
HAL Id: hal-04100646
https://hal.science/hal-04100646v1

Submitted on 18 May 2023 (v1), last revised 5 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Opponent-model search in games with incomplete
information

Junkang Li, Bruno Zanuttini, Véronique Ventos

To cite this version:
Junkang Li, Bruno Zanuttini, Véronique Ventos. Opponent-model search in games with incomplete
information. GREYC CNRS UMR 6072. 2023. �hal-04100646v1�

https://hal.science/hal-04100646v1
https://hal.archives-ouvertes.fr

Opponent-model search in games with
incomplete information*

Junkang Li1,2 Bruno Zanuttini2 Véronique Ventos1
1NukkAI, Paris, France

2Normandie Univ.; UNICAEN, ENSICAEN, CNRS, GREYC, 14 000 Caen, France
junkang.li@nukk.ai, bruno.zanuttini@unicaen.fr, vventos@nukk.ai

May 18, 2023

Abstract

Games with incomplete information are games that model situations where
players do not have common knowledge about the game they play, e.g. card
games such as poker or bridge. Opponent models can be of crucial importance
for decision-making in such games. We propose algorithms for computing optimal
and/or robust strategies in games with incomplete information, given various types
of knowledge about opponent models. As an application, we describe a frame-
work for reasoning about an opponent’s reasoning in such games, where opponent
models arise naturally.

1 Introduction
Most algorithmic studies in game theory focus on the computation of exact or approxi-
mate Nash equilibria, which leaves much to be desired for many reasons. Firstly, large
games usually have more than one equilibrium. Which equilibria should be considered
rational or reasonable has long been a subject of study: refinements of Nash equilib-
ria (van Damme, 1991), epistemic game theory (Perea, 2012), etc. More importantly,
Nash equilibrium as a solution concept has two implicit assumptions: both players
have unlimited computational power for computing Nash equilibria, and each knows
which equilibrium the other will choose. Needless to say, both are difficult to justify in
real-life situations.

These two assumptions are also opponent models in disguise, which are models that
describe or predict how an opponent reasons in a game. In this paper, we are interested
in more general opponent models than those behind Nash equilibria. Such opponent
models have been explicitly incorporated into game tree search algorithms (e.g. min-
imax, αβ search, MCTS) for games with perfect information, for instance by Iida et
al. (1993, 1994). The knowledge of opponent models can result in both acceleration

*

1

of game tree search (e.g. by pruning branches not considered by the opponents) and
increase of the performance of strategies computed (e.g. by exploiting the weakness of
the opponents).

In this paper, we will apply the same idea to games with incomplete information,
where opponent models yield even more interesting results than in games with perfect
information. We will propose different ways of taking opponent models into account,
and give algorithms for computing the corresponding robust and optimal responses.
We will further propose a principled method to take into account the probability that
the opponent does not behave according to any of the given models. Finally, we will
show an application of these models to the recursive modelling of opponents, where
a level-k player assumes that their opponents reason at some level lower than k, and
recursively down to level 0.

2 Related work
Equilibrium concepts in games with perfect or imperfect information have long been
studied; in particular, they have been related to models of knowledge and beliefs (for
each player about the others’ reasoning and strategies) via the concept of rationaliz-
ability in the field of epistemic game theory. For a thorough treatment, the reader may
refer for instance to the textbooks by Perea (2012) or Bonanno (2018).

When no opponent model is available, one typically considers all possible (pure or
mixed) strategies. In this case, Koller and Megiddo (1992) and Koller, Megiddo, and
von Stengel (1996); von Stengel (1996) study the complexity of computing maxmin
strategies under a variety of settings; in particular, for mixed strategies, they give
polynomial-time algorithms based on linear programming for two-player extensive-
form games with perfect recall, a more general setting than ours. McMahan, Gor-
don, and Blum (2003) propose a double-oracle algorithm for computing optimal mixed
strategies for Markov decision processes with adversarial cost functions, which can
also be regarded as a polynomial-time algorithm for computing the maxmin strategies
of a normal-form game. Bošanský et al. (2014) propose an algorithm that combines
the ideas of linear programming and double-oracle for zero-sum extensive-form games
with perfect recall, and experimentally demonstrate that it is more efficient than other
algorithms when optimal mixed strategies have small supports.

Opponent models can come in diverse forms. Iida et al. (1993, 1994) propose
opponent models for games with perfect information, where models are given by the
evaluation function and the search depth of the opponent. A recent survey of opponent
modelling approaches is provided by Albrecht and Stone (2018). Our work is related
to these in the sense that we assume opponent models to be given (called “type-based
reasoning” by Albrecht and Stone (2018, Sec. 4.2)). However, an important stream of
work also studies the learning of opponent models; we refer the reader to the survey
by Nashed and Zilberstein (2022).

Among opponent models, an important class is the recursive models, where MAX
searches a strategy (at level k) assuming that MIN themselves searches a strategy (at
level k − 1) assuming that MAX searches. . . , etc, down to level 0. Such models
have been essentially studied to capture human reasoning in games. Camerer, Ho, and

2

Chong (2004) propose a cognitive hierarchy model, where an opponent’s level is mod-
elled by a Poisson distribution on levels 0, . . . , k − 1, and validate this model against
empirical data. Wright and Leyton-Brown (2019) assess the relevance of various mod-
elling assumptions for level 0. De Weerd, Verbrugge, and Verheij (2013) assess the
efficiency of reasoning with recursive models by simulation. Such recursive models
are also used in epistemic game theory to define notions such as common belief in
rationality (Perea, 2012).

Finally, a closely related line of work is that about interactive POMDPs (Gmy-
trasiewicz and Doshi, 2005; Doshi, Gmytrasiewicz, and Durfee, 2020) for collabora-
tive decision-making in partially observed environments. In this model, a level-k agent
optimizes their behaviour given a distribution over (partially observed) physical states
and over other agents’ models at level k−1. An interesting feature of this model is that
optimal behaviours at level k can be computed iteratively as a sequence of optimal poli-
cies for POMDPs, where at each iteration the other agents’ model can be considered as
part of the environment.

3 Background
In this paper, we focus on games in extensive form, i.e. represented by a tree. We
also focus on zero-sum games with two players (MAX and MIN), but our study can
be easily extended to more players and general-sum.1 We briefly describe our setting
and refer the reader to textbooks (Maschler, Solan, and Zamir, 2020, for instance) for
details.

In an extensive-form game with no chance, each internal node n of the game tree is
owned by a player. To each terminal node, an outcome (or value) is attached, typically
a real number, which denotes the payoff for MAX (and MIN’s payoff is the opposite).

We denote MAX and MIN by + and−, respectively. Under imperfect information,
an information set for a player i ∈ {+,−} is a set of their nodes that they cannot
distinguish. A pure strategy for i, denoted by si, maps each information set IS of i to
an action available at IS ; in particular, the same action must be chosen at all nodes in
the same IS . A mixed strategy for i, denoted by σi, is a probability distribution over
the set of all pure strategies of i, with the interpretation that i plays a pure strategy
randomly chosen according to this distribution at the beginning of a game.

We write ΣP
i (resp. ΣM

i) for the set of all pure (resp. mixed) strategies of player
i in a game. We also write p1s

1
i + · · · + pks

k
i for a mixed strategy of i with support

{s1
i , . . . , s

k
i } and probabilities p1, . . . , pk; in particular, a pure strategy can be regarded

as a mixed strategy with singleton support. In a game with no chance, a profile of pure
strategies (s+, s−) ∈ ΣP

+ × ΣP
−, uniquely determines a terminal node to be reached.

The payoff (for MAX) under this profile, written as u(s+, s−), is defined to be the
value of this terminal node. The expected payoff (for MAX) under a profile of mixed
strategies (σ+, σ−) ∈ ΣM

+ ×ΣM
− is the expectation of MAX’s payoff over drawings of

pure strategies.

1With the exception of the lexicographic setting, for which the definition of the problem does not trivially
generalise.

3

In general, games include chance nodes, which can be seen as being owned by a
player called Nature, who uses a behaviour strategy that is common knowledge.

3.0.1 Games with incomplete information

In this paper, we study games with incomplete information, where players do not have
common knowledge about the game they play. For example, a player can be uncertain
about the payoff or available actions of other players, or whether other players are
themselves uncertain about the game, etc. Notable examples of such games are poker,
bridge, and mahjong, where the initial distribution of cards is not common knowledge.

A game with incomplete information can be modelled as a game with imperfect in-
formation via the Harsanyi model, which uses the notion of types to define the knowl-
edge of a player. For example, in a game of poker or bridge, the type of player is their
hand. More concretely, at the beginning of a game, there is a chance node that selects
a type for each player according to a common prior. Every player learns their own type
but not the types of the other players. Then all players participate in a game where
the form of the game tree and the outcomes can depend on each player’s type, but the
actions of every player only depend on their type.2

3.0.2 Best-defence model

We are interested in decision-making in games with incomplete information where all
actions except the selection of each player’s type by the chance node at the root are pub-
lic. We also assume that there is no other chance node. In other words, we are interested
in two-player zero-sum games with incomplete information where had the types been
common knowledge, the game would be of perfect information without chance node;
we call them combinatorial games with incomplete information (CGII). However, the
results in this paper can be extended to any game with incomplete information with
minor modifications.

Given a CGII, our goal is to find maxmin-like strategies of MAX. Such strategies
are usually computed by backward induction (most typically minimax-like depth-first
search) in games with perfect information. However, for a game with incomplete infor-
mation, traditional backward induction is impossible since there is no non-trivial sub-
game: each proper subtree is connected to another one via at least one information set.
Instead, an approximation of maxmin strategies can be found using the best-defence
model (Frank and Basin, 2001), which, by assuming MIN knows MAX’s type, simpli-
fies a game where both players have incomplete information into a game where MIN
has perfect information.

Throughout the paper, we study CGIIs under the best-defence model. In general,
available actions of MIN depend on their type, so not every terminal node is reachable
by a given type of MIN. However, one can assume that the payoff for MAX at such
an unreachable terminal node is +∞, which does not change the maxmin value of the
game (Frank and Basin, 2001). Therefore, we assume without loss of generality that

2An equivalent model called the Aumann model uses Kripke structures where an equivalence class for
player i corresponds to a type of i in the Harsanyi model. For more details, we refer the reader to the textbook
by Maschler, Solan, and Zamir (2020).

4

A
a b

B

(
1
1
1
0
0

)l (
0
0
0
1
1

)r
C

(
1
1
0
0
0

)L (
0
0
1
1
1

)R

Figure 1: A CGII with 5 possible worlds.

MIN’s set of actions is independent of their type, and all terminal nodes are reachable
by any type of MIN.

Formally, a CGII under the best-defence model is specified by a game tree (the
nodes of which are partitioned into terminal nodes, MIN’s decision nodes, and MAX’s
decision nodes), an integer t ≥ 1 (which denotes the number of MIN’s types), a com-
mon prior ~q over MIN’s types, and a payoff function u : L → Rt that to each ter-
minal node n ∈ L of the game tree, assigns a vector of length t written as ~u(n) =
(u(n)1, . . . , u(n)t),3 where u(n)i is the payoff for MAX at node n if MIN is of type
i. Notice that a game with perfect information and no chance is a CGII under the
best-defence model with t = 1, i.e. only one type of MIN.

Example. A CGII under the best-defence model with 5 types of MIN is given in Fig-
ure 1, where we use square and circle to denote MAX’s and MIN’s nodes, respectively.
Unless stated otherwise, we assume in all our examples that the common prior over
MIN’s types is uniform (hence each type occurs with probability 1/5 in this CGII). An
example of playout: if MIN plays a at A and MAX plays l at B, MAX’s payoff vector
will be (1, 1, 1, 0, 0), which means MAX’s gain is 1 if MIN is of one of the first three
types, and 0 otherwise.

4 Maxmin values without opponent models
In this section, we give an overview of algorithms from the literature for computing
maxmin values without opponent models, which will be the basis of our algorithms for
opponent-model search.

We are interested in computing the maxmin value

v+ :− max
ς+∈Σ+

min
s−∈ΣP

−

u(ς+, s−), (1)

where Σ+ is ΣP
+ or ΣM

+ , depending on context. We recall that u denotes the expected
payoff (for MAX) with respect to type distribution and mixed strategies. Since u is
linear in MIN’s mixed strategies, replacing ΣP

− by ΣM
− in (1) will not change the value

defined, hence we define the maxmin value to be against all pure strategies of MIN.
3In the following, we use the notation vi for the i-th component of a vector ~v.

5

The maxmin value v+ is the largest payoff MAX can guarantee by any strategy
from Σ+, no matter how MIN plays. MAX’s strategies achieving this value are called
maxmin strategies. Depending on whether we allow MAX to use mixed strategies,
two notions of maxmin arise: pure maxmin and mixed maxmin. By definition, it is
clear that the mixed maxmin value is no smaller than the pure maxmin value. As we
will see, it is in general more difficult to compute the pure than the mixed maxmin
value for a CGII. Still, in some situations, pure maxmin is more desirable or even the
only viable solution concept, e.g. when outcomes are only partially ordered, or when
mixed strategies are not allowed due to their probabilistic nature. Hence, we will study
algorithms for both notions, with a focus on pure maxmin since algorithms for mixed
maxmin only require minor modifications in the presence of opponent models.

4.0.1 A generic minimax algorithm

We will focus on algorithms for computing the maxmin value, but they can be eas-
ily modified to compute the corresponding maxmin strategies. The maxmin value of
games with perfect information is typically computed by the minimax algorithm, a
generic version of which is shown in Algorithm 1.

Algorithm 1: Generic minimax algorithm

1 def MiniMax(node n):
2 if n is a terminal node:
3 return eval(n)
4 else:
5 find the set of n’s successor nodes C(n)
6 if n is MAX’s decision node:
7 return

∨
n′∈C(n) MiniMax(n

′)

8 else:
9 return

∧
n′∈C(n) MiniMax(n

′)

This depth-first search algorithm has four parameters, which we will use to capture
different algorithms in the following sections:

• V is a set of objects called situational values;

• eval is an evaluation function which maps each terminal node n to a value
eval(n) ∈ V ;

• ∨,∧ : V × V → V are two associative binary operators, referred to as MAX’s
and MIN’s operator, respectively.

With eval as boundary conditions, this algorithm recursively defines a situational value
val(n) for every node n. For an instantiation of this algorithm to compute the maxmin
values, one should choose the parameters as a function of the class of games under
consideration, in such a way that there is a polynomial-time computable mapping from
the situational value of the root val(r) to the maxmin value of the game.

6

For example, for games with perfect information, it is well-known that Algorithm 1
runs on the root yields the pure/mixed maxmin value (1) with V :− R, eval(n) :− u(n),
∨ = max, and ∧ = min.

This algorithm has several advantages: returned values for internal nodes are read-
ily interpretable; the algorithm is extremely efficient on memory since the recursion
depth is the depth of the game tree, which in general is exponentially smaller than the
tree; the search can be combined with other techniques, such as heuristic functions and
αβ pruning (which is possible whenever (V,∨,∧) forms a lattice (Li et al., 2022)),
move ordering, Monte Carlo techniques such as MCTS, etc.

In the following, we will present various algorithms for computing pure and mixed
maxmin values, with or without opponent models. Whenever possible, we will describe
them succinctly as a particular instantiation of Algorithm 1.

4.0.2 Pure maxmin

Frank and Basin (2001) show that the pure maxmin value is NP-hard to compute for
CGIIs. The first exact algorithm was proposed by Ginsberg (2001), and it can be
reframed as follows.

Proposition 1. For a CGII with root r, t types of MIN, and common prior ~q over them,
consider the instantiation of Algorithm 1 where: situational values are finite sets of
vectors in Rt; for all terminal nodes n, eval(n) :− {~u(n)}; MAX’s operator is set
union ∪; MIN’s operator is u, defined for all situational values f and g by:

f u g :−
{(

min(vi, v
′
i)
)

1≤i≤t | ~v ∈ f,~v
′ ∈ g

}
.

Then it holds that

v+ := max
s+∈ΣP

+

min
s−∈ΣP

−

u(s+, s−) = max
~v∈val(r)

~q · ~v.

Example. For the CGII in Figure 1, we get

val(B) = {(1, 1, 1, 0, 0), (0, 0, 0, 1, 1)};
val(C) = {(1, 1, 0, 0, 0), (0, 0, 1, 1, 1)};
val(A) = {(1, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(0, 0, 0, 0, 0), (0, 0, 0, 1, 1)}.

This algorithm recursively enumerates all strategies of MAX: each vector in val(n)
implicitly represents one or several strategies of MAX for the subtree rooted at n. At
the root A, given the uniform prior on MIN’s types, the best vectors are (1, 1, 0, 0, 0)
(corresponding to MAX’s strategy (l, L), by which MAX chooses l at B and L at C) and
(0, 0, 0, 1, 1) (corresponding to MAX’s strategy (r,R)); both achieve the pure maxmin
value (1

5 , . . . ,
1
5) · (1, 1, 0, 0, 0) = 2/5.

Importantly, in a CGII, the expected payoff of the strategies of the subtree rooted
at n may depend on that of strategies of a subtree rooted at another node n′, which can
be far away from n. In our example, l and R are locally optimal with respect to the

7

uniform prior. However, (l,R) is not optimal at the root, since it is MIN who chooses,
with perfect information, either a or b as a function of their type. In other words, it is
not correct to use the common prior to evaluate strategies locally at nodes B and C:
the conditional probabilities of MIN’s types at bothB and C depend on MIN’s strategy
and can be different from the prior.4

4.0.3 Reduction of situational values

Even with non-locality, situational values, which are sets of vectors, can be reduced
to accelerate the computation. If in val(n) a vector ~v is weakly dominated by another
vector ~v ′, then we can discard ~v from val(n). This reduction corresponds to the elimi-
nation of weakly dominated strategies. For example, if A is an internal node of a larger
CGII, then (0, 0, 0, 0, 0) (corresponding to MAX’s strategy (r, L)) can be discarded
from val(A) without effect on the pure maxmin value of the larger game: MAX never
does worse by playing, say, the strategy represented by (1, 1, 0, 0, 0) in the subtree
rooted at A.

In general, any reduction other than the elimination of dominated vectors is un-
sound, i.e. would yield incorrect results for at least one game. However, we will see
that more reductions become sound if opponent models are available.

4.0.4 Mixed maxmin

The mixed maxmin value, defined by

v+ :− max
σ+∈ΣM

+

min
s−∈ΣP

−

u(σ+, s−), (2)

can be computed in polynomial time with the linear programming (LP) algorithm pro-
posed by Koller and Megiddo (1992). This LP algorithm relies on two insights:

• The set of all mixed strategies of MAX can be represented by a system L of
linear equalities, with linearly many (in the size of the game tree) variables and
equalities.

• For any threshold v and any mixed strategy σ+ of MAX represented as a solution
to L, it can be verified in linear time whether mins−∈ΣP

−
u(σ+, s−) ≥ v by com-

puting MIN’s best responses to σ+. This computation serves as the separation
oracle in the LP.

Then the LP consists of maximising the variable v (which will yield the mixed maxmin
value in (2)) under the constraints inL and the separation oracle. For more details, refer
readers to Koller and Megiddo (1992).

Example. In the game in Figure 1, the optimal mixed strategy is the uniform strategy,
i.e. a uniform distribution over all 4 pure strategies of MAX. This strategy yields an
expected payoff of at least 1/2, which is the mixed maxmin value and is better than the
pure maxmin value 2/5.

4This phenomenon, called non-locality by Frank and Basin (2001), is the culprit behind the NP-hardness
of pure maxmin.

8

The above algorithm has been improved by von Stengel (1996); Koller, Megiddo,
and von Stengel (1996). However, for simplicity, we only show modifications of the
initial algorithm for taking opponent models into account. Adapting them to the im-
proved algorithms is straightforward.

5 Opponent-model search
We now come to our main contributions, which are algorithms for finding maxmin
strategies when given opponent models (OM). We will be interested in the maxmin
value against a restricted set of opponent’s strategies:

v+ = max
ς+∈Σ+

min
ω−∈ΣO

−

u(ς+, ω−),

where Σ+ is the set of all pure or all mixed strategies for MAX, ΣO
− is the set of

strategies of MIN considered to be possible by the OMs, and ω− an arbitrary strategy
from ΣO

−.
In general, OMs are models of the opponent’s reasoning, which can come in various

forms (see Section 2). As a quite general setting, we consider that an OM describes a
behaviour strategy of MIN. A behaviour strategy for a player i maps each information
set IS of i to a probability distribution over i’s actions at IS . All mixed strategies can
be expressed as behaviour strategies in games with perfect recall5, and a fortiori in
CGIIs since CGIIs are games with perfect recall. For a strategy represented by a mixed
strategy or other linear representations (like sequence form (Koller and Megiddo, 1992)
or evaluation function (Iida et al., 1993)), its equivalent behaviour strategy can also be
computed in time linear in the size of the game tree.

Algorithmically, we assume that each OM is specified by an oracle O such that,
for any decision node n of MIN and any type i of MIN, O(n, i) is the strategy at n of
MIN of type i, specified as a probability distribution over MIN’s actions available at n.
We also assume that the OMs are given in the input and each call to the oracles takes
constant time.

In this section, we consider situations where MAX is certain that MIN only consid-
ers strategies described by these OMs. This assumption will be relaxed in Section 6.

5.0.1 Single OM

We first present the simplest case, with only one OM ω−, which means that MAX has
complete knowledge of MIN’s strategy. Then the game becomes a single-player game
with perfect information (Koller and Megiddo, 1992), and the pure/mixed maxmin
value becomes

v+ :− max
s+∈ΣP

+

u(s+, ω−) = max
σ+∈ΣM

+

u(σ+, ω−),

5Perfect recall means players never forget what they knew or did in the past. For the formal definition of
perfect recall and the equivalence between mixed and behaviour strategies in games with perfect recall, see
Kuhn (1953).

9

where the last equality is due to the linearity of u. This value can be computed by a
bottom-up (i.e. depth-first) procedure, which recursively computes MAX’s best strate-
gies at each of their information set.

Since MIN’s strategy is known perfectly, all MIN’s decision nodes become chance
nodes. As a consequence, even though MAX still does not know MIN’s type, they
can compute the exact probability of reaching a node under each of MIN’s types and,
using Bayesian updates, deduce the conditional probability of MIN’s types at every
node. Then MAX can choose the actions that maximise the payoff with respect to this
conditional probability at any MAX’s decision node.

Example. Consider again the game on Figure 1, with ω− defined as follows: MIN
plays a if of type 1 or 2, b if of type 4 or 5, and 1

2a + 1
2b if of type 3. Against ω−

and the uniform prior over MIN’s types, MAX can compute the vector (1
5 ,

1
5 ,

1
10 , 0, 0)

at node B, which we call the non-normalised belief state (NBS) at B. For instance, the
first component means that the probability of the combined event that MIN is of type 1
and B is reached is 1/5. Observe that normalising the NBS would give the posterior
probability over MIN’s types (for instance, 2/5 for type 1, and 0 for type 5). Therefore,
by maintaining an NBS, MAX implicitly performs Bayesian inference on MIN’s types
using ω−.

Given the NBS at B, action l yields a higher (non-normalised) payoff of 1/2 than
r (with a payoff of 0) at B. Similarly, at C the NBS is (0, 0, 1

10 ,
1
5 ,

1
5) and prescribes

action R (with a payoff of 1/2). At node A, MAX’s payoff can be simply computed as
the sum of their payoff at B and C, which yields 1. One can check that 1 is indeed the
best MAX can get when playing against MIN with this particular OM, and this payoff
is obtained by the strategy (l,R), which gives MAX a payoff of 1 independent of MIN’s
actual type.

In general, every MAX’s node n is the result of a series of MAX’s actions and
MIN’s actions. MAX’s NBS at n, written as

−→
nbs(n), is computed component-wise:

the i-th component is computed as the product of the probability of MIN being of type
i and the probability that MIN of type i takes those actions leading to n at each of
MIN’s nodes that are an ancestor of n. In particular, the NBS at the root is the common
prior over MIN’s types. With the NBS of terminal nodes thus computed, we can then
compute the best payoff for MAX.

Proposition 2. For a CGII with root r and a single opponent model ω−, consider the
instantiation of Algorithm 1 where: V = R; for all terminal nodes n, eval(n) :−
−→
nbs(n) · ~u(n); MAX’s operator is max; MIN’s operator is +. Then it holds that v+ =
val(r), and the algorithm is polynomial-time.

This algorithm can be seen as a generalisation of the OM search proposed by Iida
et al. (1993), which only consider games with perfect information for which OMs are
described by MIN’s evaluation functions.

5.0.2 Probabilistic OMs

We now consider the case where MAX has several OMs ω1
−, . . . , ω

m
− of MIN, and a

probability distribution p = (p1, . . . , pm) over them: MIN plays the strategy ω1
− with

10

probability p1, ω2
− with probability p2, etc. In particular, the pure/mixed maxmin value

is given by

v+ :− max
s+∈ΣP

+

m∑
j=1

pju(s+, ω
j
−) = max

σ+∈ΣM
+

m∑
j=1

pju(σ+, ω
j
−),

This setting is not much different from the previous one, due to the linearity of u:
these OMs can be merged into one single OM describing the mixed strategy ω− :−
p1ω

1
− + · · · + pmω

m
− . In principle, one can traverse the game tree once and compute

the behaviour strategy corresponding to ω−, then run the single-OM algorithm from
Proposition 2. Instead, we present a one-pass algorithm for probabilistic OMs, without
the need to explicitly compute and store the mixed strategy ω−. The key is to maintain
not just one, but m NBSs, one

−→
nbsj for each OM ωj−.

Proposition 3. For a CGII with root r and opponent models ω1
−, . . . , ω

m
− distributed

according to p1, . . . , pm, consider the instantiation of Algorithm 1 where: V = R; for
all terminal nodes n, eval(n) :−

∑m
j=1 pj

(−→
nbsj(n) · ~u(n)

)
; MAX’s operator is max;

MIN’s operator is +. Then it holds that v+ = val(r), and the algorithm is polynomial-
time.

5.0.3 Lexicographic OMs

An important subcase of search with multiple OMs is the case where MAX holds a
lexicographic belief over MIN’s OMs ω1

−, . . . , ω
m
− . For example, MAX deems that

MIN most probably follows ω1
−. Otherwise, with an infinitesimally smaller probability

(compared to ω1
−), MIN follows ω2

−. Otherwise, with an infinitesimally smaller prob-
ability (compared to ω2

−), MIN follows ω3
−, etc. We define the pure/mixed maxmin

value in this case to be

v+ :− lexmax
s+∈ΣP

+

(
u(s+, ω

1
−), . . . , u(s+, ω

m
−)
)

= lexmax
σ+∈ΣM

+

(
u(σ+, ω

1
−), . . . , u(σ+, ω

m
−)
)
,

where lexmax is lexicographic maximum over vectors of length m. In other words, if
there is a unique optimal strategy against ω1

−, then this strategy is chosen; otherwise,
ties are broken according to their values against ω2

−, and so on.
This lexicographic belief can in fact be treated with the same algorithm as for

probabilistic OMs. Indeed, it suffices to take the distribution over OMs to be p =
(1, ε, ε2, . . . , εm−1), where ε is an indeterminate, the value of which will be taken to
be 0 at the end of the computation.

We use the following operations over the set Rm[ε] of all real-coefficient polynomi-
als in ε of order m−1: evalε,m defined by evalε,m(n) :−

∑m
j=1

(
~u(n) ·

−→
nbsj(n)

)
εj−1;

addition of polynomials +ε,m; evaluation f(x) of a polynomial f at a value x ∈ R; and
operator lexmaxε,m, which maps two polynomials f1, f2 ∈ Rm[ε] to f1 if the leading
coefficient of f1 − f2 is non-negative, and to f2 otherwise.

11

Proposition 4. For a CGII with root r and opponent models ω1
−, . . . , ω

m
− with a lexico-

graphic interpretation, consider the instantiation of Algorithm 1 where: V = Rm[ε];
eval = evalε,m; MAX’s operator is lexmaxε,m; MIN’s operator is +ε,m. Then it holds
that v+ = val(r)(0), and the algorithm is polynomial-time.

5.0.4 Nondeterministic OMs

We finally consider the case where MAX does not have a probability distribution over
MIN’s OMs: MIN’s strategy is only known to be among ω1

−, . . . , ω
m
− . This situation

is very similar to planning under adversarial cost functions (McMahan, Gordon, and
Blum, 2003). The maxmin value is then

v+ :− max
ς+∈Σ+

min
1≤j≤m

u(ς+, ω
i
−),

which in general is different depending on whether Σ+ is ΣP
+ or ΣM

+ . MIN now has (a
priori) more agency than in the case of probabilistic OMs, since they can choose from
a larger (but still limited) set of strategies.

As introduced for probabilistic OMs, for each node n, let
−→
nbsj(n) be the NBS

for ωj− at n, which is a t × 1 vector (each component corresponds to one of the
t types of MIN). We can write all m NBSs as an m × t NBS matrix NBS(n) :−
(
−→
nbs1(n)ᵀ, . . . ,

−→
nbsm(n)ᵀ).

Proposition 5. For a CGII with root r and opponent models ω1
−, . . . , ω

m
− with a non-

deterministic interpretation, consider the instantiation of Algorithm 1 where: situa-
tional values are finite sets of vectors in Rm; for all terminal nodes n, eval(n) :−
{NBS(n) × ~u(n)}; MAX’s operator is set union ∪; MIN’s operator is], defined for
all situational values f and g by f] g :− {(vj + v′j)1≤j≤m | ~v ∈ f,~v ′ ∈ g}. Then the
pure maxmin value satisfies

v+ :− max
s+∈ΣP

+

min
1≤j≤m

u(s+, ω
j
−) = max

~v∈val(r)
min

1≤j≤m
vj .

The algorithm above is exponential time in the worst case; it can actually be shown
that this problem is NP-complete, even if MAX has perfect information (i.e. MIN only
has 1 type) and there is only 2 OMs of MIN.

It can be seen that the knowledge of OMs transforms MAX’s incomplete informa-
tion about MIN’s type into the one about MIN’s strategy. Compared to Proposition 1,
situational values are now sets of vectors of length m (instead of t). Each such vector
implicitly represents a strategy of MAX by its expected payoff against each OM. In
contrast with the case of probabilistic OMs, we cannot further collapse each vector to
a single real number, since we have no distribution over the OMs. Still, reduction by
weak dominance can be used just as for pure maxmin without any opponent model.

It follows that at the root, the remaining vectors are the non-dominated strategies
of MAX against MIN’s OMs. In other words, the algorithm computes the normal form
of the game restricted to MIN’s fixed m strategies, which justifies the correctness of
Proposition 5 for pure maxmin. As for mixed maxmin, one can modify the separa-
tion oracle in the LP algorithm of Koller and Megiddo (1992): now the oracle only
computes MIN’s best responses from the m OMs.

12

6 Opponent models with uncertainty
We now come to our second contribution, about the case where a set of OMs of MIN is
available, but MAX is not certain that MIN will behave as one of them. Without loss of
generality, we focus on the case when there is a single OM ω−, which encompasses as
well the case of several OMs with a probability distribution, as discussed in Section 5.

We assume that with a probability p∞, which is known to MAX, MIN does not
follow ω−, in which case their behaviour is arbitrary and unpredictable, and that with
probability 1 − p∞ MIN follows ω−. Intuitively, p∞ quantifies MAX’s uncertainty
about MIN’s behaviour. This may arise for instance when MAX tries to estimate MIN’s
gameplay level: with 1− p∞, MIN is of a certain level with a behaviour predictable by
some OM; otherwise, they have an unknown level and nothing can be assumed about
their play.

This model presents a conflict between robustness and performance, well-known in
the literature of linear programming with uncertain parameters or MDP planning under
uncertain cost functions. MAX desires to be cautious and robust against MIN’s un-
predictable behaviour occurring with probability p∞, and at the same time to improve
their performance by exploiting their knowledge of the OM, which correctly predicts
MIN’s strategy with probability 1 − p∞. Formally, we define the following modified
maxmin value:

v+ :− max
ς+∈Σ+

(
(1− p∞)u(ς+, ω−) + p∞ min

s−∈ΣP
−

u(ς+, s−)
)
,

where Σ+ is either ΣP
+ or ΣM

+ .

Example. Consider again Figure 1 and the OM ω− “MIN plays a if of type 1 or 2, b
if of type 4 or 5, and 1

2a + 1
2b if of type 3”. The best strategy of MAX against ω− is

(l,R) with a payoff of 1. However, this strategy does not fare so well if MIN’s strategy
is not ω− (or when p∞ is close to 1): in the worst case, MIN plays b if of type 1 or 2,
and a if of type 4 or 5. Against this strategy, MAX’s expected payoff by playing (l,R) is
only 1/5. On the other hand, the pure maxmin strategy (l, L) only has a payoff of 1/2
against ω−, and so does the mixed maxmin strategy (which is the uniform strategy),
hence neither is optimal when p∞ is close to 0.

It is clear from the example that the modified maxmin and optimal strategies depend
on p∞. We now show how to modify algorithms from the last sections to compute
them.

6.0.1 Mixed strategies

We first consider the mixed strategies of MAX. The LP algorithm from Koller and
Megiddo (1992) can compute the modified mixed maxmin value and an optimal strat-
egy of MAX, with a minor modification of the separation oracle. Concretely, given a
threshold v and a mixed strategy σ+ for MAX, the separation oracle should now, apart
from computing MAX’s payoff vBR with strategy σ+ under MIN’s best responses,
also compute MAX’s payoff against the OM vOM = u(σ+, ω−), then check whether
(1− p∞)vOM + p∞vBR ≥ v holds.

13

Example. In the game of Figure 1 with ω− as above, one can use this algorithm to
verify that MAX’s optimal strategy is (l,R) for p∞ ≤ 5/8, otherwise it is the uniform
strategy. This confirms that when nondeterministic behaviour happens with a small
enough probability, it is worth deviating from maxmin strategies in order to exploit the
OM.

6.0.2 Pure strategies

For pure strategies, we build on the algorithm for a single OM (Proposition 2). To
cope with non-locality (because of MIN’s partially unpredictable behaviour), we use
situational values which are sets of ordered pairs 〈s,~v〉, with s ∈ R and ~v ∈ Rt, where
t is the number of types of MIN. We call such a pair an annotated vector; it implicitly
represents a strategy for MAX for which the payoff against ω− is s, and the worst
payoff against unpredictable behaviour is given by ~v. We also maintain an NBS

−→
nbs(n)

for each node n, over MIN’s types, as in Section 5.

Proposition 6. For a CGII with root r, t types of MIN with common prior ~q, opponent
model ω−, and probability p∞ that MIN does not behave according to ω−, consider
the instantiation of Algorithm 1 where: situational values are finite sets of annotated
vectors; for all terminal nodes n, eval(n) :− {〈

−→
nbs(n) ·~u(n), ~u(n)〉}; MAX’s operator

is set union ∪; MIN’s operator is u′, where, for all situational values f and g, f u′ g
is defined to be

{〈s+ s′, (min(vi, v
′
i))1≤i≤t〉 | 〈s,~v〉 ∈ f, 〈s′, ~v ′〉 ∈ g}.

Then the modified pure maxmin value satisfies

v+ = max
〈s,~v〉∈val(r)

(
(1− p∞)s+ p∞(~q · ~v)

)
.

Notice that when combining two annotated vectors at a MIN’s node, the scalar part
is additive; this reflects the fact that when following the (single) OM, MIN has no
agency, just as in the case without uncertainty.

Example. Using the algorithm above for the game in Figure 1 with the aforementioned
OM ω−, we find that MAX’s optimal strategy is (l,R) for p∞ ≤ 5/7, otherwise (l, L)
or (r,R). Again, this shows that it may be worth deviating from maxmin strategies in
order to exploit an OM.

6.0.3 Reduction of situational values

The algorithm in Proposition 6 generalises the one in Proposition 1, which can be re-
garded as the case p∞ = 1. We have seen that, in the latter case, the only sound
reduction of situational values is the elimination of weakly dominated strategies. Inter-
estingly, when an OM is available, further reductions become sound.

Let n be a node, and 〈s,~v〉, 〈s′, ~v ′〉 ∈ val(n) be two annotated vectors. Discarding
〈s′, ~v ′〉 because of 〈s,~v〉 is sound if MAX is never worse-off in the whole game if they
choose 〈s,~v〉 instead of 〈s′, ~v ′〉 at n.

14

Since scalar parts are summed up, if s > s′ holds, then 〈s,~v〉 has an advantage
s− s′ over 〈s′, ~v ′〉 in terms of contribution to the final value at the root. Contrastingly,
for the vectorial part, components for which ~v is larger than ~v ′ might be erased by
the combination (via component-wise min) of vectors at an ancestor of n. In other
words, ~v’s advantage with respect to ~v ′ can be annihilated at the root. On the other
hand, the components for which ~v is smaller than ~v ′ may never get erased so that ~v’s
disadvantage with respect to ~v can survive intact at the root.

Hence, in the worst case, ~v ′ can keep all advantages it has compared to ~v, while ~v
can lose all its advantages. Hence, to safely discard 〈s′, ~v ′〉, the advantage of ~v ′ over ~v
must be no larger than the advantage of s over s′. More formally, we can safely discard
〈s′, ~v ′〉 when the following holds:

(1− p∞)(s− s′) ≥ p∞
∑

1≤i≤t

(
qi max(v′i − vi, 0)

)
, (3)

Notice that without the scalar part (e.g. when p∞ = 1), the pruning condition (3)
reduces to vi ≥ v′i for all i, which is exactly the pruning condition shown in Section 4.

7 Application to recursive opponent models
We now propose an application of the algorithms presented before to the computation
of optimal strategies with recursive opponent models. We formulate a quite general
setting, where various types of opponent models naturally arise.

7.0.1 Limitations of the best-defence model

In general, in a game with incomplete information, both players have incomplete infor-
mation, rather than just MAX. As a result, the best-defence model usually gives MIN
too much power.

Example. Consider the game in Figure 2, where MAX has 3 types and MIN has only
1 (hence MIN has incomplete information). If MAX reasons according to the best-
defence model, then both actions a and b have a value of 0: MAX of type i reasons
that MIN will play ai at node A, and bj at node B for some j 6= i. The culprit is that
under the best-defence model, MAX assumes MIN is aware of MAX’s type, therefore
can adapt their strategy to it. However, if MAX realises MIN is unaware of their type,
then MAX will prefer a since under uniform common prior over MAX’s types, a yields
an expected payoff of 2/3, compared to b’s 1/3.

On the other hand, computing maxmin strategies for the original game tree without
using the best-defence model is not ideal either, for these strategies fail to exploit any
assumption one may have about their adversary, such as that they have limited com-
putational power or reasoning depth, or that they have a predictable behaviour pattern.
Such assumptions make sense in particular when playing against humans (Iida et al.,
1993; Stahl and Wilson, 1995).

15

R
a b

A

(0 1 1)

a1

(1 0 1)

a2

(1 1 0)

a3

B

(1 0 0)

b1

(0 1 0)

b2

(0 0 1)

b3

Figure 2: A CGII with 3 possible types of MAX.

7.0.2 Proposed framework

The framework which we propose can be seen as a generalisation of the cognitive hier-
archy model (Camerer, Ho, and Chong, 2004) and at the same time as a counterpart of
interactive POMDPs (Doshi, Gmytrasiewicz, and Durfee, 2020) for competitive games.
The general idea is to define level-k strategies to be the optimal strategies against an
adversary of level k − 1, and recursively down to level-0 strategies. We however give
a general and parametrizable definition about (1) how level-0 strategies are defined,
(2) how optimal strategies at a given level are aggregated, and (3) how strategies of
various levels are aggregated. Moreover, using our results in Section 6, the framework
leaves the possibility for players to assign a non-zero probability to the event that their
opponent has an unknown strategy/level.

As a consequence, this framework serves as a compromise between the best-defence
model and the full game, and can be used to find better strategies against non-omnipotent
and non-omniscient players; in particular, it generalises the best-defence model. More-
over, this framework can be used to explain real-life human psychological gameplay in
games with incomplete information such as bridge, as we illustrate at the end of this
section.

For the formal definition, consider a two-player zero-sum game. Let Σ0
+, Σ0

− be
non-empty sets of strategies of MAX and MIN, respectively. Moreover, let ⊕ : 2Σ →
Σ be a function that maps any set of (pure or mixed) strategies to a single (pure or
mixed) strategy, and BR : Σ∗ → 2Σ be a function which maps any tuple of strategies
to a set of strategies; ⊕ will be used to aggregate strategies of a player at a given level,
and BR to compute the set of optimal strategies given a tuple of opponent models (one
per lower level).6 Finally, for a player i ∈ {+,−}, we write −i for another player.

Definition 7 (level-k strategies). Let Σ0
+, Σ0

−, ⊕, BR be defined as above, and let i ∈
{+,−}. The set of level-0 strategies for player i is defined to be Σ0

i . For k ≥ 1, the set
of level-k strategies for i, written as Σki , is defined to be BR

(
⊕(Σk−1

−i),⊕(Σk−2
−i), . . . ,⊕(Σ0

−i)
)
.

In short, the level-k strategies of player i are the best responses (computed by BR,
the best-response function) against an opponent using the strategy ⊕(Σk

′

−i) (computed
by⊕, the intra-level aggregation) at all levels k′ ≤ k. The boundary conditions, i.e. the
level-0 strategies, are given by Σ0

+ and Σ0
−, which can come from maxmin strategies

6The framework could be easily adapted to more general functions, e.g. an aggregation of the strategies
at the same level into a set or a tuple of strategies. It could also be easily adapted to general games, beyond
the two-player and zero-sum assumptions.

16

under the best-defence model, randomly chosen strategies (McMahan, Gordon, and
Blum, 2003), modelling assumptions for human players (Wright and Leyton-Brown,
2019), etc.

Example. The Poisson-CH model in Camerer, Ho, and Chong (2004) is captured by
choosing Σ0

+ and Σ0
− to be the set of all pure strategies of MAX and MIN, the intra-level

aggregation ⊕ to map any set of strategies to the uniform mixture of the set, and the
best-response function BR to map a tuple of strategies (σk−1

−i , . . . , σ
0
−i) to the set of all

pure best responses to the mixed strategy pk−1σ
k−1
−i + · · ·+p0σ

0
−i, where pk−1, . . . , p0

follow some Poisson distribution.

An interesting choice for the intra-level aggregation ⊕ : 2Σ → Σ is given by the
uniform mixture, as in the example above. Under this ⊕, many other situations can be
modelled by using different best-response functions BR for the inter-level aggregation.
For games with incomplete information, if a function BR computes the best responses
per type of player7, then such BR can be implemented by the algorithms presented in
the last sections. Some examples follow:

Probabilistic model If each player i at level k has a subjective probability over their
opponent’s reasoning levels in the form of a vector (pk−1

i,k , pk−2
i,k , . . . p0

i,k), then
we can define BR to compute, for each player i and level k, the best responses
against the mixture pk−1

i,k ⊕(Σk−1
−i) + · · · + p0

i,k⊕(Σ0
−i) (which can be imple-

mented by the algorithm in Proposition 3). This model amounts to assuming that
a player at level k reasons as if their opponent places themselves at a reasoning
level drawn from the above distribution; such a distribution can be obtained by
empirical studies, for instance by fitting a model against a population of possible
opponents in an open tournament.

Iterative model By setting pk−1
i,k = 1 for all i and k in the previous model, we can

model situations where each player at level k assumes their opponent reason at
exactly level k − 1, which corresponds to Proposition 2.

Lexicographic model BR can also be defined to compute the best responses against
the tuple of opponent models (⊕(Σk−1

−i), . . . ,⊕(Σ0
−i)) under the lexicographic

interpretation (which can be implemented by the algorithm in Proposition 4);
this amounts to consider the opponent to reason at level k − 1, and to tie-break
equivalent strategies by level k − 2, and so on.

Nondeterministic model With a BR similar to those in Proposition 5, we can model
situations where each player at level k assumes the opponent reason at a level
lower than k but without assuming a distribution over their levels. In such cases,
the incomplete information about the opponent’s types is transformed into the
one about their reasoning levels, which are in general much fewer.

Partially unknown opponent model if in addition to the probabilistic or the lexico-
graphic model above, we consider probabilities p∞i,k that the opponent of player
i at level k is not reasoning at any level lower than k, then we can use the ap-
proaches under uncertainty from Section 6.

7In other words, for each player, BR computes the best strategies for each type of this player.

17

Let us also emphasise that the straightforward generalisation of this framework to
general games allows, for instance, to take into account one’s partner’s incomplete
information in multiplayer games, akin to interactive POMDPs.

7.0.3 A real-life example

We now give an example application of our formalism, which captures the psycholog-
ical strategies of a contract bridge deal played in a bridge tournament. We present the
abstract version of the game on Figure 3 (left); for the bridge deal itself, see Karpin
(1977, p.266).

A

(1
1)

l h

B

(1
0)

f

(0
1)

nf

k MAX MIN 1 MIN 2
0 {nf} {l, h} {l, h}
1 {nf} {h} {l, h}
2 {f} {h} {l, h}
3 {f} {h} {h}

Figure 3: Recursive reasoning in a CGII with 2 types of MIN. For each k ≤ 3, the set of level-k
strategies (as defined in Definition 7) for MAX, MIN of type 1, and MIN of type 2 are given in
the table.

In this game, the common prior about MIN’s types is given by p1 = 0.4 and p2 =
0.6. For the recursive reasoning, ⊕ is given the uniform mixture, BR is given by the
lexicographic model, and the level-0 strategies for both players are their pure maxmin
strategies.

The first few levels of the recursive reasoning proceed as in Figure 3 (right). In the
following, we write σ1

−|σ2
− for MIN’s strategy if type-1 MIN plays σ1

− and type-2 MIN
plays σ2

−; and l+h
2 for the uniform mixed strategy 1

2 l +
1
2h.

k = 0: MAX prefers nf, which achieves a maxmin value of 0.6, against 0.4 for f; both
types of MIN are indifferent between l and h since both yield a minmax value of
1.

k = 1: Against (⊕(Σ0
−)) = (l+h

2 |
l+h
2), MAX’s best strategy is still nf; however,

against (⊕(Σ0
+)) = (nf), type-1 MIN prefers h which yields a value of 0.

k = 2: Against (⊕(Σ1
−),⊕(Σ0

−)), MAX now prefers f, which is strictly better than nf

against ⊕(Σ1
−) = h| l+h

2 since the NBS of MAX at node B judges MIN is more
likely to be of type 1 than of type 2 if MIN plays h| l+h

2 ;

k = 3: At level-3, type-1 MIN still prefers h: h and l are equivalent against ⊕(Σ2
+) =

f, but h is preferred against ⊕(Σ1
+) = nf; but now type-2 MIN also prefers h!

As it turns out, this recursive reasoning perfectly captures what happened during the
bridge deal, where MAX was at level 2 and therefore chose f (rather than the maxmin

18

strategy nf) while MIN, being of type 2, reasoned at level 3 and used strategy h to
defeat MAX.

Admittedly, in the game of Figure 3, MIN’s strategy h weakly dominates l, and
therefore MIN should never play l. However, this game is an extreme abstraction of
the real game, which has a huge number of strategies; it is not at all obvious that h is
weakly dominant. In addition, many other real-life examples of recursive reasoning,
which we cannot give here for space reasons, yield risky strategies, i.e. those that are
neither maxmin nor dominant and as a result could perform worse if the opponent’s
reasoning level is incorrectly estimated. Indeed, in our example, this is the case for
MAX’s level-2 strategy f: against MIN of level 1, it indeed performs better (0.7) than
the maxmin strategy nf (0.6), but against MIN of level 3 it performs worse (0.4).

8 Conclusion
We have proposed a number of ways to take into account opponent models in games
with incomplete information. For each type of opponent model, we have formally
defined the maxmin value and proposed an algorithm to compute it. We have also
considered the case where the opponent, with some probability, does not follow any
model, and the goal is to be robust against any possible adversarial strategy while
maximally exploiting the knowledge of opponent models.

As an application, we have proposed a general framework of recursive opponent
models. This parametrizable framework can model, by using appropriate intra-level
aggregations and best-response functions, a wide range of situations of recursive rea-
soning, including the possibility that an opponent does not follow any model. Illus-
trated by an example from the game of Bridge, we have shown how this framework
captures real-life strategic reasoning, and how our algorithms can be used for models
defined in the literature of economy (Camerer, Ho, and Chong, 2004, for instance).

Two main directions are worth pursuing for future work: To consider games rep-
resented compactly (e.g. by game rules) instead of explicitly by their game tree; and
to formally define our recursive framework in doxastic logic, which is similar to the
notion of rationalizability in epistemic game theory but allows false beliefs (about the
others’ level, for instance). For the latter direction, the intuition is that level-k strate-
gies can be seen as strategies optimal for an agent with a depth of knowledge of k in
the Kripke structure over the players’ types. For instance, assuming the players’ dis-
tributed knowledge of the actual combination of types, it can be shown that under this
definition, level-0 strategies are optimal strategies against the best-defence model.

References
Albrecht, S. V., and Stone, P. 2018. Autonomous agents modelling other agents: A

comprehensive survey and open problems. Artif. Intell. 258:66–95.

Bonanno, G. 2018. Game Theory. Kindle Direct Publishing.

19

Bošanský, B.; Kiekintveld, C.; Lisý, V.; and Pěchouček, M. 2014. An exact double-
oracle algorithm for zero-sum extensive-form games with imperfect information.
Journal of Artificial Intelligence Research 829–866.

Camerer, C. F.; Ho, T.-H.; and Chong, J.-K. 2004. A cognitive hierarchy model of
games. The Quarterly Journal of Economics 119(3):861–898.

de Weerd, H.; Verbrugge, R.; and Verheij, B. 2013. How much does it help to know
what she knows you know? an agent-based simulation study. Artificial Intelligence
199–200:67–92.

Doshi, P.; Gmytrasiewicz, P. J.; and Durfee, E. H. 2020. Recursively modeling other
agents for decision making: A research perspective. Artif. Intell. 279.

Frank, I., and Basin, D. A. 2001. A theoretical and empirical investigation of search in
imperfect information games. Theor. Comput. Sci. 252(1-2):217–256.

Ginsberg, M. L. 2001. GIB: imperfect information in a computationally challenging
game. J. Artif. Intell. Res. 14:303–358.

Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for sequential planning in
multi-agent settings. J. Artif. Intell. Res. 24:49–79.

Iida, H.; Uiterwijk, J. W. H. M.; van den Herik, H. J.; and Herschberg, I. S. 1993.
Potential applications of opponent-model search, part 1: The domain of applicability.
J. Int. Comput. Games Assoc. 16(4):201–208.

Iida, H.; Uiterwijk, J. W. H. M.; van den Herik, H. J.; and Herschberg, I. S. 1994.
Potential applications of opponent-model search, part 2: Risks and strategies. J. Int.
Comput. Games Assoc. 17(1):10–14.

Karpin, F. L. 1977. Psychological strategy in contract bridge: The techniques of
deception and harassment in bidding and play. Dover Publications.

Koller, D., and Megiddo, N. 1992. The complexity of two-person zero-sum games in
extensive form. Games and Economic Behavior 4(4):528–552.

Koller, D.; Megiddo, N.; and von Stengel, B. 1996. Efficient computation of equilibria
for extensive two-person games. Games and Economic Behavior 14(2):247–259.

Kuhn, H. W. 1953. 11. Extensive Games and the Problem of Information. Princeton:
Princeton University Press. 193–216.

Li, J.; Zanuttini, B.; Cazenave, T.; and Ventos, V. 2022. Generalisation of alpha-beta
search for AND-OR graphs with partially ordered values. In Raedt, L. D., ed., Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI 2022, Vienna, Austria, 23-29 July 2022, 4769–4775. ijcai.org.

Maschler, M.; Solan, E.; and Zamir, S. 2020. Game Theory. Cambridge University
Press, 2 edition.

20

McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Planning in the presence of
cost functions controlled by an adversary. In Fawcett, T., and Mishra, N., eds.,
Machine Learning, Proceedings of the Twentieth International Conference (ICML
2003), August 21-24, 2003, Washington, DC, USA, 536–543. AAAI Press.

Nashed, S. B., and Zilberstein, S. 2022. A survey of opponent modeling in adversarial
domains. J. Artif. Intell. Res. 73:277–327.

Perea, A. 2012. Epistemic Game Theory: Reasoning and Choice. Cambridge Univer-
sity Press.

Stahl, D. O., and Wilson, P. W. 1995. On players’ models of other players: Theory and
experimental evidence. Games and Economic Behavior 10(1):218–254.

van Damme, E. 1991. Stability and Perfection of Nash Equilibria. Springer Berlin
Heidelberg.

von Stengel, B. 1996. Efficient computation of behavior strategies. Games and Eco-
nomic Behavior 14(2):220–246.

Wright, J. R., and Leyton-Brown, K. 2019. Level-0 models for predicting human
behavior in games. J. Artif. Intell. Res. 64:357–383.

A Proofs
For the following proofs, we need some additional notations. Let ς+ and ς− be a
arbitrary (pure/mixed/behaviour) strategy of MAX and MIN, respectively. We denote
by u(n, ς+, ς−, i) the expected value of the leaves reached by ς+ and ς− if the game
starts at n, MAX and MIN respectively plays the strategies ς+ and ς−, and MIN’s type
is i. In addition, we write

~u(n, ς+, ς−) :−
(
u(n, ς+, ς−, 1), . . . , u(n, ς+, ς−, t)

)
,

where t is the number of MIN’s types. In particular,

u(ς+, ς−) = ~q · ~u(r, ς+, ς−),

where r is the root and ~q is the common prior on MIN’s types.

Proposition 2. For a CGII with root r and a single opponent model ω−, consider the
instantiation of Algorithm 1 where: V = R; for all terminal nodes n, eval(n) :−
−→
nbs(n) · ~u(n); MAX’s operator is max; MIN’s operator is +. Then it holds that v+ =
val(r), and the algorithm is polynomial-time.

Proof. First, recall that

v+ :− max
s+∈ΣP

+

u(s+, ω−) = max
σ+∈ΣM

+

u(σ+, ω−),

21

where the last equality is due to th linearity of u. Therefore, we only consider pure
strategies in the following.

We first observe that by the construction of the NBS, for all nodes n in the game
tree and all types i for MIN, the i-th component of

−→
nbs(n) is the probability that n

is reached if MIN’s type is i, given that MAX plays their unique sequence of moves
leading to n and MIN plays according to the OM ω−. In particular,

−→
nbs(r) = ~q, where

~q is the common prior over MIN’s types.
In the following, we will establish by induction on the game tree that for all nodes

n, its situational value val(n) satisfies

val(n) = max
s+∈ΣP

+

−→
nbs(n) · ~u(n, s+, ω−). (4)

First, consider a leaf n. Then

val(n) = eval(n) =
−→
nbs(n) · ~u(n).

Since n is a leaf, by definition of ~u(n, s+, ω−), it trivially holds that ~u(n, s+, ω−) =
~u(n) for all s+ ∈ ΣP

+. Hence, (4) holds for n.
Now consider an internal node n. Let C(n) be the set of n’s children, which

is not empty since n is not a leaf. If n is MAX’s decision node, then val(n) =
maxn′∈C(n) val(n

′). By the induction hypothesis,

val(n) = max
n′∈C(n)

max
s+∈ΣP

+

−→
nbs(n′) · ~u(n′, s+, ω−),

from which we deduce that (4) holds for n since
−→
nbs(n′) =

−→
nbs(n) for n′ ∈ C(n), and

max
s+∈ΣP

+

~u(n, s+, ω−) = max
n′∈C(n)

max
s+∈ΣP

+

~u(n′, s+, ω−).

If n is MIN’s decision node, then we have val(n) =
∑
n′∈C(n) v(n′). By the

induction hypothesis,

val(n) =
∑

n′∈C(n)

max
s+∈ΣP

+

−→
nbs(n′) · ~u(n′, s+, ω−).

Now since the n′s are different nodes in the game tree, MAX can apply any combina-
tion of strategies in the subtree rooted at these nodes. Hence, the sum over n′ can be
exchanged with the maximum, which yields

val(n) = max
s+∈ΣP

+

∑
n′∈C(n)

−→
nbs(n′) · ~u(n′, s+, ω−).

Finally, by definition of u and
−→
nbs,∑

n′∈C(n)

−→
nbs(n′) · ~u(n′, s+, ω−) =

−→
nbs(n) · ~u(n, s+, ω−),

22

since n is MIN’s node, and MIN chooses n′ according to the strategy ω−. Therefore,
(4) holds for n, which concludes the induction.

Applying (4) to the root, we have

val(r) = max
s+∈ΣP

+

−→
nbs(r) · ~u(r, s+, ω−) = max

s+∈ΣP
+

u(s+, ω−),

since
−→
nbs(r) = ~q and u(s+, ω−) = ~q · ~u(r, s+, ω−). Therefore, the situational value of

the root is the maxmin value.

23

	Introduction
	Related work
	Background
	Games with incomplete information
	Best-defence model

	Maxmin values without opponent models
	A generic minimax algorithm
	Pure maxmin
	Reduction of situational values
	Mixed maxmin

	Opponent-model search
	Single OM
	Probabilistic OMs
	Lexicographic OMs
	Nondeterministic OMs

	Opponent models with uncertainty
	Mixed strategies
	Pure strategies
	Reduction of situational values

	Application to recursive opponent models
	Limitations of the best-defence model
	Proposed framework
	A real-life example

	Conclusion
	Proofs

