

Si-Tethered Bis- and Tris-Malonates for the Regioselective Preparation of Fullerene Multi-Adducts

Franck Schillinger, Uwe Hahn, Sebastiano Guerra, Thi Minh Nguyet Trinh, David Sigwalt, Michel Holler, Iwona Nierengarten, Jean-François Nierengarten

▶ To cite this version:

Franck Schillinger, Uwe Hahn, Sebastiano Guerra, Thi Minh Nguyet Trinh, David Sigwalt, et al.. Si-Tethered Bis- and Tris-Malonates for the Regioselective Preparation of Fullerene Multi-Adducts. Helvetica Chimica Acta, 2023, 10.1002/hlca.202300026. hal-04100615

HAL Id: hal-04100615 https://hal.science/hal-04100615

Submitted on 17 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **RESEARCH ARTICLE**

Very Important Paper

Si-Tethered Bis- and Tris-Malonates for the Regioselective Preparation of Fullerene Multi-Adducts

Franck Schillinger,^a Uwe Hahn,^a Sebastiano Guerra,^a Thi Minh Nguyet Trinh,^a David Sigwalt,^a Michel Holler,^a Iwona Nierengarten,^a and Jean-François Nierengarten*^a

^a Laboratoire de Chimie des Matériaux Moléculaires, Université de Strasbourg et CNRS (UMR 7042, LIMA), École Européenne de Chimie, Polymères et Matériaux, 25 rue Becquerel, FR-67087 Strasbourg Cedex 2, France, e-mail: nierengarten@unistra.fr

Dedicated to Prof. *Robert Deschenaux* on the occasion of his retirement and in recognition for his outstanding contributions in the design of liquid crystalline materials.

© 2023 The Authors. Helvetica Chimica Acta published by Wiley-VHCA AG. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Bis- and tris-malonates constructed around a silicon atom have been prepared by reaction of malonate derivatives bearing an alcohol function with di-*tert*-butylsilyl bis(trifluoromethanesulfonate) and *tert*-butyl(trichloro)silane, respectively. These compounds have been used for the regioselective bis- and tris-functionalization of C_{60} under *Bingel* conditions. By changing the nature of the linker between the central Si atom and the reactive malonate groups, the malonate precursors have been optimized to produce specific bis-and tris-adducts with excellent regioselectivity. A complete understanding of the electronic and stereochemical factors governing the regioselectivity has been obtained by combining computational studies with a complete analysis of the by-products formed during the reactions of the Si-tethered tris-malonates with C_{60} . Finally, desilylation reactions of the resulting fullerene bis- and tris-adducts have been carried out to generate the corresponding acyclic fullerene bis- and tris-adducts bearing alcohol functions.

Keywords: Bingel reaction, cyclopropanation, fullerenes, regioselectivity, trialkoxysilane.

Introduction

Fullerene chemistry has generated unique stereochemical problems related to the large number of possible isomers obtained when several addends are grafted onto the carbon sphere.^[1-5] The first powerful approach for the regioselective preparation of fullerene multiple adducts has been reported by *Diederich* and relies on macrocyclization reactions.^[6-8] Specifically, a linker between the first addend and the reactive unit acts as a directing tether and the addition reaction takes place onto a specific double bond of the fullerene mono-adduct. Following this first example, the same group has developed direct macrocyclization reactions between bis-malonate reagents

and C_{60} for the preparation of well-defined fullerene bis-adducts.^[9] This powerful principle has been extensively used for the preparation of a wide range of regioisomerically pure fullerene bis-adducts.^[10-23] The synthesis of C_{60} higher adducts is a more challenging task given the high number of possible isomers. For instance, the number of theoretically possible regioisomers raises from 9 for C_{60} bis-adducts to 46 for tris-adducts.^[24] A few examples of direct regioselective synthesis of fullerene tris-adducts have been reported so far.^{[25-35]1} They are either based on the cyclization of tripodal or macrocyclic tris-malonate derivatives onto the C_{60} core. In recent year, macrocyclic fullerene

Supporting information for this article is available on the WWW under https://doi.org/10.1002/hlca.202300026

¹Some of the structures reported in Reference [25] have been revised, see Reference [26].

receptors have been used to hide some reactive positions of an encapsulated fullerene host and thus direct its multi-functionalization in a regioselective manner.^[36-43] While very elegant, this methodology is still in its infancy and not easily applicable for the large-scale preparation of fullerene multi-adduct building blocks.

As part of this research, our group has shown that macrocyclic di-tert-butylsilylene-tethered bis- and trismalonates are attractive building blocks for the regioselective functionalization of C₆₀ in multiple Bingel cyclopropanations.^[44–46] In this particular case, the bridging di-tert-butylsilylene moiety is not only a directing tether for the macrocyclization step, it is also a protecting group that can be readily cleaved to corresponding acvclic afford the fullerene polyols.^[44-46] We have also reported a preliminary communication on the threefold Bingel reaction between C₆₀ and tert-butyl(trialkoxy)silane derivatives bearing three malonate groups for the regioselective tris-functionalization of ${\rm C_{60}}^{[47]}$ We now report a full account on this work and provide a detailed stereochemical analysis of the bis- and tris-functionalization of C₆₀. Moreover, a complete series of tertbutyl(trialkoxy)silane derivatives has been prepared to show the limits of this methodology for the preparation of fullerene tris-adducts. Finally, desilylation

reactions of the resulting C_{60} bis- and tris-adducts have been optimized to produce the corresponding diols and triols.

Results and Discussion

For a complete understanding of the tris-functionalization of C₆₀ with tert-butyl(trialkoxy)silane tris-malonates, it was important to first investigate the regioselectivity of the two-fold Bingel functionalization of C₆₀ with corresponding linear di-tert-butylsilylenetethered bis-malonates. For this reason, bis malonates were prepared from diethyl malonyl chloride (1) as depicted in Scheme 1. Esterification of 1 with a large excess of diols 2a and 2b in the presence of pyridine (pyr) gave **3a** and **3b**. By using a large excess of diols 2a and 2b, the formation of the corresponding bismalonates is largely prevented and compounds 3a and 3b were thus prepared in good yields. Treatment of 3a and 3b with di-tert-butylsilyl bis(trifluoromethanesulfonate) (TBDS ditriflate) in DMF in the presence of pyr afforded the Si-bridged malonates 4a and 4b. Reactions of bis-malonates 4a and 4b with C₆₀ were then carried out under modified Bingel conditions.^[9,48] In this particular case, the α -iodo-malonate intermediates are produced in situ by reaction of the malonate

Scheme 1. Preparation of fullerene bis-adducts **5a** and **5b**. *Reagents and conditions*: (i) pyr, THF, 0 °C to r.t. (**3a**: 87%; **3b**: 72%); (ii) TBDS ditriflate, pyr, DMF, r.t. (**4a**: 44%; **4b**: 52%); (iii) C_{60} , I_2 , PhMe, -15 °C (**5a**: 23%; **5b**: 48%). Inset: schematic representation of the two possible diastereomers for an equatorial macrocyclic bis-adduct; steric considerations based on molecular modeling revealed that only the *out-out* isomer is reasonable in the particular case of **5a** and **5b**.

(PhMe) at -15 °C gave regioisomerically pure fullerene bis-adducts **5a** and **5b**. In both cases, by-products were mainly [2+2] and [3+3] macrocycles obtained as mixtures of regioisomers that were not further investigated. Traces of other bis-adducts were also detected but these by-products could not be isolated in a pure form and were obtained in too small

quantities thus preventing their characterization. Mass spectrometry confirmed the [1+1] macrocyclic structures of both 5a and 5b. The expected molecular ion peaks were effectively observed at m/z1210.2 for **5a** $([M+H]^+$, calc. for $[C_{82}H_{36}O_{10}Si+H]^+$: 1210.3) and 1237.3 for **5b** $([M+H]^+, \text{ calc. for})$ $[C_{84}H_{40}O_{10}Si + H]^+$: 1237.3). It was then important to disclose the relative positions of the two cyclopropane rings onto the carbon sphere in 5a and 5b. As shown in Figure 1, there are in principle eight possible regioisomers for a fullerene bis-adduct bearing two identical addends.^[49] In this particular case, the symmetry of the bis-addition pattern can be either D_{2h} (trans-1), C_2 (cis-3, trans-2 and trans-3) or C_s (cis-1, cis-2, e and trans-4). In principle, each macrocyclic regioisomer resulting from the reaction of a bismalonate such as **5a** and **5b** with C₆₀ can afford different diastereoisomers depending on the relative orientation of the two CO₂Et residues (in-in, in-out and out-out isomerism).^[5] Taking into considerations the pairs of enantiomers for C_1 - and C_2 -symmetrical compounds, 37 isomeric macrocyclic bis-adducts are theoretically possible (Figure S1). For fullerene derivatives bearing two malonate addends, the addition pattern is conveniently disclosed from their absorption spectra. Effectively, the colors of such C₆₀ bis-adducts, and accordingly their UV/vis spectra, are highly dependent on the relative position of the two cyclopropane rings onto the fullerene core.^[9,50] They are indeed characteristic for each of the regioisomers. The absorption spectra recorded for compounds 5a and 5b were identical and clearly showed the characteristic fingerprints of bis-adducts with an equatorial addition

Figure 1. (A) Positional relationships of the different 6,6 double bonds relative to a first addend in a fullerene monoadduct; for bis-adducts, the two addends can be located either in the same hemisphere (*cis*), in the opposite one (*trans*), or on the equatorial belt (*e*); a second addition onto the *e-edge* or *e-face* position leads to the same bis-adducts (simply noted *e*) when the two addends are identical. (B) Absorption spectrum (CH_2CI_2) of fullerene bis-adduct **5b** showing the characteristic features of the *e* bis-addition pattern. Inset: calculated structure of **5b**, the C-atoms of the cyclopropane rings are highlighted in blue.

pattern. As a typical example, the UV/vis spectrum recorded for compound **5b** is depicted in *Figure 1*. The molecular symmetry (C_1) deduced from the ¹H- and ¹³C-NMR spectra of **5a** and **5b** was also fully consistent with the proposed equatorial addition pattern. In principle, two diastereomers are possible for a macrocyclic e bis-adduct (inset Scheme 1). In both cases, molecular modeling studies revealed that the in-in diastereoisomer is highly strained as the linker between the two cyclopropane rings is too short (Figure S2). Therefore, only the out-out equatorial isomer is possible for both 5a and 5b. As only one diastereoisomer was formed during the cyclization of 4a and 4b onto the fullerene core, the bis-functionalization was at the same time regio- and diastereoselective.

To gain further understanding about the outcome of these reactions, computational studies were also performed. The molecular geometry of all the possible diastereoisomers for the cis-2, cis-3, e, trans-4 and trans-3 regioisomers resulting from the cyclization of 4a and 4b onto the fullerene core were optimized at the PM6 semi-empirical level (Figure S2). The cis-1 regioisomer is typically not obtained in bis-Bingel cyclopropanation reactions of C₆₀ for obvious steric reasons^[49] and the linker between the two malonate subunits is too short to form trans-1 and trans-2 products, these regioisomers were thus not calculated. The relative heat of formation obtained for all the macrocyclization products are gathered in Table S1. For the sake of clarity, only the most reasonable bisadducts (out-out diastereomers) are listed in Table 1.

In both cases, the cis-3 and trans-3 regioisomers were notably high in energy whatever the chain length of the Si-tether. Steric constraints resulting from the stereochemical preferences of the silylene linker (cis-3) or from the limited length of the linker between the two cyclopropane rings (trans-3) prevent the formation of these particular macrocyclic regioisomers. In the case of the cyclization products obtained from 4b, the e regioisomer was the most stable in apparent agreement with the formation of **5b** from **4b** and C₆₀. In contrast, the *trans-4* regioisomer was found to be lowest in energy for the calculated cyclization products of 4a and not the e derivative obtained experimentally (4b). Nonetheless, the differences in energy between the cis-2, e and trans-4 regioisomers were rather small in both cases and do not explain the experimentally observed preferential formation of the e regioisomer. Indeed, ring strain plays an important role but the cyclization reactions on the C₆₀ core are also governed by the relative reactivity of the different double bonds in the monofunctionalized fullerene intermediate obtained upon the first cyclopropanation. The regioselectivity results actually from an interplay between steric factors and

Table 1. Relative heat of formation in kJ/mol calculated at the PM6 semi-empirical level for the most probable fullerene bisadducts obtained from the reaction of **4a** and **4b** with C_{60} .

	Bis-adduct obtained from 4a	Bis-adduct obtained from 4b
cis-2	+5.3	+7.0
cis-3	+14.0	+24.7
е	+8.6	0
trans-4	0	+4.1
trans-3	+82.5	+ 30.0

kinetic effects.^[45,46] In the intermediate mono-adduct, the most reactive double bonds are the *e-face* ones followed by the *trans-3* and the *cis-2* ones. These are actually the positions where the lowest-unoccupied molecular orbitals (LUMO) are mainly located (*Figure S3*). The regioselectivity observed for the macrocyclization of **4a** and **4b** onto the fullerene sphere results most likely from the highest reactivity of the *eface* double bonds of the mono-adduct intermediate and compounds **5a** and **5b** must be therefore kinetic products. As the reactions were performed at low temperature (-15 °C), kinetic effects were further accentuated thus explaining well the observed regioselectivity.

After the successful regioselective bis-functionalization of C_{60} with bis-malonates **4a** or **4b**, the strategy was then extended to Si-tethered tris-malonates to prepare fullerene tris-adducts (Scheme 2). Reaction of **3a** or **3b** with *tert*-butyl(trichloro)silane (^tBuSiCl₃) in dry DMF in the presence of imidazole (Im) provided trismalonates 6a and 6b. These intermediates were found only moderately stable but their purification by column chromatography was possible. Complete decomposition was observed upon a few days of storage even at low temperature. Compounds **6a** and **6b** were therefore typically used for the next step immediately after their purification. Treatment of C_{60} with **6a** and **6b** in the presence of DBU and I_2 in toluene at $-15^{\circ}C$ afforded tris-adducts 7a and 7b as well as the corresponding bis-fullerene derivatives 8a and 8b. Due to the formation of byproducts **8a** and **8b**, it was necessary to use an excess of C_{60} (1.5 equiv.) to obtain the desired tris-adducts with optimized yields. When compared to 6a and 6b, fullerene derivatives 7a, 7b, 8a and 8b were found to be more stable. However, partial decomposition was still observed after several weeks of storage at low temperature. This is, however, not a major problem as the corresponding products obtained upon desilylation are perfectly stable.

Compounds **7a**, **7b**, **8a** and **8b** have been characterized by ¹H- and ¹³C-NMR, IR and UV-vis spectroscopies. Their MALDI-TOF mass spectra were also in agreement with the proposed structures. The ¹H- and ¹³C-NMR spectra of compounds **8a** and **8b** revealed C_1 -symmetrical structures fully consistent with a macrocyclic fullerene *equatorial* bis-adduct bearing a fullerene mono-adduct. This structural assignment was further supported by the products formed upon their desilylation (*vide infra*). In the case of **7a** and **7b**, the relative position of the three cyclopropane rings on the fullerene core was deduced from their molecular symmetry (C_3) based on the analysis of their ¹H- and

Scheme 2. Preparation of fullerene tris-adducts 7a and 7b. *Reagents and conditions*: (i) ^tBuSiCl₃, Im, DMF, r.t. (6a: 77%; 6b: 66%); (ii) C_{60} , I_2 , PhMe, $-15 \degree$ C (7a: 8% and 8a: 20%; 7b: 27% and 8b: 11%).

¹³C-NMR spectra. As a typical example, the ¹³C-NMR spectrum recorded for tris-adduct 7a is depicted in Figure 2. A total of 20 resonances are clearly observed for the fullerene C-atoms. Specifically, the two fullerene sp³ C-atoms (a and b) are observed at $\delta = 71.1$ and 70.3 ppm while 18 resonances are detected between $\delta = 147.5$ and 140.8 ppm for the different fullerene sp² C-atoms. Compound **7a** is therefore a C_3 symmetrical tris-adduct. This is further supported by the observation of nine resonances for the C-atoms of the Si-bridged tripodal substructure. Amongst all the possible addition patterns for fullerene tris-adducts, only three are C₃-symmetrical: *cis-1,cis-1,cis-1*; *e,e,e* and trans-3, trans-3, trans-3. Owing to steric crowding, the formation of the cis-1,cis-1,cis-1 isomer is highly unfavorable. Discrimination between the two possible addition patterns was finally achieved by comparison of the UV/vis spectra of 7a and 7b with those reported in the literature for e,e,e and trans-3,trans-3,trans-3 fullerene tris-adducts.^[24-33] As discussed in the case of bis-adducts, the absorption spectra of fullerene multiadducts are dependent on the addition pattern and highly characteristic for each regioisomer. The UV-vis spectra of **7a** and **7b** revealed clearly the typical absorption features observed for *e,e,e* tris-adducts thus providing a definitive stereochemical assignment. This specific addition pattern was also fully consistent with the regiochemistry observed for the reaction of the corresponding Si-tethered bis-malonates **4a** and **4b** with C₆₀. Effectively, the stepwise *Bingel* reaction of tris-malonates **6a** and **6b** onto the fullerene core is expected to produce the same addition pattern for the intermediate bis-adduct leading to **7a** and **7b**, namely the *equatorial* regioisomer.

To fully understand the stereochemical and electronic factors governing the formation of **7a**, **7b**, **8a** and **8b**, detailed computational studies were performed. This is shown in *Figure 3* for the functionalization of C_{60} with tris-malonate **6a**. The two first *Bingel* reactions of **6a** with C_{60} are expected to produce a bisadduct intermediate with an *equatorial* addition pattern based on the regioselectivity observed for the bis-cyclopropanation of C_{60} with the corresponding Sitethered bis-malonate (**4a**). Owing to the chirality of the resulting macrocyclic equatorial bis-adduct, the tetra-substituted silicon atom becomes stereogenic in

Figure 2. ¹³C-NMR spectrum (100 MHz, CDCl₃) of compound 7a.

this intermediate. As a result, two pairs of enantiomeric diastereomers are possible (A/ent-A and B/ent-B). A third intramolecular cyclopropanation reaction is then supposed to generate a fullerene tris-adduct. As the reaction is performed under kinetic control, cyclopropanation of the most reactive double bond is expected to be favored. These bonds are located on two equatorial positions based on the LUMO of the bis-adduct (*Figure S4*) and are highlighted in blue in the structures of A/ent-A and B/ent-B.

The reactive malonate group is perfectly oriented in **B** and *ent*-**B** to generate a C_3 -symmetrical *e,e,e* trisadduct with all the CO₂Et groups in an *out* orientation (**7a** and *ent*-**7a**). In contrast, reaction with the other equatorial position in **B** and *ent*-**B** is prevented as it would generate a highly strained C_1 -symmetrical trisadduct with the ^tBu group in an *endo* orientation (**E** and *ent*-**E**). In theory, cyclization of **A** and *ent*-**A** would form fullerene tris-adducts **C**/*ent*-**C** and **D**/*ent*-**D**. These cyclization products are however highly strained due to the *endo* orientation of the bulky ^tBu group (**D**/*ent*-**D**) or to the *in* orientation for CO₂Et subunit (**C**/*ent*-**C**) making their formation highly unfavorable. As the cyclization of **A** and *ent*-**A** is prevented due to an unfavorable orientation of their reactive malonate group, these intermediates react in an intermolecular manner with a second fullerene sphere to generate bis-fullerenes **8a** and *ent*-**8a**. In conclusion of this theoretical analysis, it appears that the formation of **7a** is limited by the stereochemistry of its bis-adduct precursor as only two of the four possible diastereomers have an appropriate orientation for a cyclization reaction. The two other diastereomers react in an intermolecular manner with a second fullerene molecule to generate bis-fullerene **8a**. On the other hand, the regioselectivity observed for the formation of **7a** results most likely from kinetic effects that favor reactions onto the most reactive *equatorial* positions in the intermediate mono- and bis-adducts.

To further evaluate the potential of this strategy for the regioselective tris-functionalization of C₆₀, additris-malonates tional constructed on а tbutyl(trialkoxy)silane core were prepared from diols 2c-2g (Scheme 3). Mono-esterification of 2c-2g with 1 and subsequent treatment of the resulting 3c-3g with ¹BuSiCl₃ afforded tris-malonates **6c**-**6g**. Functionalization of C₆₀ with 6c-6g was then achieved under the conditions optimized for the preparation of **7a**, **7b**, 8a and 8b from 6a and 6b. Except for 6g, all the reactions provided the cherry-red e,e,e fullerene tris-

Figure 3. PM6 optimized structures of the four possible bis-adduct intermediates resulting from the bis-cyclopropanation of C_{60} with **6a** (**A**, *ent*-**A**, **B** and *ent*-**B** for which the most reactive equatorial double bonds are highlighted in blue) and the theoretically possible *e,e,e* tris-adducts resulting from an intramolecular *Bingel* reaction (in the cyclization products, the fullerene C-atoms of the newly formed cyclopropane ring are highlighted in blue). For steric reasons, the formation of **C**, *ent*-**C**, **D**, and *ent*-**D** from the corresponding bis-adduct intermediate (**A** and *ent*-**A**) is highly unfavorable and intermolecular reactions with C_{60} occurs to generate **8a** and *ent*-**8a**. In contrast, the orientation of the reactive malonate group of **B** and *ent*-**B** is well suited to generate **7a** and *ent*-**7a**, respectively, but reaction with the other equatorial double bond leading to **E** and *ent*-**E** is unfavorable.

Scheme 3. Preparation of fullerene tris-adducts **7c**–**7f** and **9d**. *Reagents and conditions*: (i) **1**, pyr or Im, THF, 0 °C to r.t. (**3c**: 83%; **3d**: 46%; **3e**: 40%; **3f**: 47%; **3g**: 29%); (ii) ^tBuSiCl₃, Im, DMF, r.t. (**6c**: 67%; **6d**: 57%; **6e**: 54%; **6f**: 92%; **6g**: 59%); (iii) C₆₀, I₂, PhMe, –15 °C (**7c**: 14%; **7d**: 10% and **9d**: 1%; **7e**: 3%; **7f**: 25%).

adducts (7c-7f). In all the cases, bis-fullerene byproducts such as 8a and 8b were also obtained but these compounds were not further analyzed as most of them were obtained as an inseparable mixture of regioisomers resulting from different addition patterns of their bis-adduct moiety. The linker between the malonate subunits and the central tert-butylsilane core plays clearly an important role in the outcome of the reactions. Obviously, the 1,3-propane (6b) and the oxylene (6f) linkers are the most appropriate to generate e,e,e fullerene tris-adducts in good yields. When longer spacers are used, e,e,e fullerene trisadducts 7c-7e were still obtained but in lower yields. Other regioisomeric tris-adduct by-products were also formed from 6c-6e but most of them could not be isolated in a pure form. The only tris-adduct byproduct that could be isolated and fully characterized was 9d. In the particular case of 6g, a complex mixture of tris-adducts was obtained and none of them could be isolated in a pure form. These observations suggest that the bis-adduct intermediate initially formed in the reaction of 6c-6g with C_{60} is not exclusively equatorial due to the increased size of the linkers. This view is nicely supported by the formation of by-product 9d with a trans-3, trans-3, trans-3 addition pattern.

The addition patterns of fullerene tris-adducts **7c**–**7f** and **9d** were unambiguously deduced from their molecular symmetry and their diagnostic absorption spectra. ¹H- and ¹³C-NMR revealed effectively a C_3 -

symmetrical structure for all these compounds. Diagnostic signatures of an *e,e,e* addition pattern were observed in the absorption spectra of 7c-7f. As a typical example, the UV-vis spectrum recorded for compound 7d is depicted in *Figure 4*. Compound 9d is also C_3 -symmetrical and must therefore be the *trans-3,trans-3,trans-3* isomer as this is the only other possible addition pattern with this symmetry. As shown in *Figure 4*, the UV/vis spectrum recorded for 9d is fully consistent with those previously reported

Figure 4. Absorption spectra (CH_2CI_2) of fullerene tris-adducts **7d** and **9d**. Inset: position of the cyclopropane rings (in blue) in *e,e,e* and *trans-3,trans-3* fullerene tris-adducts (view along the C_3 axis).

for tris-adducts with a *trans-3,trans-3,trans-3* addition pattern.^[24-33]

A major advantage of using silane-based connecting groups in the bis- and tris-malonates reagents is related to the possible cleavage of the Si-O bonds upon the regioselective multi-functionalization of the fullerene sphere. The resulting polyols thus obtained are valuable building blocks for further chemical transformations based on the reactivity of the alcohol functions. Desilvlation reactions of 5a and 5b and 7a and 7d were thus attempted to produce the corresponding polyols (Scheme 4). Treatment of 5a and 5b with tetra-n-butylammonium fluoride (TBAF) gave mainly decomposition products. This was most probably related to the partial hydrolysis of some ester functions under such basic conditions. In contrast, fluoride was an effective reagent for the desilylation of 5a and 5b when the reactions were performed under acidic conditions. Desilvlation of 5a and 5b with HF-

pyr in THF gave effectively diols **10a** and **10b** in good yields (80-90%). Alternatively, treatment of 5a and 5b with a large excess of BF₃·Et₂O (20 equiv.) in CH₂Cl₂ provided also 10a and 10b in good yields. Both desilylation conditions were efficient, the use of BF₃·Et₂O was however found to be more convenient from a practical point of view. These conditions do effectively not require HF-resistant equipment. In addition, traces of pyridine in the final products were sometimes difficult to remove in samples prepared by treatment with HF-pyr. The desilylation conditions used for the cleavage of the connecting di-t-butylsilylene protecting group in 5a and 5b were then applied to the *t*-butyl(trialkoxy)silane derivatives 7a-7d and 8a and 8b. Triols 11a-11d were thus obtained in good yields from 7a-7d. In the case of 8a and 8b, desilylation produced two products, namely fullerene mono-adducts 12a and 12b and fullerene bis-adducts 10a and 10b. Importantly, samples of 10a and 10b

Scheme 4. Desilylation reactions. *Reagents and conditions*: (i) BF₃·Et₂O, CH₂Cl₂, CH₃CN, r.t. (**10a**: 91%; **10b**: 72%; **11b**: 97%; **11c**: 67%; **11d**: 82%); (ii): HF-pyr, THF, r.t. (**11a**: 88%; **10a**: 66% and **12a**: 55%; **10b**: 60% and **12b**: 76%).

thus obtained were rigorously identical to the ones prepared from **5a** and **5b**. The structural assignment proposed for compounds **8a** and **8b** was therefore fully confirmed.

Conclusions

The reaction of Si-tethered tris-malonates with C₆₀ gave easy access to e,e,e fullerene tris-adducts with an excellent regioselectivity and good yields when the linker between the Si core and the reactive malonate moieties has the appropriate length. A complete understanding of the stereochemical and electronic factors governing this tris-functionalization of C₆₀ has been obtained by combining computational studies with model bis-functionalization of C₆₀ with analogous Si-tethered bis-malonate derivatives. Overall, the regioselectivity of the tris-functionalization results from structural factors as the tert-butyl(trialkoxy)silane group acts as a directing tether but also from kinetic effects related to the difference in reactivity of the different double bonds in the intermediate mono- and bis-adducts. Indeed, the best yields in fullerene trisadducts have been obtained when the tris-functionalization is carried out from precursors directing efficiently the second cyclopropanation onto the most reactive equatorial bonds. The final cyclization leading to the e,e,e tris-adducts is then conveniently achieved through cyclopropanation of the most reactive double bond of the bis-adduct intermediate. The tris-functionalization with Si-tethered tris-malonates is however limited by the stereochemistry of the Si atom in the bis-adduct intermediate. Effectively, only one of the two possible diastereomers of this key intermediate can form the desired tris-functionalized fullerene product. While very efficient for the preparation of fullerene tris-adducts with an e,e,e addition pattern, the direct tris-functionalization of C_{60} with tripodes bearing three malonate moieties is not well suited to selectively produce related derivatives with other addition patterns. There is still a clear need to develop new strategies for this purpose. On the other hand, the e,e,e tris-adducts reported herein are ideal precursors for the construction of fullerene hexa-adducts with a controlled repartition of functional groups around the central fullerene core. Work in this direction is currently underway in our group to generate unprecedented globular nanomaterials.

Experimental Section

General

Reagents and solvents were purchased as reagent grade and used without further purification. All reactions were performed in standard glassware under an inert Ar atmosphere expect for the reactions with hydrogen fluoride pyridine (hydrogen fluoride ca. 70%, pyridine ca. 30%, CAS number: 62778-11-4, purchased from Sigma-Aldrich Ref. 184225), which were carried out under argon in a Teflon flask. NOTE: Gel preparations of calcium gluconate should be within reach when working with hydrogen fluoride pyridine to treat possible hydrofluoric acid burns. Column chromatography: silica gel 60 (230-400 mesh, 0.040–0.063 mm) was purchased from E. Merck. Thin Layer Chromatography (TLC) was performed on aluminum sheets coated with silica gel 60 F254 purchased from E. Merck. IR spectra $[cm^{-1}]$ were recorded on a PerkinElmer Spectrum One Spectrophotometer. NMR spectra were recorded on Bruker Avance I (300 MHz) or Avance III HD (400 MHz) spectrometers with solvent peaks as reference. MALDI-TOF mass spectra were recorded on a Bruker ULTRAFLEX TOF/TOF mass spectrometer with a dithranol matrix by the analytical service of the École Européenne de Chimie, Polymères et Matériaux, Strasbourg, France.

General Procedure for the Preparation of Malonates **3a**-**3g**

A solution of **1** in anhydrous THF was added dropwise within 30 min to a solution of the diol (2a-2g) and pyridine or imidazole in anhydrous THF at 0°C under argon. The mixture was allowed to slowly warm to room temperature and stirring was continued at this temperature overnight. The resulting mixture was filtered through silica, concentrated, and purified as indicated.

Compound **3a**. Prepared from **1** (4.2 mL, 32.8 mmol), **2a** (36.8 mL, 660 mmol) and pyridine (3.3 mL, 40.8 mmol) in anhydrous THF (80 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/AcOEt 8:2) gave **3a** (5.0 g, 87%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 4.31–4.27 (m, 2H), 4.20 (q, J=7, 2H), 3.82 (q, J=4, 2H), 3.42 (s, 2H), 2.43 (t, J=4, 1H), 1.28 (t, J=7, 3H). ¹³C-NMR (CDCl₃, 75 MHz): 167.0, 166.8, 67.0, 61.8, 60.7, 41.5, 14.1.

Compound **3b**. Prepared from **1** (1.0 mL, 7.81 mmol), **2b** (1.1 mL, 15.2 mmol) and pyridine

(1.1 mL, 13.6 mmol) in anhydrous THF (75 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 8:2 to CH₂Cl₂/AcOEt 97:3) gave **3b** (1.07 g, 72%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 4.32 (t, J=6, 2H), 4.20 (q, J=7, 2H), 3.72 (t, J=6, 2H), 3.38 (s, 2H), 1.90–1.63 (m, 3H), 1.28 (t, J=7, 3H). ¹³C-NMR (CDCl₃, 100 MHz): 167.0, 166.8, 62.8, 61.8, 59.3, 41.7, 31.6, 14.2.

Compound **3c**. Prepared from **1** (1.9 mL, 14.8 mmol), **2c** (5.4 mL, 60.9 mmol) and pyridine (2.3 mL, 28.4 mmol) in anhydrous THF (130 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂ to CH₂Cl₂/AcOEt 97:3) gave **3c** (2.52 g, 83%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 4.24–4.17 (m, 4H), 3.68 (q, J = 6, 2H), 3.37 (s, 2H), 1.83–1.65 (m, 4H), 1.43 (s, 1H), 1.28 (t, J = 7, 3H). ¹³C-NMR (CDCl₃, 75 MHz): 166.6 (2 C), 65.5, 62.4, 61.7, 41.8, 29.1, 25.1, 14.2.

Compound **3d**. Prepared from 1 (2.3 mL, 18.0 mmol), 2d (5.0 g, 36.2 mmol) and pyridine (2.8 mL, 34.6 mmol) in anhydrous THF (300 mL). Colchromatography umn $(SiO_2;$ eluent: CH₂Cl₂/ cyclohexane 8:2 to CH_2Cl_2) gave **3d** (2.08 g, 46%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 7.36 (s, 4H), 5.18 (s, 2H), 4.70 (d, J=5, 2H), 4.19 (q, J=7, 2H), 3.41 (s, 2H), 1.73 (s, 1H), 1.25 (t, J=7, 3H). ¹³C-NMR (CDCl₃, 75 MHz): 166.6 (2 C), 141.3, 134.9, 128.7, 127.3, 67.1, 65.1, 61.8, 41.8, 14.2.

3e. Prepared from Compound 1 (0.8 mL, 6.25 mmol), **2e** (2.5 g, 11.7 mmol) and imidazole (0.79 g, 11.6 mmol) in anhydrous THF (150 mL). Colchromatography $(SiO_2;$ CH₂Cl₂/ umn eluent: cyclohexane, 8:2 to CH_2CI_2) gave **3e** (0.82 g, 40%). Colorless oil. ¹H-NMR (CDCl₃, 400 MHz): 7.60 (d, J=7, 2H), 7.58 (d, J=7, 2H), 7.45 (d, J=7, 2H), 7.43 (d, J=7, 2H), 5.23 (s, 2H), 4.75 (s, 2H), 4.20 (q, J=7, 2H), 3.44 (s, 2H), 1.61 (s, 1H), 1.26 (t, J=7, 3H). ¹³C-NMR (CDCl₃, 100 MHz): 166.63, 166.57, 141.2, 140.3, 140.2, 134.5, 129.0, 127.7, 127.5, 127.4, 67.1, 65.2, 61.8, 41.8, 14.2.

Compound **3f**. Prepared from **1** (1.4 mL, 10.9 mmol), **2f** (3.0 g, 21.7 mmol) and pyridine (1.7 mL, 21.0 mmol) in anhydrous THF (100 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 8:2 to CH₂Cl₂/AcOEt 97:3) gave **3f** (1.30 g, 47%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 7.49–7.28 (m, 4H), 5.31 (s, 2H), 4.75 (s, 2H), 4.18 (q, J=7, 2H), 3.41 (s, 2H), 2.19 (s, 1H), 1.24 (t, J=7, 3H). ¹³C-NMR (CDCl₃, 75 MHz): 166.7, 166.4, 139.7, 133.2, 130.2, 129.3, 129.2, 128.3, 65.3, 63.0, 61.9, 41.8, 14.1.

Compound **3g**. Prepared from 1 (1.8 mL, 14.1 mmol), 2g (3.0 g, 21.7 mmol), and pyridine (2.3 mL, 28.4 mmol) in anhydrous THF (100 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/ cyclohexane 8:2 to CH₂Cl₂) gave **3g** (1.03 g, 29%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 7.26-7.43 (m, 4H), 5.20 (s, 2H), 4.72 (s, 2H), 4.20 (q, J=7, 2H), 3.42 (s, 2H), 1.66 (s, 1H), 1.26 (t, J=7, 3H). ¹³C-NMR (CDCl₃, 75 MHz): 166.6 (2 C), 141.5, 135.7, 128.9, 127.5, 127.1, 126.8, 67.2, 65.0, 61.7, 41.7, 14.1.

General Procedure for the Preparation of Bismalonates **4a** and **4b**

TBDS ditriflate was added to a solution of the alcohol (**3a** or **3b**) and pyridine in anhydrous DMF under argon and the mixture was stirred at room temperature as indicated. Et₂O was added and the organic phase was extracted with water, dried with MgSO₄, concentrated, and purified as indicated.

Compound **4a.** Prepared from **3a** (1.14 g, 6.45 mmol), pyridine (0.52 mL, 6.45 mmol) and TBDS ditriflate (0.80 mL, 2.45 mmol) in anhydrous DMF (15 mL) after stirring at room temperature for 12 h. Column chromatography (SiO₂; eluent: CH₂Cl₂/AcOEt 9:1) gave **4a** (529 mg, 44%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 4.26 (t, J = 5, 4H), 4.19 (q, J = 7, 4H), 4.04 (t, J = 5, 4H), 3.38 (s, 4H), 1.28 (t, J = 7, 6H), 1.00 (s, 18H). ¹³C-NMR (CDCl₃, 75 MHz): 166.8, 166.5, 66.7, 61.8, 61.7, 41.6, 27.7, 21.3, 14.2.

Compound **4b.** Prepared from **3b** (1.00 g, 5.26 mmol), pyridine (0.43 mL, 5.26 mmol) and TBDS ditriflate (0.78 mL, 2.39 mmol) in anhydrous DMF (20 mL) after stirring at room temperature for 2 h. Column chromatography (SiO₂; eluent: CH₂Cl₂) gave **4b** (650 mg, 52%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 4.29 (t, J=7, 4H), 4.18 (q, J=7, 4H), 3.89 (t, J=6, 4H), 3.35 (s, 4H), 1.89 (quint, J=6, 4H), 1.26 (t, J=7, 6H), 0.98 (s, 18H). ¹³C-NMR (CDCl₃, 100 MHz): 166.7, 166.6, 62.6, 61.6, 60.2, 41.7, 31.8, 27.9, 21.2, 14.2.

General Procedure for the Preparation of C_{60} Bis-adducts ${\bf 5a}$ and ${\bf 5b}$

DBU was added to a solution of C_{60} , the bis-malonate (**4a** or **4b**) and I_2 in toluene under argon at -15 °C. The resulting mixture was stirred for 1 h at -15 °C, then directly filtered (SiO₂; eluent: cyclohexane to CH₂Cl₂), concentrated, and purified as indicated.

Compound 5a. Prepared from 4a (106 mg, 0.22 mmol), C₆₀ (155 mg, 0.22 mmol), I₂ (137 mg, 0.54 mmol) and DBU (0.27 mL, 1.81 mmol) in toluene (310 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 3:2) gave **5a** (59 mg, 23%). Dark brown glassy solid. IR (neat): 1744 (C=O). UV/vis (CH₂Cl₂): 251 (89000), 307 (sh, 35400), 366 (sh, 10670), 397 (3900), 408 (sh, 2630), 421 (2400), 479 (2700). ¹H-NMR (300 MHz, CDCl₂): 4.71-4.82 (ddd, J=10, 9, 5,1H), 4.41-4.56 (m, 5H), 4.29-4.38 (m, 1H), 4.00-4.28 (m, 4H), 3.84-3.94 (m, 1H), 1.44 (t, J=7, 6H), 1.09 (s, 9H) 0.94 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃): 164.0, 163.6, 163.5, 163.1, 148.7, 147.5, 147.4, 146.63, 146.57, 146.51, 146.45, 146.3, 146.22, 146.20, 145.9, 145.61, 145.57, 145.53, 145.46, 145.41, 145.3, 145.12, 145.06, 144.98, 144.92, 144.85, 144.76, 144.73, 144.67, 144.58, 144.40, 144.38, 144.20, 144.11, 144.07, 143.93, 143.89, 143.83, 143.74, 143.58, 143.56, 143.48, 143.2, 143.1, 142.2, 142.1, 142.0, 141.9, 141.6, 141.5, 140.6, 140.4, 140.0, 139.8, 139.0, 138.6, 71.7, 70.3, 68.1, 66.7, 63.56, 63.49, 62.4, 60.8, 53.8, 51.2, 28.1, 27.7, 21.7, 21.4, 14.34, 14.31. MALDI-TOF-MS: 1210.2 ($[M + H]^+$, calc. for $[C_{82}H_{36}O_{10}Si$ $+H^{+}$: 1210.3).

Compound **5b**. Prepared from **4b** (291 mg, 0.56 mmol), C₆₀ (400 mg, 0.56 mmol), I₂ (352 mg, 1.39 mmol) and DBU (0.42 mL, 2.81 mmol) in toluene (800 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 3:2) gave **5b** (332 mg, 48%). Dark brown glassy solid. IR (neat): 1751 (C=O). UV/vis (CH₂Cl₂): 310 (sh, 38670), 361 (sh, 13450), 398 (3850), 409 (sh, 2410), 421 (2260), 479 (sh, 2740). ¹H-NMR (300 MHz, CD₂Cl₂): 4.65-4.80 (m, 2H), 4.31-4.55 (m, 6H), 3.79-3.93 (m, 4H), 1.91-2.06 (m, 4H), 1.41 (t, J=7, 6H), 1.03 (s, 9H), 0.91 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): 164.1, 163.6, 163.4, 163.3, 148.8, 147.3, 147.0, 146.6, 146.5, 146.4, 146.20, 146.18, 146.1, 145.8, 145.6, 145.4, 145.33, 145.30, 145.26, 145.15, 145.09, 144.97, 144.89, 144.82, 144.72, 144.69, 144.65, 144.63, 144.51, 144.36, 144.16, 144.14, 143.9, 143.8, 143.7, 143.6, 143.52, 143.50, 143.47, 143.2, 143.1, 142.55, 142.52, 142.0, 141.9, 141.80, 141.76, 141.71, 141.5, 141.2, 140.5, 139.73, 139.68, 138.8, 138.7, 71.7, 71.7, 70.5, 64.3, 63.5, 63.4, 63.4, 60.4, 59.8, 54.0, 51.6, 32.2, 31.8, 27.8, 27.8, 27.0, 21.3, 14.3. MALDI-TOF-MS: 1237.3 ([*M*+H]⁺, calc. for $[C_{84}H_{40}O_{10}Si + H]^+$: 1237.3).

General Procedure for the Preparation of Tris-malonates **6a-6g**

A mixture of ${}^{t}BuSiCl_{3}$, the alcohol (**3a**-**3g**) and imidazole in anhydrous DMF was stirred at room

temperature overnight. Water was added and the aqueous layer was extracted with Et_2O . The organic layer was washed several times with water, dried with MgSO₄, concentrated, and purified as indicated.

Compound **6a.** Prepared from **3a** (2.00 g, 11.4 mmol), imidazole (0.77 g, 11.3 mmol) and ^tBuSiCl₃ (0.62 g, 3.24 mmol) in anhydrous DMF (10 mL). Column chromatography (SiO₂; eluent: $CH_2Cl_2/AcOEt$ 95:5) gave **6a** (1.52 g, 77%). Colorless oil. ¹H-NMR (300 MHz, CDCl₃): 4.27–4.22 (m, 6H), 4.19 (q, J=7, 6H), 4.00–3.96 (m, 6H), 3.39 (s, 6H), 1.27 (t, J=7, 9H), 0.95 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃): 166.7, 166.5, 66.3, 61.7, 61.3, 41.5, 26.1, 17.8, 14.2.

Compound **6b**. Prepared from **3b** (1.06 g, 5.57 mmol), imidazole (0.43 g, 6.32 mmol) and ^tBuSiCl₃ (0.34 g, 1.78 mmol) in anhydrous DMF (11 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂ to CH₂Cl₂/AcOEt 97:3) gave **6b** (0.76 g, 66%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 4.27 (t, J=7, 6H), 4.20 (q, J=7, 6H), 3.85 (t, J=6, 6H), 3.37 (s, 6H), 1.90 (quint, J=6, 6H), 1.28 (t, J=7, 9H), 0.94 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): 166.8, 166.7, 62.5, 61.7, 59.7, 41.7, 31.6, 26.4, 17.8, 14.2.

Compound **6c.** Prepared from **3c** (1.00 g, 4.90 mmol), imidazole (0.36 g, 5.29 mmol) and ^tBuSiCl₃ (0.29 g, 1.51 mmol) in anhydrous DMF (10 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂ to CH₂Cl₂/AcOEt 97:3) gave **6c** (0.66 g, 67%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 4.24–4.16 (m, 12H), 3.79 (t, J=6, 6H), 3.37 (s, 6H), 1.7–1.69 (m, 6H), 1.66–1.58 (m, 6H), 1.28 (t, J=7, 9H), 0.94 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): 166.8, 166.7, 65.5, 62.7, 61.7, 41.8, 29.0, 26.5, 25.2, 17.9, 14.2.

Compound **6d**. Prepared from **3d** (1.5 g, 5.95 mmol), imidazole (0.44 g, 6.46 mmol) and ^tBuSiCl₃ (0.36 g, 1.88 mmol) in anhydrous DMF (12 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 8:2 to CH₂Cl₂) gave **6d** (0.97 g, 57%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 7.30 (s, 12H), 5.18 (s, 6H), 4.86 (s, 6H), 4.19 (q, J=7, 6H), 3.42 (s, 6H), 1.25 (t, J=7, 9H), 1.05 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): 166.61, 166.57, 140.9, 134.3, 128.5, 126.5, 67.2, 64.9, 61.7, 41.8, 26.5, 18.1, 14.2.

Compound **6e**. Prepared from ^tBuSiCl₃ (0.15 g, 0.78 mmol), **3e** (0.82 g, 2.50 mmol) and imidazole (0.19 g, 2.79 mmol) in anhydrous DMF (10 mL). Column chromatography (SiO₂; eluent: $CH_2Cl_2/cyclohexane 8:2$ to CH_2Cl_2) gave **6e** (0.48 g, 54%). Colorless oil. ¹H-NMR

 $(\text{CDCI}_3, 400 \text{ MHz})$: 7.57 (d, J = 7, 6H), 7.53 (d, J = 7, 6H), 7.42 (d, J = 7, 6H), 7.38 (d, J = 7, 6H), 5.23 (s, 6H), 4.95 (s, 6H), 4.20 (q, J = 7, 6H), 3.44 (s, 6H), 1.26 (t, J = 7, 9H), 1.12 (s, 9H). ¹³C-NMR (CDCI₃, 100 MHz): 166.64, 166.57, 141.3, 140.1, 139.6, 134.4, 129.0, 127.4, 127.2, 126.9, 67.1, 65.0, 61.8, 41.8, 26.6, 18.2, 14.2.

Compound **6f.** Prepared from **3f** (1.00 g, 3.96 mmol), imidazole (0.30 g, 4.41 mmol) and ^tBuSiCl₃ (0.24 g, 1.25 mmol) in anhydrous DMF (15 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 8:2 to CH₂Cl₂) gave **6f** (1.04 g, 92%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 7.43–7.19 (m, 12H), 5.15 (s, 6H), 4.87 (s, 6H), 4.15 (q, J=7, 6H), 3.35 (s, 6H), 1.22 (t, J=7, 9H), 1.02 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): 166.5, 166.4, 138.7, 132.9, 129.2, 128.7, 127.8, 127.5, 64.6, 63.0, 61.7, 41.6, 26.5, 18.0, 14.1.

Compound **6g**. Prepared from **3g** (1.00 g, 3.96 mmol), imidazole (0.21 g, 3.09 mmol) and ^tBuSiCl₃ (0.17 g, 0.89 mmol) in anhydrous DMF (15 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 8:2 to CH₂Cl₂) gave **6g** (0.47 g, 59%). Colorless oil. ¹H-NMR (CDCl₃, 300 MHz): 7.35–7.18 (m, 12H), 5.12 (s, 6H), 4.85 (s, 6H), 4.15 (q, J=7, 6H), 3.37 (s, 6H), 1.21 (t, J=7, 9H), 1.05 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): 166.5, 166.5, 141.0, 135.4, 128.7, 127.2, 126.3, 126.2, 67.2, 64.9, 61.6, 41.6, 26.5, 18.0, 14.1.

General Procedure for the Preparation of Fullerene Derivatives **7a**-**7f**, **8a**, **8b** and **9d**

DBU was added to a solution of C_{60} , the tris-malonate (**6a**-**6f**) and I_2 in toluene under argon at -15 °C. The resulting mixture was stirred for 1 h at -15 °C, then directly filtered (SiO₂; eluent: cyclohexane to CH₂Cl₂), concentrated, and purified as indicated.

Compounds **7a** *and* **8a**. Prepared from **6a** (468 mg, 0.77 mmol), C_{60} (828 mg, 1.15 mmol), I_2 (681 mg, 2.68 mmol) and DBU (0.87 mL, 5.82 mmol) in toluene (1.65 L). Column chromatography (SiO₂; eluent: CH₂Cl₂) gave **7a** (83 mg, 8%) and **8a** (320 mg, 20%). *Data of* **7a**: Cherry-red glassy solid. IR (neat): 1745, 1727 (C=O). UV/Vis (CH₂Cl₂): 251 (103180), 282 (74700), 303 (sh, 61730), 381 (6200), 484 (5420), 565 (sh, 1100). ¹H-NMR (300 MHz, CDCl₃): 5.02–4.94 (m, 3H), 4.41 (q, J=7, 6H), 3.76–4.04 (m, 9H), 1.39 (t, J=7, 9H), 0.97 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃): 163.6, 163.4, 147.5, 147.2, 147.0, 146.7, 146.6, 146.44, 146.36, 146.2, 145.9, 144.4, 144.3, 143.9, 143.7, 143.30, 143.28, 141.8, 141.6, 140.8, 71.1, 70.3, 67.2, 63.4, 62.9, 52.7, 27.2, 19.8, 14.3. MALDI-TOF-

MS: 1324.2 (M^+ , calc. for $[C_{85}H_{36}O_{15}Si]^+$: 1324.2. Data of 8a: Brown glassy solid. IR (neat): 1743, 1728 (C=O). ¹H-NMR (300 MHz, CDCl₃): 4.89–4.81 (m, 1H), 4.43– 4.70 (m, 9H), 3.97-4.34 (m, 8H), 1.51-1.41 (m, 9H), 0.88 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃): 164.1, 163.7, 163.6, 163.5, 163.4, 163.0, 148.4, 147.40, 147.39, 146.61, 146.60, 146.58, 146.54, 146.46, 146.29, 146.21, 146.19, 145.8, 145.63, 145.58, 145.44, 145.39, 145.35, 145.32, 145.28, 145.24, 145.20, 145.16, 145.15, 145.14, 145.13, 145.08, 145.01, 144.98, 144.85, 144.82, 144.79, 144.75, 144.74, 144.72, 144.67, 144.63, 144.53, 144.4, 144.2, 144.1, 144.0, 143.9, 143.8, 143.7, 143.58, 143.53, 143.48, 143.23, 143.16, 143.10, 143.0, 142.35, 142.31, 142.29, 142.23, 142.1, 142.02, 141.97, 141.92, 141.85, 141.6, 141.5, 141.12, 141.08, 141.05, 140.8, 140.7, 140.0, 139.9, 139.2, 139.1, 139.0, 138.5, 71.79, 71.72, 71.69, 71.64, 70.4, 68.0, 67.5, 63.61, 63.58, 61.8, 61.2, 60.8, 53.7, 52.2, 51.3, 26.8, 26.3, 17.8, 14.5, 14.4. MALDI-TOF-MS: 2045.1 $([M+H]^+, \text{ calc. for } [C_{145}H_{36}O_{15}Si+H]^+: 2045.2).$

Compounds 7b and 8b. Prepared from 6b (153 mg, 0.23 mmol), C₆₀ (250 mg, 0.35 mmol), I₂ (213 mg, 0.84 mmol) and DBU (0.26 mL, 1.74 mmol) in toluene (500 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 1:1) followed by GPC (Bio-Beads *SX-1*, eluent: CH₂Cl₂) gave **7b** (86 mg, 27%) and **8b** (53 mg, 11%). Data of 7b: Cherry-red glassy solid. IR (neat): 1740 (C=O). UV/Vis (CH₂Cl₂): 251 (102000), 281 (67020), 302 (sh, 54100), 380 (6110), 483 (4500), 564 (sh, 1310). ¹H-NMR (CDCl₃, 300 MHz): 4.58–4.50 (m, 3H), 4.49-4.38 (m, 6H), 4.26-4.18 (m, 3H), 3.59 (t, J=7, 6H), 1.98–1.89 (m, 6H), 1.38 (t, J=7, 9H), 0.89 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): 163.7, 163.4, 147.3, 147.1, 147.0, 146.8, 146.54, 146.50, 146.44, 146.37, 145.98, 144.4, 143.7, 143.4, 143.3, 143.2, 142.9, 141.9, 141.1, 71.0, 70.3, 64.0, 63.5, 59.9, 53.1, 31.8, 26.2, 17.6, 14.3. MALDI-TOF-MS: 1366.2 (M^+ , calc. for $[C_{88}H_{42}O_{15}Si]^+$: 1366.2). Data of 8b: Brown glassy solid. IR (neat): 1740 (C=O). UV/Vis (CH₂Cl₂): 392 (sh, 11100), 408 (sh, 6900), 426 (5600), 481 (5300), 612 (sh, 1200), 689 (300). ¹H-NMR (CDCl₃, 300 MHz): 4.86-4.78 (m, 1H), 4.75-4.67 (m, 1H), 4.63 (t, J=7, 2H), 4.60–4.35 (m, 8H), 4.05 (t, J=6, 2H), 3.89-3.70 (m, 4H), 2.14 (quint, J=6, 2H), 2.07-1.90 (m, 4H), 1.49 (t, J=7, 3H), 1.44 (t, J=7, 3H), 1.43 (t, J=7, 3H), 0.91 (s, 9H). ¹³C-NMR (CDCl₃, 75 MHz): 163.8, 163.7, 163.5, 163.3 (2 C), 148.8, 147.5, 147.4, 147.0, 146.68, 146.64, 146.52, 146.49, 146.3, 146.2, 145.9, 145.7, 145.46, 145.40, 145.32, 145.30, 145.25, 145.17, 145.02, 145.00, 144.93, 144.83, 144.80, 144.77, 144.75, 144.73, 144.69, 144.61, 144.4, 144.3, 144.2, 144.02, 143.97, 143.85, 143.81, 143.76, 143.69, 143.61, 143.56, 143.50, 143.22, 143.20, 143.17, 143.12, 142.57, 142.54, 142.3, 142.2, 142.1, 142.0, 141.9, 141.68, 141.64, 141.4, 141.1, 140.7, 139.87, 139.85, 139.2, 139.0, 138.7, 71.91, 71.83, 71.77, 71.73, 70.64, 64.5, 63.7, 63.58, 63.56, 63.54, 63.3, 60.1, 59.8, 58.7, 54.0, 53.6, 52.4, 51.7, 32.2, 31.9, 31.6, 26.5, 17.7, 14.45, 14.43, 14.37. MALDI-TOF-MS: 2087.2 ($[M+H]^+$, calc. for $[C_{148}H_{42}O_{15}Si+H]^+$: 2087.2).

Compound 7c. Prepared from 6c (159 mg, 0.23 mmol), C₆₀ (250 mg, 0.35 mmol), I₂ (213 mg, 0.84 mmol) and DBU (0.26 mL, 1.7 mmol) in toluene (500 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 1:1) followed by GPC (Bio-Beads SX-1, eluent: CH₂Cl₂) gave 7c (44 mg, 14%). Cherry-red glassy solid. IR (neat): 1747 (C=O). UV/Vis (CH₂Cl₂): 251 (75000), 282 (50900), 302 (sh, 40520), 380 (4600), 482 (3700), 564 (sh, 960). ¹H-NMR (CDCl₃, 400 MHz): 4.52 (dt, J = 11, 7, 3H), 4.35 - 4.47 (m, 6H), 4.09 (dt, J = 11, 7)3H), 3.63 (dtd, J=11, 10, 5, 6H), 1.72 (quint, J=7, 6H), 1.54–1.46 (m, 6H), 1.38 (t, J=7, 9H), 0.92 (s, 9H). ¹³C-NMR (CDCl₃, 100 MHz): 163.5, 163.3, 147.03, 146.95, 146.83, 146.76, 146.6, 146.44, 146.41, 145.9, 144.33, 144.26, 143.8, 143.4, 143.0, 142.7, 142.4, 142.2, 141.1, 71.1, 70.2, 66.5, 63.4, 62.3, 53.1, 30.3, 28.3, 27.1, 26.5, 25.3, 18.0, 14.3. MALDI-TOF-MS: 1408.2 (M⁺, calc. for $[C_{91}H_{48}O_{15}Si]^+$: 1408.3).

Compounds 7d and 9d. Prepared from 6d (1.59 g, 1.77 mmol), C₆₀ (1.50 g, 2.08 mmol), I₂ (1.68 g, 6.62 mmol) and DBU (2.22 mL, 14.8 mmol) in toluene (3 L). Column chromatography (SiO₂; eluent: CH₂Cl₂/ cyclohexane 1:1) followed by slow vapor diffusion in THF/cyclohexane gave 7d (302 mg, 11%) and 9d (30 mg, 1%). Data of 7d: Cherry-red glassy solid. IR (neat): 1746 (C=O). UV/Vis (CH₂Cl₂): 249 (229700), 283 (153200), 305 (sh, 120600), 383 (2700), 479 (1500), 563 (sh, 500). ¹H-NMR (300 MHz, CDCl₃): 7.09 (d, J=8.0, 6H), 6.88 (d, J = 8.0, 6H), 5.51 (d, J = 13, 3H), 5.13 (d, J =13, 3H), 4.49 (d, J=12, 3H), 4.42 (q, J=7, 6H), 4.22 (d, J=12, 3H), 1.37 (t, J=7, 9H), 1.05 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃): 163.8, 163.4, 147.04, 146.99, 146.85, 146.7, 146.6, 146.35, 146.50, 145.9, 144.6, 144.5, 144.2, 143.5, 143.1, 142.5, 142.4, 142.3, 141.1, 140.8, 134.0, 128.3, 126.6, 70.9, 70.2, 68.3, 65.4, 63.5, 53.1, 27.1, 26.4, 18.2, 14.3. MALDI-TOF-MS: 1552.3 (*M*⁺, calc. for [C₁₀₃H₄₈O₁₅Si]⁺: 1552.3). *Data of* **9d**: Purple-red glassy solid. IR (neat): 1745 (C=O). UV/Vis (CH₂Cl₂): 246 (42200), 302 (19300), 407 (sh, 1600), 493 (1500), 574 (sh, 760). ¹H-NMR (400 MHz, CDCl₃): 7.39 (d, J=8, 6H), 7.17 (d, J=8, 6H), 5.96 (d, J=11, 3H), 5.01 (q, J=7, 6H), 4.98 (d, J=11, 3H), 4.52-4.41 (m, 6H), 1.44 (t, J=7, 9H), 1.11 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): 163.7, 148.5, 147.7, 147.2, 146.3, 146.1, 145.8, 145.6, 145.5, 145.2, 145.2, 143.8, 143.1, 143.0, 142.9, 142.1, 141.9, 141.7, 141.4, 138.9, 133.6, 131.3, 124.9, 71.4, 71.0, 68.9, 64.8, 63.5, 50.5, 26.5, 19.4, 14.4. MALDI-TOF-MS: 1552.3 (M^+ , calc. for [C₁₀₃H₄₈O₁₅Si]⁺: 1552.3).

Compound 7e. Prepared from 6e (480 mg, 0.43 mmol), C₆₀ (357 mg, 0.50 mmol), I₂ (399 mg, 1.57 mmol) and DBU (0.51 mL, 3.40 mmol) in toluene (720 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/cyclohexane 1:1) followed by GPC (Bio-Beads SX-1, eluent: CH₂Cl₂) gave **7e** (25 mg, 3%). Cherry-red glassy solid. IR (neat): 1739 (C=O). UV/Vis (CH₂Cl₂): 252 (74070), 281 (42360), 304 (sh, 24700), 483 (2120), 565 (sh, 660). ¹H-NMR (400 MHz, CDCl₃): 7.47 (d, *J*=8, 6H), 7.35 (d, J=8, 6H), 7.31 (d, J=8, 6H), 6.93 (d, J=8, 6H), 5.60 (d, J=13, 3H), 5.12 (d, J=13, 3H), 4.71 (d, J=12, 3H), 4.58 (d, J = 12, 3H), 4.52–4.40 (m, 6H), 1.41 (t, J =7, 9H), 1.15 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): 164.2, 163.6, 148.1, 147.0, 146.8, 146.7, 146.6, 146.4, 146.0, 145.7, 145.2, 144.4, 143.6, 143.4, 141.8, 141.4, 141.2, 141.1, 140.9, 140.0, 139.7, 133.9, 128.6, 128.0, 127.8, 127.1, 71.0, 70.0, 69.0, 65.7, 63.3, 52.8, 27.1, 26.5, 18.7, (*M*⁺, 14.4. MALDI-TOF-MS: 1780.5 calc. for [C₁₂₁H₆₀O₁₅Si]⁺: 1780.4).

Compound 7f. Prepared from 6f (388 mg, 0.43 mmol), C₆₀ (500 mg, 0.69 mmol), I₂ (408 mg, 1.61 mmol) and DBU (0.54 mL, 3.60 mmol) in toluene (1 L). Column chromatography (SiO₂; eluent: CH₂Cl₂/ cyclohexane 1:1) followed by slow vapor diffusion in THF/cyclohexane gave 7f (165 mg, 25%). Cherry-red glassy solid. UV/Vis (CH₂Cl₂): 373 (14600), 468 (6920), 555 (sh, 2120). ¹H-NMR (300 MHz, CDCl₃): 7.28-7.45 (m, 12H), 5.50 (d, J = 12, 3H), 5.34 (d, J = 12, 3H), 4.86 (d, J=13, 3H), 4.67 (d, J=13, 3H), 4.51-4.40 (m, 6H), 1.40 (t, J=7, 9H), 0.94 (s, 9H). ¹³C-NMR (75 MHz, CDCl₃): 164.4, 163.2, 147.3, 146.8, 146.6, 146.4, 146.3, 145.8, 145.7, 144.4, 144.2, 144.1, 143.3, 142.6, 142.4, 141.9, 141.1, 140.8, 139.4, 132.0, 130.8, 130.1, 127.93, 127.87, 70.3, 69.8, 66.4, 63.2, 62.5, 52.4, 26.2, 17.6, 14.3. MALDI-TOF-MS: 1552.3 (*M*⁺, calc. for [C₁₀₃H₄₈O₁₅Si]⁺: 1552.3).

General Procedure for the BF₃-Mediated Cleavage of the Silyl-Protecting Group

 $BF_3 \cdot Et_2O$ was added to a solution of the appropriate fullerene derivative in CH_2Cl_2 and CH_3CN under argon at room temperature and the resulting mixture was stirred overnight. A saturated aqueous NaHCO₃ solution was added, and the aqueous layer was extracted with CH_2Cl_2 . The organic layer was washed with water,

dried with $MgSO_4$, concentrated, and purified as indicated.

Compound 10a. Prepared from 5a (45.0 mg, 0.037 mmol) and BF₃·Et₂O (0.09 mL, 0.74 mmol) in CH₂Cl₂ (4 mL) and CH₃CN (2 mL). Column chromatography (SiO₂, eluent: CH₂Cl₂ to CH₂Cl₂/MeOH 97:3) gave 10a (36.1 mg, 91%). Brown-red glassy solid. IR (neat): 3400 (br, OH), 1739 and 1729 (C=O). UV/vis (CH₂Cl₂): 253 (20110), 308 (sh, 7650), 397 (1380), 410 (sh, 830), 421 (800), 480 (990). ¹H-NMR (400 MHz, CDCl₃): 4.60-4.44 (m, 8H), 4.00-3.91 (m, 4H), 2.26 (s, 1H), 2.09 (s, 1H), 1.45 (t, J=7, 3H), 1.44 (t, J=7, 3H). ¹³C-NMR (75 MHz, CDCl₃): 163.9, 163.8, 163.7 (2 C), 147.9, 147.47, 147.45, 147.36, 146.66, 146.64, 146.33, 146.25, 146.22, 145.8, 145.7, 145.54, 145.51, 145.30, 145.27, 145.21, 144.95, 144.94, 144.89, 144.87, 144.80, 144.57, 144.54, 144.45, 144.44, 144.31, 144.25, 144.23, 143.92, 143.88, 143.81, 143.7, 143.6, 143.4, 143.12, 143.02, 142.95, 142.89, 142.79, 142.2, 142.12, 142.08, 141.74, 141.65, 141.4, 139.3, 138.9, 138.8, 71.60, 71.56, 70.4, 68.7, 68.5, 63.71, 63.68, 60.9, 53.6, 53.5, 51.3, 14.3. MALDI-TOF-MS: 1068.5 (M^+ , calc. for $[C_{74}H_{20}O_{10}]^+$: 1068.1).

Compound **10b**. Prepared from **5b** (96.1 mg, 0.078 mmol) and BF₃·Et₂O (0.19 mL, 1.55 mmol) in CH₂Cl₂ (4 mL) and CH₃CN (2 mL). Column chromatography (SiO₂, eluent: CH₂Cl₂ to CH₂Cl₂/MeOH 96:4) gave 10b (61.2 mg, 72%). Brown-red glassy solid. IR (neat): 3420 (br, OH), 1740 (C=O). UV/vis (CH₂Cl₂): 306 (sh, 21900), 358 (sh, 7930), 397 (2350), 409 (sh, 1550), 421 (1450), 477 (sh, 1620). ¹H-NMR (400 MHz, CDCl₃): 4.58-4.45 (m, 8H), 3.80-3.74 (m, 4H), 2.06-1.98 (m, 4H), 1.96 (broad s, 3H), 1.44 (t, J=7, 3H), 1.43 (t, J=7, 3H). ¹³C-NMR (100 MHz, CDCl₃): 164.0, 163.8, 163.7, 163.6, 147.8, 147.6, 147.4, 146.6, 146.29, 126.26, 146.21, 145.8, 145.7, 145.5, 145.27, 145.25, 145.18, 144.90, 144.88, 144.86, 144.84, 144.76, 144.54, 144.51, 144.47, 144.43, 144.32, 144.28, 144.20, 143.92, 143.89, 143.86, 143.84, 143.60, 143.57, 143.29, 143.13, 143.10, 143.07, 142.7, 142.3, 142.06, 142.04, 141.9, 141.69, 141.67, 141.58, 139.1, 138.84, 138.82, 71.3, 64.34, 64.28, 63.6, 63.5, 59.2, 53.5, 51.3, 31.63, 31.57, 14.3. MALDI-TOF-MS: 1096.1 (*M*⁺, calc. for [C₇₆H₂₄O₁₀]⁺: 1096.1).

Compound **11b.** Prepared from **7b** (252 mg, 0.18 mmol) and $BF_3 \cdot Et_2O$ (0.32 mL, 2.59 mmol) in CH_2CI_2 (4 mL) and CH_3CN (2 mL). Column chromatography (SiO₂; eluent: CH_2CI_2 /MeOH 96:4) gave **11b** (229 mg, 97%). Cherry-red glassy solid. IR (neat): 3390 (br, OH), 1737 (C=O). UV/Vis (CH_2CI_2): 251 (115000), 282 (80000), 304 (sh, 60600), 353 (sh, 16400), 379 (sh,

7000), 485 (5100), 564 (sh, 1500). ¹H-NMR (300 MHz, CDCl₃): 4.56–4.28 (m, 12H), 3.67 (t, J=6, 6H), 2.20 (s, 3H), 1.94 (quint, J=6, 6H), 1.37 (t, J=7, 9H). ¹³C-NMR (75 MHz, CDCl₃): 163.7, 163.5, 147.2, 147.0, 146.9, 146.8, 146.61, 146.57, 146.4, 146.0, 145.8, 144.9, 144.7, 144.4, 143.5, 142.8, 142.7, 142.1, 141.9, 141.1, 71.0, 70.2, 64.1, 63.4, 59.1, 53.0, 31.5, 14.3. MALDI-TOF-MS: 1284.1 (M^+ , calc. for [C₈₄H₃₆O₁₅]⁺: 1284.2).

Compound **11c.** Prepared from **7c** (70 mg, 0.050 mmol) and BF₃·Et₂O (0.1 mL, 0.81 mmol) in CH₂Cl₂ (2 mL) and CH₃CN (1 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/MeOH 96:4) gave **11c** (44 mg, 67%). Cherry-red glassy solid. IR (neat): 3380 (br, OH), 1742 (C=O). UV/Vis (CH₂Cl₂): 251 (121000), 283 (84400), 305 (sh, 62800), 353 (sh, 17400), 380 (6600), 484 (5500), 565 (sh, 1600). ¹H-NMR (300 MHz, CDCl₃): 4.46–4.24 (m, 12H), 3.57 (t, J=7, 6H), 2.01 (s, 3H), 1.82–1.73 (m, 6H), 1.66–1.56 (m, 6H), 1.37 (t, J=7, 9H). ¹³C-NMR (75 MHz, CDCl₃): 163.7, 163.5, 147.3, 147.0, 146.9, 146.7, 146.64, 146.59, 146.4, 145.9, 145.8, 145.0, 144.8, 144.5, 143.6, 142.9, 142.6, 141.9, 141.1, 71.0, 70.3, 67.1, 63.4, 62.2, 53.1, 29.2, 25.1, 14.3.

Compound **11d**. Prepared from **7d** (54 mg, 0.035 mmol) and BF₃·Et₂O (0.1 mL, 0.8 mmol) in CH₂Cl₂ (2 mL) and CH₃CN (1 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/MeOH 96:4) gave **11d** (42 mg, 82%). Cherry-red glassy solid. IR (neat): 3380 (br, OH), 1740 (C=O). UV/Vis (CH₂Cl₂): 251 (120800), 282 (82600), 305 (sh, 63100), 380 (6200), 484 (5300), 567 (sh, 1400). ¹H-NMR (300 MHz, CDCl₃): 7.33 (s, 12H), 5.30 (s, 6H), 4.63 (s, 6H), 4.37 (q, J=7, 6H), 2.22 (s, 3H), 1.30 (t, J=7, 9H). ¹³C-NMR (75 MHz, CDCl₃): 163.4, 147.2, 146.9, 146.8, 146.7, 146.58, 146.56, 146.4, 145.7, 145.6, 144.8, 144.7, 144.4, 143.5, 142.8, 142.6, 141.99, 141.96, 141.7, 141.0, 133.8, 129.2, 127.1, 70.7, 70.1, 68.7, 64.9, 63.4, 52.8, 14.2.

General Procedure for the HF-Pyridine-Mediated Cleavage of the Silyl-Protecting Group

A HF (approx. 70% in pyridine) solution was added to a solution of the appropriate fullerene derivative in THF in a *Teflon* flask under argon at room temperature. After 1 h, silica gel was added, the mixture concentrated, and the crude purified as indicated.

Compound **11a**. Prepared from **7a** (158 mg, 0.12 mmol), hydrogen fluoride pyridine (0.15 mL, approx. 5.77 mmol, hydrogen fluoride *ca*. 70%, pyridine *ca*. 30%) solution in anhydrous THF (10 mL). Column

chromatography (SiO₂; eluent: THF) followed by GPC (*Bio-Beads SX-1*, eluent: CH₂Cl₂) and slow vapor diffusion of hexane in THF gave **11a** (131 mg, 88%). Red glassy solid. IR (neat): 3420 (br, OH), 1740 and 1736 (C=O). UV/Vis (CH₂Cl₂): 251 (sh, 183000), 282 (163000), 305 (sh, 51000), 380 (41000), 480 (5000), 565 (2000). ¹H-NMR (300 MHz, CDCl₃): 4.54–4.30 (m, 12H), 3.85 (t, J=5, 6H), 2.42 (broads, 3H), 1.39 (t, J=7 Hz, 9H). ¹³C-NMR (75 MHz, CDCl₃): 163.6, 163.5, 147.0 (2 C), 146.9, 146.8, 146.62, 146.59, 146.5, 146.2, 145.9, 144.52, 144.48, 144.42, 143.5, 143.1, 142.6, 142.4, 142.1, 141.1, 70.9, 70.1, 68.3, 63.5, 60.7, 52.9, 14.3. MALDI-TOF-MS: 1242.0 (100%, M^+ , calc. for [C₈₁H₃₀O₁₅]⁺: 1242.2).

Compounds 10a and 12a. Prepared from 8a (186 mg, 0.091 mmol), hydrogen fluoride pyridine (0.15 mL, approx. 5.77 mmol, hydrogen fluoride ca. 70%, pyridine ca. 30%) solution in anhydrous THF (5 mL). Column chromatography (SiO₂; eluent: THF/ cyclohexane 3:7 to THF) gave 10a (64 mg, 66%) and 12a (45 mg, 55%). Data of 10a: see above. Data of 12a: Brown glassy solid. IR (neat): 3390 (br, OH), 1733 (C=O). ¹H-NMR (300 MHz, CDCl₃): 4.67–4.63 (m, 2H), 4.58 (q, J=7, 2H), 4.04 (q, J=6, 2H), 2.03 (t, J=6, 1H), 1.51 (t, J=7, 3H). ¹³C-NMR (75 MHz, CDCl₃): 164.0, 163.9, 145.45 (2 C), 145.37, 145.36, 145.30, 145.22, 145.12, 145.07, 144.86, 144.85, 144.83, 144.81, 144.1, 144.0, 143.3, 143.2 (2 C), 143.1, 142.4 (2 C), 142.1, 142.0, 141.2, 141.1, 140.1, 139.5, 138.9, 71.5, 68.8, 63.8, 61.0, 53.6, 14.4. MALDI-TOF-MS: 893.9 (*M*⁺, calc. for $[C_{67}H_{10}O_5]^+: 894.1).$

Compounds 10b and 12b. Prepared from 8b (274 mg, 0.13 mmol), BF₃·Et₂O (0.32 mL, 2.59 mmol) in CH₂Cl₂ (4 mL) and CH₃CN (2 mL). Column chromatography (SiO₂; eluent: CH₂Cl₂/MeOH 96:4) gave **10b** (86 mg, 60%) and **12b** (90 mg, 76%). Data of **10b**: see above. Data of 12b: Brown glassy solid. IR (neat): 3390 (br, OH), 1743 (C=O). UV/Vis (CH₂Cl₂): 258 (107700), 326 (33600), 394 (sh, 4000), 400 (sh, 2900), 414 (sh, 2100), 426 (3450), 488 (1300), 551 (sh, 860), 688 (180). ¹H-NMR (400 MHz, CDCl₃): 4.66 (t, *J*=6, 2H), 4.57 (q, *J*= 7, 2H), 3.86 (t, J=6, 2H), 2.11 (quint, J=6, 2H), 1.66 (s, 1H), 1.49 (t, J=6, 3H). ¹³C-NMR (100 MHz, CDCl₃): 164.0, 163.7, 145.44, 145.40, 145.35, 145.31, 145.28, 145.1, 144.9, 144.8, 144.1, 143.3, 143.19, 143.17, 143.14, 142.4, 142.1, 141.14, 141.12, 139.3, 139.1, 71.7, 64.5, 63.7, 59.3, 52.3, 31.8, 14.4. MALDI-TOF-MS: 908.0 (M⁺, calc. for [C₆₈H₁₂O₅]⁺: 908.1).

Acknowledgements

This research was supported by the Fondation Jean-Marie Lehn and the LabEx "Chimie des Systèmes Complexes". S. G. gratefully thanks the Swiss National Foundation and T. M. N. T. the University of Strasbourg (Idex) for their post-doctoral fellowships. We further thank J.-M. Strub for the mass spectra and E. Wasielewski for the high-field NMR measurements.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Author Contribution Statement

F. S., U. H., S. G., T. M. N. T., D. S., M. H. and I. N. performed all the synthesis and characterization. U. H., M. H. and I. N. analyzed all the data and U. H. prepared the experimental section and the Supporting Information. J.-F. N. performed the molecular modeling, programmed, designed, and coordinated all the scientific activities and wrote the article through contributions of all the authors.

References

- [1] F. Diederich, R. Kessinger, 'Templated Regioselective and Stereoselective Synthesis in Fullerene Chemistry', Acc. Chem. Res. **1999**, *32*, 537–545.
- [2] C. Thilgen, F. Diederich, 'Structural Aspects of Fullerene Chemistry – A Journey through Fullerene Chirality', *Chem. Rev.* 2006, 106, 5049–5135.
- [3] A. Hirsch, 'New Concepts for Regio- and Stereoselective Bis- and Triscyclopropanations of C₆₀', Chem. Rec. 2005, 5, 196–208.
- [4] N. Chronakis, A. Hirsch, 'Macrocyclic malonates. A new family of tethers for the regio- and diastereoselective functionalization of [60]fullerene', C. R. Chim. 2006, 9, 862– 867.
- [5] A. Hirsch, M. Brettreich, 'Fullerenes: Chemistry and Reactions', Wiley-VCH, Weinheim, 2005.
- [6] L. Isaacs, R. F. Haldimann, F. Diederich, 'Tether-Directed Remote Functionalization of Buckminsterfullerene: Regiospecific Hexaadduct Formation', *Angew. Chem. Int. Ed.* 1994, 33, 2339–2342.
- [7] L. Isaacs, F. Diederich, R. F. Haldimann, 'Multiple Adducts of C_{60} by Tether-Directed Remote Functionalization and synthesis of soluble derivatives of new carbon allotropes $C_{n(60+5)}$ ', *Helv. Chim. Acta* **1997**, *80*, 317–342.
- [8] F. Cardullo, P. Seiler, L. Isaacs, J.-F. Nierengarten, R. F. Haldimann, F. Diederich, T. Mordasini-Denti, W. Thiel, C.

Boudon, J.-P. Gisselbrecht, M. Gross, 'Bis- through Tetrakis-Adducts of C_{60} by Reversible Tether-Directed Remote Functionalization and systematic investigation of the changes in fullerene properties as a function of degree, pattern, and nature of functionalization', *Helv. Chim. Acta* **1997**, *80*, 343–371.

- [9] J.-F. Nierengarten, V. Gramlich, F. Cardullo, F. Diederich, 'Regio- and Diastereoselective Bisfunctionalization of C_{60} and Enantioselective Synthesis of a C_{60} Derivative with a Chiral Addition Pattern', *Angew. Chem. Int. Ed.* **1996**, *35*, 2101–2103.
- [10] J.-F. Nierengarten, T. Habicher, R. Kessinger, F. Cardullo, F. Diederich, V. Gramlich, J.-P. Gisselbrecht, C. Boudon, M. Gross, 'Macrocyclization on the fullerene core: Direct regioand diastereoselective multi-functionalization of [60]fullerene, and synthesis of fullerene-dendrimer derivatives', *Helv. Chim. Acta* **1997**, *80*, 2238–2276.
- [11] P. R. Ashton, F. Diederich, M. Gómez-López, J.-F. Nierengarten, J. A. Preece, F. M. Raymo, J. F. Stoddart, 'Self-Assembly of the First Fullerene-Containing [2]Catenane', *Angew. Chem. Int. Ed.* **1997**, *36*, 1448–1451.
- [12] J.-P. Bourgeois, L. Echegoyen, M. Fibbioli, E. Pretsch, F. Diederich, 'Regioselective Synthesis of *trans*-1 Fullerene Bis-Adducts Directed by a Crown Ether Tether: Alkali Metal Cation Modulated Redox Properties of Fullerene–Crown Ether Conjugates', *Angew. Chem. Int. Ed.* **1998**, *37*, 2118–2121.
- [13] E. Dietel, A. Hirsch, E. Eichhorn, A. Rieker, S. Hackbarth, B. Röder, 'A macrocyclic [60]fullerene–porphyrin dyad involving π - π stacking interactions', *Chem. Commun.* **1998**, 1981–1982.
- [14] J.-F. Nierengarten, D. Felder, J.-F. Nicoud, 'Regioselective bisaddition to C_{60} with bis(β -keto esters)', *Tetrahedron Lett.* **1998**, *39*, 2747–2750.
- [15] J.-P. Bourgeois, F. Diederich, L. Echegoyen, J.-F. Nierengarten, 'Synthesis, and Optical and Electrochemical Properties of Cyclophane-Type Molecular Dyads Containing a Porphyrin in Close, Tangential Orientation Relative to the Surface of *trans*-1 Functionalized C_{60} ', *Helv. Chim. Acta* **1998**, *81*, 1835–1844.
- [16] R. Kessinger, C. Thilgen, T. Mordasini, F. Diederich, 'Optically Active Macrocyclic *cis*-3 Bis-Adducts of C₆₀: Regio- and Stereoselective Synthesis, Exciton Chirality Coupling, and Determination of the Absolute Configuration, and First Observation of Exciton Coupling between Fullerene Chromophores in a Chiral Environment', *Helv. Chim. Acta* 2000, *83*, 3069–3096.
- [17] J.-P. Bourgeois, C. R. Woods, F. Cardullo, T. Habicher, J.-F. Nierengarten, R. Gehrig, F. Diederich, 'Hexakis-Adducts of [60]Fullerene with Different Addition Patterns: Templated Synthesis, Physical Properties, and Chemical Reactivity', *Helv. Chim. Acta* 2001, 84, 1207–1226.
- [18] T. M. Figueira-Duarte, A. Gégout, J. Olivier, F. Cardinali, J.-F. Nierengarten, 'Bismalonates Constructed on a Hexaphenylbenzene Scaffold for the Synthesis of *Equatorial* Fullerene Bisadducts', *Eur. J. Org. Chem.* **2009**, 3879–3884.
- [19] T. M. Figueira-Duarte, V. Lloveras, J. Vidal-Gancedo, B. Delavaux-Nicot, C. Duhayon, J. Veciana, C. Rovira, J.-F. Nierengarten, 'Ground State Electronic Interactions in Macrocyclic Fullerene Bis-Adducts Functionalized with

Bridging Conjugated Oligomers', Eur. J. Org. Chem. 2009, 5779-5787.

- [20] L. Đorđević, L. Casimiro, N. Demitri, M. Baroncini, S. Silvi, F. Arcudi, A. Credi, M. Prato, 'Light-Controlled Regioselective Synthesis of Fullerene Bis-Adducts', *Angew. Chem. Int. Ed.* 2021, *60*, 313–320.
- [21] Z. Zhou, D. I. Schuster, S. R. Wilson, 'Selective Syntheses of Novel Polyether Fullerene Multiple Adducts', J. Org. Chem. 2003, 68, 7612–7617.
- [22] M. Riala, N. Chronakis, 'A Facile Access to Enantiomerically Pure [60]Fullerene Bisadducts with the Inherently Chiral *Trans*-3 Addition Pattern', *Org. Lett.* **2011**, *13*, 2844–2847.
- [23] D. Sigwalt, M. Holler, J.-F. Nierengarten, 'A rigid macrocyclic bis-malonate for the regioselective preparation of *trans*-1 and *trans*-3 fullerene bis-adducts', *Tetrahedron Lett.* 2013, 54, 3160–3163.
- [24] A. Hirsch, I. Lamparth, G. Schick, 'Regioselectivity of Multiple Cyclopropanations of C₆₀ and Introduction of a General Bond-Labeling Algorithm for Fullerenes and Their Derivatives', *Liebigs Ann.* **1996**, 1725–1734.
- [25] G. Rapenne, F. Diederich, J. Crassous, A. Collet, L. Echegoyen, 'Regioselective one-step synthesis of *trans-3,trans-3,trans-3* and *e,e,e* [60]fullerene tris-adducts directed by a C₃-symmetrical cyclotriveratrylene tether', *Chem. Commun.* **1999**, 1121–1122.
- [26] A. Kraszewska, P. Rivera-Fuentes, G. Rapenne, J. Crassous, A. G. Petrovic, J. L. Alonso-Gómez, E. Huerta, F. Diederich, C. Thilgen, 'Regioselectivity in Tether-Directed Remote Functionalization – The Addition of a Cyclotriveratrylene Based Trimalonate to C₆₀ Revisited', *Eur. J. Org. Chem.* 2010, 4402–4411.
- [27] F. Beuerle, N. Chronakis, A. Hirsch, 'Regioselective synthesis and zone selective deprotection of [60]fullerene trisadducts with an *e,e,e* addition pattern', *Chem. Commun.* 2005, 3676–3678.
- [28] F. Beuerle, A. Hirsch, 'Synthesis and Orthogonal Functionalization of [60]Fullerene *e,e,e*-Trisadducts with Two Spherically Defined Addend Zones', *Chem. Eur. J.* **2009**, *15*, 7434– 7446.
- [29] A. Gmehling, W. Donaubauer, F. Hampel, F. W. Heinemann, A. Hirsch, 'Invertomers of Fullerenophosphates', Angew. Chem. Int. Ed. 2013, 52, 3521–3524.
- [30] A. Gmehling, A. Hirsch, 'Facile Access to Functional Building Blocks of C_{60} Involving C_3 -Symmetrical Addition Patterns', *Eur. J. Org. Chem.* **2013**, 5093–5105.
- [31] U. Reuther, T. Brandmüller, W. Donaubauer, F. Hampel, A. Hirsch, 'A Highly Regioselective Approach to Multiple Adducts of C₆₀ Governed by Strain Minimization of Macrocyclic Malonate Addends', *Chem. Eur. J.* **2002**, *8*, 2261– 2273.
- [32] N. Chronakis, A. Hirsch, 'Regio- and stereoselective synthesis of enantiomerically pure [60]fullerene tris-adducts with an inherently chiral *e,e,e* addition pattern', *Chem. Commun.* **2005**, 3709–3711.
- [33] M. Riala, N. Chronakis, 'An unexpected stereoisomerism in enantiomerically pure trisadducts of C₆₀ with an inherently chiral *trans*-3,*trans*-3, *addition* pattern', *Chem. Commun.* **2014**, *50*, 1995–1998.
- [34] M. Riala, M. S. Markoulides, E. E. Moushi, N. Chronakis, 'One-pot regioselective synthesis and X-ray crystal structure of a stable [60]fullerene trisadduct with the

e_{edge}, e_{face}, trans-1 addition pattern', *Chem. Commun.* **2011**, 47, 11948–11950.

- [35] S. Guerra, F. Schillinger, D. Sigwalt, M. Holler, J.-F. Nierengarten, 'Synthesis of optically pure [60]fullerene *e,e,e*-tris adducts', *Chem. Commun.* **2013**, *49*, 4752–4754.
- [36] B. Chen, J. J. Holstein, S. Horiuchi, W. G. Hiller, G. H. Clever, 'Pd(II) Coordination Sphere Engineering: Pyridine Cages, Quinoline Bowls, and Heteroleptic Pills Binding One or Two Fullerenes', J. Am. Chem. Soc. 2019, 141, 8907–8913.
- [37] C. García-Simón, M. Garcia-Borràs, L. Gómez, T. Parella, S. Osuna, J. Juanhuix, I. Imaz, D. Maspoch, M. Costas, X. Ribas, 'Sponge-like molecular cage for purification of fullerenes', *Nat. Commun.* **2014**, *5*, 5557.
- [38] W. Brenner, T. K. Ronson, J. R. Nitschke, 'Separation and Selective Formation of Fullerene Adducts within an M^{II}₈L₆ Cage', J. Am. Chem. Soc. **2017**, 139, 75–78.
- [39] V. Leonhardt, S. Fimmel, A.-M. Krause, F. Beuerle, 'A covalent organic cage compound acting as a supramolecular shadow mask for the regioselective functionalization of C_{60} ', *Chem. Sci.* **2020**, *11*, 8409–8415.
- [40] C. Fuertes-Espinosa, C. García-Simón, M. Pujals, M. Garcia-Borràs, L. Gómez, T. Parella, J. Juanhuix, I. Imaz, D. Maspoch, M. Costas, X. Ribas, 'Supramolecular Fullerene Sponges as Catalytic Masks for Regioselective Functionalization of C₆₀', Chem **2020**, *6*, 169–186.
- [41] S. Hasegawa, G. H. Clever, 'Metallo-supramolecular Shell Enables Regioselective Multi-functionalization of Fullerenes', *Chem* **2020**, *6*, 5–7.
- [42] E. Ubasart, O. Borodin, C. Fuertes-Espinosa, Y. Xu, C. García-Simón, L. Gómez, J. Juanhuix, F. Gándara, I. Imaz, D. Maspoch, M. von Delius, X. Ribas, 'A Three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C₆₀', *Nat. Chem.* **2021**, *13*, 420–427.
- [43] S. B. Beil, M. von Delius, 'Supramolecular Approaches for Taming the Chemo- and Regiochemistry of C₆₀ Addition Reactions', Org. Mater. 2021, 3, 146–154.

- [44] S. Guerra, T. M. N. Trinh, F. Schillinger, L. Muhlberger, D. Sigwalt, M. Holler, J.-F. Nierengarten, 'The di-t-butylsilylene protecting group as a bridging unit in linear and macrocyclic bis-malonates for the regioselective multifunctional-ization of C₆₀', *Tetrahedron Lett.* **2013**, *54*, 6251–6257.
- [45] T. M. N. Trinh, F. Schillinger, S. Guerra, E. Meichsner, I. Nierengarten, U. Hahn, M. Holler, J.-F. Nierengarten, 'Regioselective Preparation of Fullerene Bis-adducts from Cleavable Macrocyclic Bis-malonates', *Eur. J. Org. Chem.* 2021, 3770–3786.
- [46] E. Meichsner, F. Schillinger, T. M. N. Trinh, S. Guerra, U. Hahn, I. Nierengarten, M. Holler, J.-F. Nierengarten, 'Regioselective Synthesis of Fullerene Tris-adducts for the Preparation of Clickable Fullerene [3:3]-Hexa-adduct Scaffolds', *Eur. J. Org. Chem.* **2021**, 3787–3797.
- [47] D. Sigwalt, F. Schillinger, S. Guerra, M. Holler, M. Berville, J.-F. Nierengarten, 'An expeditious regioselective synthesis of [60]fullerene *e,e,e* tris-adduct building blocks', *Tetrahedron Lett.* **2013**, *54*, 4241–4244.
- [48] X. Camps, A. Hirsch, 'Efficient cyclopropanation of C₆₀ starting from malonates', J. Chem. Soc. Perkin Trans. 1 1997, 1595–1596.
- [49] A. Hirsch, I. Lamparth, H. R. Karfunkel, 'Fullerene Chemistry in Three Dimensions: Isolation of Seven Regioisomeric Bisadducts and Chiral Trisadducts of C_{60} and Di(ethoxycarbonyl)methylene', *Angew. Chem. Int. Ed.* **1994**, *33*, 437–438.
- [50] F. Djojo, A. Herzog, I. Lamparth, F. Hampel, A. Hirsch, 'Regiochemistry of Twofold Additions to [6,6] Bonds in C₆₀: Influence of the Addend-Independent Cage Distortion in 1,2-Monoadducts', *Chem. Eur. J.* **1996**, *2*, 1537–1547.

Received February 28, 2023 Accepted March 22, 2023