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The Solution Path of SLOPE

The SLOPE estimator has the particularity of having null components (sparsity) and components that are equal in absolute value (clustering). The number of clusters depends on the regularization parameter of the estimator. This parameter can be chosen as a trade-off between interpretability (with a small number of clusters) and accuracy (with a small mean squared error or a small prediction error). Finding such a compromise requires to compute the solution path, that is the function mapping the regularization parameter to the estimator. We provide in this article an algorithm to compute the solution path of SLOPE and show how it can be used to adjust the regularization parameter.

Introduction

The SLOPE estimator (Sorted L One Penalized Estimator [START_REF] Bogdan | Slope-adaptive variable selection via convex optimization[END_REF][START_REF] Zeng | Decreasing weighted sorted 1 regularization[END_REF]) is defined as a solution to the following convex program:

min b∈R p 1 2 y -Xb 2 2 + γ p i=1 λ i |b| ↓i (1) 
where λ 1 > 0, λ 1 ≥ • • • ≥ λ p ≥ 0 is a given sequence of penalty parameters, γ > 0 is the regularization parameter and |b| ↓1 ≥ • • • ≥ |b| ↓p ≥ 0 are the sorted components of b in absolute value.

The SLOPE estimator generalizes both the LASSO estimator (Least Absolute Shrinkage and Selection Operator [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]) for which λ 1 = • • • = λ p = 1, and the OSCAR estimator (Octagonal Shrinkage and Clustering Algorithm for Regression [START_REF] Howard | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar[END_REF]) for which the sequence λ 1 , . . . , λ p is arithmetic. Note that the penalty term of OSCAR satisfies

p i=1 λ i |b| ↓i = λ p b 1 + λ1-λ2 2 
1≤i<j≤p (|b i +b j |+|b i -b j |), thus OSCAR is a particular generalized LASSO [START_REF] Ryan | The solution path of the generalized lasso[END_REF]; however, in broad generality SLOPE is not a particular generalized LASSO (as proved in supplementary material).

The SLOPE estimator is gaining popularity among statisticians due to its relevant properties such as minimax rates of the estimation and prediction errors [START_REF] Pierre C Bellec | Slope meets lasso: improved oracle bounds and optimality[END_REF][START_REF] Su | Slope is adaptive to unknown sparsity and asymptotically minimax[END_REF], false discovery rate control [START_REF] Bogdan | Slope-adaptive variable selection via convex optimization[END_REF] and dimension reduction of the regression model. The latter property comes from the structure of the solutions to the optimization problem [START_REF] Taylor | Efficient implementations of the generalized lasso dual path algorithm[END_REF], which have null components (sparsity) as well as components equal in absolute value (clustering) [START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF][START_REF] Figueiredo | Ordered weighted l1 regularized regression with strongly correlated covariates: Theoretical aspects[END_REF][START_REF] Howard | Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar[END_REF]. In particular, the sparsity and clustering properties of SLOPE are clear when X is an orthogonal matrix since, in this case, the solution to problem (1) is explicit [START_REF] Bogdan | Slope-adaptive variable selection via convex optimization[END_REF][START_REF] Dupuis | Proximal operator for the sorted 1 norm: Application to testing procedures based on slope[END_REF][START_REF] Skalski | Pattern recovery and signal denoising by slope when the design matrix is orthogonal[END_REF][START_REF] Patrick | Simple expressions of the lasso and slope estimators in low-dimension[END_REF]. When y represents the random response of a linear regression model, sparsity has a well-known statistical interpretation: identification of relevant explanatory variables. Clustering also has a statistical interpretation when the design matrix X is standardized: the explanatory variables having the same regression coefficient have the same impact on the response [START_REF] Dhruv | Consistent group identification and variable selection in regression with correlated predictors[END_REF]. On the other hand, without restriction on the design matrix, for a categorical variable having different levels, the equal regression coefficients represent levels that can be grouped together [START_REF] Benjamin G Stokell | Modelling high-dimensional categorical data using nonconvex fusion penalties[END_REF][START_REF] Maj-Kańska | Delete or merge regressors for linear model selection[END_REF].
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Therefore, SLOPE estimator can identify relevant explanatory variables, group explanatory variables having the same impact on the response and, more generally, reduce the dimension of the regression model.

The solution path gives the solution of a penalized optimization problem with respect to the regularization parameter γ > 0. For instance, the solution path of the LASSO shows that the number of explanatory variables selected by this estimator tends to decrease when the regularization parameter becomes large (see e.g. [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF][START_REF] Rosset | Piecewise linear regularized solution paths[END_REF]) and computing this path is useful to select the regularization parameter. Similarly, the solution path of SLOPE shows that the number of clusters of explanatory variables selected by this estimator tends to decrease when the regularization parameter becomes large. Moreover computing this path is useful to adjust the regularization parameter by minimizing, for instance, the Stein Unbiased Risk Estimate (SURE) formula [START_REF] Charles M Stein | Estimation of the mean of a multivariate normal distribution[END_REF] or the sum of residual squares on a validation set.

The generalized lasso dual path algorithm [START_REF] Ryan | The solution path of the generalized lasso[END_REF], implemented in the genlasso R package [START_REF] Taylor | Efficient implementations of the generalized lasso dual path algorithm[END_REF], allows to compute the solution path of the generalized LASSO and therefore of OSCAR but not of SLOPE in broad generality; moreover it requires ker(X) = {0}. Two articles focus on the solution path of OSCAR: the starting point of their respective algorithm is the ordinary least squared estimator (thus requiring ker(X) = {0}) in [START_REF] Takahashi | Efficient path algorithms for clustered lasso and oscar[END_REF], and a numerical solution of OSCAR in [START_REF] Gu | Groups-keeping solution path algorithm for sparse regression with automatic feature grouping[END_REF]. A recent preprint [START_REF] Nomura | An exact solution path algorithm for slope and quasi-spherical oscar[END_REF] addresses the solution path of SLOPE, under the assumption ker(X) = {0} to guaranty the uniqueness of the solution and to use the ordinary least squares estimator as a starting point; it gives no theoretical results on the solution path (such as its continuity, the proof that it is piecewise linear, the characterization of its affine components).

In this article, for sequences of penalty parameters λ 1 > • • • > λ p > 0, we prove that the solution path of SLOPE is continuous and piecewise linear on (0, +∞), we characterize its affine components, and we provide an algorithm to compute the exact solution path of SLOPE. Our algorithm does not require neither ker(X) = {0} nor to solve SLOPE with an external solver. We dedicate a section to numerical experiments on real data sets to illustrate: the computation of SLOPE solution paths; the exact minimization of SURE for SLOPE (pointing out differences with the LASSO estimator); the performance of our algorithm compared to genlasso to compute the OSCAR solution path; the performance of our algorithm compared to the algorithms considered and implemented in [START_REF] Larsson | Coordinate descent for slope[END_REF] to compute the SLOPE solution for a single regularization parameter γ.

Basic notions on SLOPE

Unlike the 1 norm, in broad generality the sorted 1 norm is not separable (the sorted 1 norm cannot be written as a sum of functions of its components). As a result, it is much more challenging to study the SLOPE optimization problem than the LASSO optimization problem. For instance the gradient X (y -X β lasso ) of the sum of residual squares at the LASSO solution β lasso gives indications on null components of this estimator. Indeed, |X i (y -X β lasso (γ))| < γ implies β lasso i (γ) = 0. Unfortunately, because the sorted 1 norm is not separable, determining null components based on the the gradient X (y -X β) of the sum of residual squares at the SLOPE solution β is not straightforward (determining non-null clusters is also difficult). The important notions introduced hereafter allow to overcome this difficulty.

Sorted 1 norm and its dual norm Definition 1

The sorted 1 norm associated to λ ∈ R p with λ 1 ≥ • • • ≥ λ p ≥ 0 and λ 1 > 0 is defined as follows:

J λ (b) = p i=1 λ i |b| ↓i , b ∈ R p ,
where |b| ↓1 ≥ . . . ≥ |b| ↓p are the sorted components of b with respect to the absolute value.

Given a norm • on R p , we recall that its dual norm

• * is defined by v * = max{b v : b ≤ 1}, for v ∈ R p .
Remark 1 The dual sorted 1 norm has an explicit expression given in [START_REF] Negrinho | Orbit regularization[END_REF] and reminded hereafter:

J * λ (v) = max v (1) λ 1 , v (2) 
2 i=1 λ i , . . . , v (p) p i=1 λ i , v ∈ R p ,
where • (k) is the k-norm (the sum of the k largest components in absolute value).

SLOPE pattern

The SLOPE pattern introduced in [START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF], whose definition is reminded below, is a central notion in this article. 

Definition 2 The SLOPE pattern patt(b) ∈ Z p of b ∈ R p is defined by patt(b) i = sign(b i ) rank(|b|) i , i ∈ {1, . . . ,
) i < rank(|b|) j if |b i | < |b j |.
We denote by P slope p = patt(R p ) the set of SLOPE patterns. Note in the definition above that k = patt(b) ∞ is the number of nonzero clusters of b.

Example 1 Let b = (4.2, -1.3, 0, 1.3, 4.2) . Then patt(b) = (2, -1, 0, 1, 2) . Definition 3 Let m ∈ Z p be a SLOPE pattern with k = m ∞ ≥ 1. The associated pattern matrix U m ∈ R p×k is defined by (U m ) ij = sign(m i )1 (|mi|=k+1-j) i ∈ {1, . . . , p}, j ∈ {1, . . . , k}. For k ≥ 1 we denote R k+ = {s ∈ R k : s 1 > . . . > s k > 0}. Definition 3 is such that, for b ∈ R p and m ∈ Z p a SLOPE pattern with k = m ∞ ≥ 1, we have patt(b) = m ⇐⇒ ∃s ∈ R k+ such that b = U m s.
Hereafter, the notation |m| ↓ = (|m| ↓1 , . . . , |m| ↓p ) represents the components of m sorted nonincreasingly with respect to the absolute value.

Example 2 Let m = (2, -1, 0, 1, 2) . Then U m = 1 0 0 0 1 0 -1 0 1 0 and U |m| ↓ = 1 1 0 0 0 0 0 1 1 0 . Definition 4 Let m ∈ Z p be a SLOPE pattern with k = m ∞ ≥ 1. The clustered matrix Xm ∈ R n×k of X ∈ R n×p is defined by Xm = XU m ; the clustered parameter λm ∈ R k of λ ∈ R p is defined by λm = U |m| ↓ λ.
Note that the dimension of the design matrix X is reduced when it is clustered as Xm by a pattern m: a null component m i = 0 leads to discard the column X i from the design matrix X, and a cluster K ⊂ {1, . . . , p} of m (set of components of m equal in absolute value) leads to replace the columns (X i ) i∈K by one column equal to the signed sum:

i∈K sign(m i )X i . Example 3 Let X = (X 1 |X 2 |X 3 |X 4 |X 5 ), m = (2, -1, 0, 1, 2) , λ = (λ 1 , λ 2 , λ 3 , λ 4 , λ 5 ) ∈ R 5 .
Then the clustered matrix and the clustered parameter are given by:

Xm = (X 1 + X 5 | -X 2 + X 4 ) and λm = λ 1 + λ 2 λ 3 + λ 4 .

Subdifferential of the sorted 1 norm

The subdifferential of a norm is related to the dual norm • * via the following formula [18, p. 180

]: ∂ • (b) = {v ∈ R p : v * ≤ 1 and b v = b } , b ∈ R p .
In particular, ∂ • (b) is a face of the dual unit ball. For the sorted 1 norm, the above formula can be specified further with the pattern matrix and the clustered parameter associtated to m = patt(b) for b = 0 [START_REF] Bogdan | Pattern recovery by slope[END_REF][START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF]:

∂J λ (b) = v ∈ R p : J * λ (v) ≤ 1 and U m v = λm . (2) 
Remark 2 Given λ ∈ R p+ , the mapping m → ∂J λ (m) is a bijection between the set of SLOPE patterns and the set of faces of the unit ball of J * λ (the signed permutahedron) [START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF]Theorem 6]. It is no longer true when λ 1 ≥ • • • ≥ λ p ≥ 0 is not a decreasing sequence. Therefore we restrict our study to the case where λ ∈ R p+ , i.e.

λ 1 > • • • > λ p > 0.
3 Solution, fitted value and gradient paths

Solution set and fitted value

Given X ∈ R n×p , y ∈ R n , λ ∈ R p+ , and γ > 0, we denote by S X,y,λ (γ) (or simply S(γ) when there is no ambiguity) the set of solutions to the SLOPE optimization problem (1), namely:

min b∈R p 1 2 y -Xb 2 2 + γJ λ (b).
For any γ > 0, the objective function of the above problem is continuous and coercive thus the solution set S(γ) is nonempty. Moreover, the fitted value fit(γ) = X β does not depend on β ∈ S(γ). When S(γ) is a singleton, we denote by β(γ) its unique element. Note that uniqueness is rather a weak assumption, indeed the set {X ∈ R n×p : ∃y ∈ R n ∃γ > 0 such that S X,y,λ (γ) is not a singleton} has zero Lebesgue measure [START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF]Proposition 3]. Theorem 1 below shows that fit(•) and β(•) are continuous on (0, +∞) and affine between two regularization parameters for which SLOPE solutions have the same pattern. Affine expressions of these piecewise linear functions are explicit and intervals are caracterized. We denote hereafter by A + the Moore-Penrose pseudo-inverse of a matrix A.

Theorem 1 Let X ∈ R n×p , y ∈ R n , λ ∈ R p+ , and m ∈ Z p be a non-null SLOPE pattern with k = m ∞ ≥ 1.
1. The set I m = {γ > 0 : ∃ β ∈ S(γ) such that patt( β) = m} is an interval, with the following characterization:

γ ∈ I m ∃s ∈ R k+ such that X m y -γ λm = X m Xm s (positivity condition) X ( X m ) + λm + 1 γ X (I n -( X m ) + X m )y ∈ ∂J λ (m) (subdifferential condition) Moreover, β = U m s ∈ S(γ) and patt( β) = m for any s ∈ R k+ satisfying the positivity condition at γ ∈ I m .
2. The fitted value path γ → fit(γ) is continuous and piecewise linear on (0, +∞), with the following affine expression on I m :

fit(γ) = ( X m ) + X m y -γ( X m ) + λm , γ ∈ I m .
3. If S(γ) = { β(γ)} for all γ > 0, then the solution path γ → β(γ) is continuous and piecewise linear on (0, +∞), with the following affine expression on I m :

β(γ) = U m ( X m Xm ) -1 ( X m y -γ λm ), γ ∈ I m .
The characterization of the interval I m above is closely related to Theorem 3.1 in [START_REF] Bogdan | Pattern recovery by slope[END_REF].

Gradient path and clusters

A solution of the SLOPE optimization problem is characterized by the following two conditions

β ∈ S(γ) ⇔ J * λ (X (y -X β)) ≤ γ β X (y -X β) = γJ λ ( β) Note that X (y -X β) = X (y -fit(γ)) is the gradient at β of the sum of residual squares b → 1 2 y -Xb 2 2
. Subsequently, we call gradient path the expression γ > 0 → X (y -fit(γ)). The set of inequalities describing the ball of radius γ for the dual sorted 1 norm which are saturated by the gradient is :

A(γ) = i ∈ {1, . . . , p} : X (y -fit(γ)) (i) i j=1 λ j = γ .
According to Theorem 2 below, the set A(γ) provides the number of non-zero clusters, the size of these clusters as well as the number of non-zero components.

Theorem 2 Let λ ∈ R p+ , X ∈ R n×p , y ∈ R n , γ > 0 and β ∈ S(γ). 1. Let 1 ≤ k 1 ≤ • • • ≤ k l ≤ p be a subdivision such that: |supp( β)| = k l and | β| ↓1 = • • • = | β| ↓k1 > • • • > | β| ↓k l-1 +1 = • • • = | β| ↓k l > 0 (i.e.
β has l non-null clusters, the cluster of the largest value has k 1 elements and so on and β has k l non-null components). Then, {k 1 , . . . , k l } ⊂ A(γ).

Conversely

, if {k 1 , . . . , k l } = A(γ) then | β| ↓1 = • • • = | β| ↓k1 ≥ • • • ≥ | β| ↓k l-1 +1 = • • • = | β| ↓k l ≥ | β| ↓k l +1 = • • • = | β| ↓p = 0
(i.e. the number of non-null clusters of β is smaller or equal to l and the number of non-null components is smaller or equal to k l ).

There are links between Theorem 2 and screening rules for SLOPE [START_REF] Elvira | Safe rules for the identification of zeros in the solutions of the slope problem[END_REF][START_REF] Larsson | The strong screening rule for slope[END_REF] which identify some null components of this estimator. For instance, running Algorithm 1 in [START_REF] Larsson | The strong screening rule for slope[END_REF] with |X (y -fit(γ)| ↓ returns that a SLOPE solution has at most max{A(γ)} non-zero components. Otherwise, Theorem 4.1 in [START_REF] Elvira | Safe rules for the identification of zeros in the solutions of the slope problem[END_REF] is closely related to the following implication:

| β| ↓i = 0 ⇒ ∃k ≥ i, k ∈ A(γ).

Algorithms to compute the solution path

To keep this section simple we assume that S(γ

) = { β(γ)} for all γ > 0. Let J * λ (X y) = γ 0 > γ 1 > . . . γ r > γ r+1 = 0 be a subdivision such that γ → β(γ) is affine with pattern m (i) on the interval (γ i+1 , γ i ) for i = 0, . . . , r (i.e the interior of I m (i) is (γ i+1 , γ i )).

First, let us explain how to compute the SLOPE solution path on

[γ 1 , γ 0 ]. By construction of m (0) the following implication holds ∀γ ∈ (γ 1 , γ 0 ) patt( β(γ)) = m (0) ⇒ 1 γ X (y -fit(γ)) ∈ ∂J λ (m (0) ). Moreover, since γ > 0 → fit(γ) is continuous, fit(γ 0 ) = 0 and ∂J λ (m (0) ) is a closed set, we get 1 γ 0 X (y -fit(γ 0 )) = 1 γ 0 X y ∈ ∂J λ (m (0) ). (3) 
Algorithm 1 provides the pattern M ( 1 γ0 X y) of the smallest face of the signed permutahedron containing 1 γ0 X y. Therefore, by construction

∂J λ M 1 γ 0 X y ⊂ ∂J λ (m (0) ) ⇒ M 1 γ 0 X y ∞ ≤ m (0)

∞

According to (4), if X y γ0 lies onto a facet of the signed permutahedron, we have m (0) = M 1 γ0 X y .

Algorithm 1 Pattern of the smallest face containing a vector Require: λ ∈ R p+ and z ∈ R p such that J * λ (z) ≤ 1 Define the set of saturated inequalities as follows:

A(z) = i ∈ {1, . . . , p} : z (i) i j=1 λ j = 1 . If A(z) = ∅ set M (z) = (0, . . . , 0) ∈ R p , otherwise define M (z) ∈ P slope p as follows: ∀j ∈ {1, . . . , p} M j (z) = sign(z j ) i∈A(z) 1(|z j | ≥ λ i ). return M (z)
Example 4 We illustrate of the solution path of OSCAR for y = (15, 5) ∈ R 2 , λ = (6, 4, 2) ∈ R 3+ and

X = 2 1 0 1 2 1 .
Largest node γ 0 : We have X y = (35, 25, 5) , therefore γ 0 = J * λ (X y) = 6. Pattern m (0) in the left neighborhood of γ 0 : Since1 γ0 X y = (35/6, 25/6, 0) lies in the relative interior of

∂J λ (1, 1, 0) = [(6, 2) , (4, 6) ] × [-2, 2] then m (0) = M ( 1 γ0 X y) = (1, 1, 0) .
Expression of β(γ) in the left neighborhod of γ 0 : According to statement 3 in Theorem 1 when γ < γ 0 = 6 is sufficiently close to γ 0 we have β(γ) = ( 30-5γ 9

, 30-5γ 9 , 0) .

We tried the package genlasso to compute this solution path. Since dim(ker(X)) = 0, genlasso add a small ridge term b 2 2 to the objective function (the default value is = 10 -4 ); thus genlasso solves

min b∈R 3 1 2 y -Xb 2 2 + γJ λ (b) + b 2 2 , = min b∈R 3 1 2 y 0 - X √ 2 I 3 b 2 2 + γJ λ (b). (4) 
We computed the solution path of problem (4) when = 10 -4 with our algorithm and genlasso. Surprisingly, the solution path computed with genlasso is correct when γ ≥ 5 but wrong when γ < 5.

Comparatively to the original problem (without adding the ridge term), when = 10 -4 the solution path have more nodes (especially small nodes). Moreover these paths are extremely different when γ is small since b 2 2 dominates γJ λ (b).

Algorithm 2 uses the characterisation of I m (0) , based on the positivity and subdifferential conditions, to provide both the node γ 1 as well as the pattern m (1) .

Using iteratively Algorithm 2 allows to compute entirely the SLOPE solution path.

Numerical experiments

The code of the implementation in Python of our algorithm and of the experiments below is available at https://github.com/x-dupuis/slope-path. The computations were carried out on an Apple M1 Pro chip (8-core CPU and 14-core GPU) and 16GB of unified memory.

We use two real data sets:

• the Wine Quality data set 1 describes the quality of red "Vinho Verde" wines [START_REF] Cortez | Modeling wine preferences by data mining from physicochemical properties[END_REF]. Each column of X ∈ R 1599×11 represents a physicochemical measurement (density, pH, alcohol, etc.) and y ∈ R 1599 represents wine quality scores (between 0 and 10);

Algorithm 2 Next node and next pattern

Require:

X ∈ R n×p , λ ∈ R p+ , γ i , m (i) and s(γ) = ( X m (i) Xm (i) ) -1 ( X m (i) y -γ λm (i) ) Let k = m (i)
∞ and set γ fuse = 0 if s(γ) ∈ R k+ for all γ ∈ [0, γ i ), otherwise compute

γ fuse = sup{γ ∈ [0, γ i ) : s(γ) / ∈ R k+ }. if γ fuse = 0 then set γ split = 0 if X (y -Xm (i) s(γ)) ∈ γ∂J λ (m (i) ) for all γ ∈ [0, γ i ), otherwise compute γ split = sup{γ ∈ [0, γ i ) : X (y -Xm (i) s(γ)) / ∈ γ∂J λ (m (i) )}.
if γ slpit = 0 then return The solution path is entirely computed. else

γ i+1 = γ split Compute m (i+1) = M ( 1 γi+1 X (y -Xm (i) s(γ i+1 ))) with Algorithm 1. return γ i+1 , m (i+1) end if else if γ fuse > 0 and X (y -Xm (i) s(γ fuse )) ∈ γ fuse ∂J λ (m (i) ) then γ i+1 = γ fuse m (i+1) = patt(U m (i) s(γ fuse )) return γ i+1 , m (i+1) else Compute γ i+1 = sup{γ ∈ [γ fuse , γ i ) : X (y -Xm (i) s(γ)) / ∈ γ∂J λ (m (i) )}. Compute m (i+1) = M ( 1 γi+1 X (y -Xm (i) s(γ i+1 ))) with Algorithm 1. return γ i+1 , m (i+1) end if
• the Riboflavin data set2 describes the riboflavin production with Bacillus subtilis [START_REF] Bühlmann | High-dimensional statistics with a view toward applications in biology[END_REF]. Each column of X ∈ R 71×4088 represents a gene expression measurement and y ∈ R 71 represents production rates.

The matrices X are mean-centered (∀j, i X ij = 0) and standardized (∀j, i X 2 ij = n), the vectors y are mean-centered ( i y i = 0).

Full paths computation

We illustrate here the computation of SLOPE solution paths on the Wine Quality data set. For this numerical experiment we take λ

= (1, √ 2 -1, √ 3 - √ 2, . . . , √ 11 - √ 10 
), so that the unit ball of the sorted 1 norm is quasi-spherical [START_REF] Nomura | An exact solution path algorithm for slope and quasi-spherical oscar[END_REF]. Figure 1 provides the solution path of SLOPE as well as the solution path of LASSO (computed via the homotopy algorithm in [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF]).

Exact minimization of SURE

The Stein Unbiaised Risk Estimate (SURE) formula is an unbiased estimator of the prediction error (E( X β -Xβ 2

2 ) where β is an estimator of β). For LASSO and SLOPE, unbiased estimators for the prediction error are reported hereafter [START_REF] Minami | Degrees of freedom in submodular regularization: A computational perspective of stein's unbiased risk estimate[END_REF][START_REF] Zou | On the "degrees of freedom" of the lasso[END_REF] where σ 2 is the variance of residuals. A usual way to select the regularization parameter γ is to minimize sure(γ) [START_REF] Dossal | The degrees of freedom of the lasso for general design matrix[END_REF][START_REF] Bertrand | Implicit differentiation for fast hyperparameter selection in non-smooth convex learning[END_REF]. For both SLOPE and LASSO the solution path is piecewise linear, therefore the SURE formula is quadratic between two adjacents nodes (i.e the SURE formula restricted to the interval (γ i+1 , γ i ) is quadratic). As a result, solving exactly the solution path allows to minimize exactly the SURE formula 3 . For this numerical experiment we substitute σ 2 in the expression of sure(γ) by σ 2 = (I n -X(X X) -1 X )y /1588 = 0.4197. Note that when γ is very large the SURE formula satisfies sure(γ) = y 2 2 -1599 σ 2 = 371.1382. Moreover when γ tends to 0, both SLOPE and LASSO converge to the ordinary least squares estimator therefore lim γ→0 sure(γ) = 11 σ 2 = 4.6162. We report the regularization parameter minimizing the SURE formula in Table 1.

sure(γ) = y -X β(γ) 2 2 -nσ 2 + 2σ 2 patt( β(γ)) ∞ when β(γ) is a SLOPE estimator y -X β(γ) 2 2 -nσ 2 + 2σ 2 |supp( β(γ))| when β(γ) is a LASSO estimator
The explanatory variables "fixed acidity" (corresponding to X 1 ) and "pH" (corresponding to X 9 ) are the most correlated ones (the largest off-diagonal components of X X, in absolute value, 3 One may similarly minimize exactly the sum of residual squares on a validation set γ > 0 → y val -

X val β(γ) 2 2 .
γ sure sure(γ sure ) SLOPE 18.6292 3.4641 LASSO 11.7602 4.1297 Table 1: Minimizer and minimum of the SURE formula for both SLOPE and LASSO. The minimum is lower for SLOPE than LASSO, suggesting that SLOPE is a slightly better estimator for the prediction error than LASSO.

is |X 1 X 9 | = 1092.0821). The explanatory variables "fixed acidity" and "density" (corresponding to X 8 ) are also strongly correlated (|X 1 X 8 | = 1068.2076). These three variables are clustered by the SLOPE estimator β(γ sure ) (corresponding to the cluster "4" in patt( β(γ sure )) = (4, -8, -1, 2, -5, 3, -6, -4, -4, 7, 9) ) whereas the LASSO estimator β lasso (γ sure ) only selects one: the "pH" (actually β lasso 1 (γ sure )) = β lasso 8 (γ sure )) = 0). Clustering property of SLOPE for highly correlated variables had been discussed in [START_REF] Figueiredo | Ordered weighted l1 regularized regression with strongly correlated covariates: Theoretical aspects[END_REF] and intuitively we believe that this property is beneficial for the prediction error.

Full path solvers benchmark

For this benchmark we focus on the solution path of OSCAR as, in the literature, no algorithm for solving the solution path of SLOPE is available online (the code for solving the solution path of SLOPE in the preprint [START_REF] Nomura | An exact solution path algorithm for slope and quasi-spherical oscar[END_REF] is not available). A natural competitor to our algorithm is genlasso. Hereafter X and y are provided by the Wine Quality data set and λ is an arithmetic progression where λ 1 = 4 and λ 11 = 1. In table 2 we compare the time needed to compute the solution path as well as the value of the objective function of OSCAR at γ ∈

J * λ (X y) 2 , J * λ (X y) 10 
. genlasso slope path (our) 2: Time in seconds to compute the solution path and value of the objective function. Our algorithm is much faster than genlasso. Moreover, the value obtained with our algorithm is lower than the one obtained with genlasso at γ = J * λ (X y) 10

, illustrating that the solution provided by genlasso is not accurate.

Comparison between genlasso and our algorithm on the Riboflavin data set is not tractable; indeed the D matrix such that J λ (b) = Db 1 belongs to R 4088 2 ×4088 and even if it is sparse, the package genlasso cannot handle such a big matrix.

SLOPE solvers benchmark

Computing the full solution path of SLOPE on (0, +∞) is a more ambitious task than solving the SLOPE optimization problem for a single regularization parameter γ. Therefore, given such a γ, we can compute the solution path on [γ, +∞) and thus define a SLOPE solver (called slope path hereafter). We compare it to the following algorithms implemented in the extensive benchmark of SLOPE solvers [START_REF] Larsson | Coordinate descent for slope[END_REF]:

• Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF];

• Anderson acceleration for Proximal Gradient Descent (Anderson PGD) [START_REF] Zhang | Globally convergent type-I Anderson acceleration for nonsmooth fixed-point iterations[END_REF];

• Alternating Direction Method of Multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] with the augmented Lagrangian parameter ρ = 100;

• Coordinate Descent for SLOPE (hybrid CD) [START_REF] Larsson | Coordinate descent for slope[END_REF].

We used their code 4 and set as stopping criterion a primal-dual gap smaller than 1e-12 (which is satisfied by our algorithm all along the path). When λ is an arithmetic progression where λ 1 = 4 and λ p = 1 the benchmarks on the two real data sets are reported in tables 3 and 4.

γ 3.83e-02 3.72e+00 Table 4: Time in seconds to compute the solution for the Riboflavin data set. In this case where p = 4088 is large, our algorithm is still the fastest one when γ is large (γ =

J * λ (X y) 2 J * λ (X
J * λ (X y) 2
) but is over-performed by hybrid CD when γ is small (γ =

J * λ (X y) 10 
). The missing values correspond to algorithms not reaching the required primal-dual gap (1e-12).

Conclusion and future works

One of the main result in this article is Theorem 1 proving that the SLOPE solution path is piecewise linear and providing the characterization of the intervals where the path is affine. Moreover algorithms 1 and 2 allow to solve exactly this path. The computational time of our numerical scheme depends mainly on the number of nodes. In our illustration on real data sets, the number of intervals is not too large. However the number of intervals where the path is affine is bounded by the number of SLOPE patterns in R p and potentially, similarly as for LASSO [START_REF] Mairal | Complexity analysis of the lasso regularization path[END_REF], this huge upper bound might be reached. Therefore solving the solution path of SLOPE on (0, +∞) might be intractable for some pathological examples and, in such a situation, our algorithm can only compute partially the solution path. A first algorithmic perspective would be to generalize this method to a wide class of penalized estimators. Indeed, the crucial notion of SLOPE pattern might be generalized to a polyhedral gauge penalty [START_REF] Graczyk | Pattern recovery in penalized and thresholded estimation and its geometry[END_REF] (the SLOPE pattern is just the pattern associated to the sorted 1 (polyhedral) norm). Another methodological perspective is to derive, based on Theorem 2, screening rules identifying null components and clusters for SLOPE.

Appendix

Proof of Theorem 1 1: I m is an interval) Hereafter we suppose that I m = ∅. Let γ 0 , γ 1 ∈ I m and pick β(γ 0 ) ∈ S(γ 0 ),

β(γ 1 ) ∈ S(γ 1 ) such that patt( β(γ 0 )) = patt( β(γ 1 )) = m. Let α ∈ [0, 1], γ = αγ 0 + (1 -α)γ 1 and β = α β(γ 0 ) + (1 -α) β(γ 1 ) then patt( β) = m. Indeed, if m = 0 then clearly patt( β) = 0. Otherwise, let k = m ∞ ≥ 1 then β(γ 0 ) = U m s 0 for some s 0 ∈ R k+ , β(γ 1 ) = U m s 1 for some s 1 ∈ R k+ therefore β = U m s where s = αs 0 + (1 -α)s 1 ∈ R k+ .
To prove that I m is an interval it remains to show that β ∈ S(γ). Because both β(γ 0 ) and β(γ 1 ) are SLOPE minimizers, we have

X (y -X β(γ 0 )) ∈ γ 0 ∂J λ (m) and X (y -X β(γ 1 )) ∈ γ 1 ∂J λ (m).
By construction of β the following equality occurs:

αX (y -X β(γ 0 )) + (1 -α)X (y -X β(γ 1 )) = X (y -X β). Moreover, since ∂J λ (m) is a convex set, we have αγ 0 ∂J λ (m) + (1 -α)γ 1 ∂J λ (m) ⊂ γ∂J λ (m). Consequently, X (y -X β) ∈ γ∂J λ (m) = γ∂J λ ( β) thus β ∈ S(γ).
1: characterization of I m ) The proof of this characterization is closely related to the proof of Theorem 3.1 in [START_REF] Bogdan | Pattern recovery by slope[END_REF].

Necessity. If γ ∈ I m , then there exists β ∈ S(γ) such that patt( β) = m. Consequently, β = U m s for some s ∈ R k+ . Because β is a element of S(γ) whose pattern is m then X (y -fit(γ)) ∈ γ∂J λ ( β) = γ∂J λ (m). Multiplying this inclusion by U m , we get X m (y -fit(γ)) = γ λm and so X m y -γ λm = X m fit(γ) = X m Xm s. (5) 
The positivity condition is proven.

We apply ( X m ) + from the left to [START_REF] Bogdan | Slope-adaptive variable selection via convex optimization[END_REF] and use the fact that ( X m ) + X m is the projection onto col( Xm ). Since fit(γ) ∈ col( Xm ), we have ( X m ) + X m fit(γ) = fit(γ). Thus,

( X m ) + X m y -γ( X m ) + λm = fit(γ).
The above equality gives the subdifferential condition:

∂J λ (m) 1 γ X (y -fit(γ)) = 1 γ X (y -(( X m ) + X m y -γ( X m ) + λm )) (6) = X ( X m ) + λm + 1 γ X (I n -( X m ) + X m )y.
Sufficiency. Assume that the positivity condition and the subdifferential conditions hold true. Then, by the positivity condition, one may pick s ∈ R k+ for which

γ λm = X m y -X m Xm s. (7) 
Let us show that U m s ∈ S(γ). By definition of U m , we have patt(U m s) = m thus ∂J λ (U m s(γ)) = ∂J λ (m). Moreover, using ( 6) and ( 7) one may deduce

∂J λ (U m s) 1 γ X (y -( X m ) + X m y + γ( X m ) + λm ) = 1 γ X (y -( X m ) + X m y + ( X m ) + ( Xm y -X m Xm s)) = 1 γ X (y -XU m s).
Consequently U m s ∈ S(γ).

2 and 3: continuity) Let γ ∈ (0, +∞), (γ n ) n∈N be a sequence converging to γ and β(γ n ) ∈ S X,γnJ λ (y). Both sequences ( β(γ n )) n∈N and ( fit(γ n )) n∈N are bounded therefore, up to extract a subsequence, one may assume that both ( β(γ n )) n∈N and ( fit(γ n )) n∈N converge respectively to a limit point l ∈ R p and Xl ∈ R n . Let β(γ) ∈ S(γ). Because β(γ n ) is a minimizer, the following inequality occurs.

1 2 y -fit(γ n ) 2 2 + γ n J λ ( β(γ n )) ≤ 1 2 y -fit(γ) 2 2 + γ n J λ ( β(γ)).
Taking the limit in the above expression gives

1 2 y -Xl 2 2 + γJ λ (l) ≤ 1 2 y -fit(γ) 2 2 + γJ λ ( β(γ)).
Because β(γ) ∈ S(γ), one may deduce that l ∈ S(γ) and thus Xl = fit(γ). Therefore, the unique limit point of the bounded sequence ( fit(γ n )) n∈N is fit(γ). Consequently, lim n→+∞ fit(γ n ) = fit(γ) and thus the function γ ∈ (0, +∞) → fit(γ) is continuous. Similarly, if S(γ) is a singleton then l = β(γ), the unique limit point of the bounded sequence ( β(γ n )) n∈N is β(γ) and thus lim n→+∞ β(γ n ) = β(γ). Therefore the function γ ∈ (0, +∞) → β(γ) is continuous.

2) When γ ∈ I m then multiplying both side of the positivity condition by ( X m ) + and using the fact that ( X m ) + X m is the projection onto col( Xm ) gives

( X m ) + X m y -γ( X m ) + λm = ( X m ) + X m Xm s = Xm s = fit(γ).
3) The proof of statement 3) relies on Lemma 1 proved in supplementary material.

Lemma 1 Let X ∈ R n×p , y ∈ R n and λ ∈ R p+ . There exists β ∈ S(γ) for which the pattern m = patt( β) satisfies ker( Xm ) = {0}.

Consequently, when γ ∈ I m and S(γ) is a singleton then ker( Xm ) = {0}, where m = patt( β(γ)). Since X m Xm is invertible, the positivity condition gives

β(γ) = U m s = U m ( X m Xm ) -1 ( X m y -γ λm ).

Basic notions on subdifferential, permutahedron and signed permutahedron

The results of this section will be useful to establish the proof of Proposition 1. We denote by S p the set of permutations on the set {1, . . . , p}. Given λ ∈ R p+ , the subdifferential calculus of the sorted 1 norm satisfies the following properties [START_REF] Dupuis | Proximal operator for the sorted 1 norm: Application to testing procedures based on slope[END_REF][START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF][START_REF] Patrick | Simple expressions of the lasso and slope estimators in low-dimension[END_REF]:

Subdifferential at 0: signed permutahedron The following equality holds:

∂J λ (0) = conv{(σ 1 λ π(1) , . . . , σ p λ π(p) ), σ 1 , . . . , σ p ∈ {-1, 1}, π ∈ S p }.
The V-polytope P ± (λ 1 , . . . , λ p ) := conv{(σ 1 λ π(1) , . . . , σ p λ π(p) ), σ 1 , . . . , σ p ∈ {-1, 1}, π ∈ S p } is called the signed permutahedron and can be described as a H-polytope as follows [START_REF] Godland | Projections and angle sums of belt polytopes and permutohedra[END_REF]:

P ± (λ 1 , . . . , λ p ) = x ∈ R p : ∀j ∈ {1, . . . , p}, j i=1 |x| ↓i ≤ j i=1 λ i .
This polytope is actually the unit ball of the dual sorted 1 norm [START_REF] Negrinho | Orbit regularization[END_REF].

Subdifferential at a constant vector: permutahedron Let c > 0. Then the following equality holds: ∂J λ (c, . . . , c) = conv{(λ π(1) , . . . , λ π(p) ), π ∈ S p }.

The V-polytope P (λ 1 , . . . , λ p ) := conv((λ π(1) , . . . , λ π(p) ), π ∈ S p ) is called the permutahedron and can be described as an H-polytope as follows [START_REF] Godland | Projections and angle sums of belt polytopes and permutohedra[END_REF][START_REF] Negrinho | Orbit regularization[END_REF]:

P (λ 1 , . . . , λ p ) = b ∈ R p : p i=1 b i = p i=1 λ i and j i=1 b ↓i ≤ j i=1 λ i ∀j ∈ {1, . . . , p -1} . (8) Subdifferential computation rule Let b ∈ R p be such that b 1 ≥ • • • ≥ b k > b k+1 ≥ • • • ≥ b p ≥ 0. Then ∂J λ (b) = ∂J λ1,...,λ k (b 1 , . . . , b k ) × ∂J λ k+1 ,...,λp (b k+1 , . . . , b p ). (9) 
Proof of Theorem 2

Let π ∈ S p and ∈ {-1, 1} p be such that

| β| ↓ = ( 1 β π(1) , . . . , p β π(p) ),
and let φ be the orthogonal transformation defined as follows:

∀x ∈ R p φ(x) = ( 1 x π(1) , . . . , p x π(p) ).
Proof of 1) Because β ∈ S(γ) is a SLOPE minimizer, the following equivalence holds:

1 γ X (y -fit(γ)) ∈ ∂J λ ( β) ⇔ φ 1 γ X (y -fit(γ)) ∈ φ(∂J λ ( β)) = ∂J λ (| β| ↓ ).
Since the components of | β| ↓ are decreasing, ∂J λ (| β| ↓ ) is a Cartesian product of permutahedra with potentially a signed permutahedron (if β has a null component) [START_REF] Dupuis | Proximal operator for the sorted 1 norm: Application to testing procedures based on slope[END_REF][START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF]. Specifically, we have

∂J λ (| β| ↓ ) = P (λ 1 , . . . , λ k1 ) × • • • × P (λ k l-1 +1 , . . . , λ k l ) if k l = p, P (λ 1 , . . . , λ k1 ) × • • • × P (λ k l-1 +1 , . . . , λ k l ) × P ± (λ k l +1 , . . . , λ p ) if k l < p. According to (8), if b ∈ P (λ 1 , . . . , λ k1 ) × • • • × P (λ k l-1 +1 , . . . , λ k l ), then the following equalities hold: ∀i ∈ {k 1 , . . . , k l }, i j=1 b j = b (i) = i j=1 λ j .
Finally, since the i-norm . (i) is invariant by the transformation φ, one may deduce the following equalities:

∀i ∈ {k 1 , . . . , k l }, φ 1 γ X (y -fit(γ)) (i) i j=1 λ j = 1 γ X (y -fit(γ)) (i) i j=1 λ j = 1. Proof of 2) First, let us establish for b ∈ R p such that b 1 ≥ • • • ≥ b p > 0 the following inclusion: ∂J λ (b) ⊂ conv (λ π(1) , . . . , λ π(p) ), π ∈ S p = P (λ 1 , . . . , λ p ). (10) 
Since the sorted 1 norm is polyhedral, namely Moreover, if i0 = -1 for some i 0 ∈ {1, . . . , p}, then

J λ (b) = max{ p i=1 i λ π(i) b i : 1 , . . . , p ∈ {-1, 1}, π ∈ S p },
p i=1 i λ π(i) b i < λ i0 b i0 + i =i0 i λ π(i) b i ≤ J λ (b).
Therefore ( 1 λ π(1) , . . . , p λ π(p) ) / ∈ ∂J λ (x), which proves inclusion (3). Now, let us assume that there exists i / ∈ A(γ) such that

| β| ↓i > | β| ↓i+1 if i ≤ p -1, | β| ↓i > 0 if i = p.
Then, according to ( 9) and (3), we have ∂J λ1,...,λi (| β| ↓1 , . . . , | β| ↓i ) ⊂ P (λ 1 , . . . , λ i ). Consequently φ 1 γ X (y -fit(γ))

(i) i j=1 λ j = 1 γ X (y -fit(γ)) (i) i j=1 λ j = 1.
Therefore i ∈ A(γ), which leads to a contradiction.

Existence of a SLOPE minimizer having less than rk(X) non-null clusters

Lemma 2 below provides a statement more precise than both [19, Theorem 2.1] and [START_REF] Schneider | The geometry of uniqueness, sparsity and clustering in penalized estimation[END_REF]Corollary 9], proving that, under the assumption of uniqueness, the unique element β of S(γ) has a number of non-null clusters smaller or equal to rk(X) (i.e. patt( β) ∞ ≤ rk(X)).

Lemma 2 Let X ∈ R n×p , y ∈ R n , λ ∈ R p+ and γ > 0. Then either S(γ) = {0} or there exists β ∈ S(γ) for which the pattern m = patt( β) satisfies m ∞ = rk( Xm ).

Note that by construction of Xm = XU m , rk( Xm ) ≤ rk(X). Moreover, m ∞ = rk( Xm ) if and only if ker( Xm ) = {0}.

Proof: If 0 ∈ S(γ) and since every elements in S(γ) have the same sorted 1 norm, one may deduce that S(γ) = {0}. Now, let us assume that 0 / ∈ S(γ). Let β ∈ S(γ) be such that the number of non-null clusters k = patt( β) ∞ = m ∞ ≥ 1 is minimal. Let us prove that ker( Xm ) = {0}. If dim(ker( Xm )) ≥ 1, then pick h ∈ ker( Xm ), h = 0. Then set β = U m s where s ∈ R k+ and c(t) = β + tU m h = U m (s + th). Since Xm h = XU m h = 0, then X (y -Xc(t)) = X (y -X β). Let t min = inf{|t| : s + th / ∈ R k+ } > 0; by construction, for t ∈ (-t min , t min ), s + th ∈ R k+ and thus patt(c(t)) = m. Consequently, ∀t ∈ (-t min , t min ) X (y -Xc(t)) ∈ ∂J λ (m) = ∂J λ (c(t)), ⇒ ∀t ∈ (-t min , t min ) c(t) ∈ S(γ).

Since S(γ) is a closed set, one may deduce that c(±t min ) ∈ S(γ). Finally, by construction of t min , one of the vectors s + t min h or s -t min h does not have k distinct components, therefore patt(c(t min )) ∞ < k or patt(c(-t min )) ∞ < k which contradicts the fact that β ∈ S(γ) has a minimal number of non-null clusters.

SLOPE is a generalized LASSO if and only if λ is an arithmetic progression

Let D ∈ R m×p . The subdifferential at 0 of the function b ∈ R p → Db 1 is D [-1, 1] m . The polytope D [-1, 1] m is a zonotope (the image of a cube under an affine transformation). On the other hand the signed permutahedron (the subdifferential at 0 of J λ ) is a zonotope if and only if λ is an arithmetic progression [START_REF] Godland | Projections and angle sums of belt polytopes and permutohedra[END_REF]Theorem 4.13]. Consequently, when λ is not an arithmetic progression one cannot pick a matrix D ∈ R m×p such that J λ (.) = D. 1 thus SLOPE is not a generalized LASSO. On the other hand OSCAR (i.e. SLOPE when λ 1 ≥ • • • ≥ λ p ≥ 0 is an arithmetic progression) is clearly a particular generalized LASSO.
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 1 Figure 1: Solution paths in absolute value of SLOPE (top) and LASSO (bottom) as functions of γ > 0. On top some curves partially superimpose or partially coincide with the x-axis, illustrating the clustering and sparsity properties of SLOPE. At the bottom some curves just partially coincide with the x-axis, illustrating the sparsity property of LASSO.
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 3 Time in seconds to compute the solution for the Wine Quality data set. In this case, where p = 11 is small, our algorithm is the fastest one.

			y)
			10
	FISTA	1.36e-02 4.47e-02
	Anderson PGD	5.26e-03 7.02e-02
	ADMM (ρ = 100) 2.38e-02 7.18e-03
	hybrid CD	2.39e-03 7.91e-03
	slope path (our)	6.58e-04 4.51e-03
	γ	J * λ (X y) 2	J * λ (X y) 10
	FISTA	9.01e+01	-
	Anderson PGD	1.45e+01	-
	ADMM (ρ = 100)	-	4.93e+00
	hybrid CD	4.19e-02 8.84e-01
	slope path (our)		

available at https://archive.ics.uci.edu/dataset/186/wine+quality

available at https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-022513-115545

available at https://github.com/jolars/slopecd
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