expression regression for real-time facial tracking and animation[END_REF]. However, in this case, the temporal evolution is neglected, so the problem reduces to transferring a tracked expression to a neutral 3D face. Some other works animated a 3D face mesh given an arbitrary speech signal and a static 3D face mesh as input [START_REF] Cudeiro | Capture, learning, and synthesis of 3D speaking styles[END_REF], [START_REF] Karras | Audio-driven facial animation by joint end-to-end learning of pose and emotion[END_REF], some also considering additional emotional labels [START_REF] Ji | Eamm: One-shot emotional talking face via audio-based emotion-aware motion model[END_REF], [START_REF] Zhao | Emotionally controllable talking face generation from an arbitrary emotional portrait[END_REF], [START_REF] Eskimez | Speech driven talking face generation from a single image and an emotion condition[END_REF]. Also in this case though, the temporal evolution is guided by an external input, similar to a tracked expression. Differently, here we are interested in animating a face just starting from a generic 3D face and a pair of expression labels, i.e., a starting and an ending label.

In our solution, which is illustrated in Figure 1, the temporal evolution and the mesh deformation are decoupled and modeled separately in two network architectures. A manifold-valued GAN (Motion3DGAN) accounts for the expression dynamics by generating a temporally consistent motion of 3D landmarks corresponding to a specified transition between two expressions from a noise signal. The landmarks motion is encoded using the Square Root Velocity Function (SRVF), and compactly represented as a point on a hypersphere. The novel characteristic of this network is that, differently from all the previous literature, it can generate motions that do not necessarily start from a neutral configuration. In particular, the sequence to be modeled is specified by two labels, encoding the starting face configuration, and the ending one. In this way, we are able to generate (i) arbitrarily long, and (ii) composed motions of landmarks. Then, a Sparse2Dense mesh Decoder (S2D-Dec) generates a dense 3D face guided by the landmarks motion for each frame of the sequence.Ultimately, the two networks allow us to generate a dynamic sequence of 3D faces performing a dynamic transitions between expressions. To effectively disentangle identity and expression components, the landmarks motion is represented as a per-frame displacement (motion) from the starting configuration. Instead of directly generating a mesh, the S2D-Dec expands the landmarks displacement to a dense, per-vertex displacement, which is finally used to deform the neutral mesh. We thus train the decoder to learn how the displacement of a sparse set of points influences the displacement of the whole face surface. This has the advantage that structural face parts, e.g., nose or forehead, which are not influenced by facial expressions are ignored, helping in maintaining the identity traits stable. Furthermore, the network can focus on learning expressions at a fine-grained level of detail, and generalize to unseen identities.

In summary, the main contributions of our work are: (i) we propose an original method to generate dynamic sequences of 3D expressive scans given a 3D face mesh and a pair of expression labels representing, respectively, the starting and ending expression of the sequence. This is the first solution that can generate smooth transitions in 3D between two generic expression labels, while works in the literature are constrained to the neutral-toapex transition. Our approach can generate strong and diverse expression sequences, with high generalization ability to unseen identities and expressions. This has been obtained by adapting the GAN architecture proposed in [START_REF] Otberdout | Sparse to dense dynamic 3D facial expression generation[END_REF] for accepting and learning from two labels. Doing so demanded for a dataset including transitions between expressions. Given that such dataset does not exist, we (ii) defined a data augmentation strategy specific for 4D expression sequences, which is based on the SRVF encoding; finally, (iii) we exploit the above characteristic of our model to generate concatenated sequences of expression transitions. An overall sequence can start from an expression A, change to an expression B, then to expressions C and D. This is modeled as a combined generation from the pair A -B to B -C and C -D.

We prove the expressions generated in the subsequent stages of the generation, i.e., B -C and C -D, do not diverge though they are generated starting from the synthetic model generated at the end of the previous transition.

The rest of the paper is organized as follows: In Section 2, we summarize the works in the literature that are closer to our proposed solution; In Section 3, we introduce the proposed solution for generating the temporal dynamics of facial landmarks and to derive a dense mesh from them; A comprehensive experimental evaluation of our approach is presented in Section 4; Finally, conclusions and future work directions are given in Section 5.

RELATED WORK

Our work is related to methods for (a) 3D face modeling, (b) facial expression generation guided by landmarks, and (c) dynamic generation of 3D faces, i.e., 4D face generation. Below, we summarize works in these three areas that are relevant for our proposal.

3D face modeling

The 3D Morphable face Model (3DMM) as originally proposed in [START_REF] Blanz | A morphable model for the synthesis of 3D faces[END_REF] is the most popular solution for modeling 3D faces. The original model and its variants [START_REF] Booth | A 3D morphable model learnt from 10,000 faces[END_REF], [START_REF] Paysan | A 3D face model for pose and illumination invariant face recognition[END_REF], [START_REF] Brunton | Multilinear wavelets: A statistical shape space for human faces[END_REF], [START_REF] Neumann | Sparse localized deformation components[END_REF], [START_REF] Lüthi | Gaussian process morphable models[END_REF], [START_REF] Ferrari | A sparse and locally coherent morphable face model for dense semantic correspondence across heterogeneous 3D faces[END_REF], [START_REF] Ferrari | Dictionary learning based 3D morphable model construction for face recognition with varying expression and pose[END_REF] capture face shape variations both for identity and expression based on linear formulations, thus incurring in limited modeling capabilities. For this reason, non-linear encoder-decoder architectures are attracting more and more attention. This comes at the cost of reformulating convolution and pooling/unpooling like operations on the irregular mesh support [START_REF] Bronstein | Geometric deep learning: Going beyond euclidean data[END_REF], [START_REF] Litany | Deformable shape completion with graph convolutional autoencoders[END_REF], [START_REF] Verma | Feastnet: Feature-steered graph convolutions for 3D shape analysis[END_REF]. For example, Ranjan et al. [START_REF] Ranjan | Generating 3D faces using convolutional mesh autoencoders[END_REF] proposed an auto-encoder architecture that builds upon newly defined spectral convolution operators, and pooling operations to down-/up-sample the mesh. Bouritsas et al. [START_REF] Bouritsas | Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation[END_REF] improved upon the above by proposing a graph convolutional operator enforcing consistent local orderings on the vertices of the graph through the spiral operator [START_REF] Lim | A simple approach to intrinsic correspondence learning on unstructured 3D meshes[END_REF]. Despite their impressive modeling precision, a recent work [START_REF] Ferrari | A sparse and locally coherent morphable face model for dense semantic correspondence across heterogeneous 3D faces[END_REF] showed that they heavily suffer from poor generalization to unseen identities. This limits their practical use in tasks such as face fitting or expression transfer. We finally mention that other approaches do exist to learn generative 3D face models, such as [START_REF] Abrevaya | Multilinear autoencoder for 3D face model learning[END_REF], [START_REF] Moschoglou | 3dfacegan: Adversarial nets for 3D face representation, generation, and translation[END_REF]. However, instead of dealing with meshes they use alternative representations for 3D data, such as depth images or UV-maps.

To overcome the above limitation, we go beyond selfreconstruction and propose a mesh decoder that, differently from previous models, learns expression-specific mesh deformations from a sparse set of landmark displacements.

Facial expression generation guided by landmarks

Recent advances in neural networks made facial landmark detection reliable and accurate both in 2D [START_REF] Chen | Deep structured prediction for facial landmark detection[END_REF], [START_REF] Dong | Supervision by registration and triangulation for landmark detection[END_REF], [START_REF] Wan | Robust facial landmark detection by multiorder multiconstraint deep networks[END_REF] and 3D [START_REF] Gilani | Deep, dense and accurate 3d face correspondence for generating population specific deformable models[END_REF], [START_REF] Zhu | Face alignment in full pose range: A 3D total solution[END_REF]. Landmarks and their motion are a viable way to account for facial deformations as they reduce the complexity of the visual data, and have been commonly used in several 3D face related tasks, e.g., reconstruction [START_REF] Ferrari | Dictionary learning based 3D morphable model construction for face recognition with varying expression and pose[END_REF], [START_REF] Li | Learning a model of facial shape and expression from 4D scans[END_REF] or reenactment [START_REF] Ferrari | Rendering realistic subject-dependent expression images by learning 3dmm deformation coefficients[END_REF], [START_REF] Garrido | Automatic face reenactment[END_REF]. Despite some effort was put in developing landmark-free solutions for 3D face modeling [START_REF] Chang | Expnet: Landmark-free, deep, 3d facial expressions[END_REF], [START_REF] Chang | Faceposenet: Making a case for landmark-free face alignment[END_REF], [START_REF] Gecer | Ganfit: Generative adversarial network fitting for high fidelity 3d face reconstruction[END_REF], some recent works investigated their use to model the dynamics of expressions. Wang et al. [START_REF] Wang | Every smile is unique: Landmark-guided diverse smile generation[END_REF] proposed a framework that decouples facial expression dynamics, encoded into landmarks, and face appearance using a conditional recurrent network. Otberdout et al. [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF] proposed an approach for generating videos of the six basic expressions given a neutral face image. The geometry is captured by modeling the motion of landmarks with a GAN that learns the distribution of expression dynamics.

These methods demonstrated the potential of using landmarks to model the dynamics of expressions and generate 2D videos. In our work, we instead tackle the problem of modeling the dynamics in 3D, exploring the use of 3D landmarks motion to both model the temporal evolution of expressions and animate a 3D face.

4D face generation

While many researchers tackled the problem of 3D mesh deformation, the task of 3D facial motion synthesis is yet more challenging. A few studies addressed this issue by exploiting audio features [START_REF] Karras | Audio-driven facial animation by joint end-to-end learning of pose and emotion[END_REF], [START_REF] Zeng | Talking face generation with expression-tailored generative adversarial network[END_REF], speech signals [START_REF] Cudeiro | Capture, learning, and synthesis of 3D speaking styles[END_REF] or tracked facial expressions [START_REF] Cao | Displaced dynamic expression regression for real-time facial tracking and animation[END_REF] to generate facial motions. However, none of these explicitly models the temporal dynamics.

The work in [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF] first addressed the problem of dynamic 3D expression generation. In that framework, the motion dynamics is modeled with a temporal encoder based on an LSTM, which produces a per-frame latent code starting from a per-frame expression label. The codes are then fed to a mesh decoder that, similarly to our approach, generates a per-vertex displacement that is summed to a neutral 3D face to obtain the expressive meshes. Despite the promising results reported in [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF], we identified some limitations in this solution. First, the LSTM is deterministic, and for a given label the exact same displacements are generated. Our solution instead achieves diversity in the output sequences by generating from noise. Moreover, in [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF] the mesh decoder generates the displacements from the latent codes, making it dependent from the temporal encoder. In our solution, the motion dynamics and mesh displacement generation are decoupled, using landmarks to link the two modules. The S2D-Dec is thus independent from Motion3DGAN, and can be used to generate static meshes as well given an arbitrary set of 3D landmarks as input. This permits us to use the decoder for other tasks such as expression/speech transfer. Finally, as pointed out in [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF], the model cannot perform extreme variations well. Using landmarks allowed us to define a novel reconstruction loss that weighs the error of each vertex with respect to its distance from the landmarks, encouraging accurate modeling of the movable parts. Thanks to this, we are capable of accurately reproducing from slight to strong expressions, and generalize to unseen motions.

This work develops on the generative model proposed in Otberdout et al. [START_REF] Otberdout | Sparse to dense dynamic 3D facial expression generation[END_REF]. Compared to this previous approach, the main novelties of this paper are:

• we removed the constraint of starting the 4D sequence from a neutral face. Motion3DGAN was modified so that it can generate 4D transitions that switch between two generic expressions;

• we defined a strategy to augment the dataset of 4D expressions with interpolated, complex expressions;

• we expanded the experimental validation to three additional datasets, characterized by totally different expressions, identities and mesh topology;

• we experimented more difficult scenarios, such as speech transfer and cross-dataset 3D reconstruction.

PROPOSED METHOD

Our approach consists of two specialized networks as summarized in Figure 2. Motion3DGAN accounts for the temporal dynamics and generates the motion of a sparse set of 3D landmarks from noise. The generated motion represents a transition between two expressions defined by two labels, one for the start, e.g., neutral, happy, and the other for the ending configuration. The motion is then converted as a per-frame landmarks displacement. These displacements are then fed to a decoder network (S2D-Dec) that constructs the dense point-cloud displacements from the sparse displacements given by the landmarks. These dense displacements are finally added to a generic 3D face to generate a sequence of 3D faces corresponding to the specified transition from the starting expression to the ending one. In the following, we separately describe the two networks.

Generating 4D Expressions: Motion3DGAN

Facial landmarks were shown to well encode the temporal evolution of facial expressions [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF], [START_REF] Kacem | A novel space-time representation on the positive semidefinite cone for facial expression recognition[END_REF]. Motivated by this fact, we generate the facial expression dynamics based on the motion of 3D facial landmarks. Given a set of k 3D landmarks,

Z(t) = (x i (t), y i (t), z i (t)) k i=1
, with Z(0) being the starting configuration, their motion can be seen as a trajectory in R k×3 , and can be formulated as a parameterized curve in R k×3 space. Let α : I = [0, 1] → R k×3 represent the parameterized curve, where each α(t) ∈ R k×3 . For the purpose of modeling and studying our curves, we adopt the Square-Root Velocity Function (SRVF) proposed in [START_REF] Srivastava | Shape analysis of elastic curves in euclidean spaces[END_REF]. The SRVF q(t) : I → R k×3 is defined by:

q(t) =    α(t) √ ∥ α(t)∥ , if ∥ α(t)∦ = 0 0, if ∥ α(t)∥= 0, (1) 
where, ∥•∥ is the Euclidean 2-norm in R n . This function proved effective for tasks such as human action recognition [START_REF] Devanne | 3-D human action recognition by shape analysis of motion trajectories on Riemannian manifold[END_REF] or 3D face recognition [START_REF] Drira | 3D face recognition under expressions, occlusions, and pose variations[END_REF]. Similar to this work, Otberdout et al. [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF] proposed to use the SRVF representation to model the temporal evolution of 2D facial landmarks, which makes it possible to learn the distribution of these points and generate the motions for new 2D facial expression. In this paper, we extend this idea by proposing the Motion3DGAN model, which generates the motion of 3D facial landmarks. Differently from [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF], where the dynamic expression is assumed to start from a neutral configuration, here we remove this constraint and train Motion3DGAN to generate motions corresponding to a transition between two expressions. The motion is represented using the SRVF encoding in [START_REF] Fan | Controllable image-to-video translation: A case study on facial expression generation[END_REF]. Following [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF], we remove the scale variability of the resulting motions by restricting curves α to length 1. As a result, we transform the motion of 3D facial landmarks to points on a Hilbert sphere of radius 1,

C = {q : [0, 1] → R k×3 , ∥q∥ 2 = 1}.
The geometry of sphere is well-understood and can be exploited.

To learn the distribution of the SRVF representations, we propose Motion3DGAN as an extension of MotionGAN [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF], a conditional version of the Wasserstein GAN for manifold-valued data [START_REF] Huang | Manifold-valued image generation with wasserstein generative adversarial nets[END_REF]. It maps a random vector z to a point on the Hilbert sphere C conditioned on an input labels pair c = (start, end). Motion3DGAN is composed of two networks trained adversarially: a generator G that learns the distribution of the 3D landmark motions, and a discriminator D that distinguishes between real and generated 3D landmark motions. Motion3DGAN is trained by a Fig. 2. Overview of our framework: Motion3DGAN generates the motion q(t) of 3D landmarks corresponding to an expression label from a noise vector z. The module is trained guided by a reconstruction loss Lr and adversarial loss L adv . The motion q(t) is converted to a sequence of landmark displacements d i , which are fed to S2D-Dec. From each d i , the decoder generates a dense displacement D g i . A neutral mesh is then summed to the dense displacements to generate the expressive meshes S g . S2D-Dec is trained under the guidance of a displacement loss L dr and our proposed weighted reconstruction loss Lpr.

weighted sum of an adversarial loss L adv and a reconstruction loss L r such that

L M = α 1 L adv + α 2 L r .
The adversarial loss is L adv formulated as:

L adv = E q∼Pq D log p (q), c -E z∼Pz D log p exp p (G(z, c)) +λE q∼P q ∥∇ q D(q)∥ 2 -1 2 . (2) 
In the above equation, the exponential map, exp u (.): T u (C) → C and its inverse, i.e., the logarithm map log u (q): C → T u (C) are used to map the SRVF data forth and back to a tangent space T u defined at a particular point p of C. They are computed as follows:

exp u (s) = cos(∥s∥)u + sin(∥s∥) s ∥s∥ , (3) 
log u (q) = d C (q, u) sin(d C (q, r)) (q -cos(d C (q, u))u), (4) 
where d C (q, p) = cos -1 (⟨q, p⟩) is the geodesic distance between q and p in C. In (2), q ∼ P q is an SRVF sample from the training set, c is the expression labels pair (e.g., mouth openeyebrow, bareteeth-mouth up) that is concatenated to a random noise z ∼ P z . The last term of the adversarial loss represents the gradient penalty of the Wasserstein GAN [START_REF] Gulrajani | Improved training of wasserstein gans[END_REF]. Specifically, q ∼ P q is a random point sampled uniformly along straight lines between pairs of points sampled from P q and the generated distribution P g :

q = (1 -τ ) log p (q) + τ log p (exp p (G(z, c))), (5) 
where 0 ≤ τ ≤ 1, and ∇ q D(q) is the gradient w.r.t. q. Finally, the reconstruction loss is defined as:

L r = ∥log p (exp p (G(z, c))) -log p (q)∥ 1 , (6) 
where ∥.∥ 1 , represents the L 1 -norm, and q is the ground truth SRVF corresponding to the condition c. The generator and discriminator architectures are similar to [START_REF] Otberdout | Dynamic facial expression generation on hilbert hypersphere with conditional wasserstein generative adversarial nets[END_REF].

The SRVF representation is reversible, which makes it possible to recover the curve α(t) from a new generated SRVF q(t) by,

α(t) = t 0 ∥q(s)∥q(s)ds + α(0), (7) 
where α(0) represents the initial landmark configuration Z(0).

Using this equation, we can apply the generated motion to any landmark configuration, making it robust to identity changes.

From Sparse to Dense 3D Expressions: S2D-Dec

Our final goal is to animate the starting mesh S n to obtain a novel 3D face S g reproducing some expression, yet maintaining the identity structure of S n . Given this, we point at generating the displacements of the mesh vertices from the sparse displacements of the landmarks to animate S n . In the following, we assume all the meshes have a fixed topology, and are in full point-to-point correspondence.

Let L = S n 1 , S gt 1 , Z n 1 , Z gt 1 , . . . , (S n m , S gt m , Z gt m , Z n m ) be the training set, where S n i = (p n 1 , . . . , p n N ) ∈ R N ×3 is a neutral 3D face, S gt i = (p gt 1 , . . . , p gt N ) ∈ R N ×3 is a 3D expressive face, Z n i ∈ R k×3 and Z gt i ∈ R k×3
are the 3D landmarks corresponding to S n i and S gt i , respectively. We transform this set to a training set of sparse and dense displacements,

L = {(D 1 , d 1 ) , . . . , (D m , d m )} such that, D i = S gt i -S n i and d i = Z gt i -Z n i .
Our goal here is to find a mapping h : R k×3 → R N ×3 such that D i ≈ h (d i ). We designed the function h as a decoder network (S2D-Dec), where the mapping is between a sparse displacement of a set of landmarks and the dense displacement of the entire mesh points. Finally, in order to obtain the expressive mesh, the dense displacement map is summed to a 3D face in neutral expression, i.e., S e i = S n i + D i . The S2D-Dec network is based on the spiral operator proposed in [START_REF] Bouritsas | Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation[END_REF]. Our architecture includes five spiral convolution layers, each one followed by an up-sampling layer. More details on the architecture can be found in the supplementary material.

In order to train this network, we propose to use two different losses, one acting directly on the displacements and the other controlling the generated mesh. The reconstruction loss of the dense displacements is given by,

L dr = 1 N N i=1 D g i -D gt i 1 , (8) 
where D g and D gt are the generated and the ground truth dense displacements, respectively. To further improve the reconstruction accuracy, we add a loss that minimizes the error between S g and the ground truth expressive mesh S gt . We observed that vertices close to the landmarks are subject to stronger deformations. Other regions like the forehead, instead, are relatively stable. To give more importance to those regions, we defined a weighted version of the L1 loss:

L pr = 1 N N i=1 w i • p g i -p gt i 1 . (9) 
We defined the weights as the inverse of the Euclidean distance of each vertex p i in the mesh from its closest landmark Z j , i.e.w i = 1 min d(pi,Zj ) , ∀j. This provides a coarse indication of how much each p i contributes to the expression generation. Since the mesh topology is fixed, we can pre-compute the weights w i and re-use them for each sample. Weights are then re-scaled so that they lie in [0, 1]. Vertices corresponding to the landmarks, i.e., p i = Z j for some j, are hence assigned the maximum weight. We will show this strategy provides a significant improvement with respect to the standard L1 loss. The total loss used to train the S2D-Dec is given by

L S2D = β 1 .L dr + β 2 .L pr .

EXPERIMENTS

We validated the proposed method in a broad set of experiments on five publicly available benchmark datasets.

CoMA dataset [START_REF] Ranjan | Generating 3D faces using convolutional mesh autoencoders[END_REF]: It is a common benchmark employed in other studies [START_REF] Ranjan | Generating 3D faces using convolutional mesh autoencoders[END_REF], [START_REF] Bouritsas | Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation[END_REF]. It includes 12 subjects, each one performing 12 extreme and asymmetric expressions. Each expression comes as a sequence of meshes S ∈ R N ×3 (140 meshes on average), with N = 5, 023 vertices. Sequences start from a neutral state, reach a peak of the expression, and then get back to a neutral state. D3DFACS dataset [START_REF] Cosker | A facs valid 3D dynamic action unit database with applications to 3D dynamic morphable facial modeling[END_REF]. We used the registered version of this dataset [START_REF] Li | Learning a model of facial shape and expression from 4d scans[END_REF], which has the same topology of CoMA. It contains 10 subjects, each one performing a different number of facial expressions. In contrast to CoMA, this dataset is labeled with the activated action units of the performed facial expression. It is worthy to note that the expressions of D3DFACS are highly different from those in CoMA.

Florence 4D Facial Expression dataset (Florence 4D) [START_REF] Principi | The florence 4d facial expression dataset[END_REF]. This dataset consists of 10,710 synthetic sequences of 3D faces with different facial expressions from which we selected 1,222 sequences corresponding to the 7 standard facial expressions: angry, disgust, fear, happy, sad and surprise. The sequences correspond to 155 subjects including 117 females and 38 males. Each sequence is composed of 60 frames showing an expression that evolves from neutral face to reach the peak and then get back to the neutral state. The meshes are in full correspondence with the Flame template. The dataset includes synthetic identities based on the DAZ Studio's Genesis 8 Female [START_REF] Productions | [END_REF] as well as CoMa identities and real scans from the Florence 2D/3D dataset [START_REF] Bagdanov | The florence 2d/3d hybrid face dataset[END_REF].

Expressions were generated with the DAZ Studio software [START_REF] Productions | [END_REF].

VOCASET. This dataset provides 480 speech sequences of 3D face scans belonging to the 12 identities of CoMA dataset. The faces are in full correspondence and aligned to the Flame template. BU-3DFE. This dataset contains scans of 44 females and 56 males, ranging from 18 to 70 years old, acquired in neutral plus the prototypical six expressions. Each of the six expressions is acquired at four levels of intensity. Those, however, are not in full, point-to-point correspondence. For the sake of this work, we employed the registered version as described in [START_REF] Ferrari | Dictionary learning based 3D morphable model construction for face recognition with varying expression and pose[END_REF], which includes 1, 779 meshes, each mesh having N = 6704 vertices.

We underline that we chose this particular dataset in addition to the previous ones to show our S2D-Dec can effectively handle different mesh topology, and is robust to possible noise as can result from a dense registration process.

Training Details

In order to keep Motion3DGAN and S2D-Dec decoupled, they are trained separately.

Motion3DGAN: We used CoMA to train Motion3DGAN, since this dataset contains 4D sequences labeled with facial expression classes. However, in order to train Motion3DGAN to generate transitions that shift from one expression to another, the CoMA dataset in its original form is not suitable, since it only includes neutral-peak-neutral sequences, whereas we also need peak-peak transitions. So, we defined a solution to expand the dataset to include such peak-peak transitions.

In particular, we processed the dataset as follows: first, we manually divided the existing sequences into sub-sequences of 30 frames/meshes. They are separated in neutral to peak of the expression (neutral-peak), and vice versa (peak-neutral). These are then encoded as points q on a hyper-sphere using the SRVF representation in [START_REF] Fan | Controllable image-to-video translation: A case study on facial expression generation[END_REF]. Note that, for neutral-peak sequences, the initial landmark configuration required to compute the SRVF motion for a subject j is the neutral one, i.e., Z j (0) = Z n j , while for peak-neutral motions, the initial landmark configuration needs to be that of the peak frame of the expression, i.e., Z j (0) = Z e j . In this way, we can easily interpolate two sequences: given two points on the sphere q 1 and q 2 , representing two expression motions e 1 , e 2 (either neutral-peak or peak-neutral), the geodesic path ψ(τ ) between them is given by:

ψ(τ ) = 1 sin(θ) sin((1 -τ )θ)q 1 + sin(τ θ)q 2 , (10) 
where, θ = d C (q 1 , q 2 ) = cos -1 (⟨q 1 , q 2 ⟩), and τ ∈ [0, 1]. This path determines all the points q i existing between q 1 and q 2 , each of them corresponding to a (interpolated) landmarks motion. We do so for all the 12 subjects and their 12 expressions. We then estimate the transition between two expression peaks. The idea is that each interpolated motion q i ends to an expression peak, which is a linear combination of the peaks of two generic Fig. 4. Example of the generation of a peak-peak transition across two given expression sequences. Given two expression motions, q 1 and q 2 , we generate 30 interpolated sequences by sampling the geodesic path between their SRVF representation. The transition between the two peaks is obtained by converting back the motion to landmarks, and concatenating the last frame of each sequence (red rectangle). Meshes generated with S2D-Dec are visualized in place of landmarks for clarity.

motions q 1 , q 2 . Thus, if we generate a certain number of motions q i at different interpolation steps, convert them back to landmarks using [START_REF] Ranjan | Generating 3D faces using convolutional mesh autoencoders[END_REF], and keep the last frame of each sequence q i , then their concatenation provides us a transition between the peaks of q 1 and q 2 . In order to collect compatible sequences, we generated 30 interpolated motions q i for each possible pair, so that the peak-peak transition is of the same length of the original ones, i.e., 30 frames. This process is depicted in Figure 4. This sequence is then converted to a point in the SRVF space for training Motion3DGAN. Doing so for all possible pairs resulted in approximately 300K samples in total. We chose to perform interpolation directly in the hypersphere induced by SRVF as it leads to cleaner results than interpolating directly in the 3D space [START_REF] Pierson | A riemannian framework for analysis of human body surface[END_REF]. However, we cannot use all of them. In fact, different subjects might perform the same expression in a significantly different way, as shown in Figure 3. To obtain a correct peak-peak transition though, the initial landmark configuration Z(0) must be coherent with the estimated motion, which can only be guaranteed by using identity-specific landmarks. In order to maintain full independence from the identity, we instead computed the average landmark configuration of the expression peaks across subjects, for each expression. We then used these prototypes to select the most similar ones among the interpolated transitions, obtaining a total of 6, 740 interpolated motions. One sample for each transition is used as test set. We used all the others for training as we generate from a random noise at test time.

To train the model, we encoded the motions of k = 68 landmarks in the SRVF representation. The landmarks were first centered and normalized to unit norm. To encode the startingending labels pair, each of the 13 expression (including neutral) was first encoded as a one-hot vector; the labels pairs is formed by concatenating two expression labels. Finally, they are further concatenated with a random noise vector of size 128. S2D-Dec: To comprehensively evaluate the capability of S2D-Dec of generalizing to either unseen identities or expressions, we performed subject-independent and expression-independent crossvalidation experiments. For the subject-independent experiment, we used a 4-fold cross-validation protocol for CoMA, training on 9 and testing on 3 identities in each fold. On D3DFACS, we used the last 7 identities for training and the remaining 3 as test set. For the Florence 4D dataset, we used the last 30 females and 10 males as test set, and trained the model on the remaining subjects. Finally, the test set of the BU-3DFE includes the first 10 subjects (5 females and 5 males). For the expression-independent splitting, we used a 4-fold cross-validation protocol for CoMA, training on 9 and testing on 3 expressions in each fold. For D3DFACS, given the different number of expressions per subject, the first 11 expressions were used for testing and the remaining expressions were used for training. For Florence 4D, the first two expressions of each subject were used as test set. Finally, the test set of BU-3DFE includes the two expressions Angry and Disgust, while the remeaining expressions were used for training.

We trained both Motion3DGAN and S2D-Dec using the Adam optimizer, with learning rate of 0.0001 and 0.001 and minibatches of size 128 and 16, respectively. Motion3DGAN was trained for 8, 000 epochs, while 300 epochs were adopted for S2D-Dec. The hyper-parameters of the Motion3DGAN and S2D-Dec losses were set empirically to α 1 = 1, α 2 = 10, β 1 = 1 and β 2 = 0.1. We chose the mean SRVF of the CoMA data as a reference point p, where we defined the tangent space of C.

3D Expression Generation: S2D-Dec

For evaluation, we set up a baseline by first comparing against standard 3DMM-based fitting methods. Similar to previous works [START_REF] Li | Learning a model of facial shape and expression from 4D scans[END_REF], [START_REF] Ferrari | A dictionary learning-based 3D morphable shape model[END_REF], we fit S n to the set of target landmarks Z e using the 3DMM components. Since the deformation is guided by the landmarks, we first need to select a corresponding set from S n to be matched with Z e . Given the fixed topology of the 3D faces, we can retrieve the landmark coordinates by indexing into the mesh, i.e., Z n = S n (I z ), where I z ∈ N n are the indices of the vertices that correspond to the landmarks. We then find the optimal deformation coefficients that minimize the Euclidean error between the target landmarks Z e and the neutral ones Z n , and use the coefficients to deform S n . In the literature, several 3DMM variants have been proposed. We experimented the standard PCAbased 3DMM and the DL-3DMM in [START_REF] Ferrari | A dictionary learning-based 3D morphable shape model[END_REF]. For fair comparison, we built the two 3DMMs using a number of deformation components comparable to the size of the S2D-Dec input, i.e., 68 × 3 = 204. For PCA, we used either 38 components (99% of the variance) and 220, while for DL-3DMM we used 220 dictionary atoms.

With the goal of comparing against other deep models, we also considered the Neural3DMM [START_REF] Bouritsas | Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation[END_REF]. It is a mesh auto-encoder tailored for learning a non-linear latent space of face variations and reconstructing the input 3D faces. In order to compare it with our model, we modified the architecture and trained the model to generate an expressive mesh S g given its neutral counterpart as input. To do so, we concatenated the landmarks displacement (of size 204) to the latent vector (of size 16) and trained the network towards minimizing the same L pr loss used in our model. We used the same data to train all the models for consistency. However, since we exclude identity reconstruction in our problem, it could be argued that multi-linear 3DMMs, where identity and expressions are handled by two different models, should be used. We also experimented by building expression-specific 3DMMs, obtained by subtracting the neutral scan of each subject from their expressive counterparts instead of using the overall data mean. However, this not resulted in any noticeable improvement. Finally, we also identified the FLAME model [START_REF] Li | Learning a model of facial shape and expression from 4D scans[END_REF]. Unfortunately, the training code of FLAME is not available, while using the model pre-trained on external data would result in an unfair comparison.

The mean per-vertex Euclidean error between the generated meshes and their ground truth is used as standard performance measure, as in the majority of works [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF], [START_REF] Ranjan | Generating 3D faces using convolutional mesh autoencoders[END_REF], [START_REF] Ferrari | A sparse and locally coherent morphable face model for dense semantic correspondence across heterogeneous 3D faces[END_REF], [START_REF] Bouritsas | Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation[END_REF]. Note that we exclude the Motion3DGAN model here as we do not have the corresponding ground-truth for the generated landmarks (they are generated from noise). Instead, we make use of the ground truth motion of the landmarks.

Comparison with Other Approaches

Table 1 shows a clear superiority of S2D-Dec over state-ofthe-art methods for both the protocols and datasets, proving its ability to generate accurate expressive meshes close to the ground truth in both the case of unseen identities or expressions. In Figure 5, the cumulative per-vertex error distribution on the expression-independent splitting further highlights the precision of our approach, which can reconstruct 90%-98% of the vertices with an error lower than 1mm. While other fitting-based methods retain satisfactory precision in both the protocols, we note that the performance of Neural3DMM [START_REF] Bouritsas | Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation[END_REF] significantly drops when unseen identities are considered. This outcome is consistent to that reported in [START_REF] Ferrari | A sparse and locally coherent morphable face model for dense semantic correspondence across heterogeneous 3D faces[END_REF], in which the low generalization ability of these models is highlighted. Overall, our solution embraces the advantages of both approaches, being as general as fitting solutions yet more accurate. The only case where our method performs slightly worse is for the BU-3DFE dataset. Here, meshes are obtained through a dense registration, which is an error-prone process mostly for expressive scans. So, training data is likely affected by noise. However, results show S2D-Dec is quite robust.

Figure 6 shows some qualitative examples by reporting error heatmaps in comparison with PCA, DL-3DMM [START_REF] Ferrari | A dictionary learning-based 3D morphable shape model[END_REF] and Neu-ral3DMM [START_REF] Bouritsas | Neural 3D morphable models: Spiral convolutional networks for 3D shape representation learning and generation[END_REF] for the identity-independent splitting. The ability of our model as well as PCA and DL-3DMM to preserve the identity of the ground truth comes out clearly, in accordance with the results in Table 1. By contrast, Neural3DMM shows high error even for neutral faces, which proves its inability to generalize to the identity of unseen identities. Indeed, differently from the other methods, Neural3DMM encodes the neutral face in a latent space and predicts the 3D coordinates of the points directly. This evidences the efficacy of our S2D-Dec that learns per-point displacements instead of point coordinates.

Transfer of Speech-Related Facial Movements

By using landmarks, our S2D-Dec can transfer facial expressions or speech between identities. This is done by extracting the sequence of landmarks from the source face, encoding their motion as an SRVF representation, transferring this motion to the neutral landmarks of the target face and using S2D-Dec to get the target identity following the motion of the first one. To demonstrate the high generalization ability of our proposed approach for different expressions, we evaluate it on VOCASET for speech transfer. This is done by transferring the speech-related movements from the first identity of VOCASET to the other 11 identities.

We report the reconstruction error between the obtained meshes after speech transfer and their ground truth counterparts. Note that the lengths of the ground truth and the obtained sequences are slightly different, thus we considered the error for each frame as the minimum error in a sliding windows of 20 frames centered on the given frame. In this experiment, we only considered the first five sentences of VOCASET that are shared between all identities. We highlight that the model used in this experiment was trained on the CoMA dataset that does not include such speech-related movements. That is possible given the full correspondence between CoMA and VOCASET data. Table 2 shows the results of this experiment. The superiority of our approach is clearly evidenced over other state-of-the-art solutions, which proves the high generalization ability of our method to animate 3D faces with completely different facial expressions from those seen during the training. In addition, these results demonstrate that our method can be used not only with our generated facial motions, but we can also exploit external motions that are completely different from our generated ones.

Cross Datasets Evaluation

We report the error obtained for a cross-dataset evaluation on two different datasets; COMA and Florence 4D. The error is reported on all CoMA samples and the test set of Florence 4D. In consistency with the previous results, Table 3 confirms the superiority of our model over other methods. We note that the mean errors obtained with the Florence 4D data are almost the same obtained with the expression split protocol in Table 1. However, a higher error is reached on CoMA with all methods.

Ablation Study

We report here an ablation study to highlight the contribution of each loss used to train S2D-Dec, with particular focus on our proposed weighted-L1 reconstruction loss. We conducted this study on the CoMA dataset using the first three identities as a testing set and training on the rest. This evaluation is based on the mean per-vertex error between the generated and the ground truth meshes. We evaluated three baselines, namely, S1, S2 and S3. For the first baseline (S1), we trained the model with the displacement reconstruction loss in (8) only. In S2, we added the standard L1 loss to S1, which corresponds to our loss in [START_REF] Cudeiro | Capture, learning, and synthesis of 3D speaking styles[END_REF] without the landmark distance weights. To showcase the importance of weighting the contribution of each vertex, in S3 we added the landmark distance weights to the L pr loss. Results are shown in Table 4, where the remarkable improvement of our proposed loss against the standard L1 turns out evidently. This is explained by the fact that assigning a greater weight to movable face parts allows the network to focus on regions that are subject to strong facial motions, ultimately resulting in realistic samples.

4D Facial Expressions: Motion3DGan

We validated the performance of Motion3DGAN in a broad set of experiments, both quantitative and qualitative. However, since Motion3DGAN generates samples from noise to encourage diversity, the generated landmarks and meshes change at each forward pass. Thus, we cannot directly compute the mean per-vertex error with respect to ground-truth shapes as done in [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF]. Comparing with other approaches is also not possible since no other method currently can generate dynamic transition sequences of arbitrary expressions. For a comprehensive analysis, we evaluated it in terms of (i) specificity error, and (ii) expression classification.

Specificity measure: Following the standard practice for statistical generative shape models, we use the specificity measure [START_REF] Davies | Statistical models of shape: Optimisation and evaluation[END_REF] to evaluate the quality of the generated samples. Given the very large number of possible start-end transitions (132 for the 12 expressions of CoMA), we selected a subset of them for validation.

In particular, for each expression, we randomly chose 3 possible ending expressions, obtaining a total of 39 transitions. For each transition, we generated 64 samples (landmark sequences), for a total of 2, 496 samples, and computed the per-landmark average Euclidean distance with respect to the same transitions in the test data (as defined in Section 4.1). The average errors for all the cases are reported in Table 5. We first observe the error is stable and consistent across all the tested combinations. In addition, results show that transitions starting from the neutral expression score a lower distance. This is because the neutral expression is consistent across identities, while each subject performs facial expressions differently. In many cases, these can differ significantly; for example, some subjects of CoMA perform the "Eyebrows" expression by raising both of them, some others raise either the left or the right one (see Figure 3). Recalling [START_REF] Ranjan | Generating 3D faces using convolutional mesh autoencoders[END_REF], to obtain the landmarks from the generated motions, a reference landmark configuration for each expression needs to be chosen. Whereas for those starting from neutral this is not an issue, if the reference differs from that of the specific subject, the error might be larger even though the sequence is correct. To verify this, we performed a classification test, described in the next paragraph. In Figure 7, the per-frame specificity error is reported. It can be observed as, even though the three sequences starting from neutral obtain lower error on average, the error does not diverge. The higher increase in correspondence of the central frames [START_REF] Karras | Audio-driven facial animation by joint end-to-end learning of pose and emotion[END_REF][START_REF] Ji | Eamm: One-shot emotional talking face via audio-based emotion-aware motion model[END_REF][START_REF] Zhao | Emotionally controllable talking face generation from an arbitrary emotional portrait[END_REF][START_REF] Eskimez | Speech driven talking face generation from a single image and an emotion condition[END_REF][START_REF] Blanz | A morphable model for the synthesis of 3D faces[END_REF][START_REF] Booth | A 3D morphable model learnt from 10,000 faces[END_REF][START_REF] Paysan | A 3D face model for pose and illumination invariant face recognition[END_REF][START_REF] Brunton | Multilinear wavelets: A statistical shape space for human faces[END_REF][START_REF] Neumann | Sparse localized deformation components[END_REF][START_REF] Lüthi | Gaussian process morphable models[END_REF][START_REF] Ferrari | A sparse and locally coherent morphable face model for dense semantic correspondence across heterogeneous 3D faces[END_REF] is again due to the very different and personal nature of facial expressions, which depends also on the velocity of performing it. The onset phase thus results more problematic, while at the peak of the expression (frame 30) the error tends to converge to a uniform value. However, the need of using an initial configuration of landmarks can be considered as a limitation of our approach; solving it would require generating also the starting configuration to ensure an even more pronounced diversity.

Expression classification:

We further evaluated the quality of the generated sequences implementing a classification solution, similar to [START_REF] Potamias | Learning to generate customized dynamic 3D facial expressions[END_REF]. We trained a simple random forest classifier to recognize the 39 transitions generated in the previous paragraph. We trained this classifier on the same sequences used to train Motion3DGAN. For testing, we used the same 2, 496 samples. Since the S2D-Dec could compensate minor generation errors, we directly used the generated landmarks to perform classification.

Results are reported in Table 5, separately for each transition. Overall, the generated sequences have a high classification accuracy. meaning that they accurately resemble real ones, even though some of them score a lower accuracy. Qualitatively, we verified this is likely caused by the similarity of some classes of expressions in the CoMA dataset. For example, mouth extreme qualitatively looks similar to a combination of mouth open and mouth down, just differing in intensity.

Generating composed sequences: A novel characteristic of our method is that, even though the length of each transition is fixed to 30 frames, we are able to generate longer, composed and complex transitions. This is possible as we removed the constraint of starting the animation from a neutral face, and thanks to the SRVF representation, which allowed us to create interpolated transitions from one expression to another. So, it is possible for example to generate a 90 frames long sequence by composing three transitions, e.g., neutral-bareteeth-eyebrows-lips up. To do so, we generate the sequence incrementally, using as starting landmark configuration for the (i + 1)-th transition, the ending frame of the i-th one. To verify that the model is sufficiently robust to handle the diversity of each generated transition, we generated 64 samples of 5 composed sequences of 90 frames each (3 transitions). The average per-frame error is reported in Figure 8. Results show that the error does not significantly propagate across transitions, and remains quite stable even though a slight increasing trend is observed. This is due to the fact by switching from one expression peak to another without getting back to a neutral state, the resulting expression is actually a mix of the two. This is an interesting property, which makes the generated sequences even more natural looking. The lower peaks at frames 30 and 60 are instead due to the fact the training/testing sequences are 30 frames long, so leading to a discontinuity when computing the error. To clarify this aspect, let us consider the sequence "mouth down-mouth side-mouth openlips back" (yellow curve in Figure 8): to compute the error from frame 0 to 30, we considered the corresponding transition in the real data; to compute the error for frames 30-60, we instead needed to consider a different transition, though the generated one starts from the last frame of the previous one. Ultimately, the discontinuity is reflected in the errors. Nonetheless, qualitative examples in Figure 9 and the supplementary video show the error propagation does not significantly corrupt the output. 

Subjective Evaluation

In this section, we report the results of a user study aimed at assessing the perceived quality of the generated 4D expression sequences. We recruited 23 participants, and asked them to evaluate the quality of the generated data in terms of "Naturalness" (NAT) score, ranging from 0 to 10. To obtain consistent results, before starting the questionnaire, users were shown two reference examples for the lower and upper bounds of the score; 0 corresponds to a completely failed animation, while 10 corresponds to a real sequence from the original dataset. In addition, we also asked the users to evaluate the faithfulness of a given animation with respect to the input label (LAB). The latter score also ranges from 0 to 10. Users were shown a total of 28 generated animations, 14 of which included multiple transitions, and 14 only neutral-peak transitions.

The average reported NAT score was of 7.22, while the LAB score of 7.05, indicating users perceived the generated meshes as fairly natural and faithful to the input label. Concerning the neutral-peak sequences, they were generated both using the proposed model, and that of [START_REF] Otberdout | Sparse to dense dynamic 3D facial expression generation[END_REF]. The NAT score reported for our model was of 7.39, and 5.82 for the model of [START_REF] Otberdout | Sparse to dense dynamic 3D facial expression generation[END_REF]. Our results were perceived as more realistic, possibly thanks to the increased variability and quantity of the training data, whose collection was made possible by augmenting them with interpolated samples.

Qualitative Results

Figure 9 shows additional qualitative results. In particular, Figure 9 (top) shows two examples of composed sequences generated with our model. These are obtained generating transitions between different expressions incrementally with Motion3DGAN. S2D-Dec was applied to these motions ultimately obtaining a complex 4D sequence. Figure 9 (bottom), instead, shows some qualitative examples of speech transfer, applied as described in Section 4.2.2. The reader can appreciate that our model allows a natural transfer of speech related movements that were completely unseen during training.

CONCLUSIONS AND LIMITATIONS

In this paper, we proposed a novel framework for dynamic 3D facial expression generation. From a starting 3D face and an expression label indicating the starting and the ending expression, we can synthesize sequences of 3D faces switching between different facial expression. This is achieved by two decoupled networks that separately address the motion dynamics modeling and generation of expressive 3D faces from a starting one. We demonstrated the improvement with respect to previous literature, the high generalization ability of the model to unseen expressions and identities, and showed that using landmarks is effective in modeling the motion of expressions and the generation of 3D meshes. We also identified two main limitations: first, our S2D-Dec generates expression-specific deformations, and so cannot model identities. Moreover, while Motion3DGAN can generate diverse expressions including transition between expressions and long composed 4D expressions, the samples are of a fixed length. 
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 3 Fig. 3. Samples from the CoMA dataset: Mouth-Side (left), Eyebrows (right). For the same expressions, the samples differ significantly.
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 5 Fig. 5. Cumulative per-vertex error between PCA-based 3DMM models, DL-3DMM, Neural3DMM, and S2D-Dec, using expression-independent cross-validation on four datasets.
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 6 Fig. 6. Mesh reconstruction error (red=high, blue=low) of our model and other methods. Examples are given for three different datasets.
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 7 Fig. 7. Per-frame specificity error (mm) for all the 39 tested transitions. Legend is omitted for clarity. The three curves with lower error (purple, yellow, orange) refer to transitions starting from the neutral expression.
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 8 Fig. 8. Per-frame evolution of the error for 5 sequences composed of 3 transitions each. Each transition is 30 frames long.
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 9 Fig. 9. Applications -From top to bottom: Transition between expressions: starting from a neutral face, each row show the transition between five different facial expressions. Transfer: speech transfer from one identity to another. Animated versions can be found in this link.

  

  

TABLE 1

 1 Reconstruction error (mm) on expression-independent (left) and identity-independent (right) splits: comparison with PCA-k 3DMM (k components), DL-3DMM (220 dictionary atoms), and Neural3DMM.

			Expression Split			Identity Split			
	Method	CoMA	D3DFACS	BU-3DFE	Florence 4D	CoMA	D3DFACS	BU-3DFE	Florence 4D
	PCA-220	0.76 ± 0.73	0.42 ± 0.44	2.00 ± 1.67	0.70 ± 0.81 0.80 ± 0.73	0.56 ± 0.56	2.10 ± 1.74	0.16 ± 0.17
	PCA-38	0.90 ± 0.84	0.44 ± 0.45	2.55 ± 1.72	0.87 ± 1.05 0.93 ± 0.82	0.58 ± 0.56	2.61 ± 1.78	0.18 ± 0.20
	DL3DMM [53]0, 86 ± 0, 80	0.73 ± 1.15	2.09 ± 1.58	0.83 ± 1.03 0.89 ± 0.79	1.15 ± 1.50	2.22 ± 1.69	0.17 ± 0.18
	Neural [25]	0.75 ± 0.85	0.59 ± 0.86	3.16 ± 2.12	1.45 ± 1.43 3.74 ± 2.34	2.09 ± 1.37	3.85 ± 2.32	1.41 ± 1.09

Ours

0.52 ± 0.59 0.28 ± 0.31 1.97 ± 1.52 0.57 ± 1.24 0.55 ± 0.62 0.27 ± 0.30 2.34 ± 1.83 0.10 ± 0.08

TABLE 2

 2 

		Speech transfer reconstruction error on VOCASET
	-	PCA DL3DMM Neural Ours (S2D)
	Rec. error (mm) 2.90	2.73	3.49	1.48

TABLE 3

 3 

	Reconstruction error (mm): cross dataset setting
	Method	Train: Florence 4D Test: CoMA	Train: CoMA Test: Florence 4D
	PCA 220	1.81 ± 1.54	0.64 ± 0.89
	DL	2.09 ± 1.78	0.72 ± 0.91
	Ours	1.50 ± 1.84	0.56 ± 0.76

TABLE 4

 4 Ablation study on the reconstruction loss of S2D-Dec L dr 1.27 ± 1.88 S2 : S1 + Lpr w/o distance weights 0.92 ± 1.33 S3 : S1 + Lpr 0.50 ± 0.56

	Method	Error (mm)

S1 :

TABLE 5

 5 Specificity error (mm) and classification accuracy for 39 transitions

	Start	End	Specificity (mm)	Classification
		High-Smile	15.1 ± 0.77	98%
	Bareteeth	Lips-Back	15.3 ± 0.52	92%
		Lips-Up	14.4 ± 0.72	100%
		Mouth-Down	16.4 ± 1.54	80%
	Cheeks-In	Mouth-Extreme	14.1 ± 0.41	86%
		Mouth-Middle	16.3 ± 0.13	75%
		Mouth-Open	14.7 ± 0.36	100%
	Eyebrow	Mouth-Side	15.6 ± 0.72	91%
		Mouth-Up	16.1 ± 1.02	86%
		Neutral	14.3 ± 0.36	100%
	High-Smile	Bareteeth	15.6 ± 0.72	100%
		Cheeks-In	16.1 ± 1.02	99%
		Eyebrow	14.3 ± 0.46	79%
	Lips-Back	High-Smile	14.4 ± 0.59	98%
		Lips-Up	13.8 ± 0.59	100%
		Mouth-Down	16.0 ± 0.47	100%
	Lips-Up	Mouth-Extreme	14.0 ± 1.09	81%
		Lips-Back	14.4 ± 0.45	76%
		Mouth-Middle	16.4 ± 1.51	86%
	Mouth-Down	Mouth-Open	15.0 ± 0.40	95%
		Mouth-Side	15.6 ± 0.61	89%
		Mouth-Up	15.9 ± 0.47	80%
	Mouth-Extreme	Neutral	14.0 ± 1.20	98%
		Bareteeth	14.5 ± 0.01	100%
		Cheeks-In	14.6 ± 0.56	100%
	Mouth-Middle	Eyebrow	14.5 ± 0.47	75%
		High-Smile	14.6 ± 0.48	100%
		Lips-Back	14.7 ± 0.45	100%
	Mouth-Open	Lips-Up	13.6 ± 0.54	100%
		Mouth-Down	16.0 ± 1.06	82%
		Mouth-Extreme	15.2 ± 0.43	97%
	Mouth-Side	Mouth-Middle	15.9 ± 1.28	78%
		Mouth-Open	15.0 ± 0.43	100%
		Mouth-Side	15.1 ± 0.52	88%
	Mouth-Up	Neutral	13.4 ± 0.75	100%
		Bareteeth	14.1 ± 0.08	100%
		Bareteeth	7.9 ± 1.32	100%
	Neutral	Cheeks-In	8.0 ± 1.28	94%
		Eyebrow	5.7 ± 0.62	100%

ACKNOWLEDGMENTS

This work was supported by the French State, managed by National Agency for Research (ANR) National Agency for Research (ANR) under the Investments for the future program with reference ANR-16-IDEX-0004 ULNE. This paper was also partially supported by the European Union's Horizon 2020 research and innovation program under grant number 951911 -AI4Media. The authors would also like to thank Giulio Calamai for performing part of the experimentation. Most of this work was done when Naima Otberdout was at the University of Lille.