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Abstract

Games with incomplete information are games that model situations where
players do not have common knowledge about the game they play, e.g. card
games such as poker or bridge. Opponent models can be of crucial importance
for decision-making in such games. We propose algorithms for computing optimal
and/or robust strategies in games with incomplete information, given various types
of knowledge about opponent models. As an application, we describe a framework
for reasoning about an opponent’s reasoning in such games, where opponent models
arise naturally.

1 Introduction
Opponent models are models that describe or predict how an opponent reasons or
behaves in a game. Such models have been explicitly incorporated into game tree
search algorithms (e.g. minimax, 𝛼𝛽 search, MCTS) for games with perfect information
(Iida et al., 1993, 1994; Sturtevant and Bowling, 2006; Sturtevant et al., 2006) to find
robust strategies against a given opponent model, i.e. strategies that guarantee a given
payoff against any strategy deemed possible by the opponent model. The knowledge
of opponent models can accelerate the game tree search (e.g. by pruning branches not
considered by an opponent) and improve the performance of the strategies obtained
(e.g. by exploiting the weakness of an opponent).

In this paper, we extend the idea of opponent-model search to (two-player, zero-
sum) games with incomplete information. In such games, players do not share the same
information. Notable examples include card games, where players cannot see the set of
cards (i.e. hand) of the other players. We present three contributions to this subject. We
first propose different ways of taking opponent models into account (which is of interest
beyond the setting of incomplete information), and give algorithms for computing the
corresponding robust strategies for such games. We then propose a principled method
for taking into account a probability that the opponent does not behave according to any
of the given models. Finally, we show an application of these models to the recursive

∗This article is a long version with full proofs of the article published in the proceedings of the Thirty-
Eighth AAAI Conference on Artificial Intelligence (AAAI-24).
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modelling of opponents, where a level-𝑘 player assumes that their opponent reasons at
some level lower than 𝑘 , and recursively down to level 0.

2 Related Work
When no opponent model is available, one typically aims to be robust against all possible
strategies of an opponent. Koller and Megiddo (1992); Koller et al. (1996); von Stengel
(1996) study the complexity of computing maxmin strategies in this case under a variety
of settings; in particular, for mixed strategies, they give polynomial-time algorithms
based on linear programming for two-player extensive-form games with perfect recall,
a more general setting than ours. McMahan et al. (2003) propose a double-oracle
algorithm for computing optimal mixed strategies for Markov decision processes with
adversarial cost functions, which can also be regarded as a polynomial-time algorithm
for computing the maxmin strategies of a normal-form game. Bosanský et al. (2014)
combine these ideas to propose an algorithm for zero-sum extensive-form games with
perfect recall, which is efficient when optimal mixed strategies have small supports.

Opponent models can come in diverse forms. Iida et al. (1993, 1994) propose
opponent models for games with perfect information, where models are given by the
evaluation function and the search depth of the opponent. Sturtevant et al. (2006)
propose opponent models given by opponents’ preferences over the outcomes of a game.
Rebstock et al. (2019) use opponent models learnt from human games for imperfect
information (card) games. A survey of opponent modelling approaches is also provided
by Albrecht and Stone (2018). Our work is related to these in the sense that we assume
opponent models to be given (called “type-based reasoning” by Albrecht and Stone
(2018, Section 4.2)). However, an important stream of work also studies the learning of
opponent models; we refer the reader to the survey by Nashed and Zilberstein (2022).

An important class of opponent models is that of recursive models, where MAX
searches a strategy (at level 𝑘) assuming that MIN themselves searches a strategy (at
level 𝑘 − 1) assuming that MAX searches. . . , etc., down to level 0. Such models have
been studied in behavioural game theory (Dhami, 2019) to capture human reasoning.
For instance, Camerer et al. (2004) propose a cognitive hierarchy model in which an
opponent’s level is modelled by a Poisson distribution over levels 𝑘 −1, . . . , 0; they also
validate this model against empirical data. Wright and Leyton-Brown (2019) assess
the relevance of various modelling assumptions for level 0. De Weerd et al. (2013)
assess the efficiency of reasoning with recursive models by simulation. Such recursive
models are also used in epistemic game theory to define notions such as common belief
in rationality (Perea, 2012).

Recursive models are also considered for cooperative planning. In particular, inter-
active POMDPs are a framework for collaborative decision-making in partially observ-
able environments (Gmytrasiewicz and Doshi, 2005; Doshi et al., 2020). In this model,
a level-𝑘 agent optimises their behaviour given a distribution over (partially observed)
physical states and over other agents’ models at level 𝑘 − 1. Interestingly, optimal
behaviours at level 𝑘 can be computed iteratively by solving a sequence of POMDPs,
where at each iteration the other agents’ model can be considered as part of the envi-
ronment. For human-agent collaboration, You et al. (2023) propose a recursive model
with bounded depth, whereby an agent plans (at level 2) a best response to a mixture
of possible strategies for a human, with these human strategies themselves defined (at
level 1) by planning assuming that the agent is controlled by the human (at level 0).
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Figure 1: A VG with 5 possible worlds and the uniform prior.

3 Formal Setting
Given a finite tree 𝑇 , we write 𝑟 for its root, N(𝑇) for the set of nodes, C(𝑛) for the set
of children of 𝑛 ∈ N(𝑇), and L(𝑇) for the set of leaves. We consider two-player (MAX
and MIN, denoted by + and −) and zero-sum1 extensive-form games in the following
form.

Definition 1 (VG). A vector game (VG) is a tuple 𝐺 ≔ ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩, where 𝑇 is a
finite tree, P : N(𝑇) \L(𝑇) → {+,−} determines whose turn it is at a node, 𝑡 ∈ N is the
number of MIN’s types, ®𝑢 : L(𝑇) → R𝑡 gives the utility for MAX depending on MIN’s
type, and ®𝜌 is a commonly known distribution over MIN’s types.

Example. A VG with 5 types of MIN and the uniform prior (each MIN’s type is drawn
with probability 1/5) is given in Figure 1, where a square (resp. a circle) denotes a
node of MAX (resp. of MIN). If MIN plays a (at 𝐴) and MAX plays l (at 𝐵), MAX’s
payoff is2 11100, which means MAX’s gain is 1 if MIN is of one of the first three types,
and 0 otherwise.

A VG is a game in which MAX has incomplete information (MAX does not know
MIN’s type) and MIN has perfect information. It has no chance factor, except the initial
drawing of MIN’s type. VGs can be obtained by applying the best-defence model (Frank
and Basin, 2001) to general games with incomplete information, and can be used to
model card games such as Bridge; under this model, MAX assumes that MIN plays as
if MIN knew the dealing of cards.

Strategies in a VG A pure strategy 𝑠+ of MAX maps every node 𝑛 of MAX to a child
of 𝑛; a pure strategy 𝑠− of MIN maps every node 𝑛 of MIN and each type to a child of
𝑛.3 We write ΣP

𝑖
for the set of all pure strategies of 𝑖. A mixed strategy 𝜎𝑖 of player 𝑖 is

a probability distribution over ΣP
𝑖
, written as 𝑝1𝑠

1
𝑖
+ · · · + 𝑝𝑘𝑠

𝑘
𝑖
, with the interpretation

that 𝑖 draws 𝑠 𝑗
𝑖

with probability 𝑝 𝑗 at the beginning of the game, and then plays 𝑠 𝑗
𝑖
; we

write ΣM
𝑖

for the set of all mixed strategies of 𝑖. Finally, a behaviour strategy 𝜋+ of
MAX (resp. 𝜋− of MIN) maps every node 𝑛 of MAX (resp. every node of MIN and
every type) to a probability distribution over C(𝑛), with the interpretation that the player
draws their moves at 𝑛 according to this distribution, and they do so independently at
each of their nodes.

Given a VG ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ and a pair of strategies (of any kind) (𝜍+, 𝜍−), we write
U(𝜍+, 𝜍−) for MAX’s expected payoff with respect to the probability distribution over

1Our study can be easily extended to more players and general-sum, with the exception of the lexicographic
setting, for which the definition of opponent models does not trivially generalise.

2When possible, we write vertical vectors compactly inline.
3Hence, MIN can pick different actions at the same node according to their type, which is hidden to MAX.
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Algorithm 1: Generic Minimax Algorithm
1 def MiniMax(node 𝑛, game ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩):
2 if 𝑛 is a terminal node:
3 return eval(𝑛)
4 elif P(𝑛) = +:
5 return

∨
𝑛′∈C(𝑛) MiniMax(𝑛

′)

6 else:
7 return

∧
𝑛′∈C(𝑛) MiniMax(𝑛

′)

L(𝑇) induced by drawings of MAX’s and MIN’s strategies/moves (according to 𝜍+ and
𝜍−) and MIN’s types (according to ®𝜌).4

4 Maxmin Values Without Opponent Models
We first consider the case without opponent models, which is the basis of our algorithms
for opponent-model search. In this case, we are interested in computing the maxmin
value

𝑣+ ≔ max
𝜍+∈Σ+

min
𝑠−∈ΣP

−
U(𝜍+, 𝑠−),

where Σ+ is ΣP
+ (pure maxmin) or ΣM

+ (mixed maxmin), depending on context. Since U
is linear in MIN’s mixed strategies, replacing ΣP

− by ΣM
− would not change the value,

hence our definition only concerns pure strategies of MIN.
The maxmin value 𝑣+ is the largest payoff MAX can guarantee by any strategy from

Σ+, no matter how MIN plays. MAX’s strategies that achieve 𝑣+ are called maxmin
strategies. By definition, the mixed maxmin value is no smaller than the pure maxmin
value. As we will see, it is, in general, more difficult to compute the pure maxmin
value for VGs than the mixed maxmin value. Still, in some situations, pure maxmin is
more desirable or even the only viable solution concept, e.g. when outcomes are only
partially ordered, or when mixed strategies are not allowed due to their probabilistic
nature. Hence, we will study algorithms for both notions, with a focus on pure maxmin
since algorithms for mixed maxmin only require minor modifications in the presence
of opponent models.

Generic Algorithm The maxmin value of games with perfect information is typically
computed by the minimax algorithm, a generic version of which is shown in Algorithm 1
(the maxmin strategies can be computed by bookkeeping).

This algorithm has four parameters, which we use to capture different algorithms in
the following sections:

• 𝑉 is a set of objects called situational values;

• eval is an evaluation function which maps each terminal node 𝑛 to a value
eval(𝑛) ∈ 𝑉 ;

4Concretely, let 𝑝𝑖 be the probability over the leaves induced by 𝜍+ and 𝜍− when MIN is of type 𝑖. Then
U(𝜍+, 𝜍− ) is defined to be

∑𝑡
𝑖=1

∑
𝑙∈L(𝑇 ) 𝑝𝑖 (𝑙)𝑢(𝑙)𝑖𝜌𝑖 , where 𝑢(𝑙)𝑖 and 𝜌𝑖 are the 𝑖-th components of the

vectors ®𝑢(𝑙) and ®𝜌.
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• ∨,∧ : 𝑉 ×𝑉 → 𝑉 are two associative binary operators, referred to as MAX’s and
MIN’s operator, respectively.

With eval as boundary conditions, this algorithm recursively defines a situational
value val(𝑛) for every node 𝑛. For an instantiation of this algorithm to compute the
maxmin values, one should choose the parameters according to the class of games
under consideration such that there is a polynomial-time computable mapping from the
situational value of the root val(𝑟) to the maxmin value of the game.

We write MiniMax(𝑉, eval,∨,∧) for its instantiation with the parameters 𝑉 , eval,
∨, ∧, and denote by val(𝑛) the value which it associates to each node 𝑛. For example,
for games with perfect information (i.e. when 𝑡 = 1 and ®𝑢(𝑛) ∈ R), it is well-known
that MiniMax(R, ®𝑢,max,min) satisfies val(𝑟) = 𝑣+, where 𝑟 is the root of the tree.

This algorithm has several advantages: returned values for internal nodes are readily
interpretable; the algorithm is efficient on memory since the recursion depth is the depth
of the game tree, which in general is exponentially smaller than the tree; the search can
be combined with other techniques, such as heuristic functions and 𝛼𝛽 pruning (which
is possible whenever (𝑉,∨,∧) forms a lattice (Li et al., 2022)), move ordering, Monte
Carlo techniques such as MCTS, etc.

Pure Maxmin Frank and Basin (2001) show that the pure maxmin value is NP-hard
to compute for VGs. Ginsberg (2001) proposes an exact algorithm which we reframe
as follows. Let us write P<∞ (R𝑡 ) for the set of all finite sets of vectors in R𝑡 . For
𝑓 , 𝑔 ∈ P<∞ (R𝑡 ), we define 𝑓 ⊓ 𝑔 by

𝑓 ⊓ 𝑔 ≔
{(

min(𝑣𝑖 , 𝑣′𝑖)
)
1≤𝑖≤𝑡 | ®𝑣 ∈ 𝑓 , ®𝑣 ′ ∈ 𝑔

}
.

Proposition 2. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟 . For 𝑙 ∈ L(𝑇), let eval(𝑙) ≔

{®𝑢(𝑙)} ∈ P<∞ (R𝑡 ). Then MiniMax(P<∞ (R𝑡 ), eval,∪,⊓) satisfies

𝑣+ ≔ max
𝑠+∈ΣP

+

min
𝑠−∈ΣP

−
U(𝑠+, 𝑠−) = max

®𝑣∈val(𝑟 )
®𝜌 · ®𝑣.

Example. For the VG in Figure 1, we get val(𝐵) = {11100, 00011}; val(𝐶) =

{11000, 00111}; val(𝐴) = {11000, 00100, 00000, 00011}. This algorithm actually
recursively enumerates all pure strategies of MAX: each vector in val(𝑛) implicitly
represents one or several strategies of MAX in the subtree rooted at 𝑛. At the root 𝐴,
given the uniform prior over MIN’s types, the best vectors are 11000 (corresponding
to MAX’s strategy (l, L), by which MAX chooses l at 𝐵 and L at 𝐶) and 00011 (MAX’s
strategy (r,R)); both achieve the pure maxmin value 2/5.

Importantly, in a VG, the expected payoff of a strategy in a subtree may depend on
that of the strategies in a far away subtree. In our example, l and R are locally optimal
with respect to the uniform prior. However, (l,R) is not optimal at the root, since it is
MIN who chooses, with perfect information, either a or b as a function of their type. In
other words, it is not correct to use the common prior to evaluate strategies locally at
nodes 𝐵 and 𝐶: the conditional probabilities of MIN’s types at both 𝐵 and 𝐶 depend
on MIN’s strategy and can be different from the prior.5

5This phenomenon, called non-locality by Frank and Basin (2001), is the culprit behind the NP-hardness
of pure maxmin.
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This algorithm can be improved by pruning vectors at each node. If in val(𝑛), a
vector ®𝑣 is weakly dominated by another vector ®𝑣 ′, then we can discard ®𝑣 from val(𝑛),
which amounts to eliminating weakly dominated strategies. For example, if 𝐴 is an
internal node of a larger VG, then 00000 (corresponding to MAX’s strategy (𝑟, 𝐿))
can be pruned from val(𝐴), since MAX never does worse by playing, say, the strategy
represented by 11000 in the subtree rooted at 𝐴. In general, any other kind of reduction
of strategies is unsound; contrastingly, we will see that more reductions become sound
if opponent models are available.

Mixed Maxmin Contrary to pure maxmin, the mixed maxmin value can be computed
in polynomial time with the algorithm proposed by Koller and Megiddo (1992), which
relies on two insights: (1) The set of all mixed strategies of MAX can be represented by
a system 𝐿 of linear equalities, with linearly many (in the size of the game tree) variables
and equalities; (2) For any threshold 𝑣 and any mixed strategy𝜎+ of MAX represented as
a solution to 𝐿, it can be verified in linear time whether min𝑠−∈ΣP

−
U(𝜎+, 𝑠−) ≥ 𝑣 holds

by computing MIN’s best responses to 𝜎+. This computation serves as a separation
oracle, under which a linear program (LP) maximising 𝑣 with respect to the constraints
in 𝐿 computes the mixed maxmin value.

Example. In the game in Figure 1, MAX’s optimal mixed strategy is the uniform
mixture over all 4 pure strategies, which yields an expected payoff of at least 1

2 , the
mixed maxmin value (higher than the pure maxmin value 2

5 ).

The above algorithm has been improved by von Stengel (1996); Koller et al. (1996).
However, for simplicity, we only show modifications of the initial algorithm for taking
opponent models into account. Adapting them to the improved algorithms is straight-
forward.

5 Opponent-Model Search
We now come to our main contributions, which are algorithms for computing the
maxmin value against a given set of opponent’s strategies, called opponent models
(OM):

𝑣+ ≔ max
𝜍+∈Σ+

min
𝜔−∈ΣO

−
U(𝜍+, 𝜔−),

where Σ+ is the set of all pure or all mixed strategies of MAX and ΣO
− is a given set of

OMs.
In general, OMs are models of the opponent’s reasoning, which can come in various

forms (cf. the section on related work). As a quite general setting, we consider that
each OM describes a behaviour strategy of MIN.6 Algorithmically, we assume that the
OMs are given in the input and that each computation of 𝜔− (𝑛, 𝑖, 𝑛′) takes constant
time, where 𝜔− (𝑛, 𝑖, 𝑛′) is the probability that under 𝜔− , MIN chooses 𝑛′ ∈ C(𝑛) at
node 𝑛 if MIN is of type 𝑖.

In this section, we consider situations where MAX is certain that MIN only considers
strategies described by these OMs. This assumption will be relaxed later.

6In VGs, all MIN’s mixed strategies can be expressed as behaviour strategies since MIN has perfect
information (Kuhn, 1953). In addition, given a strategy represented by a mixed strategy or another linear
representation (e.g. sequence form (Koller and Megiddo, 1992) or evaluation function (Iida et al., 1993)), its
equivalent behaviour strategy can be computed in linear time.
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Belief States With the knowledge of OMs, MAX can gain information about the actual
strategy employed by MIN and MIN’s type during the game using Bayesian reasoning.
To model this, we define the non-normalised belief state (NBS) at node 𝑛 about OM𝜔− ,
written as NBS(𝑛, 𝜔−) ∈ [0, 1]𝑡 , and defined top-down by: NBS(𝑟, 𝜔−) ≔ ®𝜌; for 𝑛′ ∈
C(𝑛), NBS(𝑛′, 𝜔−) ≔ NBS(𝑛, 𝜔−) if 𝑛 is MAX’s node, otherwise NBS(𝑛′, 𝜔−)𝑖 ≔
NBS(𝑛, 𝜔−)𝑖 × 𝜔− (𝑛, 𝑖, 𝑛′). Let us emphasise that we define NBS(𝑛, 𝜔−) to be non-
normalised; normalising it yields the conditional probability of MIN’s types, given that
𝑛 is reached and MIN plays 𝜔− .

Single OM When there is only one OM 𝜔− , MAX has complete knowledge of MIN’s
strategy. Then the game becomes a single-player game with perfect information (Koller
and Megiddo, 1992), and the pure/mixed maxmin value reads

𝑣+ ≔ max
𝑠+∈ΣP

+

U(𝑠+, 𝜔−) = max
𝜎+∈ΣM

+

U(𝜎+, 𝜔−),

where the last equality is due to the linearity of 𝑢.
This value can be computed by a depth-first procedure, which recursively computes

MAX’s best strategies at each of their decision node. More precisely, MIN’s decision
nodes become chance nodes. Hence, even though MAX does not know MIN’s type,
they can pick actions to maximise their expected payoff with respect to MIN’s type.

Example. Consider again the game in Figure 1, with 𝜔− as follows: MIN plays a if
of type 1 or 2, b if of type 4 or 5, and 1

2 a + 1
2 b if of type 3. Given 𝜔− and the uniform

prior ®𝜌, MAX can compute the NBS ( 1
5 ,

1
5 ,

1
10 , 0, 0) at node 𝐵. Given this NBS, action l

yields a higher (non-normalised) payoff of 1/2 than r (with a payoff of 0) at 𝐵.
Similarly, the NBS at 𝐶 is (0, 0, 1

10 ,
1
5 ,

1
5 ) and prescribes action R (with a payoff of

1/2). At node 𝐴, MAX’s payoff is simply the sum of their (non-normalised) payoff at
𝐵 and 𝐶, which yields 1. One can check that 1 is indeed the best MAX can get when
playing against MIN under this particular OM; this payoff is obtained by the strategy
(l,R), which gives MAX a payoff of 1 independent of MIN’s actual type.

Proposition 3. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟, and let 𝜔− be an OM. For
𝑙 ∈ L(𝑇), let eval(𝑙) ≔ NBS(𝑙, 𝜔−) · ®𝑢(𝑙). Then MiniMax(R, eval,max, +) runs in
O(𝑡 |𝑇 |) time and satisfies

𝑣+ ≔ max
𝑠+∈ΣP

+

U(𝑠+, 𝜔−) = max
𝜎+∈ΣM

+

U(𝜎+, 𝜔−) = val(𝑟).

This algorithm can be considered as a generalisation of OM search as proposed by
Iida et al. (1993), which only considers games with perfect information for which OMs
are described by MIN’s evaluation functions.

Probabilistic OMs We now consider the case in which MAX has the knowledge of
several OMs 𝜔1

− , . . . , 𝜔
𝑚
− of MIN, and a probability distribution ®𝑝 = (𝑝1, . . . , 𝑝𝑚) over

them: MIN plays the strategy 𝜔1
− with probability 𝑝1, 𝜔2

− with probability 𝑝2, etc. In
particular, the pure/mixed maxmin value reads

𝑣+ = max
𝑠+∈ΣP

+

𝑚∑︁
𝑗=1

𝑝 𝑗U(𝑠+, 𝜔 𝑗
−) = max

𝜎+∈ΣM
+

𝑚∑︁
𝑗=1

𝑝 𝑗U(𝜎+, 𝜔
𝑗
−).
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This setting is not much different from the previous one, due to the linearity of 𝑢:
these OMs can be merged into one single OM describing the mixed strategy 𝜔− ≔

𝑝1𝜔
1
− + · · · + 𝑝𝑚𝜔

𝑚
− .7 In principle, one can traverse the game tree once and compute

the behaviour strategy corresponding to 𝜔− , then run the single-OM algorithm from
Proposition 3. However, with the help of NBS, one can avoid explicitly computing and
storing the strategy 𝜔− .

Proposition 4. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟, and let 𝜔1
− , . . . , 𝜔

𝑚
− be OMs

distributed according to ®𝑝 = (𝑝1, . . . , 𝑝𝑚). Let eval(𝑙) ≔ ∑𝑚
𝑗=1 𝑝 𝑗 NBS(𝑙, 𝜔 𝑗

−) · ®𝑢(𝑙)
for 𝑙 ∈ L(𝑇). ThenMiniMax(R, eval,max, +) satisfies 𝑣+ = val(𝑟) and runs inO(𝑚𝑡 |𝑇 |)
time.

Lexicographic OMs Let us now consider the case in which MAX holds a lexico-
graphic belief over MIN’s OMs 𝜔1

− , . . . , 𝜔
𝑚
− : MAX deems that MIN most probably

follows 𝜔1
−; otherwise, with an infinitesimally smaller probability, MIN follows 𝜔2

−;
etc. We define the pure/mixed maxmin value in this case to be the vector of length 𝑚

−→𝑣+ ≔ lexmax
𝑠+∈ΣP

+

(
U(𝑠+, 𝜔1

−), . . . ,U(𝑠+, 𝜔𝑚
− )

)
= lexmax

𝜎+∈ΣM
+

(
U(𝜎+, 𝜔

1
−), . . . ,U(𝜎+, 𝜔

𝑚
− )

)
∈ R𝑚,

where lexmax is lexicographic maximum over vectors of length 𝑚. In other words, if
there is a unique optimal strategy against 𝜔1

− , then this strategy is chosen; otherwise,
ties are broken according to their values against 𝜔2

− , and so on.
This setting can be regarded as an instance of probabilistic OMs, where the distri-

bution over OMs is −→𝑝Y = (1, Y, Y2, . . . , Y𝑚−1) with Y an indeterminate interpreted as
an infinitesimally small value. However, we also give a direct algorithm below. We
write NBSM(𝑛) for the 𝑚 × 𝑡 matrix

(
NBS(𝑛, 𝜔1

−)⊺, . . . ,NBS(𝑛, 𝜔𝑚
− )⊺

)
, and +𝑚 for

component-wise addition of vectors in R𝑚.

Proposition 5. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟 , and let 𝜔1
− , . . . , 𝜔

𝑚
− be OMs with

a lexicographic interpretation. For 𝑙 ∈ L(𝑇), let eval(𝑙) ≔ NBSM(𝑙) × ®𝑢(𝑙) ∈ R𝑚.
Then MiniMax(R𝑚, eval, lexmax, +𝑚) satisfies −→𝑣+ = val(𝑟) and runs in O(𝑚𝑡 |𝑇 |) time.

Nondeterministic OMs The last case is when MAX has no probability distribution
over MIN’s OMs: MIN’s strategy is only known to be among 𝜔1

− , . . . , 𝜔
𝑚
− . This

situation is similar to planning under adversarial cost functions (McMahan et al., 2003).
The maxmin value is then

𝑣+ ≔ max
𝜍+∈Σ+

min
1≤ 𝑗≤𝑚

U(𝜍+, 𝜔 𝑗
−),

which, in general, is different depending on whether Σ+ is ΣP
+ or ΣM

+ . MIN now has (a
priori) more agency than in the case of probabilistic OMs, since they can choose from
a larger (but still limited) set of strategies.

We first consider pure maxmin. For 𝑓 , 𝑔 ∈ P<∞ (R𝑚), define the following operator:

𝑓 ⊕𝑚 𝑔 ≔ {(𝑣 𝑗 + 𝑣′𝑗 )1≤ 𝑗≤𝑚 | ®𝑣 ∈ 𝑓 , ®𝑣 ′ ∈ 𝑔} ⊆ R𝑚.

7We abuse the notation by writing 𝜔𝑖
− for both the given behaviour strategy and its equivalent mixed

strategy.
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Proposition 6. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a game with root 𝑟, and let 𝜔1
− , . . . , 𝜔

𝑚
− be OMs

with a nondeterministic interpretation. For 𝑙 ∈ L(𝑇), let eval(𝑙) ≔ {NBSM(𝑙) × ®𝑢(𝑙)}.
Then MiniMax(P<∞ (R𝑚), eval,∪, ⊕𝑚) satisfies

𝑣+ ≔ max
𝑠+∈ΣP

+

min
1≤ 𝑗≤𝑚

U(𝑠+, 𝜔 𝑗
−) = max

®𝑣∈val(𝑟 )
min

1≤ 𝑗≤𝑚
𝑣 𝑗 .

This algorithm is exponential time in the worst case; it can indeed be shown that
this problem is NP-complete (cf. Proposition 10 in the appendix), even if MAX has
perfect information (i.e. MIN only has 1 type) and there are only 2 OMs of MIN.

Compared to Proposition 2, the knowledge of OMs transforms MAX’s incomplete
information about MIN’s type into their incomplete information about MIN’s strategy.
Situational values are now sets of vectors of length 𝑚 (instead of 𝑡). Each such vector
represents a strategy of MAX by its expected payoff against each OM. However, in
contrast with probabilistic OMs, we cannot collapse each vector to a real number, since
we have no distribution over the OMs. Still, reduction by weak dominance can be used
just as for pure maxmin without any opponent model.

From another perspective, this algorithm computes the normal form of the game
restricted to MIN’s fixed 𝑚 strategies, which intuitively justifies the correctness of
Proposition 6 for pure maxmin.

As for mixed maxmin, one can modify the separation oracle in the LP algorithm of
Koller and Megiddo (1992): now the oracle only computes MIN’s best responses from
the 𝑚 OMs. This yields a polynomial-time algorithm.

6 Opponent Models with Uncertainty
We now come to our second contribution, about the case in which a set of OMs of MIN
is available, but MAX is not certain that MIN will behave as one of them. We focus
on the case with a single OM 𝜔− , which encompasses as well the case of several OMs
with a probability distribution or lexicographic interpretation, as discussed in the last
section.

We assume that with probability 𝑝∞, which is known to MAX, MIN does not follow
𝜔− , in which case their behaviour is arbitrary and unpredictable; and with probability
1 − 𝑝∞, MIN follows 𝜔− . Intuitively, 𝑝∞ quantifies MAX’s uncertainty about MIN’s
behaviour; this may arise for instance when the OMs are given by an estimate of MIN’s
gameplay level.

Formally, we define the following maxmin value:

𝑣+ ≔ max
𝜍+∈Σ+

(
(1 − 𝑝∞)U(𝜍+, 𝜔−) + 𝑝∞ min

𝑠−∈ΣP
−
U(𝜍+, 𝑠−)

)
,

where Σ+ is either ΣP
+ or ΣM

+ .

Example. Consider again Figure 1 and the OM 𝜔− “MIN plays a if of type 1 or 2, b if
of type 4 or 5, and 1

2 a + 1
2 b if of type 3”. The best strategy of MAX against 𝜔− is (l,R)

with a payoff of 1. However, this strategy does not fare so well if MIN’s strategy is not
𝜔− (or when 𝑝∞ is close to 1): in the worst case, MIN plays b if of type 1 or 2, and
a if of type 4 or 5. Against this strategy, MAX’s expected payoff from playing (l,R) is
only 1/5. On the other hand, the pure maxmin strategy (l, L) only has a payoff of 1/2
against 𝜔− , and so does the mixed maxmin strategy (which is the uniform strategy);
hence neither is optimal when 𝑝∞ is close to 0.
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It is clear from this example that the maxmin value and the optimal strategies depend
on the value of 𝑝∞. This demonstrates a conflict between robustness and performance:
MAX desires to be cautious and robust against MIN’s unpredictable behaviour occurring
with probability 𝑝∞, and at the same time to improve their performance by exploiting
their knowledge of the OM, which correctly predicts MIN’s strategy with probability
1 − 𝑝∞.

We now show how to modify algorithms from the last sections to compute the
maxmin value.

Mixed Maxmin For the mixed maxmin value, we can use the LP algorithm by
Koller and Megiddo (1992) with a minor modification of the separation oracle: given
a threshold 𝑣 and a mixed strategy 𝜎+ for MAX, the separation oracle should now,
apart from computing MAX’s payoff 𝑣BR with strategy 𝜎+ against MIN’s best response,
also compute MAX’s payoff against the OM 𝑣OM = U(𝜎+, 𝜔−), then check whether
(1 − 𝑝∞)𝑣OM + 𝑝∞𝑣BR ≥ 𝑣 holds.

Example. In the game in Figure 1 with 𝜔− as above, one can use this algorithm to
verify that MAX’s optimal strategy is (l,R) for 𝑝∞ ≤ 5/8, otherwise it is the uniform
strategy. This confirms that when nondeterministic behaviour happens with a small
enough probability, it is worth deviating from maxmin strategies in order to exploit the
OM.

Pure Maxmin For pure strategies, we build on the algorithm for a single OM (Propo-
sition 3). To cope with non-locality (due to MIN’s partially unpredictable behaviour),
we use situational values that are finite sets of ordered pairs ⟨𝑠, ®𝑣⟩, with 𝑠 ∈ R and
®𝑣 ∈ R𝑡 . We call such a pair an annotated vector; it implicitly represents a strategy
for MAX for which the payoff against 𝜔− is 𝑠, and the worst payoff against MIN’s
unpredictable behaviour is given by ®𝑣.

We write P<∞ (R × R𝑡 ) for the set of all finite sets of annotated vectors, and for
𝑓 , 𝑔 ∈ P<∞ (R × R𝑡 ), we define 𝑓 ⊕1,𝑡 𝑔 ⊆ R × R𝑡 to be the set

{⟨𝑠 + 𝑠′, (min(𝑣𝑖 , 𝑣′𝑖))1≤𝑖≤𝑡 ⟩ | ⟨𝑠, ®𝑣⟩ ∈ 𝑓 , ⟨𝑠′, ®𝑣 ′⟩ ∈ 𝑔}.

Proposition 7. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟 , 𝜔− be an OM, and 𝑝∞ ∈ [0, 1] a
probability that MIN does not follow 𝜔− . For 𝑙 ∈ L(𝑇), let eval(𝑙) ≔ {⟨NBS(𝑙, 𝜔−) ·
®𝑢(𝑙), ®𝑢(𝑙)⟩} ∈ P<∞ (R × R𝑡 ). Then MiniMax(P<∞ (R × R𝑡 ), eval,∪, ⊕1,𝑡 ) satisfies

𝑣+ = max
⟨𝑠, ®𝑣⟩∈val(𝑟 )

(
(1 − 𝑝∞)𝑠 + 𝑝∞ ( ®𝜌 · ®𝑣)

)
.

Notice that when combining two annotated vectors at a MIN’s node, the scalar part
is additive; this reflects the fact that when following the (single) OM, MIN has no
agency, just as in the case without uncertainty.

Example. Using the algorithm above for the game in Figure 1 with the aforementioned
OM 𝜔− , we find out that MAX’s optimal strategy is (l,R) for 𝑝∞ ≤ 5/7, otherwise (l, L)
or (r,R). Again, this indicates that it may be worth deviating from maxmin strategies
so as to exploit an OM.

Note that Proposition 7 generalises Proposition 2, which corresponds to the special
case 𝑝∞ = 1. Interestingly, the case 𝑝∞ ≠ 1 supports more sound pruning. Indeed, let
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R
a b

A

( 0 1 1 )

a1

( 1 0 1 )

a2

( 1 1 0 )

a3

B

( 1 0 0 )

b1

( 0 1 0 )

b2

( 0 0 1 )

b3

Figure 2: A game with 3 possible types of MAX.

𝑛 ∈ N(𝑇) and ⟨𝑠, ®𝑣⟩, ⟨𝑠′, ®𝑣 ′⟩ ∈ val(𝑛). Pruning ⟨𝑠′, ®𝑣 ′⟩ because of ⟨𝑠, ®𝑣⟩ is sound if
MAX is never worse-off in the game by choosing ⟨𝑠, ®𝑣⟩ instead of ⟨𝑠′, ®𝑣 ′⟩ at 𝑛. Now
since scalar parts are summed up, if 𝑠 > 𝑠′ holds, then ⟨𝑠, ®𝑣⟩ has an advantage 𝑠− 𝑠′ over
⟨𝑠′, ®𝑣 ′⟩; contrastingly, for the vectorial part, components for which ®𝑣 is larger than ®𝑣 ′

might be erased by the combination (via component-wise min) of vectors at an ancestor
of 𝑛, so that the advantage of ®𝑣 can be annihilated at the root. Hence, in the worst case,
®𝑣 ′ can keep all advantages it has compared to ®𝑣, while ®𝑣 can lose all its advantages.

To summarise, we can prune ⟨𝑠′, ®𝑣 ′⟩ when it holds that

(1 − 𝑝∞) (𝑠 − 𝑠′) ≥ 𝑝∞
∑︁

1≤𝑖≤𝑡

(
𝜌𝑖 max(𝑣′𝑖 − 𝑣𝑖 , 0)

)
,

which indeed generalises the pruning condition for the algorithm in Proposition 2.

7 Application to Recursive Opponent Models
We now propose an application of the algorithms presented before to the computation
of optimal strategies with recursive opponent models. We formulate a quite general
setting, where various types of opponent models naturally arise.

Limitations of the Best-Defence Model In general, in a game with incomplete
information, both players have incomplete information, rather than just MAX. As a
result, the best-defence model usually gives MIN too much power.

Example. Consider the game in Figure 2, where MAX has 3 types (with the uniform
prior) and MIN has only 1. Then MIN has incomplete information. If MAX reasons
according to the best-defence model, then both actions a and b have a value of 0: MAX
of type 𝑖 reasons that MIN will play a𝑖 at node 𝐴, and b 𝑗 at node 𝐵 for some 𝑗 ≠ 𝑖. The
culprit is that MAX assumes MIN is aware of MAX’s type so that MIN can adapt their
strategy to MAX’s type. However, if MAX realises MIN is unaware of their type, then
MAX will prefer a since under the uniform common prior over MAX’s types, a yields
an expected payoff of 2/3, compared to b’s 1/3.

On the other hand, computing maxmin strategies for the original game tree without
using the best-defence model is not ideal either, for these strategies fail to exploit
any assumption one may have about their adversary, such as that they have limited
computational power or reasoning depth, or that they have a predictable behaviour.
Such assumptions make sense in particular when playing against humans (Iida et al.,
1993; Stahl and Wilson, 1995; Dhami, 2019).
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Proposed Framework We propose a framework that can be considered as a gener-
alisation of the cognitive hierarchy model (Camerer et al., 2004), and as a counterpart
of interactive POMDPs (Doshi et al., 2020) for competitive games. The idea is to
define level-𝑘 strategies to be the optimal strategies against an adversary of level 𝑘 − 1,
and recursively down to level 0. Our framework serves as a compromise between
the best-defence model and the full game, and can be used to find better strategies
against non-omnipotent and non-omniscient players; in particular, it generalises the
best-defence model. Moreover, it can be used to explain real-life human psychological
gameplay in games such as Bridge, as we illustrate at the end of this section.

We give a parametrisable definition of (1) how level-0 strategies are defined, (2) how
optimal strategies at a given level are aggregated, and (3) how strategies of various levels
are aggregated. LetΣ0

+, Σ0
− be non-empty sets of strategies of MAX and MIN. Moreover,

for 𝑖 ∈ {+,−}, let ⊕𝑖 : P(Σ𝑖) → Σ𝑖 map any set of (pure or mixed) strategies of player
𝑖 to a single strategy of player 𝑖, and BR𝑖 : Σ∗

−𝑖 → P(Σ𝑖) map any tuple of strategies
of player −𝑖 to a set of strategies of player 𝑖. ⊕ will aggregate strategies of a player at a
given level, and BR will compute the set of optimal strategies given a tuple of opponent
models (one per lower level).8

Definition 8 (level-𝑘 strategies). Let Σ0
𝑖
, ⊕𝑖 , and BR𝑖 be defined as above for all

𝑖 ∈ {+,−}. The set of level-0 strategies for player 𝑖 is defined to be Σ0
𝑖
. For

𝑘 ≥ 1, the set of level-𝑘 strategies for player 𝑖, denoted by Σ𝑘
𝑖
, is defined to be

BR𝑖

(
⊕−𝑖 (Σ𝑘−1

−𝑖 ), ⊕−𝑖 (Σ𝑘−2
−𝑖 ), . . . , ⊕−𝑖 (Σ0

−𝑖)
)
.

In short, the level-𝑘 strategies of player 𝑖 are the best responses (computed by
BR𝑖 , the best-response function) against an opponent using the strategy ⊕−𝑖 (Σ𝑘′

−𝑖)
(computed by ⊕−𝑖 , the intra-level aggregation) at each level 𝑘 ′ for 0 ≤ 𝑘 ′ < 𝑘 . The
level-0 strategies, are given by Σ0

𝑖
, which can come from maxmin strategies under the

best-defence model, randomly chosen strategies (McMahan et al., 2003), modelling
assumptions for human players (Wright and Leyton-Brown, 2019), etc.

Example. The Poisson-CH model in Camerer et al. (2004) is captured by choosing Σ0
+

and Σ0
− to be the set of all pure strategies of MAX and MIN, the intra-level aggregation

⊕ to map any set of strategies to the uniform mixture of the set, and the best-response
function BR to map a tuple of strategies (𝜎𝑘−1

−𝑖 , . . . , 𝜎0
−𝑖) to the set of all pure best

responses to the mixed strategy 𝑝𝑘−1𝜎
𝑘−1
−𝑖 + · · · + 𝑝0𝜎

0
−𝑖 , where 𝑝𝑘−1, . . . , 𝑝0 follow

some Poisson distribution.

Although we do not show it here, this framework is also general enough to encompass
many iterative approaches of solving games: iterative best response (also called best
response dynamics); fictitious play (Brown, 1951; Cloud et al., 2023); double oracle
(McMahan et al., 2003); maxn or prob-maxn (Sturtevant et al., 2006); etc.

An interesting choice for intra-level aggregation ⊕𝑖 : P(Σ𝑖) → Σ𝑖 for all 𝑖 is
the uniform mixture, as in the previous example. With this, many situations can be
modelled by using different best-response functions BR for inter-level aggregation, in
particular using the algorithms presented in previous sections:

• (Proposition 4) each player 𝑖 at level 𝑘 has a subjective distribution (described by
𝑝𝑘−1
𝑖,𝑘

, 𝑝𝑘−2
𝑖,𝑘

, . . . , 𝑝0
𝑖,𝑘

) over player −𝑖’s reasoning levels, obtained for instance by
fitting a model against a population of possible opponents;

8The framework could be easily adapted to more general functions, e.g. an aggregation of the strategies
at the same level into a set or a tuple of strategies. It could also be easily applied to general games, in normal
form or extensive form, beyond the two-player and zero-sum assumptions.
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3 {f} {h} {h}

Figure 3: Level-𝑘 strategies in a VG with 2 types of MIN.

• (Setting 𝑝𝑘−1
𝑖,𝑘

= 1 for all 𝑖 and 𝑘 in the previous model) each player at level 𝑘
assumes their opponent reasons at level exactly 𝑘 − 1;

• (Proposition 5) player 𝑖 at level 𝑘 assumes −𝑖 to reason at level 𝑘 − 1, tie-breaks
equivalent strategies by assuming them to reason at level 𝑘 − 2, and so on;

• (Proposition 6) player 𝑖 at level 𝑘 assumes −𝑖 to reason at an unknown level lower
than 𝑘 (then the incomplete information about −𝑖’s type becomes one about their
level, which is, in general, much smaller);

• (Proposition 7) with some probability, opponent −𝑖 does not reason at any level
lower than 𝑘 .

Moreover, a straightforward generalisation of this framework allows players in
multiplayer games to take into account the incomplete information of their partners,
akin to interactive POMDPs.

A Real-Life Example We now give an example application of our formalism, which
captures the psychological strategies of a contract Bridge deal played in a Bridge
tournament. We present the abstract version of the game in Figure 3 (left); for the
Bridge deal itself, see Karpin (1977, p. 266) or the appendix.

In this game, the common prior about MIN’s types is given by 𝑝1 = 0.4 and
𝑝2 = 0.6. For the recursive reasoning, for 𝑖 ∈ {+,−}, ⊕𝑖 is given by the uniform
mixture, BR𝑖 is given by the lexicographic model, and the level-0 strategies for both
players are their pure maxmin strategies. Figure 3 (right) shows the level-𝑘 strategies
for MAX, MIN if of type 1, and MIN if of type 2, and for 𝑘 = 0, . . . , 3. For instance, if
MIN is of type 2, then their level-1 strategies are l and h.

The first few levels of the recursive reasoning proceed as in Figure 3 (right). In the
following, we write 𝜎1

− |𝜎2
− for MIN’s strategy to play 𝜎1

− if of type 1 and to play 𝜎2
− if

of type 2; and l+h
2 for the uniform mixed strategy 1

2 l + 1
2 h.

k = 0: MAX prefers nf, which achieves a maxmin value of 0.6, against 0.4 for f; both
types of MIN are indifferent between l and h since both yield a minmax value of
1.

k = 1: Against (⊕(Σ0
−)) = ( l+h

2 | l+h
2 ), MAX’s best strategy is still nf; however, against

(⊕(Σ0
+)) = (nf), type-1 MIN prefers h which yields a value of 0.

k = 2: Against (⊕(Σ1
−), ⊕(Σ0

−)), MAX now prefers f, which is strictly better than nf
against ⊕(Σ1

−) = h| l+h
2 since the NBS of MAX at node B judges MIN is more

likely to be of type 1 than of type 2 if MIN plays h| l+h
2 ;

13



k = 3: At level-3, type-1 MIN still prefers h: h and l are equivalent against ⊕(Σ2
+) = f,

but h is preferred against ⊕(Σ1
+) = nf; but now type-2 MIN also prefers h!

As it turns out, this recursive reasoning captures perfectly what happened during the
Bridge deal, where MAX was at level 2 and therefore chose f (rather than the maxmin
strategy nf) while MIN, being of type 2, reasoned at level 3 and used strategy h to defeat
MAX. Another interesting point is that level-𝑘 strategies are not necessarily weakly
dominant; hence they incorporate some notion of risk. For instance, MAX’s level-2
strategy f performs better than the maxmin strategy nf against MIN of level 1 (it pays
0.7 instead of 0.6), but it performs worse against MIN of level 3 (0.4).

8 Conclusion
We have studied the algorithmic aspects of computing robust strategies in games with
incomplete information, when opponent models with various interpretations are given,
and proposed a framework for recursive modelling of opponents. Our algorithms are
exact, and pave the way for optimisations like 𝛼𝛽 pruning, bounded depth, sampling,
etc.

An interesting perspective is to broaden the applicability of our algorithms. For this,
we would like to consider other opponent models than explicit behaviour strategies, and
the case in which the amount of uncertainty 𝑝∞ is only known up to some precision Y;
for this latter point, we conjecture that the algorithms could benefit from the maxmin
value being piecewise linear in 𝑝∞. A second perspective is to go beyond the explicit
extensive form, and to consider compact representations of games. Finally, an interest-
ing perspective is to give an epistemic logic account of our recursive framework, in the
spirit of the notion of rationalisability.
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A Proofs
Throughout this section, we write 𝐺 ≔ ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ for a VG. Recall that the NBS at
node 𝑛 about OM 𝜔− , written as NBS(𝑛, 𝜔−) ∈ [0, 1]𝑡 , is defined by NBS(𝑟, 𝜔−) ≔ ®𝜌
and for 𝑛′ ∈ C(𝑛), if 𝑛 ∈ 𝑁+ then NBS(𝑛′, 𝜔−) ≔ NBS(𝑛, 𝜔−), otherwise

NBS(𝑛′, 𝜔−)𝑖 ≔ NBS(𝑛, 𝜔−)𝑖 × 𝜔− (𝑛, 𝑖, 𝑛′).

Payoff of any subtree under a profile Let 𝑠+ and 𝑠− be any pure strategy of MAX
and MIN, respectively. For every type 𝑖 of MIN, let 𝑛𝑖 be the leaf reached if MAX and
MIN play respectively 𝑠+ and 𝑠− , and the game begins at 𝑛. We define the vector

®𝑢(𝑛, 𝑠+, 𝑠−) ≔
(
®𝑢(𝑛1)1, . . . , ®𝑢(𝑛𝑡 )𝑡

)
,

which is interpreted as the payoff vector if MAX and MIN play respectively 𝑠+ and
𝑠− , and the game begins at 𝑛. In particular, U(𝑠+, 𝑠−) = ®𝜌 · ®𝑢(𝑟, 𝑠+, 𝑠−). For mixed
strategies 𝜎+ and 𝜎− of MAX and MIN, respectively, ®𝑢(𝑛, 𝜎+, 𝜎−) is the expectation of
®𝑢(𝑛, 𝑠+, 𝑠−) when 𝑠+ and 𝑠− are drawn according to 𝜎+ and 𝜎− , respectively.

Notice that ®𝑢(𝑛, 𝑠+, 𝑠−) only depends on the choices of strategy 𝑠+ at nodes in the
subtree rooted at 𝑛. More precisely, if 𝑠+ and 𝑠′+ choose the same action at every node in
the subtree rooted at 𝑛, then ®𝑢(𝑛, 𝑠+, 𝑠−) = ®𝑢(𝑛, 𝑠′+, 𝑠−). In addition, for every MAX’s
node 𝑛 and 𝑠− ∈ ΣP

− , we have{
®𝑢(𝑛, 𝑠+, 𝑠−)

�� 𝑠+ ∈ ΣP
+
}
=

⋃
𝑛′∈C(𝑛)

{
®𝑢(𝑛′, 𝑠+, 𝑠−)

�� 𝑠+ ∈ ΣP
+
}
. (1)

Proposition 3. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟 , and let 𝜔− be an OM. For
𝑙 ∈ L(𝑇), let eval(𝑙) ≔ NBS(𝑙, 𝜔−) · ®𝑢(𝑙). Then MiniMax(R, eval,max, +) runs in
O(𝑡 |𝑇 |) time and satisfies

𝑣+ ≔ max
𝑠+∈ΣP

+

U(𝑠+, 𝜔−) = max
𝜎+∈ΣM

+

U(𝜎+, 𝜔−) = val(𝑟).

16



Proof. We only consider MAX’s pure strategies in the following. We will establish by
induction on the game tree that for every node 𝑛, its situational value val(𝑛) satisfies

val(𝑛) = max
𝑠+∈ΣP

+

NBS(𝑛, 𝜔−) · ®𝑢(𝑛, 𝑠+, 𝜔−). (2)

First, consider a leaf 𝑛. Then

val(𝑛) = eval(𝑛) ≔ NBS(𝑛, 𝜔−) · ®𝑢(𝑛).

Since 𝑛 is a leaf, by definition of ®𝑢(𝑛, 𝑠+, 𝜔−), it trivially holds that ®𝑢(𝑛, 𝑠+, 𝜔−) = ®𝑢(𝑛)
for all 𝑠+ ∈ ΣP

+. Hence, (2) holds for 𝑛.
Now consider an internal node 𝑛. If 𝑛 is MAX’s decision node, then val(𝑛) =

max𝑛′∈C(𝑛) val(𝑛′). Applying the induction hypothesis to 𝑛′ yields

val(𝑛) = max
𝑛′∈C(𝑛)

max
𝑠+∈ΣP

+

NBS(𝑛′, 𝜔−) · ®𝑢(𝑛′, 𝑠+, 𝜔−),

from which we deduce that (2) holds for 𝑛 using (1) and the fact that for all 𝑛′ ∈ C(𝑛),
NBS(𝑛′, 𝜔−) = NBS(𝑛, 𝜔−).

If 𝑛 is MIN’s decision node, then we have val(𝑛) = ∑
𝑛′∈C(𝑛) val(𝑛′). Applying the

induction hypothesis to 𝑛′ yields

val(𝑛) =
∑︁

𝑛′∈C(𝑛)
max
𝑠+∈ΣP

+

NBS(𝑛′, 𝜔−) · ®𝑢(𝑛′, 𝑠+, 𝜔−).

Now, since each 𝑛′ is a different node in the game tree, MAX can apply any combination
of strategies in the subtree rooted at these nodes. Hence, the sum over 𝑛′ can be
exchanged with the maximum, which yields

val(𝑛) = max
𝑠+∈ΣP

+

∑︁
𝑛′∈C(𝑛)

NBS(𝑛′, 𝜔−) · ®𝑢(𝑛′, 𝑠+, 𝜔−).

Finally, by definition of ®𝑢 and NBS, NBS(𝑛, 𝜔−) · ®𝑢(𝑛, 𝑠+, 𝜔−) can be written as∑︁
𝑛′∈C(𝑛)

NBS(𝑛′, 𝜔−) · ®𝑢(𝑛′, 𝑠+, 𝜔−),

since 𝑛 is MIN’s node, and MIN chooses 𝑛′ according to 𝜔− . Therefore, (2) holds for
𝑛, which concludes the induction.

Applying (2) to the root, we have

val(𝑟) = max
𝑠+∈ΣP

+

NBS(𝑟, 𝜔−) · ®𝑢(𝑟, 𝑠+, 𝜔−)

= max
𝑠+∈ΣP

+

U(𝑠+, 𝜔−),

where we use the fact that NBS(𝑟, 𝜔−) = ®𝜌 andU(𝑠+, 𝜔−) = ®𝜌· ®𝑢(𝑟, 𝑠+, 𝜔−). Therefore,
the situational value of the root is the maxmin value. □

Proposition 4. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟 , and let 𝜔1
− , . . . , 𝜔

𝑚
− be OMs

distributed according to ®𝑝 = (𝑝1, . . . , 𝑝𝑚). Let eval(𝑙) ≔ ∑𝑚
𝑗=1 𝑝 𝑗 NBS(𝑙, 𝜔 𝑗

−) · ®𝑢(𝑙)
for 𝑙 ∈ L(𝑇). ThenMiniMax(R, eval,max, +) satisfies 𝑣+ = val(𝑟) and runs inO(𝑚𝑡 |𝑇 |)
time.
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Proof. Recall that the maxmin value under this setting is defined to be

𝑣+ ≔ max
𝑠+∈ΣP

+

𝑚∑︁
𝑗=1

𝑝 𝑗U(𝑠+, 𝜔 𝑗
−).

Also, recall that MIN has perfect information in a vector game, and a fortiori perfect
recall. Hence, every MIN’s behaviour strategy has an equivalent mixed strategy, and
vice versa. Since

∑𝑚
𝑗=1 𝑝 𝑗 = 1, if we interpret the OMs (𝜔 𝑗

−)1≤ 𝑗≤𝑚 as mixed strategies
of MIN, then

𝜔− ≔ 𝑝1𝜔
1
− + · · · + 𝑝𝑚𝜔

𝑚
−

is also a probability distribution over pure strategies of MIN and is thus a well-defined
mixed strategy of MIN.

MAX’s NBS corresponding to 𝜔− satisfies

NBS(𝑛, 𝜔−) =
𝑚∑︁
𝑗=1

𝑝 𝑗 · NBS(𝑛, 𝜔 𝑗
−)

for every node 𝑛. This can be verified using the recursive definition of NBS by noticing
that a behaviour strategy𝜔b

− equivalent to𝜔− satisfies for all nodes 𝑛, types 𝑖, and nodes
𝑛′ ∈ C(𝑛):

𝜔b
− (𝑛, 𝑖, 𝑛′) =

∑𝑚
𝑗=1 𝑝 𝑗

∏
(𝑛1 ,𝑛2 ) ∈Path(𝑛′ ) 𝜔

𝑗
− (𝑛1, 𝑖, 𝑛2)∑𝑚

𝑗=1 𝑝 𝑗

∏
(𝑛1 ,𝑛2 ) ∈Path(𝑛) 𝜔

𝑗
− (𝑛1, 𝑖, 𝑛2)

where Path(𝑛) (respectively Path(𝑛′)) denotes the set of all edges (𝑛1, 𝑛2) in the path
from 𝑟 to 𝑛 (respectively 𝑛′).

Hence, the function eval reads

eval(𝑛) ≔
𝑚∑︁
𝑗=1

𝑝 𝑗 NBS(𝑛, 𝜔 𝑗
−) · ®𝑢(𝑛) = NBS(𝑛, 𝜔−) · ®𝑢(𝑛)

for all leaf nodes 𝑛. Then by Proposition 3, val(𝑟) is the maxmin value against the OM
𝜔− , which reads

val(𝑟) = max
𝑠+∈ΣP

+

U(𝑠+, 𝜔−) = max
𝑠+∈ΣP

+

𝑚∑︁
𝑗=1

𝑝 𝑗U(𝑠+, 𝜔 𝑗
−),

where the second equality is due to the linearity of U. Hence, val(𝑟) is exactly the
maxmin value against the probabilistic OMs. □

Proposition 5. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟 , and let 𝜔1
− , . . . , 𝜔

𝑚
− be OMs with

a lexicographic interpretation. For 𝑙 ∈ L(𝑇), let eval(𝑙) ≔ NBSM(𝑙) × ®𝑢(𝑙) ∈ R𝑚.
Then MiniMax(R𝑚, eval, lexmax, +𝑚) satisfies −→𝑣+ = val(𝑟) and runs in O(𝑚𝑡 |𝑇 |) time.

Proof. In the following, we write a vector (𝑎1, . . . , 𝑎𝑚) of length 𝑚 as (𝑎 𝑗 )1≤ 𝑗≤𝑚 to
save space. For example, the definition of eval reads

eval(𝑙) ≔
(
NBS(𝑙, 𝜔 𝑗

−) · ®𝑢(𝑙)
)
1≤ 𝑗≤𝑚.

Recall that the maxmin value under this setting is defined to be

−→𝑣+ ≔ lexmax
𝑠+∈ΣP

+

(
U(𝑠+, 𝜔 𝑗

−)
)
1≤ 𝑗≤𝑚 ∈ R𝑚.
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The proof of Proposition 5 is nearly identical to the one of Proposition 3. The only
difference is that situational values are now real vectors of length 𝑚 instead of real
numbers. We will establish by induction on the game tree that for every node 𝑛, its
situational value val(𝑛) ∈ R𝑚 satisfies

val(𝑛) = lexmax
𝑠+∈ΣP

+

(
NBS(𝑛, 𝜔 𝑗

−) · ®𝑢(𝑛, 𝑠+, 𝜔 𝑗
−)

)
1≤ 𝑗≤𝑚. (3)

First, consider a leaf 𝑛. Then

val(𝑛) = eval(𝑛) ≔
(
NBS(𝑛, 𝜔 𝑗

−) · ®𝑢(𝑛)
)
1≤ 𝑗≤𝑚.

Since 𝑛 is a leaf, it trivially holds that ®𝑢(𝑛, 𝑠+, 𝜔 𝑗
−) = ®𝑢(𝑛) for all 𝑠+ ∈ ΣP

+ and 1 ≤ 𝑗 ≤ 𝑚.
Hence, (3) holds for 𝑛.

Now consider an internal node 𝑛. If 𝑛 is MAX’s decision node, then val(𝑛) =

lexmax𝑛′∈C(𝑛) val(𝑛′). Applying the induction hypothesis to 𝑛′, val(𝑛) reads

lexmax
𝑛′∈C(𝑛)

lexmax
𝑠+∈ΣP

+

(
NBS(𝑛′, 𝜔 𝑗

−) · ®𝑢(𝑛′, 𝑠+, 𝜔 𝑗
−)

)
1≤ 𝑗≤𝑚,

from which we deduce that (3) holds for 𝑛 using (1) and the fact that for all 𝑛′ ∈ C(𝑛)
and 1 ≤ 𝑗 ≤ 𝑚, NBS(𝑛′, 𝜔 𝑗

−) = NBS(𝑛, 𝜔 𝑗
−).

If 𝑛 is MIN’s decision node, then we have val(𝑛) = ∑
𝑛′∈C(𝑛) val(𝑛′). Applying the

induction hypothesis to 𝑛′, val(𝑛) reads∑︁
𝑛′∈C(𝑛)

lexmax
𝑠+∈ΣP

+

(
NBS(𝑛′, 𝜔 𝑗

−) · ®𝑢(𝑛′, 𝑠+, 𝜔 𝑗
−)

)
1≤ 𝑗≤𝑚.

Now, since each 𝑛′ is a different node in the game tree, MAX can apply any combination
of strategies in the subtree rooted at these nodes. Hence, the sum over 𝑛′ can be
exchanged with the maximum, which means val(𝑛) reads

lexmax
𝑠+∈ΣP

+

∑︁
𝑛′∈C(𝑛)

(
NBS(𝑛′, 𝜔 𝑗

−) · ®𝑢(𝑛′, 𝑠+, 𝜔 𝑗
−)

)
1≤ 𝑗≤𝑚.

Finally, for all 1 ≤ 𝑗 ≤ 𝑚, NBS(𝑛, 𝜔 𝑗
−) · ®𝑢(𝑛, 𝑠+, 𝜔 𝑗

−) can be written as∑︁
𝑛′∈C(𝑛)

NBS(𝑛′, 𝜔 𝑗
−) · ®𝑢(𝑛′, 𝑠+, 𝜔 𝑗

−),

since 𝑛 is MIN’s node, and MIN under the 𝑗-th OM chooses 𝑛′ according to 𝜔 𝑗
− .

Therefore, (3) holds for 𝑛, which concludes the induction.
Applying (3) to the root, we have

val(𝑟) = lexmax
𝑠+∈ΣP

+

(
NBS(𝑟, 𝜔 𝑗

−) · ®𝑢(𝑟, 𝑠+, 𝜔 𝑗
−)

)
1≤ 𝑗≤𝑚.

Using the fact that for all 1 ≤ 𝑗 ≤ 𝑚, NBS(𝑟, 𝜔 𝑗
−) = ®𝜌 andU(𝑠+, 𝜔 𝑗

−) = ®𝜌 · ®𝑢(𝑟, 𝑠+, 𝜔 𝑗
−),

we get val(𝑟) = −→𝑣+. □

Proposition 6. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a game with root 𝑟, and let 𝜔1
− , . . . , 𝜔

𝑚
− be OMs

with a nondeterministic interpretation. For 𝑙 ∈ L(𝑇), let eval(𝑙) ≔ {NBSM(𝑙) × ®𝑢(𝑙)}.
Then MiniMax(P<∞ (R𝑚), eval,∪, ⊕𝑚) satisfies

𝑣+ ≔ max
𝑠+∈ΣP

+

min
1≤ 𝑗≤𝑚

U(𝑠+, 𝜔 𝑗
−) = max

®𝑣∈val(𝑟 )
min

1≤ 𝑗≤𝑚
𝑣 𝑗 .
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Proof. We will establish by induction on the game tree that for every node 𝑛, its
situational value val(𝑛) satisfies

val(𝑛) =
{(

NBS(𝑛, 𝜔 𝑗
−) · ®𝑢(𝑛, 𝑠+, 𝜔 𝑗

−)
)
1≤ 𝑗≤𝑚

�� 𝑠+ ∈ ΣP
+
}
. (4)

In other words, MiniMax(P<∞ (R𝑚), eval,∪, ⊕𝑚) implicitly and recursively enumerates
all pure strategies of MAX.

First, consider a leaf 𝑛. Then

val(𝑛) = eval(𝑛) ≔
{(

NBS(𝑛, 𝜔 𝑗
−) · ®𝑢(𝑛)

)
1≤ 𝑗≤𝑚

}
.

Since 𝑛 is a leaf, it trivially holds that ®𝑢(𝑛, 𝑠+, 𝜔 𝑗
−) = ®𝑢(𝑛) for all 𝑠+ ∈ ΣP

+ and 1 ≤ 𝑗 ≤ 𝑚.
Hence, (4) holds for 𝑛.

Now consider an internal node 𝑛. If 𝑛 is MAX’s decision node, then val(𝑛) =

∪𝑛′∈C(𝑛)val(𝑛′). Applying the induction hypothesis to 𝑛′, val(𝑛) reads⋃
𝑛′∈C(𝑛)

{(
NBS(𝑛′, 𝜔 𝑗

−) · ®𝑢(𝑛′, 𝑠+, 𝜔 𝑗
−)

)
1≤ 𝑗≤𝑚

�� 𝑠+ ∈ ΣP
+
}
,

from which we deduce that (4) holds for 𝑛 using (1) and the fact that for all 𝑛′ ∈ C(𝑛)
and 1 ≤ 𝑗 ≤ 𝑚, NBS(𝑛′, 𝜔 𝑗

−) = NBS(𝑛, 𝜔 𝑗
−).

If 𝑛 is MIN’s decision node, then we have val(𝑛) = ⊕𝑚
𝑛′∈C(𝑛)val(𝑛′), where for

𝑓 , 𝑔 ∈ P<∞ (R𝑚), ⊕𝑚 is defined by

𝑓 ⊕𝑚 𝑔 ≔ {(𝑣 𝑗 + 𝑣′𝑗 )1≤ 𝑗≤𝑚 | ®𝑣 ∈ 𝑓 , ®𝑣 ′ ∈ 𝑔} ⊆ R𝑚.

Applying the induction hypothesis to 𝑛′, val(𝑛) reads⊕
𝑛′∈C(𝑛)

𝑚{(
NBS(𝑛′, 𝜔 𝑗

−) · ®𝑢(𝑛′, 𝑠+, 𝜔 𝑗
−)

)
1≤ 𝑗≤𝑚

�� 𝑠+ ∈ ΣP
+
}
.

For all 1 ≤ 𝑗 ≤ 𝑚, NBS(𝑛, 𝜔 𝑗
−) · ®𝑢(𝑛, 𝑠+, 𝜔 𝑗

−) can be written as∑︁
𝑛′∈C(𝑛)

NBS(𝑛′, 𝜔 𝑗
−) · ®𝑢(𝑛′, 𝑠+, 𝜔 𝑗

−),

since 𝑛 is MIN’s node, and MIN under the 𝑗-th OM chooses 𝑛′ according to 𝜔 𝑗
− .

Therefore, (4) holds for 𝑛, which concludes the induction.
Applying (4) to the root, we have

val(𝑟) =
{(

NBS(𝑟, 𝜔 𝑗
−) · ®𝑢(𝑟, 𝑠+, 𝜔 𝑗

−)
)
1≤ 𝑗≤𝑚

�� 𝑠+ ∈ ΣP
+
}
.

Using the fact that for all 1 ≤ 𝑗 ≤ 𝑚, NBS(𝑟, 𝜔 𝑗
−) = ®𝜌 andU(𝑠+, 𝜔 𝑗

−) = ®𝜌 · ®𝑢(𝑟, 𝑠+, 𝜔 𝑗
−),

we get
val(𝑟) =

{(
U(𝑠+, 𝜔1

−), . . . ,U(𝑠+, 𝜔𝑚
− )

) �� 𝑠+ ∈ ΣP
+
}
.

Therefore,
𝑣+ ≔ max

𝑠+∈ΣP
+

min
1≤ 𝑗≤𝑚

U(𝑠+, 𝜔 𝑗
−) = max

®𝑣∈val(𝑟 )
min

1≤ 𝑗≤𝑚
𝑣 𝑗 .

□

We now show that in the setting of Proposition 6, computing the pure maxmin value
against only 2 OMs is already NP-hard, even if MAX has perfect information. For this,
we consider the following decision problem:
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N
𝑖1 . . . . . . 𝑖𝑛

+
✓1 ×1

-

≤ ≥

-

≤ ≥

+
✓n ×n

-

≤ ≥

-

≤ ≥

Figure 4: An extensive-form game that encodes an instance of Subset Sum.

Definition 9 (Pure OM-Maxmin). The decision problem Pure OM-Maxmin is defined
as follows:

Input An extensive-form game 𝐺 given explicitly by its game tree, a finite set ΣO
− of

MIN’s behaviour strategies, and a rational number 𝑚.

Output Decide whether 𝑣+ ≔ max𝑠+∈ΣP
+

min𝜔−∈ΣO
−
U(𝑠+, 𝜔−) ≥ 𝑚 holds in 𝐺.

Proposition 10. Pure OM-Maxmin with 2 OMs is NP-hard, even if MAX has perfect
information.

Proof. We give a reduction from the NP-complete problem Subset Sum, which is
defined as follows:

Input A multi-set of natural numbers 𝑆 = {𝑖1, . . . , 𝑖𝑛}, a natural number 𝑘 .

Output Decide whether there exists a subset 𝐽 ⊆ 𝑆 that sums up to 𝑘 (
∑

𝑗∈𝐽 𝑗 = 𝑘).

Let 𝑆 = {𝑖1, . . . , 𝑖𝑛} and 𝑘 form an instance of Subset Sum. We build a game in
which, intuitively, a strategy of MAX is a subset 𝐽 of 𝑆, one OM verifies

∑
𝑗∈𝐽 𝑗 ≥ 𝑘 ,

and the other verifies
∑

𝑗∈𝐽 𝑗 ≤ 𝑘 .
Concretely, consider the following game:

Players Nature; MAX with perfect information; MIN with two OMs, 𝜋−,≤ and 𝜋−,≥ .

Game tree See Figure 4. At the root, Nature chooses uniformly at random an element
𝑗 ∈ 𝑆. MAX then chooses between ✓ (encoding the choice of some 𝐽 ∋ 𝑗) or
× (𝐽 ∌ 𝑗). Finally, MIN chooses ≤ or ≥: MIN always chooses ≤ under the OM
𝜋−,≤ , and always chooses ≥ under 𝜋−,≥ .

Payoffs for MAX For each Nature’s choice 𝑗 ∈ 𝑆, MAX’s payoff is as follows:

• If MIN has chosen ≥, MAX receives 𝑛 𝑗 if they have chosen ✓, otherwise
0.

• If MIN has chosen ≤, MAX receives 2𝑘 − 𝑛 𝑗 if they have chosen ✓,
otherwise 2𝑘 .

Maxmin The threshold of maxmin value is 𝑘 .

The construction is polynomial-time in the input (𝑆, 𝑘). Indeed, the game tree is of
size O(|𝑆 |). In addition, the construction yields an extensive-form game with 2 OMs
in which MAX has perfect information.
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Observe that the pure strategies of MAX are in bĳection with the subsets of 𝑆. For
each subset 𝐽 ⊆ 𝑆, if MAX plays the pure strategy corresponding to 𝐽 via choosing ✓
(respectively ×) for 𝑗 ∈ 𝐽 (respectively 𝑗 ∉ 𝐽), then MAX gets an expected payoff of∑︁

𝑗∈𝐽
( 1
𝑛
× 𝑛 𝑗) +

∑︁
𝑗∉𝐽

( 1
𝑛
× 0) =

∑︁
𝑗∈𝐽

𝑗

against the OM 𝜋−,≥ , and∑︁
𝑗∈𝐽

( 1
𝑛
× (2𝑘 − 𝑛 𝑗)) +

∑︁
𝑗∉𝐽

( 1
𝑛
× 2𝑘) = 2𝑘 −

∑︁
𝑗∈𝐽

𝑗

against the OM 𝜋−,≤ . Hence, the OM-maxmin value is

max
𝐽⊆𝑆

min(
∑︁
𝑗∈𝐽

𝑗 , 2𝑘 −
∑︁
𝑗∈𝐽

𝑗) ≤ max
𝐽⊆𝑆

𝑘 ≤ 𝑘,

with equality if and only if
∑

𝑗∈𝐽 𝑗 = 𝑘 for some 𝐽 ⊆ 𝑆.
Therefore, the maxmin value against these two OMs is at least 𝑘 if and only if there

is a subset 𝐽 of 𝑆 that sums up to exactly 𝑘 . This proves that Pure OM-Maxmin with
2 OMs is NP-hard even if MAX has perfect information. □

Proposition 7. Let ⟨𝑇, P, 𝑡, ®𝑢, ®𝜌⟩ be a VG with root 𝑟 , 𝜔− be an OM, and 𝑝∞ ∈ [0, 1] a
probability that MIN does not follow 𝜔− . For 𝑙 ∈ L(𝑇), let eval(𝑙) ≔ {⟨NBS(𝑙, 𝜔−) ·
®𝑢(𝑙), ®𝑢(𝑙)⟩} ∈ P<∞ (R × R𝑡 ). Then MiniMax(P<∞ (R × R𝑡 ), eval,∪, ⊕1,𝑡 ) satisfies

𝑣+ = max
⟨𝑠, ®𝑣⟩∈val(𝑟 )

(
(1 − 𝑝∞)𝑠 + 𝑝∞ ( ®𝜌 · ®𝑣)

)
.

Proof. Recall that the maxmin value under this setting is defined to be

𝑣+ ≔ max
𝑠+∈ΣP

+

(
(1 − 𝑝∞)U(𝑠+, 𝜔−) + 𝑝∞ min

𝑠−∈ΣP
−
U(𝑠+, 𝑠−)

)
.

We will establish by induction on the game tree that for every node 𝑛, its situational
value val(𝑛) satisfies

val(𝑛) =
{〈

NBS(𝑛, 𝜔−) · ®𝑢(𝑛, 𝑠+, 𝜔−), min
𝑠−∈ΣP

−
®𝑢(𝑛, 𝑠+, 𝑠−)

〉 �� 𝑠+ ∈ ΣP
+
}
, (5)

where min is the component-wise minimum of vectors of length 𝑚. In other words,
the situational value of 𝑛 stores, for each pure strategy of MAX, the payoff of this pure
strategy under the subtree rooted at 𝑛 against the OM 𝜔− , and its worst payoff against
each type of MIN.

First, consider a leaf 𝑛. Then

val(𝑛) = eval(𝑛) ≔ {⟨NBS(𝑛, 𝜔−) · ®𝑢(𝑛), ®𝑢(𝑛)⟩}.

Since 𝑛 is a leaf, it trivially holds that ®𝑢(𝑛, 𝑠+, 𝑠−) = ®𝑢(𝑛) for all 𝑠+ ∈ ΣP
+ and all

𝑠− ∈ ΣP
− . In addition, ®𝑢(𝑛, 𝑠+, 𝜔−) = ®𝑢(𝑛), Hence, (5) holds for 𝑛.

Now consider an internal node 𝑛. If 𝑛 is MAX’s decision node, then val(𝑛) =

∪𝑛′∈C(𝑛)val(𝑛′). Applying the induction hypothesis to 𝑛′ yields

val(𝑛) =
⋃

𝑛′∈C(𝑛)

{〈
NBS(𝑛′, 𝜔−) · ®𝑢(𝑛′, 𝑠+, 𝜔−), min

𝑠−∈ΣP
−
®𝑢(𝑛′, 𝑠+, 𝑠−)

〉 �� 𝑠+ ∈ ΣP
+
}
,
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from which we deduce that (5) holds for 𝑛 using (1) and the fact that for all 𝑛′ ∈ C(𝑛),
NBS(𝑛′, 𝜔−) = NBS(𝑛, 𝜔−).

If 𝑛 is MIN’s decision node, then we have val(𝑛) = ⊕1,𝑡
𝑛′∈C(𝑛)val(𝑛′), where for

𝑓 , 𝑔 ∈ P<∞ (R × R𝑡 ), we define 𝑓 ⊕1,𝑡 𝑔 ⊆ R × R𝑡 to be the set

{⟨𝑠 + 𝑠′, (min(𝑣𝑖 , 𝑣′𝑖))1≤𝑖≤𝑡 ⟩ | ⟨𝑠, ®𝑣⟩ ∈ 𝑓 , ⟨𝑠′, ®𝑣 ′⟩ ∈ 𝑔}.

Applying the induction hypothesis to 𝑛′ yields

val(𝑛) =
⊕

𝑛′∈C(𝑛)

1,𝑡 {〈
NBS(𝑛′, 𝜔−) · ®𝑢(𝑛′, 𝑠+, 𝜔−), min

𝑠−∈ΣP
−
®𝑢(𝑛′, 𝑠+, 𝑠−)

〉 �� 𝑠+ ∈ ΣP
+
}
.

Observe that∑︁
𝑛′∈C(𝑛)

NBS(𝑛′, 𝜔−) · ®𝑢(𝑛′, 𝑠+, 𝜔−) = NBS(𝑛, 𝜔−) · ®𝑢(𝑛, 𝑠+, 𝜔−)

and
min
𝑠−∈ΣP

−
®𝑢(𝑛, 𝑠+, 𝑠−) = min

𝑛′∈C(𝑛)
min
𝑠−∈ΣP

−
®𝑢(𝑛′, 𝑠+, 𝑠−)

since MIN can choose a successor 𝑛′ of 𝑛 according to their type. Hence, (5) holds for
𝑛, which concludes the induction.

Applying (5) to the root, and using NBS(𝑟, 𝜔−) = ®𝜌 and U(𝑠+, 𝜔−) = ®𝜌 ·
®𝑢(𝑟, 𝑠+, 𝜔−), we get

val(𝑟) =
{〈
U(𝑠+, 𝜔−), min

𝑠−∈ΣP
−
®𝑢(𝑠+, 𝑠−)

〉 �� 𝑠+ ∈ ΣP
+
}
.

Therefore,
max

⟨𝑠, ®𝑣⟩∈val(𝑟 )

(
(1 − 𝑝∞)𝑠 + 𝑝∞ ( ®𝜌 · ®𝑣)

)
= 𝑣+.

□

B The Bridge deal behind the Real-Life Example

Deal 1 A Bridge deal from Karpin (1977, p.266) that exhibits a recursive reasoning at
level-3.

♠ Q75
♥ 8
♦ AQ1097
♣ AK106

♠ J
♥ AJ109764
♦ 6
♣ QJ94

N
W E

S

♠ 106
♥ K52
♦ 8432
♣ 8752

♠ AK98432
♥ Q3
♦ KJ5
♣ 3

West North East South
4♥ Pass Pass 4♠
Pass 6♠ Pass Pass
Pass
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In Deal 1,9 by a brilliant defensive false-card, the East defender succeeded in
creating a tread of thought in declarer’s mind which led to declarer’s defeat in a cold
six-spade contract.

West opened the ace of hearts, upon which East, dropped the king! West, of course,
continued with another heart, which was ruffed by dummy’s queen (to prevent the
“obvious” overruff.) When East followed to the second round of hearts, South was
certain that the only plausible excuse for East’s false-card was that East possessed the
J-10-6 of spades. So the seven of spades was led from dummy, and finessed! West’s
singleton jack took the setting trick.

Before criticising declarer, remember one thing: East would also have made the
false-card if he had had the J-10-6 of trumps; declarer would then have become a
temporary genius instead of a gullible victim.

9The narrative for this deal is also taken from Karpin (1977, p.267).
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