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Abstract. This work is subjected to the development of a method to identify the elasticity tensor of homo-
geneous and heterogeneous materials. The materials are created in the form of checkerboards. We solved the
direct problem to obtain the strain field using the finite element method, after obtaining this strain field, we
created synthetic experimental displacement data by simulation. A re-calibration of the created experimental
and simulated data is done based on the principle of the finite element model updating (FEMU), used in
almost all domains, in the inverse problem. The minimization of the cost function obtained by FEMU is done
by Levenberg–Marquardt algorithm which is very fast and elegant algorithm. A complete study has been done
by studying the sensitivity of the identified values with respect to the refinement of the mesh and with respect
to the level of disturbance.
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1 Introduction

Today we are concerned with the performance of com-
posite materials and the determination of their elasticity
properties which are the coefficients of the elasticity ten-
sor. From a mechanical point of view, industrialists in the
manufacture of machines such as automobiles, airplanes,
helicopters and in the manufacture of prostheses, implants
in the field of medicine are concerned with improving of
the rigidity of materials. The improvement of the stiff-
ness of a material cannot be done without its mechanical
characterization. Indeed each material is governed by con-
stitutive material parameters that compose the elastic
constitutive law. Determining the coefficients of the elas-
tic constitutive law of a material has been made possible
by the methods of non-contact field measurements such
as Digital Image Correlation (DIC) [1,2] which is the one
most used in an inverse process to identify constitutive
material parameters.

The principal identification methods known today are:
the virtual fields method developed by Grédiac et al. [3]
or the equilibrium equation gap method by Claire et al.
[4], the constitutive equation gap method by Ladevèze et

* e-mail: arnaud.germaneau@univ-poitiers.fr

al. [5], the finite element model updating by Kavanagh
et al. [6] and the reciprocity gap method by Ikehata [7].
An overview of these methods and their principles have
been done by Avril et al. [8]. In [9] the authors make the
link between all the methods and compare them to one
another.

These methods were most often used in cases of global
identification. This type of identification considers that
the material is homogeneous which means here that the
specimen is made of the same material. With this in
mind, Leclerc et al. [10] have used the Finite Element
Model Updating (FEMU) which have been integrated to
a DIC to identify parameters of a material in a cruci-
fix form. The advantage of this integration was to reduce
the effects of the noise. Pottier et al. [11] modified the
method and then used it to identify thermoplastic prop-
erties of a material. Maček et al. [12] recently used the
FEMU considering different geometries and concluded on
which test is appropriate to identify a specific property
of an orthotropic material. The rest of the methods has
been also widely used in the same assumption [13–15]. But
in this last decade, researchers have been interested in a
local identification. For this consideration the material is
considered as being heterogeneous or made of at least
two materials, which makes even more account composite
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materials. It is in this perspective Florentin et al. [16]
made an identification on a domain considered to be
filled with heterogeneous and isotropic fields. The spec-
imen used was a planar specimen of size 10mm × 10mm
consisting of 10× 10 subdomains in one hand and 20× 20
subdomains in other hand. The identification was done by
the constitutive equation gap method (CEGM). A com-
parison was made with the equilibrium gap method. The
relative errors obtained were good and the authors con-
cluded that the CEGM is better than the equilibrium gap
method. The sampling of a cruciform specimen was sam-
pled by zones of orthotropic material and The equilibrium
gap method was used for identification per orthotropic
element [17]. A modification of the virtual fields method
by Fourier series has been applied to the case of local
identification while providing solutions to the unknown
boundary conditions problem [18]. The identification of
the first Lamé parameter was done locally in 2D and 3D
by Guchhait et al. [19]. Madani et al. [20] used the CEGM
to make a local identification and studied the sensitivity of
the identified parameters with respect to the initial input
values. The speed of convergence was not affected too
much. The sensitivity of the identified values with respect
to the refinement of the mesh was also studied; the errors
decrease considerably but, as expected, the computation
time becomes longer and longer. Finally, the authors have
studied the sensitivity of the parameters to measurement
noise. They concluded, as other authors, that the accura-
cies become worse as the level of disturbance increases.The
FEMU method which is based on the comparison of the
experimental and calculated data has been used by Fran-
quet et al. [21] to identify the mechanical properties of an
atherosclerotic plaque which is an heterogeneous domain.
The authors of [22,23] proposed two types of objective
functions, one geometric and the other based on kine-
matic data. Applied to the identification of heterogeneous
material parameters, the geometric cost function is less
sensitive to measurement errors. Gras et al. [24] identi-
fied the properties of heterogeneous materials and studied
the effect of the noise on the identified parameters and to
reduce the errors, they have used a regularization method.
In 2019, this approach has been used by Pétureau et al.
[25] to identify the local parameters of an isotropic het-
erogeneous material behavior law. Two cost functions have
been formulated, one based on experimental and numeri-
cal displacements and the other one based on strain fields.
The authors concluded that the one based on the strain
fields gives better results than the other one. A genetic
algorithm was used to identify a large number of param-
eters with good accuracy. Volume identification of elastic
parameters has been performed by the same authors with
the same methods and considerations [26]. Ogierman et
al. [27] used the finite element model updating method
for identification on a two-phase composite material. Each
phase is characterized by an isotropic and homogeneous
material. The sensitivity of the identified parameters to
the refinement of the mesh was studied and they conclude
that the errors decrease when the mesh becomes finer.

The objective of this work is to develop a method
to identify linear elasticity parameters of heterogeneous
materials. The identification method which will be used

is the Finite Element Model Updating (FEMU), because
of the fact that we can use it in almost all the domains
[28]. We have taken up the main steps of this approach
such as the formulation of the objective function and its
minimisation. For this we use the Levenberg–Marquardt
minimization algorithm which is a very fast [29] gradient
based algorithm. The identification analysis is conducted
based on a comparison of the identified parameters sta-
bility with respect to the choice of the initial parameter
set, to the refinement of the mesh and on the robustness
of the algorithm to handle experimental noisy data on
heterogeneous materials.

2 Direct problem

The physical problem consists here to solve the linear
elastic problem in the case of isotropic heterogeneous
material. We consider a domain Ω ⊂ R2 and assume that
Ω is bounded by a piecewise smooth boundary ∂Ω such
that ∂Ω = ∂TΩ ∪ ∂uΩ and ∂TΩ ∩ ∂uΩ = ∅ (Fig. 1). We
impose a load T on the boundary ∂TΩ and displacements
u0 on the boundary ∂uΩ.

Since the volumetric forces are assumed to be zero, the
equilibrium equations are given by{

div (σ (M)) = 0

σ (M) .n (M) = T

in Ω

on ∂TΩ
(1)

where σ (M) denotes the Cauchy stress tensor and n (M)
the outward unit normal vector at a point M ∈ ∂TΩ.

The strain tensor ε (M) is related to the displacement
gradient tensor ∇u by the kinematic relations:{

ε (M) = 1
2 (∇u (M) + ∇tu (M))

u (M) = u0

in Ω

on ∂uΩ

(2)
The Cauchy stress tensor σ (M) is related to the strain

tensor ε (M) through the constitutive law, namely:

σ (M) = C : ε (M) in Ω (3)

The components of C, can, either be constant (homo-
geneous material), or depend on the points of the space
(heterogeneous material). For isotropic and homogeneous
materials, the constitutive law in the hypothesis of plane
stress becomes:

σ =
E

1 + ν

(
ε+

ν

1− νTr (ε) I

)
(4)

where E and ν are respectively Young’s modulus and the
Poisson’s ratio and they are the parameters that we are
going to identify. Tr (ε) is the trace of ε and I is the
identity tensor.

A direct mechanics problem is a classical problem for
which the domain Ω governed by the Cauchy stress tensor
C and subjected to the stress T, allows us to determine the
unknown u knowing the Dirichlet boundary conditions.
The determination of the unknowns u is possible by solv-
ing the equations (1), (2) and (3) using a numerical finite
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Fig. 1. Definition of the domain and the boundary conditions.

element method [30] in our case, whith Q4 elements and
implemented in FEniCs [31,32] which is an open-source
project for solving partial differential equations (PDEs)
with the Finite Element Method (FEM) under python.
This choice has been made because it is suitable for the use
of the finite element method to solve partial differential
equations.

3 Inverse problem

3.1 Finite element model updating (FEMU)

After obtaining the solution of the direct problem, we
generate the synthetic displacement fields which takes the
place of an experimental field uexp. The finite element
model updating method consists in comparing the simu-
lated displacements with the experimental displacements.
To do this, we formulate a 2D cost function F (x) as shown
in relation (5).

F (x) =
1

2

m∑
i=1

∥∥∥∥uFE
i (x)− uexp

i

max (|uexp|)

∥∥∥∥2 (5)

where m is the number of measurement points, uFE
i∈{1,··· ,m}

are the simulated displacements obtained by the finite ele-
ment model and uexp

i are the experimental displacements
by a DIC method. Since the measurement points do not
necessarily correspond to the mesh nodes, the interpola-
tion is performed in the element where the measurement
is located and compared to the experimental value. x
represents the vector of parameters or properties of the
specimen considered. The minimization of the functional
F (x) by a well chosen algorithm allows to obtain the
unknowns x of the problem. The minimization problem is
expressed as in (6).

x∗ = argminx {F (x)} (6)

The flowchart of the FEMU method is shown in the
Figure 2. In this work we have chosen an isotropic
and heterogeneous model. For this, the unknown x will
therefore be expressed as x = [E1, ν1, E2, ν2] with Ek,
νk the Young’s modulus and the Poisson’s ratio of the

two homogeneous materials which will constituted the
heterogeneous material with k = 1, 2.

3.2 Minimization algorithm using
Levenberg–Marquardt algorithm

The cost function of the equation (5) can be written in a
quadratic way as shown by (7):

F (x) =
1

2

m∑
i=1

‖ri (x)‖2 =
1

2
‖r (x)‖2 =

1

2
rt (x) r (x) (7)

m represents the measurement points and r (x) is the
vector of the differences between the simulated and the
experimental displacements vector.

J ∈ Rm×n is the Jacobean matrix and n is the num-
ber of unknown parameters, a matrix that contains the
derivatives of the function r (x).

(J (x))ij =
∂ri
∂xj

(x) , j ∈ {1, 2, 3, 4} (8)

The gradient of F (x) is

∂F
∂xj

(x) =

m∑
i=1

ri (x)
∂ri
∂xj

(x) (9)

The equation (9) can also be written as

F ′ (x) = Jt (x) r (x) (10)

Levenberg (1944) and later Marquardt (1963) [33–36]
have used an approximation of Gauss-Newton algorithm
by using a Lagrange multiplier because the Gauss-Newton
algorithm poses the problem of conditioning the matrix
JtJ. The Levenberg–Marquardt step hlm is defined by:(

JtJ + ζI
)

hlm = −g with g = Jtr and ζ ≥ 0 (11)

Here J = J (x), r = r (x), and ζ is the Lagrange mul-
tiplier. The way we will choose the values of ζ and the
stopping criterion is detailed in [37].

3.3 Sensitivity analysis

In the process of minimizing the objective function, equa-
tion (5), we need to calculate the sensitivity matrix J.
For this, we will use the finite difference method to eval-
uate each coefficient of this matrix. We will use the finite
difference scheme called forward which is expressed as
follow:

Jij =
∂ri
∂xj

(x) =
ri (x + ∆xj)− ri (x)

∆xj
+O (xj) (12)

∆xj is a disturbance of the parameter xj and is well
explained by the works of Lauwagie [38] and is expressed
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Fig. 2. Flowchart of the FEMU principle where an experimental Displacement measurement Method (DMM) and numerical (FE)
values are compared.

Fig. 3. Problem modeling.

by the equation (13).

∆xj = δjxj (13)

According to the same author the stable interval where
we can choose δj is

[
10−5, 10−2

]
. In our work all the values

of δj in this interval have given good results but δj = 10−5

was the best.

4 Design study

Geometry

The specimen used for the different studies considered is a
square specimen with checkerboards (Fig. 3). L = 20 mm
is the size of the square and l = 5 mm is the size of a
checkerboard. p1 is the couple of parameters of the first
material in gray color and p2 is the couple of parameters of
the second material in white color. Ek and νk with k = 1, 2

Table 1. Elasticity properties of titanium and silicon
carbide.

Material properties (reference parameters)
Titanium (Ti) Silicon carbide (SiC)

p1 p2

E1

(
×1012 N/m2

)
ν1 E2

(
×1012 N/m2

)
ν2

0.114 0.34 0.450 0.19

are respectively Young’s modulus and Poisson’s ratio and
are constant in each checkerboard. On the top face of the
specimen y = L, we have imposed a traction force T =
5 × 106 N/m. On the bottom face y = 0 a displacement
u0 = 0 has been imposed. The other sides are free of any
load. The specimen thus constituted will be divided into
quadrilateral (Q4) finite elements.

Table of parameters

Our study will focus on the study of the titanium
(material made with checkerboards which have the same
properties) to validate our algorithm and the heteroge-
neous material made of the titanium matrix and silicon
carbide fibers (Tab. 1). We have chosen this heterogeneous
material because it is used as an innovative material that
has a great potential to increase the performance of gas
turbine engines in aircraft [39]. We also have a reduction
in weight by using this composite material [40].

Since we will use the exact properties mentioned in
Table 1 to obtain synthetic data, we can calculate the
identification errors using the following formulas:

e−i(Ei) =
Ei−est − Ei−imp

Ei−imp

η−i (νi) =
νi−est − νi−imp

νi−imp
, i = 1, 2 (14)
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Where Ei−imp and νi−imp are the imposed or reference
values that are in Table 1 and Ei−est and νi−est are the
identified values on Young’s modulus and Poison’s ratio.
e−i and η−i are the relative errors.

The different statistics of e−i and η−i can be obtained
using Monte Carlo simulations. Generating a sufficient
number of draws (denoted NMC) of identified parameters
using corrupted data, we can calculate the mean values of
the identification relative errors:

e−i =
1

NMC

NMC∑
j=1

e−i

(
Ej

i

)
η−i =

1

NMC

NMC∑
j=1

η−i

(
νji

)
(15)

We can then define the standard deviation of the
identification relative errors:

σ−Ei =

√√√√ 1

NMC

NMC∑
j=1

(
e−i

(
Ej

i

)
− e−i

)2

σ−νi =

√√√√ 1

NMC

NMC∑
j=1

(
η−i

(
νji

)
− η−i

)2
(16)

Noise modeling

To obtain synthetic experimental data closed to the real
ones, we have chosen to corrupt our data obtained from
the direct problem by adding a centered white Gaussian
noise. Indeed the main sources of errors in DIC mea-
surements are due to the camera noise and the matching
errors during the correlation process. This latter can be
expressed by a random error due to the speckle pattern
properties (density, gradient, size of speckle), the algo-
rithm, the subset size and the gray-level interpolation used
for the DIC minimization process [41,42]. The uncertainty
distribution has a null average and Gaussian profile, thus
for a standard deviation σ of a white Gaussian noise the
perturbations are modeled by equation (17).

b =
σ

|U |max

× 100 (17)

with b (%) the percentage of noise, σ the standard devi-
ation and |U |max the maximum displacement in absolute
value.

Refinement problem

The sensitivity to the mesh refinement of the parameters
which are going to be identified will be studied. For this
we have generated a large mesh much more refined so
that the nodes of the meshes in the direct problem are
not necessarily in the same place as in the mesh when
solving the inverse problem. We have then obtained other
meshes with Nx and Ny divisions in the two directions of
the space. In doing so, we take into account the errors due
to the discretization.

5 Identification results

5.1 Sensitivity of the procedure to initial values

The iterative Levenberg–Marquardt algorithm requires
initial values to start the process. For this initiative, we
have chosen 7 sets of initial parameters (see Tab. 2), while
considering that the material is heterogeneous. For each
case the properties of the material are identified and the
results are shown in Figure 4. This figure shows that for
each set, all values converge to an optimal solution min-
imizing the functional defined above. This is reflected by
the fact that the objective function is separately convex
and always positive. We also notice that the more the ini-
tial values are far from the reference values, the greater
the number of iterations.

5.2 Sensitivity of the identified parameters to the
mesh refinement

In this subsection, we study the sensitivity of the identi-
fied parameters to the mesh refinement. The number of
elements in each case of mesh used here is in Table 3 and
the noise level which we use is 1% and NMC = 50 which is
the total number of draws. Then we represented the stan-
dard relative errors due to each parameter as a function
of the number of divisions. Figure 5 shows that as the
number of divisions increases, the standard deviations of
the relative errors decrease.

We lose in precision by passing from the homogeneous
material to the heterogeneous one but the parameters are
well identified for both homogeneous and heterogeneous
material. We remark that when the space step is equal
to 0.3 mm (Tab. 3) the relative errors are very small for
the two materials. This means that all the parameters are
well estimated and the direct problem has then been well
achieved. The standard deviations of relative errors on
Poisson’s ratios are greater than those of Young’s moduli
and to emphasize this we have calculated the coefficients
of variation Cv (Tab. 4) of each parameter identified. This
reflects the reality compared to what have been found in
the literature by Pierron et al. [43]. We observe these large
coefficients of variation Cv on Poisson’s ratios because
they influence the real field less than the Young’s moduli.
Furthermore we assumed to have a homogeneous titanium
material organized in a checkerboards so the Young’s mod-
uli are the same as for the Poisson’s Ratios but after the
identification we can remark that there are some errors of
estimation as we can see it in Figure 5a. This is due to the
errors on the synthetic experimental data and the effect of
discontinuities which are here supposed to be negligible.

5.3 Sensitivity of the identified parameters to the
noise level

After having studied the sensitivity of the parameters to
the refinement of the mesh, we have chosen the case where
the number of divisions is Nx = Ny = 64 and NMC = 50
as in the previous paragraph to study the sensitivity of
the parameters to the noise level. This choice has been
done because we have obtained good accuracies with this
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Table 2. Table of different initial values.

Parameters Set1 Set2 Set3 Set4 Set5 Set6 Set7
E1 (×1012 Pa) 0.5 0.4 0.3 0.1 0.01 10−7 0.001
ν1 0.11 0.2 0.1 0.1 0.03 0.001 0.001
E2 (×1012 Pa) 0.33 0.11 0.24 0.1 0.005 10−9 0.001
ν2 0.46 0.3 0.2 0.1 0.0012 10−12 0.001

(a) E1 (×1012 Pa) sensitivity (b) ν1 sensitivity

(c) E2 (×1012 Pa) sensitivity (d) ν2 sensitivity

Fig. 4. Sensitivity of E1, ν1, E2 and ν2 to initial values with Nx = Ny = 64 and b = 1% for seven sets of initial parameters.

Table 3. Refinement table.

Number of divisions Nx = Ny 4 8 16 32 64

Number of nodes 25 81 289 1089 4225
Number of elements in a checkerboard 1 4 16 64 256
Number of elements in the specimen 16 64 256 1024 4096
Space step of the mesh (mm) 5 2.5 1.25 0.625 0.3125

(a) Homogeneous titanium material (b) Heterogeneous composite material made of tita-
nium and silicon carbide

Fig. 5. Sensitivity to the refinement of the mesh (Noise level b = 1%) for Nx = Ny from 4 to 64.
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Table 4. Table of estimated values of the heterogeneous material for 1% noise and for a number of divisions Nx =
Ny = 64.

E1 (×1012 Pa) ν1 E2 (×1012 Pa) ν2

Mean values (Mv) 0.4396 0.1847 0.1123 0.3332
Standard deviations (Sd) 0.0734 0.0389 0.0119 0.0477
Coefficients of variation (Cv = Sd

Mv
) (%) 16.70 21.04 10.61 14.30

(a) Homogeneous titanium material (b) Heterogeneous composite material made of
titanium and silicon carbide

Fig. 6. Sensitivity to the noise levels (b from 0% to 5%) for Nx = Ny = 64 .

refinement of the mesh. Thus we have studied the rela-
tive errors as a function of noise level. As the noise level
increases, the standard deviations of the relative errors
increase (Fig. 6). Analyzing the figure we remark that all
the parameters, both in the homogeneous and the hetero-
geneous materials, are well identified. The parameters are
almost insensitive to noise in the case of the homogeneous
material as the Figure 6a shows it. The Young’s moduli
remain the same at this level of noise but the Poisson’s
ratios are slightly different when b = 5%. We can then say
that a homogeneous material in this configuration can be
a source of errors in an identification process. Considering
the heterogeneous materials the large standard deviations
are observed on the Poisson ratios because of what we
earlier said in the previous paragraph.

5.4 Reconstruction of the displacement fields

The reference displacements are the displacements calcu-
lated using the reference parameters or properties of the
materials which are prescribed in Table 1. Those displace-
ments are here noted Ux and Uy respectively along each
axis.

The reconstructed displacements are calculated using
the identified properties of the materials with 3% noise
level and NMC = 1 using the identification procedure
as explained in the previous paragraphs. Those displace-
ments are noted Ux−Rec and Uy−Rec respectively along
each axis of the space. We represent them as maps as we
can see it in the Figures 7 and 8. The Figures 7a and 7b are
for the material made of the same checkerboards (homoge-
neous material) with the titanium properties. Figures 8a
and 8b are the heterogeneous material.

Our objective in this paragraph is to analyze the
identified parameters comparing the reference and the
reconstructed displacements. Therefore we have calculated

(a) (b)

(c) (d)

Fig. 7. Reconstructed displacements (a)Ux−Rec, (b)Uy−Rec
for a number of divisions Nx = Ny = 64 for parameters identi-
fied at b = 3% noise level and differences between reconstructed
and reference (free of noise) displacements (c)(Ux−Rec− Ux),
(d)(Uy−Rec− Uy) for the titanium material.

the differences between the reconstructed and the ref-
erence displacements fields. We note them Ux−Rec −
Ux and Uy−Rec − Uy respectively along the x and y
axis. Figures 7c and 7d are for the homogeneous mate-
rial displacements and Figures 8c and 8d are for the
heterogeneous material displacements.
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(a) (b)

(c) (d)

Fig. 8. Reconstructed displacements (a)Ux−Rec, (b)Uy−Rec
for a number of divisions Nx = Ny = 64 for parameters identi-
fied at b = 3% noise level and differences between reconstructed
and reference (free of noise) displacements (c)(Ux−Rec− Ux),
(d)(Uy−Rec− Uy) for the composite made of the Ti and the
SiC materials.

The analysis of the Figures 7c, 7d, 8c and 8d shows that
the differences are very small compared to the reference
and the reconstructed displacements values. We therefore
conclude that the reference and the reconstructed dis-
placements values are very closed and that the parameters
are well identified. The non zero differences in the case of
the homogeneous (Figs. 7c and 7d) material are due to the
fact that the identified and reference parameters are not
exactly the same. There are some identification errors due
to the errors on the experimental data. Even if the tita-
nium material is homogeneous, it has been geometrically
organized in checkerboards in the direct problem in this
work. Because of this geometrical organization, we have
not exactly the same periodic pair of parameters (E, ν)
in each checkerboard after the identification. In the case
of the heterogeneous material the discrepancies (Figs. 8c
and 8d) are due to the causes that we have mentioned in
the case of the homogeneous material.

The analysis of the reference and the reconstructed
displacements has permitted us to show that the param-
eters are well identified in the two cases of materials
(homogeneous and heterogeneous).

6 Conclusion and perspectives

6.1 Conclusion

In this work, we have focused our studies on the identifica-
tion of the mechanical properties of two types of specimens

using a classical FEMU procedure: homogeneous material
made of titanium and heterogeneous material made of
two different homogeneous materials. The specimens were
meshed by four-node quadrilateral elements and identi-
fication of the properties of those specimens has been
carried. The sensitivity of the identified parameters to the
number of divisions, to the choice of the initial parameter
set and to the noise levels has been studied. As the number
of divisions increases, the standard deviations of the rela-
tive errors decrease and as the noise level of the synthetic
experimental data increases, these standard deviations
increase. Considering the two types of material the param-
eters were well identified. We can also conclude that the
algorithm is robust. A reconstruction of the displacement
fields has been done after we have identified the param-
eters and we calculated the gaps between the reference
and the obtained displacements. These gaps were very
small compared to the reference and the reconstructed
displacements values. This permits us to conclude that
the identification process has been very well achieved.

6.2 Perspectives

The present study has been performed numerically, there-
fore our future studies will focus on experimental work,
but the geometrical configuration will be a titanium
matrix with circular inclusions to be more representative
of the reality and 3D studies using Digital Volume Corre-
lation (DVC) will be carried. In this work we have used
the Levenberg–Marquardt algorithm which is a gradient-
based algorithm limited by the number of parameters to
be identified, however it is very efficient to identify param-
eters with good precisions and it converges very quickly
compared to gradient-free algorithms [44]. To identify a
lot of parameters of a material which properties are spa-
tially distributed per node or element using finite element
method, we have to use other algorithms. So we are plan-
ning to use a deep learning approach for identification on
heterogeneous materials properties in the future.
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Fazzini, et al., Assessment of digital image correlation



10 E.-O. Ayeleh et al.: Mechanics & Industry 24, 17 (2023)

measurement errors: methodology and results, Exp. Mech.
49, 353–370 (2009)

[42] M. Bornert, P. Doumalin, J.-C. Dupré, C. Poilâne, L.
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