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Abstract

The SLOPE estimator has the particularity of having null components (sparsity) and
components that are equal in absolute value (clustering). The number of clusters
depends on the regularization parameter of the estimator. This parameter can be
chosen as a trade-off between interpretability (with a small number of clusters) and
accuracy (with a small mean squared error or a small prediction error). Finding
such a compromise requires to compute the solution path, that is the function
mapping the regularization parameter to the estimator. We provide in this article an
algorithm to compute the solution path of SLOPE and show how it can be used to
adjust the regularization parameter.

1 Introduction

The SLOPE estimator (Sorted L One Penalized Estimator [5, 38]) is defined as a solution to the
following convex program:

min
b∈Rp

1

2
‖y −Xb‖22 + γ

p∑
i=1

λi|b|↓i (1)

where λ1 > 0, λ1 ≥ · · · ≥ λp ≥ 0 is a given sequence of penalty parameters, γ > 0 is the
regularization parameter and |b|↓1 ≥ · · · ≥ |b|↓p ≥ 0 are the sorted components of b in absolute value.
The SLOPE estimator generalizes both the LASSO estimator (Least Absolute Shrinkage and Selection
Operator [36]) for which λ1 = · · · = λp = 1, and the OSCAR estimator (Octagonal Shrinkage and
Clustering Algorithm for Regression [7]) for which the sequence λ1, . . . , λp is arithmetic. Note that
the penalty term of OSCAR satisfies

∑p
i=1 λi|b|↓i = λp‖b‖1+ λ1−λ2

2

∑
1≤i<j≤p(|bi+bj |+|bi−bj |),

thus OSCAR is a particular generalized LASSO [37]; however, in broad generality SLOPE is not a
particular generalized LASSO (as proved in supplementary material).

The SLOPE estimator is gaining popularity among statisticians due to its relevant properties such
as minimax rates of the estimation and prediction errors [3, 33], false discovery rate control [5]
and dimension reduction of the regression model. The latter property comes from the structure of
the solutions to the optimization problem (1), which have null components (sparsity) as well as
components equal in absolute value (clustering) [28, 14, 7]. In particular, the sparsity and clustering
properties of SLOPE are clear when X is an orthogonal matrix since, in this case, the solution to
problem (1) is explicit [5, 12, 30, 35]. When y represents the random response of a linear regression
model, sparsity has a well-known statistical interpretation: identification of relevant explanatory
variables. Clustering also has a statistical interpretation when the design matrix X is standardized:
the explanatory variables having the same regression coefficient have the same impact on the response
[29]. On the other hand, without restriction on the design matrix, for a categorical variable having
different levels, the equal regression coefficients represent levels that can be grouped together [32, 23].
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Therefore, SLOPE estimator can identify relevant explanatory variables, group explanatory variables
having the same impact on the response and, more generally, reduce the dimension of the regression
model.

The solution path gives the solution of a penalized optimization problem with respect to the regu-
larization parameter γ > 0. For instance, the solution path of the LASSO shows that the number of
explanatory variables selected by this estimator tends to decrease when the regularization parameter
becomes large (see e.g. [22, 27]) and computing this path is useful to select the regularization
parameter. Similarly, the solution path of SLOPE shows that the number of clusters of explanatory
variables selected by this estimator tends to decrease when the regularization parameter becomes
large. Moreover computing this path is useful to adjust the regularization parameter by minimizing,
for instance, the Stein Unbiased Risk Estimate (SURE) formula [31] or the sum of residual squares
on a validation set.

The generalized lasso dual path algorithm [37], implemented in the genlasso R package [1], allows to
compute the solution path of the generalized LASSO and therefore of OSCAR but not of SLOPE
in broad generality; moreover it requires ker(X) = {0}. Two articles focus on the solution path of
OSCAR: the starting point of their respective algorithm is the ordinary least squared estimator (thus
requiring ker(X) = {0}) in [34], and a numerical solution of OSCAR in [17]. A recent preprint
[26] addresses the solution path of SLOPE, under the assumption ker(X) = {0} to guaranty the
uniqueness of the solution and to use the ordinary least squares estimator as a starting point; it gives
no theoretical results on the solution path (such as its continuity, the proof that it is piecewise linear,
the characterization of its affine components).

In this article, for sequences of penalty parameters λ1 > · · · > λp > 0, we prove that the solution
path of SLOPE is continuous and piecewise linear on (0,+∞), we characterize its affine components,
and we provide an algorithm to compute the exact solution path of SLOPE. Our algorithm does not
require neither ker(X) = {0} nor to solve SLOPE with an external solver. We dedicate a section
to numerical experiments on real data sets to illustrate: the computation of SLOPE solution paths;
the exact minimization of SURE for SLOPE (pointing out differences with the LASSO estimator);
the performance of our algorithm compared to genlasso to compute the OSCAR solution path; the
performance of our algorithm compared to the algorithms considered and implemented in [21] to
compute the SLOPE solution for a single regularization parameter γ.

2 Basic notions on SLOPE

Unlike the `1 norm, in broad generality the sorted `1 norm is not separable (the sorted `1 norm cannot
be written as a sum of functions of its components). As a result, it is much more challenging to study
the SLOPE optimization problem than the LASSO optimization problem. For instance the gradient
X ′(y − Xβ̂lasso) of the sum of residual squares at the LASSO solution β̂lasso gives indications
on null components of this estimator. Indeed, |X ′i(y − Xβ̂lasso(γ))| < γ implies β̂lasso

i (γ) = 0.
Unfortunately, because the sorted `1 norm is not separable, determining null components based
on the the gradient X ′(y − Xβ̂) of the sum of residual squares at the SLOPE solution β̂ is not
straightforward (determining non-null clusters is also difficult). The important notions introduced
hereafter allow to overcome this difficulty.

2.1 Sorted `1 norm and its dual norm

Definition 1 The sorted `1 norm associated to λ ∈ Rp with λ1 ≥ · · · ≥ λp ≥ 0 and λ1 > 0 is
defined as follows:

Jλ(b) =

p∑
i=1

λi|b|↓i, b ∈ Rp,

where |b|↓1 ≥ . . . ≥ |b|↓p are the sorted components of b with respect to the absolute value.

Given a norm ‖·‖ on Rp, we recall that its dual norm ‖·‖∗ is defined by ‖v‖∗ = max{b′v : ‖b‖ ≤ 1},
for v ∈ Rp.
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Remark 1 The dual sorted `1 norm has an explicit expression given in [25] and reminded hereafter:

J∗λ(v) = max

{
‖v‖(1)
λ1

,
‖v‖(2)∑2
i=1 λi

, . . . ,
‖v‖(p)∑p
i=1 λi

}
, v ∈ Rp,

where ‖ · ‖(k) is the k−norm (the sum of the k largest components in absolute value).

2.2 SLOPE pattern

The SLOPE pattern introduced in [28], whose definition is reminded below, is a central notion in this
article.

Definition 2 The SLOPE pattern patt(b) ∈ Zp of b ∈ Rp is defined by

patt(b)i = sign(bi) rank(|b|)i, i ∈ {1, . . . , p},

where rank(|b|)i ∈ {0, 1, . . . , k}, k is the number of nonzero distinct values in {|b1|, . . . , |bp|},
rank(|b|)i = 0 if and only if bi = 0, and rank(|b|)i < rank(|b|)j if |bi| < |bj |.

We denote by Pslope
p = patt(Rp) the set of SLOPE patterns. Note in the definition above that

k = ‖patt(b)‖∞ is the number of nonzero clusters of b.

Example 1 Let b = (4.2,−1.3, 0, 1.3, 4.2)′. Then patt(b) = (2,−1, 0, 1, 2)′.

Definition 3 Let m ∈ Zp be a SLOPE pattern with k = ‖m‖∞ ≥ 1. The associated pattern matrix
Um ∈ Rp×k is defined by

(Um)ij = sign(mi)1(|mi|=k+1−j) i ∈ {1, . . . , p}, j ∈ {1, . . . , k}.

For k ≥ 1 we denote Rk+ = {s ∈ Rk : s1 > . . . > sk > 0}. Definition 3 is such that, for b ∈ Rp
and m ∈ Zp a SLOPE pattern with k = ‖m‖∞ ≥ 1, we have

patt(b) = m ⇐⇒ ∃s ∈ Rk+ such that b = Ums.

Hereafter, the notation |m|↓ = (|m|↓1, . . . , |m|↓p)′ represents the components of m sorted non-
increasingly with respect to the absolute value.

Example 2 Let m = (2,−1, 0, 1, 2)′. Then

Um =

(
1 0 0 0 1
0 −1 0 1 0

)′
and U|m|↓ =

(
1 1 0 0 0
0 0 1 1 0

)′
.

Definition 4 Let m ∈ Zp be a SLOPE pattern with k = ‖m‖∞ ≥ 1. The clustered matrix
X̃m ∈ Rn×k of X ∈ Rn×p is defined by X̃m = XUm; the clustered parameter λ̃m ∈ Rk of λ ∈ Rp
is defined by λ̃m = U ′|m|↓λ.

Note that the dimension of the design matrix X is reduced when it is clustered as X̃m by a pattern m:
a null component mi = 0 leads to discard the column Xi from the design matrix X , and a cluster
K ⊂ {1, . . . , p} of m (set of components of m equal in absolute value) leads to replace the columns
(Xi)i∈K by one column equal to the signed sum:

∑
i∈K

sign(mi)Xi.

Example 3 Let X = (X1|X2|X3|X4|X5), m = (2,−1, 0, 1, 2)′, λ = (λ1, λ2, λ3, λ4, λ5)′ ∈ R5.
Then the clustered matrix and the clustered parameter are given by:

X̃m = (X1 +X5| −X2 +X4) and λ̃m =

(
λ1 + λ2
λ3 + λ4

)
.
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2.3 Subdifferential of the sorted `1 norm

The subdifferential of a norm is related to the dual norm ‖ · ‖∗ via the following formula [18, p. 180]:
∂‖ · ‖(b) = {v ∈ Rp : ‖v‖∗ ≤ 1 and b′v = ‖b‖} , b ∈ Rp.

In particular, ∂‖ · ‖(b) is a face of the dual unit ball. For the sorted `1 norm, the above formula can be
specified further with the pattern matrix and the clustered parameter associtated to m = patt(b) for
b 6= 0 [6, 28]:

∂Jλ(b) =
{
v ∈ Rp : J∗λ(v) ≤ 1 and U ′mv = λ̃m

}
. (2)

Remark 2 Given λ ∈ Rp+, the mapping m 7→ ∂Jλ(m) is a bijection between the set of SLOPE
patterns and the set of faces of the unit ball of J∗λ (the signed permutahedron) [28, Theorem 6]. It
is no longer true when λ1 ≥ · · · ≥ λp ≥ 0 is not a decreasing sequence. Therefore we restrict our
study to the case where λ ∈ Rp+, i.e. λ1 > · · · > λp > 0.

3 Solution, fitted value and gradient paths

3.1 Solution set and fitted value

Given X ∈ Rn×p, y ∈ Rn, λ ∈ Rp+, and γ > 0, we denote by SX,y,λ(γ) (or simply S(γ) when
there is no ambiguity) the set of solutions to the SLOPE optimization problem (1), namely:

min
b∈Rp

1

2
‖y −Xb‖22 + γJλ(b).

For any γ > 0, the objective function of the above problem is continuous and coercive thus the
solution set S(γ) is nonempty. Moreover, the fitted value fît(γ) = Xβ̂ does not depend on β̂ ∈ S(γ).
When S(γ) is a singleton, we denote by β̂(γ) its unique element. Note that uniqueness is rather a
weak assumption, indeed the set

{X ∈ Rn×p : ∃y ∈ Rn ∃γ > 0 such that SX,y,λ(γ) is not a singleton}
has zero Lebesgue measure [28, Proposition 3]. Theorem 1 below shows that fît(·) and β̂(·) are
continuous on (0,+∞) and affine between two regularization parameters for which SLOPE solutions
have the same pattern. Affine expressions of these piecewise linear functions are explicit and intervals
are caracterized. We denote hereafter by A+ the Moore-Penrose pseudo-inverse of a matrix A.

Theorem 1 Let X ∈ Rn×p, y ∈ Rn, λ ∈ Rp+, and m ∈ Zp be a non-null SLOPE pattern with
k = ‖m‖∞ ≥ 1.

1. The set Im = {γ > 0 : ∃β̂ ∈ S(γ) such that patt(β̂) = m} is an interval, with the
following characterization:

γ ∈ Im
m{

∃s ∈ Rk+ such that X̃ ′my − γλ̃m = X̃ ′mX̃ms (positivity condition)
X ′(X̃ ′m)+λ̃m + 1

γX
′(In − (X̃ ′m)+X̃ ′m)y ∈ ∂Jλ(m) (subdifferential condition)

Moreover, β̂ = Ums ∈ S(γ) and patt(β̂) = m for any s ∈ Rk+ satisfying the positivity
condition at γ ∈ Im.

2. The fitted value path γ 7→ fît(γ) is continuous and piecewise linear on (0,+∞), with the
following affine expression on Im:

fît(γ) = (X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m, γ ∈ Im.

3. If S(γ) = {β̂(γ)} for all γ > 0, then the solution path γ 7→ β̂(γ) is continuous and
piecewise linear on (0,+∞), with the following affine expression on Im:

β̂(γ) = Um(X̃ ′mX̃m)−1(X̃ ′my − γλ̃m), γ ∈ Im.

The characterization of the interval Im above is closely related to Theorem 3.1 in [6].
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3.2 Gradient path and clusters

A solution of the SLOPE optimization problem is characterized by the following two conditions

β̂ ∈ S(γ)⇔

{
J∗λ(X ′(y −Xβ̂)) ≤ γ
β̂′X ′(y −Xβ̂) = γJλ(β̂)

Note that X ′(y − Xβ̂) = X ′(y − fît(γ)) is the gradient at β̂ of the sum of residual squares
b 7→ 1

2‖y −Xb‖
2
2. Subsequently, we call gradient path the expression γ > 0 7→ X ′(y − fît(γ)). The

set of inequalities describing the ball of radius γ for the dual sorted `1 norm which are saturated by
the gradient is :

A(γ) =

{
i ∈ {1, . . . , p} :

‖X ′(y − fît(γ))‖(i)∑i
j=1 λj

= γ

}
.

According to Theorem 2 below, the set A(γ) provides the number of non-zero clusters, the size of
these clusters as well as the number of non-zero components.

Theorem 2 Let λ ∈ Rp+, X ∈ Rn×p, y ∈ Rn, γ > 0 and β̂ ∈ S(γ).

1. Let 1 ≤ k1 ≤ · · · ≤ kl ≤ p be a subdivision such that:

|supp(β̂)| = kl and |β̂|↓1 = · · · = |β̂|↓k1 > · · · > |β̂|↓kl−1+1 = · · · = |β̂|↓kl > 0

(i.e. β̂ has l non-null clusters, the cluster of the largest value has k1 elements and so on and
β̂ has kl non-null components). Then, {k1, . . . , kl} ⊂ A(γ).

2. Conversely, if {k1, . . . , kl} = A(γ) then

|β̂|↓1 = · · · = |β̂|↓k1 ≥ · · · ≥ |β̂|↓kl−1+1 = · · · = |β̂|↓kl ≥ |β̂|↓kl+1 = · · · = |β̂|↓p = 0

(i.e. the number of non-null clusters of β̂ is smaller or equal to l and the number of non-null
components is smaller or equal to kl).

There are links between Theorem 2 and screening rules for SLOPE [13, 20] which identify some
null components of this estimator. For instance, running Algorithm 1 in [20] with |X ′(y − fît(γ)|↓
returns that a SLOPE solution has at most max{A(γ)} non-zero components. Otherwise, Theorem
4.1 in [13] is closely related to the following implication: |β̂|↓i 6= 0⇒ ∃k ≥ i, k ∈ A(γ).

4 Algorithms to compute the solution path

To keep this section simple we assume that S(γ) = {β̂(γ)} for all γ > 0. Let J∗λ(X ′y) = γ0 >

γ1 > . . . γr > γr+1 = 0 be a subdivision such that γ 7→ β̂(γ) is affine with pattern m(i) on the
interval (γi+1, γi) for i = 0, . . . , r (i.e the interior of Im(i) is (γi+1, γi)).

First, let us explain how to compute the SLOPE solution path on [γ1, γ0]. By construction of m(0)

the following implication holds

∀γ ∈ (γ1, γ0) patt(β̂(γ)) = m(0) ⇒ 1

γ
X ′(y − fît(γ)) ∈ ∂Jλ(m(0)).

Moreover, since γ > 0 7→ fît(γ) is continuous, fit(γ0) = 0 and ∂Jλ(m(0)) is a closed set, we get
1

γ0
X ′(y − fît(γ0)) =

1

γ0
X ′y ∈ ∂Jλ(m(0)). (3)

Algorithm 1 provides the pattern M( 1
γ0
X ′y) of the smallest face of the signed permutahedron

containing 1
γ0
X ′y. Therefore, by construction

∂Jλ

(
M

(
1

γ0
X ′y

))
⊂ ∂Jλ(m(0))⇒

∥∥∥∥M (
1

γ0
X ′y

)∥∥∥∥
∞
≤ ‖m(0)‖∞

According to (4), if X
′y
γ0

lies onto a facet of the signed permutahedron, we have m(0) = M
(

1
γ0
X ′y

)
.
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Algorithm 1 Pattern of the smallest face containing a vector
Require: λ ∈ Rp+ and z ∈ Rp such that J∗λ(z) ≤ 1

Define the set of saturated inequalities as follows:

A(z) =

{
i ∈ {1, . . . , p} :

‖z‖(i)∑i
j=1 λj

= 1

}
.

If A(z) = ∅ set M(z) = (0, . . . , 0) ∈ Rp, otherwise define M(z) ∈ Pslope
p as follows:

∀j ∈ {1, . . . , p}Mj(z) = sign(zj)
∑
i∈A(z)

1(|zj | ≥ λi).

return M(z)

Example 4 We illustrate of the solution path of OSCAR for y = (15, 5)′ ∈ R2, λ = (6, 4, 2)′ ∈ R3+

and

X =

(
2 1 0
1 2 1

)
.

Largest node γ0: We have X ′y = (35, 25, 5)′, therefore γ0 = J∗λ(X ′y) = 6.

Pattern m(0) in the left neighborhood of γ0: Since 1
γ0
X ′y = (35/6, 25/6, 0)′ lies in the relative

interior of ∂Jλ(1, 1, 0)′ = [(6, 2)′, (4, 6)′]× [−2, 2] then m(0) = M( 1
γ0
X ′y) = (1, 1, 0)′.

Expression of β̂(γ) in the left neighborhod of γ0: According to statement 3 in Theorem 1 when
γ < γ0 = 6 is sufficiently close to γ0 we have β̂(γ) = (30−5γ

9 , 30−5γ9 , 0)′.

We tried the package genlasso to compute this solution path. Since dim(ker(X)) 6= 0, genlasso add a
small ridge term ε‖b‖22 to the objective function (the default value is ε = 10−4); thus genlasso solves

min
b∈R3

1

2
‖y −Xb‖22 + γJλ(b) + ε‖b‖22,

= min
b∈R3

1

2

∥∥∥∥(y0
)
−
(

X√
2εI3

)
b

∥∥∥∥2
2

+ γJλ(b). (4)

We computed the solution path of problem (4) when ε = 10−4 with our algorithm and genlasso.
Surprisingly, the solution path computed with genlasso is correct when γ ≥ 5 but wrong when γ < 5.
Comparatively to the original problem (without adding the ridge term), when ε = 10−4 the solution
path have more nodes (especially small nodes). Moreover these paths are extremely different when γ
is small since ε‖b‖22 dominates γJλ(b).

Algorithm 2 uses the characterisation of Im(0) , based on the positivity and subdifferential conditions,
to provide both the node γ1 as well as the pattern m(1).

Using iteratively Algorithm 2 allows to compute entirely the SLOPE solution path.

5 Numerical experiments

The code of the implementation in Python of our algorithm and of the experiments below is available at
https://github.com/x-dupuis/slope-path. The computations were carried out on an Apple
M1 Pro chip (8-core CPU and 14-core GPU) and 16GB of unified memory.

We use two real data sets:

• the Wine Quality data set1 describes the quality of red “Vinho Verde” wines [10]. Each
column of X ∈ R1599×11 represents a physicochemical measurement (density, pH, alcohol,
etc.) and y ∈ R1599 represents wine quality scores (between 0 and 10);

1available at https://archive.ics.uci.edu/dataset/186/wine+quality
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Algorithm 2 Next node and next pattern

Require: X ∈ Rn×p, λ ∈ Rp+, γi,m(i) and s(γ) = (X̃ ′
m(i)X̃m(i))−1(X̃ ′

m(i)y − γλ̃m(i))

Let k = ‖m(i)‖∞ and set γfuse = 0 if s(γ) ∈ Rk+ for all γ ∈ [0, γi), otherwise compute

γfuse = sup{γ ∈ [0, γi) : s(γ) /∈ Rk+}.

if γfuse = 0 then
set γsplit = 0 if X ′(y − X̃m(i)s(γ)) ∈ γ∂Jλ(m(i)) for all γ ∈ [0, γi), otherwise compute

γsplit = sup{γ ∈ [0, γi) : X ′(y − X̃m(i)s(γ)) /∈ γ∂Jλ(m(i))}.

if γslpit = 0 then
return The solution path is entirely computed.

else
γi+1 = γsplit
Compute m(i+1) = M( 1

γi+1
X ′(y − X̃m(i)s(γi+1))) with Algorithm 1.

return γi+1,m
(i+1)

end if
else if γfuse > 0 and X ′(y − X̃m(i)s(γfuse)) ∈ γfuse∂Jλ(m(i)) then
γi+1 = γfuse
m(i+1) = patt(Um(i)s(γfuse))
return γi+1,m

(i+1)

else
Compute

γi+1 = sup{γ ∈ [γfuse, γi) : X ′(y − X̃m(i)s(γ)) /∈ γ∂Jλ(m(i))}.

Compute m(i+1) = M( 1
γi+1

X ′(y − X̃m(i)s(γi+1))) with Algorithm 1.

return γi+1,m
(i+1)

end if

• the Riboflavin data set2 describes the riboflavin production with Bacillus subtilis [9]. Each
column ofX ∈ R71×4088 represents a gene expression measurement and y ∈ R71 represents
production rates.

The matrices X are mean-centered (∀j,
∑
iXij = 0) and standardized (∀j,

∑
iX

2
ij = n), the vectors

y are mean-centered (
∑
i yi = 0).

5.1 Full paths computation

We illustrate here the computation of SLOPE solution paths on the Wine Quality data set. For this
numerical experiment we take λ = (1,

√
2− 1,

√
3−
√

2, . . . ,
√

11−
√

10), so that the unit ball of
the sorted `1 norm is quasi-spherical [26]. Figure 1 provides the solution path of SLOPE as well as
the solution path of LASSO (computed via the homotopy algorithm in [22]).

5.2 Exact minimization of SURE

The Stein Unbiaised Risk Estimate (SURE) formula is an unbiased estimator of the prediction error
(E(‖Xβ̂ −Xβ‖22) where β̂ is an estimator of β). For LASSO and SLOPE, unbiased estimators for
the prediction error are reported hereafter [24, 40]

sure(γ) =

{
‖y −Xβ̂(γ)‖22 − nσ2 + 2σ2‖patt(β̂(γ))‖∞ when β̂(γ) is a SLOPE estimator
‖y −Xβ̂(γ)‖22 − nσ2 + 2σ2|supp(β̂(γ))| when β̂(γ) is a LASSO estimator

2available at https://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-022513-115545
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Figure 1: Solution paths in absolute value of SLOPE (top) and LASSO (bottom) as functions of
γ > 0. On top some curves partially superimpose or partially coincide with the x-axis, illustrating
the clustering and sparsity properties of SLOPE. At the bottom some curves just partially coincide
with the x-axis, illustrating the sparsity property of LASSO.

where σ2 is the variance of residuals. A usual way to select the regularization parameter γ is
to minimize sure(γ) [11, 4]. For both SLOPE and LASSO the solution path is piecewise linear,
therefore the SURE formula is quadratic between two adjacents nodes (i.e the SURE formula
restricted to the interval (γi+1, γi) is quadratic). As a result, solving exactly the solution path allows
to minimize exactly the SURE formula3. For this numerical experiment we substitute σ2 in the
expression of sure(γ) by σ̂2 = ‖(In − X(X ′X)−1X ′)y‖/1588 = 0.4197. Note that when γ is
very large the SURE formula satisfies sure(γ) = ‖y‖22 − 1599σ̂2 = 371.1382. Moreover when
γ tends to 0, both SLOPE and LASSO converge to the ordinary least squares estimator therefore
limγ→0 sure(γ) = 11σ̂2 = 4.6162. We report the regularization parameter minimizing the SURE
formula in Table 1.

The explanatory variables “fixed acidity” (corresponding to X1) and “pH” (corresponding to X9)
are the most correlated ones (the largest off-diagonal components of X ′X , in absolute value,

3One may similarly minimize exactly the sum of residual squares on a validation set γ > 0 7→ ‖yval −
Xvalβ̂(γ)‖22.
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γsure sure(γsure)

SLOPE 18.6292 3.4641
LASSO 11.7602 4.1297

Table 1: Minimizer and minimum of the SURE formula for both SLOPE and LASSO. The minimum
is lower for SLOPE than LASSO, suggesting that SLOPE is a slightly better estimator for the
prediction error than LASSO.

is |X ′1X9| = 1092.0821). The explanatory variables “fixed acidity” and “density” (correspond-
ing to X8) are also strongly correlated (|X ′1X8| = 1068.2076). These three variables are clus-
tered by the SLOPE estimator β̂(γsure) (corresponding to the cluster “4” in patt(β̂(γsure)) =

(4,−8,−1, 2,−5, 3,−6,−4,−4, 7, 9)′) whereas the LASSO estimator β̂lasso(γsure) only selects
one: the “pH” (actually β̂lasso

1 (γsure)) = β̂lasso
8 (γsure)) = 0). Clustering property of SLOPE for

highly correlated variables had been discussed in [14] and intuitively we believe that this property is
beneficial for the prediction error.

5.3 Full path solvers benchmark

For this benchmark we focus on the solution path of OSCAR as, in the literature, no algorithm for
solving the solution path of SLOPE is available online (the code for solving the solution path of
SLOPE in the preprint [26] is not available). A natural competitor to our algorithm is genlasso.
Hereafter X and y are provided by the Wine Quality data set and λ is an arithmetic progression where
λ1 = 4 and λ11 = 1. In table 2 we compare the time needed to compute the solution path as well as
the value of the objective function of OSCAR at γ ∈

{
J∗λ(X

′y)
2 ,

J∗λ(X
′y)

10

}
.

genlasso slope path (our)

Time 4.96e-01 1.31e-02
Value at J

∗
λ(X

′y)
2 483.4367 483.4367

Value at J
∗
λ(X

′y)
10 379.8561 378.5511

Table 2: Time in seconds to compute the solution path and value of the objective function. Our
algorithm is much faster than genlasso. Moreover, the value obtained with our algorithm is lower than
the one obtained with genlasso at γ =

J∗λ(X
′y)

10 , illustrating that the solution provided by genlasso is
not accurate.

Comparison between genlasso and our algorithm on the Riboflavin data set is not tractable; indeed
the D matrix such that Jλ(b) = ‖Db‖1 belongs to R40882×4088 and even if it is sparse, the package
genlasso cannot handle such a big matrix.

5.4 SLOPE solvers benchmark

Computing the full solution path of SLOPE on (0,+∞) is a more ambitious task than solving the
SLOPE optimization problem for a single regularization parameter γ. Therefore, given such a γ,
we can compute the solution path on [γ,+∞) and thus define a SLOPE solver (called slope path
hereafter). We compare it to the following algorithms implemented in the extensive benchmark of
SLOPE solvers [21]:

• Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [2];

• Anderson acceleration for Proximal Gradient Descent (Anderson PGD) [39];

• Alternating Direction Method of Multipliers (ADMM) [8] with the augmented Lagrangian
parameter ρ = 100;

• Coordinate Descent for SLOPE (hybrid CD) [21].
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We used their code4 and set as stopping criterion a primal-dual gap smaller than 1e-12 (which is
satisfied by our algorithm all along the path). When λ is an arithmetic progression where λ1 = 4 and
λp = 1 the benchmarks on the two real data sets are reported in tables 3 and 4.

γ
J∗λ(X

′y)
2

J∗λ(X
′y)

10

FISTA 1.36e-02 4.47e-02
Anderson PGD 5.26e-03 7.02e-02

ADMM (ρ = 100) 2.38e-02 7.18e-03
hybrid CD 2.39e-03 7.91e-03

slope path (our) 6.58e-04 4.51e-03
Table 3: Time in seconds to compute the solution for the Wine Quality data set. In this case, where
p = 11 is small, our algorithm is the fastest one.

γ
J∗λ(X

′y)
2

J∗λ(X
′y)

10

FISTA 9.01e+01 -
Anderson PGD 1.45e+01 -

ADMM (ρ = 100) - 4.93e+00
hybrid CD 4.19e-02 8.84e-01

slope path (our) 3.83e-02 3.72e+00
Table 4: Time in seconds to compute the solution for the Riboflavin data set. In this case where
p = 4088 is large, our algorithm is still the fastest one when γ is large (γ =

J∗λ(X
′y)

2 ) but is

over-performed by hybrid CD when γ is small (γ =
J∗λ(X

′y)
10 ). The missing values correspond to

algorithms not reaching the required primal-dual gap (1e-12).

6 Conclusion and future works

One of the main result in this article is Theorem 1 proving that the SLOPE solution path is piecewise
linear and providing the characterization of the intervals where the path is affine. Moreover algorithms
1 and 2 allow to solve exactly this path. The computational time of our numerical scheme depends
mainly on the number of nodes. In our illustration on real data sets, the number of intervals is not
too large. However the number of intervals where the path is affine is bounded by the number of
SLOPE patterns in Rp and potentially, similarly as for LASSO [22], this huge upper bound might be
reached. Therefore solving the solution path of SLOPE on (0,+∞) might be intractable for some
pathological examples and, in such a situation, our algorithm can only compute partially the solution
path. A first algorithmic perspective would be to generalize this method to a wide class of penalized
estimators. Indeed, the crucial notion of SLOPE pattern might be generalized to a polyhedral gauge
penalty [16] (the SLOPE pattern is just the pattern associated to the sorted `1 (polyhedral) norm).
Another methodological perspective is to derive, based on Theorem 2, screening rules identifying
null components and clusters for SLOPE.
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7 Appendix

Proof of Theorem 1

1: Im is an interval) Hereafter we suppose that Im 6= ∅. Let γ0, γ1 ∈ Im and pick β̂(γ0) ∈ S(γ0),
β̂(γ1) ∈ S(γ1) such that patt(β̂(γ0)) = patt(β̂(γ1)) = m. Let α ∈ [0, 1], γ̄ = αγ0 + (1 − α)γ1
and β̄ = αβ̂(γ0) + (1 − α)β̂(γ1) then patt(β̄) = m. Indeed, if m = 0 then clearly patt(β̄) = 0.
Otherwise, let k = ‖m‖∞ ≥ 1 then β̂(γ0) = Ums0 for some s0 ∈ Rk+, β̂(γ1) = Ums1 for some
s1 ∈ Rk+ therefore β̄ = Ums̄ where s̄ = αs0 + (1− α)s1 ∈ Rk+. To prove that Im is an interval it
remains to show that β̄ ∈ S(γ̄). Because both β̂(γ0) and β̂(γ1) are SLOPE minimizers, we have

X ′(y −Xβ̂(γ0)) ∈ γ0∂Jλ(m) and X ′(y −Xβ̂(γ1)) ∈ γ1∂Jλ(m).

By construction of β̄ the following equality occurs:

αX ′(y −Xβ̂(γ0)) + (1− α)X ′(y −Xβ̂(γ1)) = X ′(y −Xβ̄).

Moreover, since ∂Jλ(m) is a convex set, we have αγ0∂Jλ(m) + (1 − α)γ1∂Jλ(m) ⊂ γ̄∂Jλ(m).
Consequently, X ′(y −Xβ̄) ∈ γ̄∂Jλ(m) = γ̄∂Jλ(β̄) thus β̄ ∈ S(γ̄).

1: characterization of Im) The proof of this characterization is closely related to the proof
of Theorem 3.1 in [6].

Necessity. If γ ∈ Im, then there exists β̂ ∈ S(γ) such that patt(β̂) = m. Consequently, β̂ = Ums

for some s ∈ Rk+. Because β̂ is a element of S(γ) whose pattern is m then X ′(y − fît(γ)) ∈
γ∂Jλ(β̂) = γ∂Jλ(m). Multiplying this inclusion by U ′m, we get X̃ ′m(y − fît(γ)) = γλ̃m and so

X̃ ′my − γλ̃m = X̃ ′mfît(γ) = X̃ ′mX̃ms. (5)

The positivity condition is proven.

We apply (X̃ ′m)+ from the left to (5) and use the fact that (X̃ ′m)+X̃ ′m is the projection onto col(X̃m).
Since fît(γ) ∈ col(X̃m), we have (X̃ ′m)+X̃ ′mfît(γ) = fît(γ). Thus,

(X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m = fît(γ).

The above equality gives the subdifferential condition:

∂Jλ(m) 3 1

γ
X ′(y − fît(γ)) =

1

γ
X ′(y − ((X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m)) (6)

= X ′(X̃ ′m)+λ̃m +
1

γ
X ′(In − (X̃ ′m)+X̃ ′m)y.

Sufficiency. Assume that the positivity condition and the subdifferential conditions hold true. Then,
by the positivity condition, one may pick s ∈ Rk+ for which

γλ̃m = X̃ ′my − X̃ ′mX̃ms. (7)

Let us show that Ums ∈ S(γ). By definition of Um, we have patt(Ums) = m thus ∂Jλ(Ums(γ)) =
∂Jλ(m). Moreover, using (6) and (7) one may deduce

∂Jλ(Ums) 3 1

γ
X ′(y − (X̃ ′m)+X̃ ′my + γ(X̃ ′m)+λ̃m)

=
1

γ
X ′(y − (X̃ ′m)+X̃ ′my + (X̃ ′m)+(X̃my − X̃ ′mX̃ms))

=
1

γ
X ′(y −XUms).

Consequently Ums ∈ S(γ).

2 and 3: continuity) Let γ ∈ (0,+∞), (γn)n∈N be a sequence converging to γ and
β̂(γn) ∈ SX,γnJλ(y). Both sequences (β̂(γn))n∈N and (fît(γn))n∈N are bounded therefore, up to

11



extract a subsequence, one may assume that both (β̂(γn))n∈N and (fît(γn))n∈N converge respectively
to a limit point l ∈ Rp and Xl ∈ Rn. Let β̂(γ) ∈ S(γ). Because β̂(γn) is a minimizer, the following
inequality occurs.

1

2
‖y − fît(γn)‖22 + γnJλ(β̂(γn)) ≤ 1

2
‖y − fît(γ)‖22 + γnJλ(β̂(γ)).

Taking the limit in the above expression gives
1

2
‖y −Xl‖22 + γJλ(l) ≤ 1

2
‖y − fît(γ)‖22 + γJλ(β̂(γ)).

Because β̂(γ) ∈ S(γ), one may deduce that l ∈ S(γ) and thus Xl = fît(γ). Therefore, the unique
limit point of the bounded sequence (fît(γn))n∈N is fît(γ). Consequently, limn→+∞ fît(γn) = fît(γ)

and thus the function γ ∈ (0,+∞) 7→ fît(γ) is continuous. Similarly, if S(γ) is a singleton
then l = β̂(γ), the unique limit point of the bounded sequence (β̂(γn))n∈N is β̂(γ) and thus
limn→+∞ β̂(γn) = β̂(γ). Therefore the function γ ∈ (0,+∞) 7→ β̂(γ) is continuous.

2) When γ ∈ Im then multiplying both side of the positivity condition by (X̃ ′m)+ and using the fact
that (X̃ ′m)+X̃ ′m is the projection onto col(X̃m) gives

(X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m = (X̃ ′m)+X̃ ′mX̃ms = X̃ms = fît(γ).

3) The proof of statement 3) relies on Lemma 1 proved in supplementary material.

Lemma 1 Let X ∈ Rn×p, y ∈ Rn and λ ∈ Rp+. There exists β̂ ∈ S(γ) for which the pattern
m = patt(β̂) satisfies ker(X̃m) = {0}.

Consequently, when γ ∈ Im and S(γ) is a singleton then ker(X̃m) = {0}, where m = patt(β̂(γ)).
Since X̃ ′mX̃m is invertible, the positivity condition gives

β̂(γ) = Ums = Um(X̃ ′mX̃m)−1(X̃ ′my − γλ̃m).

Basic notions on subdifferential, permutahedron and signed permutahedron

The results of this section will be useful to establish the proof of Proposition 1. We denote by Sp the
set of permutations on the set {1, . . . , p}. Given λ ∈ Rp+, the subdifferential calculus of the sorted
`1 norm satisfies the following properties [12, 28, 35]:

Subdifferential at 0: signed permutahedron The following equality holds:

∂Jλ(0) = conv{(σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp}.

The V-polytope P±(λ1, . . . , λp) := conv{(σ1λπ(1), . . . , σpλπ(p)), σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp}
is called the signed permutahedron and can be described as a H-polytope as follows [15]:

P±(λ1, . . . , λp) =

{
x ∈ Rp : ∀j ∈ {1, . . . , p},

j∑
i=1

|x|↓i ≤
j∑
i=1

λi

}
.

This polytope is actually the unit ball of the dual sorted `1 norm [25].

Subdifferential at a constant vector: permutahedron Let c > 0. Then the following equality
holds:

∂Jλ(c, . . . , c) = conv{(λπ(1), . . . , λπ(p)), π ∈ Sp}.
The V-polytope P (λ1, . . . , λp) := conv((λπ(1), . . . , λπ(p)), π ∈ Sp) is called the permutahedron
and can be described as an H-polytope as follows [15, 25]:

P (λ1, . . . , λp) =

{
b ∈ Rp :

p∑
i=1

bi =

p∑
i=1

λi and
j∑
i=1

b↓i ≤
j∑
i=1

λi ∀j ∈ {1, . . . , p− 1}

}
. (8)
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Subdifferential computation rule Let b ∈ Rp be such that b1 ≥ · · · ≥ bk > bk+1 ≥ · · · ≥ bp ≥ 0.
Then

∂Jλ(b) = ∂Jλ1,...,λk(b1, . . . , bk)× ∂Jλk+1,...,λp(bk+1, . . . , bp). (9)

Proof of Theorem 2

Let π ∈ Sp and ε ∈ {−1, 1}p be such that

|β̂|↓ = (ε1β̂π(1), . . . , εpβ̂π(p)),

and let φ be the orthogonal transformation defined as follows:

∀x ∈ Rp φ(x) = (ε1xπ(1), . . . , εpxπ(p)).

Proof of 1) Because β̂ ∈ S(γ) is a SLOPE minimizer, the following equivalence holds:

1

γ
X ′(y − fît(γ)) ∈ ∂Jλ(β̂)⇔ φ

(
1

γ
X ′(y − fît(γ))

)
∈ φ(∂Jλ(β̂)) = ∂Jλ(|β̂|↓).

Since the components of |β̂|↓ are decreasing, ∂Jλ(|β̂|↓) is a Cartesian product of permutahedra with
potentially a signed permutahedron (if β̂ has a null component) [12, 28]. Specifically, we have

∂Jλ(|β̂|↓) =

{
P (λ1, . . . , λk1)× · · · × P (λkl−1+1, . . . , λkl) if kl = p,

P (λ1, . . . , λk1)× · · · × P (λkl−1+1, . . . , λkl)× P±(λkl+1, . . . , λp) if kl < p.

According to (8), if b ∈ P (λ1, . . . , λk1)× · · · × P (λkl−1+1, . . . , λkl), then the following equalities
hold:

∀i ∈ {k1, . . . , kl},
i∑

j=1

bj = ‖b‖(i) =

i∑
j=1

λj .

Finally, since the i−norm ‖.‖(i) is invariant by the transformation φ, one may deduce the following
equalities:

∀i ∈ {k1, . . . , kl},

∥∥∥φ( 1
γX
′(y − fît(γ))

)∥∥∥
(i)∑i

j=1 λj
=

∥∥∥ 1
γX
′(y − fît(γ))

∥∥∥
(i)∑i

j=1 λj
= 1.

Proof of 2) First, let us establish for b ∈ Rp such that b1 ≥ · · · ≥ bp > 0 the following inclusion:

∂Jλ(b) ⊂ conv
{

(λπ(1), . . . , λπ(p)), π ∈ Sp
}

= P (λ1, . . . , λp). (10)

Since the sorted `1 norm is polyhedral, namely

Jλ(b) = max{
p∑
i=1

εiλπ(i)bi : ε1, . . . , εp ∈ {−1, 1}, π ∈ Sp},

its subdifferential is given by

∂Jλ(b) = conv

{
(ε1λπ(1), . . . , εpλπ(p)), ε1, . . . , εp ∈ {−1, 1}, π ∈ Sp :

p∑
i=1

εiλπ(i)bi = Jλ(b)

}
.

Moreover, if εi0 = −1 for some i0 ∈ {1, . . . , p}, then
p∑
i=1

εiλπ(i)bi < λi0bi0 +
∑
i6=i0

εiλπ(i)bi ≤ Jλ(b).

Therefore (ε1λπ(1), . . . , εpλπ(p)) /∈ ∂Jλ(x), which proves inclusion (3).
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Now, let us assume that there exists i /∈ A(γ) such that{
|β̂|↓i > |β̂|↓i+1 if i ≤ p− 1,

|β̂|↓i > 0 if i = p.

Then, according to (9) and (3), we have ∂Jλ1,...,λi(|β̂|↓1, . . . , |β̂|↓i) ⊂ P (λ1, . . . , λi). Consequently∥∥∥φ( 1
γX
′(y − fît(γ))

)∥∥∥
(i)∑i

j=1 λj
=

∥∥∥ 1
γX
′(y − fît(γ))

∥∥∥
(i)∑i

j=1 λj
= 1.

Therefore i ∈ A(γ), which leads to a contradiction.

Existence of a SLOPE minimizer having less than rk(X) non-null clusters

Lemma 2 below provides a statement more precise than both [19, Theorem 2.1] and [28, Corollary
9], proving that, under the assumption of uniqueness, the unique element β̂ of S(γ) has a number of
non-null clusters smaller or equal to rk(X) (i.e. ‖patt(β̂)‖∞ ≤ rk(X)).

Lemma 2 Let X ∈ Rn×p, y ∈ Rn, λ ∈ Rp+ and γ > 0. Then either S(γ) = {0} or there exists
β̂ ∈ S(γ) for which the pattern m = patt(β̂) satisfies ‖m‖∞ = rk(X̃m).

Note that by construction of X̃m = XUm, rk(X̃m) ≤ rk(X). Moreover, ‖m‖∞ = rk(X̃m) if and
only if ker(X̃m) = {0}.

Proof: If 0 ∈ S(γ) and since every elements in S(γ) have the same sorted `1 norm, one
may deduce that S(γ) = {0}. Now, let us assume that 0 /∈ S(γ). Let β̂ ∈ S(γ) be such that
the number of non-null clusters k = ‖patt(β̂)‖∞ = ‖m‖∞ ≥ 1 is minimal. Let us prove that
ker(X̃m) = {0}. If dim(ker(X̃m)) ≥ 1, then pick h ∈ ker(X̃m), h 6= 0. Then set β̂ = Ums

where s ∈ Rk+ and c(t) = β̂ + tUmh = Um(s + th). Since X̃mh = XUmh = 0, then
X ′(y − Xc(t)) = X ′(y − Xβ̂). Let tmin = inf{|t| : s + th /∈ Rk+} > 0; by construction, for
t ∈ (−tmin, tmin), s+ th ∈ Rk+ and thus patt(c(t)) = m. Consequently,

∀t ∈ (−tmin, tmin) X ′(y −Xc(t)) ∈ ∂Jλ(m) = ∂Jλ(c(t)),

⇒ ∀t ∈ (−tmin, tmin) c(t) ∈ S(γ).

Since S(γ) is a closed set, one may deduce that c(±tmin) ∈ S(γ). Finally, by construction of
tmin, one of the vectors s + tminh or s − tminh does not have k distinct components, therefore
‖patt(c(tmin))‖∞ < k or ‖patt(c(−tmin))‖∞ < k which contradicts the fact that β̂ ∈ S(γ) has a
minimal number of non-null clusters.

SLOPE is a generalized LASSO if and only if λ is an arithmetic progression

Let D ∈ Rm×p. The subdifferential at 0 of the function b ∈ Rp 7→ ‖Db‖1 is D′[−1, 1]m. The
polytope D′[−1, 1]m is a zonotope (the image of a cube under an affine transformation). On the other
hand the signed permutahedron (the subdifferential at 0 of Jλ) is a zonotope if and only if λ is an
arithmetic progression [15, Theorem 4.13]. Consequently, when λ is not an arithmetic progression
one cannot pick a matrix D ∈ Rm×p such that Jλ(.) = ‖D.‖1 thus SLOPE is not a generalized
LASSO. On the other hand OSCAR (i.e. SLOPE when λ1 ≥ · · · ≥ λp ≥ 0 is an arithmetic
progression) is clearly a particular generalized LASSO.
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