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Abstract 

This research aims to model and compare two strategies for locating new hydrogen refueling 

stations (HRS) in a context of high uncertainty on H2 demand and on the spatial distribution 

of demand points. The first strategy S1 represented by an agent-based model integrating a 

particle swarm optimization metaheuristic consists of finding the best HRS locations by 

adapting to the real evolution of the demand. A second strategy S2 consists in solving a 

classical capacitated p-median problem based on H2 consumption forecasts over a given 

deterministic horizon in order to define in advance p optimal future HRS locations. Assuming 

that the same distributor gradually implements future HRSs in a given area between 2023 and 

2030, both models minimize the sum of travel distances between each demand point and its 

assigned HRS. The results show that during the growth phase of the fuel cell electric vehicle 

(FCEV) market, with two different compound annual growth rates (medium and strong), the 

conservative S1 strategy performs better than S2 as these rates increase. However, while S2 

remains suboptimal throughout the sales growth period, it becomes more effective once 

demand stabilizes. Another finding is that different uniform distributions of H2 demand points 

in the same space have only a small long-term influence on the performance of these two 
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models. This research advises investors to study the influence of different location strategies 

and models on the performance of a final HRS network in a given region. Models can be easily 

configured and adapted to a particular spatial distribution of demand points in a specific 

environment, more flexible H2 production capabilities, or different behaviors of FCEV drivers 

that could be geo-located. 

Keywords 

Fuel cell electric vehicle; hydrogen refueling station; step-by-step location strategy; agent-

based model; particle swarm optimization; p-median model 

 

1. Introduction 

The problem of locating new hydrogen refueling stations (HRSs) is not related to the lack of 

optimization methods and techniques but to the high uncertainty about the sales of fuel cell electric 

vehicles (FCEVs) in the next few years. While waiting for more reliable forecasting models than those 

currently proposed by consulting firms or by researchers [1-5] who focused on the possible 

evolution of the number of private FCEV adopters, the current observation is that the majority of 

FCEVs in circulation in 2023 are public vehicles and so-called captive fleets. This is because to make 

HRSs cost-effective, a sufficient number of FCEVs must be on the road [6]; conversely, the FCEV 

market will only grow if enough HRSs available [7]. Therefore, policymakers and manufacturers have 

often initiated this chicken-and-egg problem by subsidizing these captive fleets. Schwoon [8] advises 

early HRS operators to make their investments before the H2 demand becomes noticeable, 

assuming that automakers can offer competitively priced FCEVs once a core network of HRSs exists. 

During this start-up phase, some research has proposed optimization models for HRS locations 

based on a deterministic demand represented by an initial randomly distributed captive fleet [9-

11]. However, once this cycle is underway, these first HRSs with excess capacity will also provide 

future private FCEVs with an existing infrastructure that will allow them to fuel themselves with 

hydrogen.  

This paper addresses the location problem of new HRSs at the beginning of the growth phase of 

the FCEV market for private adopters and once the captive fleet is established. Knowing that the 

private FCEV market has just started to grow and is expected to reach its mature market phase 

probably in a few decades, two progressive HRS location strategies are modeled taking into account 

different degrees of uncertainty on the volumes of H2 demand to be supplied and on the 

geographical location of the demand points. The objective of this research is to compare a cautious 

investment strategy S1 which consists in locating each new HRS in order to adjust the H2 capacity to 

the uncertain demand with a strategy S2 that chooses to place each HRS on one of the p sites 

calculated by an optimization model which will allow to supply the estimated demand at the end of 

the growth period. S1 also seeks to locate each new HRS in such a way as to absorb the additional 

demand by positioning itself as far away as possible from the other HRSs to cover the territory 

extensively in order to satisfy as many customers as possible and to avoid as much as possible future 

price competition between HRSs ([9] see also [12, 13] proposing the p-dispersion problem that 

maximizes the minimum distance between any pair of facilities). S2 is based on a p-median model 
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[14] which minimizes the sum of the distances between the demand points and their allocated HRS. 

When the number of FCEVs on the road stabilizes, the final locations of the p HRSs should be optimal 

by following S2. S1 is a more conservative strategy in the face of demand uncertainties. It seeks to 

optimize the location of each HRS one after the other, taking the risk that the final location of the p 

HRS is not optimal at the end of the market growth phase. 

The manuscript is organized as follows. Section 2 presents state of the art on the different 

methods and models for locating HRSs and the empirical assumptions made on H2 demand by 

different authors. This review selects and presents two mathematical location models in Section 3. 

Section 4 describes a case study that considers two types of demand uncertainty, one related to 

estimates of the forecasted volume of H2 to be supplied over a given time horizon and the other, 

explained by various possibilities for the geographic distribution of future demand points. Section 5 

compares the performance of the two HRS location models. A conclusion in Section 6 summarizes 

the main results, indicates how this research contributes to the current literature, and presents its 

contribution in decision support for implementing new HRSs in a still uncertain FCEV market. 

2. Literature Review 

2.1 Approaches and Models for Locating Hydrogen Refueling Stations 

In order to position and justify the two models used in this paper, research on HRS location 

published between 2003 and 2022 was first classified into three types of methods and models (see 

Table 1): (i) Empirical research and multi-criteria decision-making models, (ii) Mathematical 

programming models, (iii) Simulation and metaheuristics algorithms. 

Table 1 HRS location approaches and models proposed in the literature. 

Ref. 

Empirical research 

Multi-criteria decision-

making models 

Ref. 
Mathematical 

programming models 
Ref. 

Simulation 

Metaheuristics 

algorithms 

[15] 
Empirical proposals for 

HRS locations 
[16] 

p-center and p-median 

models 
[17] Simulation model 

[18] 

Multi-criteria decision-

making 

Analytic hierarchy 

process 

[19] 
Flow-refueling location 

model 
[20] 

Particle swarm 

optimization 

[21] 
Multi-criteria decision-

making  
[22] 

p-median model 

Flow-refueling location 

model 

[8] Agent-based model 

[23] 

Empirical study 

searching for 

suitable HRS places 

[24] 

Flow-refueling location 

model Mixed-integer 

linear programming 

[25] 

Genetic algorithm  

Greedy algorithm 

Simulated annealing 

algorithm 

[26] 
Fuzzy multi-criteria 

decision-making 
[27] 

Flow-refueling location 

model 
[9] 

Agent-based model 

Particle swarm 

optimization 
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[28] 
Multi-criteria decision-

making 
[29] 

p-center flow-refueling 

location model 
[30] 

Multi-objective 

model 

Particle swarm 

optimization 

  [31] p-median model   

  [32] 

Cost-based model 

Risk-based model 

Population-based 

model 

Goal programming 

model 

[33] 

Analytic hierarchy 

process  

Fuzzy comprehensive 

evaluation method 

Artificial neural 

network model 

  [34] 

Maximum coverage 

model 

p-median model 

  

  [35] 
Lagrange relaxation 

algorithm model 
  

  [36] Set covering model   

  [10] 

Multi-objective model 

Iterative polynomial-

time approach 

  

Empirical research using multi-criteria decision-making methods is positioned in very different 

environments with territorial specificities and a great diversity both in H2 production technologies 

and in the expectations of FCEV drivers located or circulating in specific spaces. For these reasons, 

these empirical approaches in varying contexts are difficult to compare. Optimization models have 

the advantage of using the same mathematical formalism, thus facilitating comparisons, which is 

the aim of our research. Mathematical programming applied to facility location is based on either a 

point demand approach (demand is located at specific locations) or a flow demand approach 

(consumers seek to refuel at an HRS on their way to their final destination). In the case of a point 

demand approach, many authors solve the p-median or minimum problem or the covering problem 

[37]. In a demand-flow approach, the models seek to optimally locate HRSs along the routes taken 

by FCEVs [19]. Of these works searching for the best HRS locations, only Upchurch & Kuby [22] 

compared the performances of two HRS location models. Their research showed that HRS located 

by the flow-refueling model generally perform better on the p-median objective than HRSs located 

by the p-median model on the flow-refueling objective. Moreover, the optimal locations for the 

flow-refueling model tend to be much more stable as p increases than those located by the p-

median model. 

Our research aims to compare the classical p-median model which is NP-hard with a particle 

swarm optimization (PSO) metaheuristic approach [38] formulated within the framework of an 

agent-based model [39] that is easily parameterized and capable of incorporating nonlinear 

constraints, if needed, in practical applications. PSO is a population-based metaheuristic based on 

the collaboration of individuals (particles) between them and on the concept of self-organization. 

The particles progressively converge towards a global minimum corresponding to an HRS's best 

location by setting simple displacement rules. 
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2.2 Assumptions Made About H2 Demand 

The models for locating HRSs in a given space use data on the H2 volume that needs to be supplied 

and the spatial distribution of the demand points. The assumptions made by the various authors 

regarding these data are either deterministic or stochastic. Some research relies on estimates of H2 

consumption histories in regions [31-33] and explanatory statistical models [40]. Many works 

estimate H2 demand based on actual geographic information system (GIS) data showing the location 

of existing road structures and gas stations. Some also rely on FCEV private owners’ spatial 

distribution and typology in a given area [3, 4, 12-16, 22, 27, 29, 33, 39]. However, predicting FCEV 

sales is difficult and complex due to the unavailability of past data. To overcome this problem, some 

researchers use the Bass adoption and diffusion model [27] or discrete choice models [41]. Other 

researchers model demand uncertainty using fuzzy concepts [35, 36] or a scenario-generating 

stochastic model for FCEV demand based on vehicle driving behavior and different FCEV models 

[42]. Some work also considers distance or travel time uncertainties and solves a stochastic p-

median problem [38-40]. Berman and Drezner [43] develop a progressive p-median model under 

uncertainty which assumes that demand will increase uniformly at all demand points, leading to the 

implementation of new facilities. Also, in a case study of emergency service location, Shetab-

Boushehri et al. [44] introduce uncertainty in the location of demand points by estimating the 

number of requests for assistance based on a history of the number of calls per point in the study 

area.  

This literature review has highlighted various approaches and methods for solving HRS location 

problems showing their applicability in many real cases. However, the numerical results often 

depend on the hypotheses formulated to estimate the H2 demand, which leads us to direct our 

research toward a comparison of two optimization models. Using the same dataset, their reciprocal 

results will be compared by subjecting them to uncertainties in both the volume of H2 demand (U1) 

and the randomness of the spatial distribution of demand points (U2). 

3. Model Description 

This section is organized as follows.  

Subsection 3 presents two location optimization models: 

- The first formal model of the step-by-step strategy S1 is a gradual and cautious approach to 

implementing HRSs during the growth phase of the H2 demand (see §3.1.1). 

- The second model represents the strategy S2 of optimizing the location of p HRSs needed to 

meet total demand at the end of a given period T. Each HRS is located incrementally as the 

volume of demand increases only among one of the p possible optimal locations (see §3.1.2). 

Subsection §3.2 presents the global model integrating the two optimization models. It evaluates 

the performance from t = 1 to T through the cumulative distances between the demand points to 

be supplied by the nearest available HRS. 

Subsection §3.3. outlines the model parameters representing demand uncertainties. 
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3.1 HRS Location Optimization Models 

3.1.1 Step-By-Step Location Model S1 

This strategy aims to satisfy as many clients as possible by creating a network of HRSs that is as 

extensive as possible to avoid concentrating supply in the center of a territory. By dispersing the 

HRSs as much as possible, it will also limit the effect of subsequent price competition between HRSs. 

An agent-based model and a PSO algorithm are developed seeking on the one hand to disperse 

these HRSs as best as possible (i.e., seeking to maximize the sum of distances between all pairs of 

HRSs) and on the other hand to locate them as close as possible to a sufficient number of customers 

in order to ensure the return on investment (as proposed by [44] by setting profitability thresholds 

required by investment in HRSs). In the model, HRSs gradually reach a saturation point as H2 demand 

increases. 

Agent-Based Model. The model is based on the following principle: 

- Each cell in the square region R under study represents the possible placement of an agent. 

- The locations of the H2 demand points (passive agents) are randomly positioned in R.  

- A first HRS (passive agent) is positioned in the center of the square. 

- n active agents (PSO particles) are generated and randomly placed in R. 

To implement each new HRS step-by-step, the model compares the distances between the 

demand points and each HRS and tries to implement the new HRS as far as possible from the existing 

HRSs.  

Local Search Heuristics. The heuristic is based on the PSO algorithm which initiates the movement 

of the particles step-by-step based on three components: their current velocity V, their best 

solution, and the best solution obtained in their neighborhood. Each particle representing a possible 

location of the new HRS, will attract a demand point only if the distance is smaller than the distance 

of the already installed HRSs. As long as the number of FCEVs to be served is less than the minimum 

number of FCEVs to ensure a good return on investment of the new HRS, the PSO algorithm searches 

for a location by moving closer to another HRSs. The model stops when the number of FCEVs 

choosing the new HRS is sufficient and the other HRSs do not exceed their maximum capacity. 

PSO Pseudo-Code. Each HRS location has a quality determined by the objective function to be 

minimized, corresponding to the total cumulative distance between all demand points and the HRS. 

The algorithm consists of five steps described below: 

1. Each particle k has a current position (Xk, Yk) in R, a given velocity Vk. Its best position is stored 

at coordinates (BXk, BYk). All particles know the particle g that found the best location, so that 

(BXg, BYg) is the best possible location among all. 

Xk: = BXk and Yk: = BYk //initial position of the best location. 

BXg: = Xh and BYg: = Yh //position of a particle h chosen at random among the n particles. 

2. The velocity and position of the particles evolve according to the following rules: 

Vk' := ωVk + φ1 ((BXk - BYk)2 + (Xk - Yk)2)1/2 + φ2((BXg - BYg)2 + (BXk - BYk)2)1/2 

where ω is an inertia parameter, φ1 and φ2 are random numbers uniformly distributed in [0, 

2]. 
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Xk’ := Xk + Vk' 

Yk’ := Yk + Vk' 

3. Calculate the cumulative Euclidian distance Z between the particle located in (Xk’, Yk’) which 

corresponds to a possible interesting HRS location and all the nearest customers who will 

travel to fill up with H2 (within the capacity of this HRS). 

4. For k: = 1 to n. 

if Z(Xk’, Yk’) :< Z(BXk, BYk) then Z(BXk, BYk) := Z(Xk’, Yk’) end if 

if Z(BXk, BYk) :< Z(Xg, Yg) then Z(Xg, Yg) := Z(BXk’, BYk’) end if 

Next k 

5. Back to step 1, the algorithm stops after a fixed number of iterations. 

3.1.2 Location Optimization Model S2 

The problem of the capacitated p-median problem is solved based on a deterministic stable 

demand Dmax corresponding to the end of the growth cycle of the FCEV market at the end of a 

period T. From the set of possible locations of HRSs on the same region R, the model will have to 

search for the optimal location of p HRSs that will be able to supply the total demand Dmax to 

minimize the sum of the distances between each point of demand and its assigned HRS, knowing 

that each HRS is limited in capacity and will therefore be able to serve only a limited number of 

FCEVs. This problem is solved according to [45] who propose an algorithm using Lagrangian 

relaxation, to group n entities into p mutually exclusive and exhaustive groups where the capacity 

of each group is limited. Once the p locations of the HRSs are fixed, each new HRS will be chosen 

only from one of the p optimal locations. As in the S1 strategy, the HRSs gradually reach a saturation 

point as the H2 demand increases. 

Mathematical Formulation of the Capacitated p-median. The goal is to determine the location of 

p HRSs in an r × r grid space R with r2 candidate locations to satisfy a set of Dmax demand points 

(i.e., the location of Dmax FCEVs). 

Knowing that each HRS can only supply a limited number of FCEVs and that each customer is only 

assigned to one HRS, the problem consists in minimizing the sum of the distances between each 

demand point and its allocated HRS. 

Minimize Z := ∑ ∑  𝑟2

𝑗=1
𝐷𝑚𝑎𝑥
𝑖=1 aij dij 

where i := 1, 2, …, Dmax is the set of demand points, j = 1, 2, …, r2 the set of possible locations of the 

p medians, m the same H2 volume demand for each customer i, K the same capacity of each HRS j, 

dij :≥ 0 the distance between an FCEV i and an HRS j and the decision variable. 

𝑎𝑖𝑗 ∶= {
1, if a FCEV 𝑖 is assigned to the HRS 𝑗
0, otherwise                                              

 

s.t. 
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∑ 𝑎𝑖𝑗𝐷𝑚𝑎𝑥
𝑖=1  := 1, j = 1, 2, …, r2 // Constraints which impose that each FCEV is assigned to one and 

only one HRS. 

∑  𝐷𝑚𝑎𝑥
𝑖=1 m aij :≤ K, j := 1, 2, …, r2 // Constraints that prevents exceeding a maximum HRS capacity. 

∑ ∑  𝑟2

𝑗=1
𝐷𝑚𝑎𝑥
𝑖=1 aij = p // Constraint to ensure that p medians will be located. 

aij ∈ {0, 1} ∀ i, j // Integer constraint. 

3.2 Global Model Assessing the Performance 

3.2.1 Pseudocode 

Input 

T := Time to reach the maturity threshold of the FCEV market. 

T := Discrete time increasing between 0 and T with a step dt of one day. 

K := Market growth scenario, k = 1 (average sales growth) or k = 2 (strong sales growth). 

Dk(t) := Number of FCEVs to be served in H2 per day following a market evolution curve for each 

scenario k. 

Dmin := Initial number of FCEVs (Dk(t) := Dmin). 

Dmaxk := Stable demand to be satisfied in the mature market phase (Dmaxk := Dk(T)). 

CAGR := Compound annual growth rate. 

// Each scenario k represents a possible evolution of the demand curve Dk(t) during the market 

growth phase, which is assumed to evolve exponentially. Different possible CAGR values 

correspond to the first uncertainty U1 on demand. At the end of a period T corresponding to the 

beginning of the maturity phase of the FCEV market, Dk(T) will reach a stable demand Dmaxk of 

H2 to be supplied per day.  

// In addition, the model also considers the daily demand Dk(t) is randomly and uniformly 

distributed between 0 and T in the same bounded space R which allows us to simulate an 

uncertainty U2 on the location of the demand. 

K := Maximum HRS capacity in kg H2/day. 

m := Mass of H2 in kg at a pressure of 200 bars to refuel an FCEV with a three-quarter empty tank. 

// It is assumed that FCEVs drive through the region R daily and decide to refill their tanks as soon 

as the fuel gauge is at ¼  level. Depending on where they are when the gauge reaches this level, 

they will seek to refuel at the nearest HRS. 

Other variables 

Nmaxk := Total number of HRSs installed at the end of the growth period (Nmaxk = Nk(T)). 

Nk (t) := Number of HRSs at time t. 

dij := Distance between FCEV i and HRS j. 

Output 

Zk(t) := Sum of the distances between HRS i and FCEV j at time t for each scenario k. 

TDk(t) := Cumulative distance traveled by FCEVs at time t to refuel at the nearest HRS for each 

scenario k. 
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Procedure 

For each scenario k of demand evolution (k := 1 or 2). 

Dk(0) := Dmin // The initial number of FCEVs. 

TDk(0) := 0. 

Nk(0) := 1 // A first HRS is located in the middle of the region R. 

Nmaxk := [mDmaxk/K] 

For t := 1 to T step dt := 1 (every day). 

Dk(t) := (1 + CAGR) Dk(t - 1) 

if mDk(t) :> K then 

// For k := 1, search for the best location of a new HRS following the strategy S1 and 

allocating the demand nodes i to the HRS j (see the model description in §3.1.1).  

// For k := 2, since p := Nmax2 optimal HRS locations are already computed by the model 

S2 (see §3.1.2), only the N2(t) HRSs closest to the current D2(t) customers at time t will 

be selected from p := Nmax2. 

N2(t) := N2(t) + 1 

// Whenever the total volume of demand Dk(t) exceeds the capacity supplied by the 

already installed HRSs, a new HRS will be installed for k := 1 or chosen among the   

(Nmax2 – N2(t)) HRSs not yet selected for k := 2. 

end if. 

// Calculate the sum of the distances between FCEV i and HRS j. 
Zk(t) := (∑  𝑖=1,𝑁𝑘(𝑡) ∑   

𝑗=1,𝐷𝑘(𝑡) dij). 

// Calculate the cumulative distances. 

TDk(t) := TDk(t) + Zk(t). 

Next k 

3.3 Model Parameters Representing Demand Uncertainties 

The parameter CAGR allows the simulation of different exponential growths in demand and 

represents the uncertainty U1 on the number Dk(t) of FCEVs to be served in H2. 

Dk(t) := (1 + CAGR) Dk(t-1) with Dk(0) = Dmin. 

The uncertainty U2 corresponding to the location of the demand points in the space R is 

simulated using a random number generator which modifies the spatial distribution according to 

the same 2-dimensional uniform distribution law each time. 

4. Case Study 

4.1 Modeling Assumptions 

The research’s various assumptions about future H2 demand are presented in §2.2. are mostly 

validated in the context of a specific environment such as a city, region or bounded territory. In this 

case study, a theoretical space has been chosen in which the demand points are randomly 

distributed. Numerous estimates of FCEV sales are also published regularly in the trade press, 

showing large differences in both the projected medium- and long-term FCEV fleet and the number 
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of HRSs to be expected1. Three research firms have conducted market studies to estimate global 

FCEV sales between 2023 and 20312 assuming growth takes place at an exponentially compounded 

annual rate (CAGR)3. On this basis, two scenarios were proposed, presented in Table 2. 

Table 2 Projected FCEV sales growth rates between 2023 and 2031. 

Scenarios CAGR 

k = 1 0.4432 

k = 2 0.595 

It was also assumed that at the beginning of 2023, the initial H2 demand Dk(0) = 9 FCEVs to be 

served per day and that only one HRS was already implemented. Depending on the CAGR values for 

each scenario k, the final demand at the end of 2031 would be Dmax1 = 160 or Dmax2 = 360 FCEVs 

to serve per day. The graph in Figure 1 represents the daily evolution of demand D1(t) which 

corresponds to "average" sales growth and D2(t) to higher sales growth between t = 0 (the year 

2023) and T = 2920 days (the year 2031). 

 

Figure 1 Number of FCEVs per day to be supplied with H2 from 2023 to 2031. 

It is considered in this study that HRSs have the same capacity and are implemented by the same 

distributor without price competition. A station that uses H2 in the form of gas, has a maximum 

capacity K = 200 kg/day. It is also assumed that an FCEV (excluding taxis and professional vehicles) 

travels on average 36 kms per day and based on the average consumption of Mirai or Nexo-type 

cars of 0.80 kg H2 per 100 km, this would correspond to an average consumption per day of 0.29 

kg/day/FCEV. Since the range is about 600 kms and each FCEV will head to an HRS to refuel as soon 

as it has covered 450 kms (¼  gauge left), each FCEV will go on average to refuel every 12.5 days. 

Knowing that the content of the tank of a sedan-type FCEV is about 5.8 kg H2, the filling of H2 

corresponds to about 4.36 kg. An HRS can therefore serve a maximum of 45 FCEV per day. This 

 
1 https://www.transportenergystrategies.com/2022/05/03/hydrogen-targets-v-actual-sales-theres-a-gap/ 
https://www.degruyter.com/document/doi/10.1515/eng-2021-0039/html  
2 Frost & Sullivan, July, 2015 https://www.frost.com/frost-perspectives/fuel-cell-electric-vehicles-genesis-new-era-or-
myth-busting-new-energy-vehicle-technology 
Precedence Research, May, 2022 https://www.precedenceresearch.com/press-release/fuel-cell-market 
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means that if Dmax1 = 160 or Dmax2 = 360, the total number of FCEVs on the same territory R at 

time T = 2920 days will be 2,000 for scenario k = 1 or 4,500 FCEVs for k = 2. Moreover, it is assumed 

that an HRS can serve about 40 FCEVs per day, i.e., 40 × 4.36 = 174 kgs of H2 (for a theoretical 

capacity of 200 kg/day). 

4.2 Experimentation Protocol 

The region R is represented by a square of 3.6 km side length. The performance of the two models 

is compared based on the Euclidean distances traveled between each demand point and its assigned 

HRS. The uncertainty U1 on the volume of forecasted demand in H2 is represented by the two 

scenarios k. The uncertainty U2 on the geographical location of demand points is simulated by 

randomly distributing demand points in the region R (by using a uniform distribution on the two-

dimensional set). 

To model the strategy S1, a 36 × 36 gridded space is developed using the NetLogo 6.3.0 

programmable multi-agent modeling environment [46]. This square space contains 576 cells 

corresponding to all possible locations of the agents (H2 demand points or HRSs) whose number 

progresses in time according to the chosen scenario k until reaching Dmaxk. 

To model S2, the IBM ILOG CPLEX 12.9 solver is chosen to solve the capacitated p-median 

problem. 

5. Results and Discussion 

The performance of the two strategies is compared as a function of the uncertainty U1 on 

estimated FCEV sales between 2023 and 2030 (§5.1). Then, the influence of the uncertain 

distribution of demand points U2 in the studied space R (§5.2) and the limitations of this research 

(§5.3) are presented. 

5.1 Influence of Demand Uncertainty U1 on the Optimized HRS Locations 

For each scenario k of possible demand evolution (cf. uncertainty U1), the following figures show 

the locations of HRSs (represented by a black square in the grid) as a function of the number of 

FCEVs (small black cars in the grid) randomly distributed in the space R. 

Following S1 strategy, Figure 2 shows different final locations of 4 HRSs at the end of period T for 

an average sales growth of the FCEVs market (k = 1) and Figure 3 the suggested location of 9 HRSs 

in case of strong sales growth (k = 2). 
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Figure 2 Step-by-step location strategy S1 for the scenario k = 1 of average sales growth. 

 

Figure 3 Step-by-step location strategy S1 for the scenario k = 2 of strong sales growth. 

Figure 4 and Figure 5 show the evolution of the location of HRSs during the period from 0 to T 

for each scenario k by choosing the optimal S2 location strategy based on a forecasted demand 

Dmax at t = T. 

 

Figure 4 p-median location strategy S2 for the scenario k = 1 of average sales growth. 
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Figure 5 p-median location strategy S2 for the scenario k = 2 of strong sales growth. 

Figure 6 shows the differences in performance between S1 and S2 calculated by summing the 

distances between each demand point and its assigned HRS for each scenario k. It can be seen that 

S1 is more interesting during the period of growth of the FCEVs fleet until T whatever the scenario 

k of sales evolution. The stronger the growth, as for k = 2, the more interesting the performance of 

S1 is during this period but the gap is rapidly reduced until T = 2.920 days (8 years). After the growth 

period, if the market stabilized with an average daily demand Dmaxk, it is found that for k = 2, S2 

aiming at the optimal location of HRSs, becomes very quickly more interesting than S1 from 2,930 

days. In contrast, if the demand grew less quickly, S2 becomes more interesting only from 3,100 

days. 
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Figure 6 Differences in performance between S1 and S2 location strategies. 

Figure 7 shows the cumulative distances and indicates that after about 4,000 days or nearly 3 

years after the end of market growth (T = 8 years) that S2 will be more attractive than S1 for both 

scenarios k = 1 and k = 2. 

 

Figure 7 Cumulative differences in performance between S1 and S2 location strategies. 

5.2 Influence of Demand Uncertainty U2 on the Optimized HRS Locations 

To study the influence of future demand point locations, several scenarios are simulated by 

randomly distributing them according to a two-dimensional uniform distribution in the same region 

R. Figure 8 shows the coefficients of variation in % (ratio of the standard deviation to the mean) of 

the total distances calculated by the two models S1 and S2 for about 100 demand point location 

scenarios. It can be seen that whatever the random distribution of demand in R, the gap 

progressively decreases by about 17% to reach 5% after T = 8 years, which shows that over a fairly 

long period, the different possible locations of the demand points have an influence on the 

performance of the S1 or S2 strategic choices of HRS locations that decreases with time. 

 

Figure 8 Differences in the distances computed by S1 and S2 as a function of the random 

locations of FCEVs in R. 
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5.3 Research Limitations 

5.3.1 Limitations on the Assumptions Made About Demand 

The demand points were distributed in space following a uniform distribution. Empirical studies 

on the routes of FCEVs, on the location of households and other factors such as age and income (see 

references in §2.2) could allow a more realistic statistical distribution of future H2 demand points. A 

flow demand approach could also be proposed by identifying trips by cars seeking to refuel at an 

HRS on the way to their final destination. 

It is also assumed that the market evolves exponentially to reach a demand Dmax at the end of 

a long period T. The logistic function, an S-shaped curve is more common to illustrate the 

progression of the diffusion of an innovation. 

The S2 strategy is very sensitive to sales forecasts because it assumes a stabilization of the market 

at the end of a given period in order to determine p optimal locations. 

5.3.2 Limitations on the Assumptions Made About the HRS Capacity 

In our models, each HRS has the same capacity K of up to 200 kg H2/day which can be obtained 

for example, by steam methane reforming with CO2 capture and storage. However, new production 

technologies are also available, such as green hydrogen produced from renewable energy and water 

electrolysis [35, 47, 48] which has become a good alternative for the energy transition and provides 

greater capacity diversity and flexibility. 

6. Conclusion 

There is still a great deal of uncertainty about the evolution of the number of private FCEV 

adopters, which explains the difficulty of locating HRSs on such uncertain grounds. Our models can 

provide an answer to a concrete question for investors: should they adopt a conservative strategy 

S1 to optimize the location of a new HRS as soon as real demand justifies it, or should they choose 

to locate each HRS in one of the p optimal locations calculated a priori from forecasted demand 

over a given time horizon (cf. S2 strategy). The observed results show that S1 is preferable to S2 the 

higher the market growth rate, which might encourage decision makers to choose S1 in the event 

of high uncertainty about FCEV sales. Conversely, the higher the growth rate, the more quickly the 

S2 strategy will become profitable once the market matures. On the other hand, the suboptimal 

choice S1 would probably lead to a spatial readjustment of HRSs in the future with the resulting 

economic losses. 

This research can also enrich the current literature by comparing the performance of two 

location models based on the same dataset with two types and levels of demand uncertainties 

(uncertainties on the volume of H2 to supply and on the spatial distribution of customers). 

Furthermore, an agent-based approach incorporating optimization metaheuristics is also not, to our 

knowledge, widely used in current research to solve facility location problems (see [49]). It allows 

to easily represent a given space and the interactions between the agents, which is complex or even 

impossible using mathematical programming. 
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7. Research Outlooks 

To foster the transition to carbon neutrality, new HRS technologies can also help increase the 

flexibility of H2 production capacities to enrich our models. It is quite possible to consider a variable 

capacity Kj for each HRS j that will be arbitrarily and a priori fixed by the decision makers and that 

the p median model will try to locate as well as possible. In addition, it is possible to solve a bi-

objective optimization problem aimed at defining the number p of HRSs to be launched and to 

estimate Kj for each HRS j = 1, 2, … p (see [50]). The consideration of other factors can also be 

integrated into the models after a study of FCEV drivers' behaviors in their choice of a station and 

the distances they travel when they decide to fill up (with an appropriate metric). Spatial 

representations of demand points can be based on GIS data. 
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