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Abstract

The SLOPE estimator has the particularity of having null components (sparsity) and
components that are equal in absolute value (clustering). The number of clusters
depends on the regularization parameter of the estimator. This parameter can be
chosen as a trade-off between interpretability (with a small number of clusters) and
accuracy (with a small mean squared error or a small prediction error). Finding
such a compromise requires to compute the solution path, that is the function
mapping the regularization parameter to the estimator. We provide in this article an
algorithm to compute the solution path of SLOPE.

1 Introduction

The SLOPE estimator (Sorted L One Penalized Estimator [1, 21]) is defined as a solution to the
following convex program:

min
b∈Rp

1

2
‖y −Xb‖22 + γ

p∑
i=1

λi|b|↓i. (1)

In (1), λ1 > 0, λ1 ≥ · · · ≥ λp ≥ 0 is a given sequence of penalty parameters, γ > 0 is the
regularization parameter and |b|↓1 ≥ · · · ≥ |b|↓p ≥ 0 are sorted components of b in absolute value.
The SLOPE estimator generalizes both the LASSO estimator (Least Absolute Shrinkage and Selection
Operator [20]) for which λ1 = · · · = λp = 1, and the OSCAR estimator (Octagonal Shrinkage and
Clustering Algorithm for Regression [3]) for which the sequence λ1, . . . , λp is arithmetic.

The SLOPE estimator is gaining popularity among statisticians due to its relevant properties such as
false discovery rate control [1] and dimension reduction of the regression model. The latter property
comes from the structure of the solutions to the optimization problem (1), which have null components
(sparsity) as well as components equal in absolute value (clustering) [14, 6, 3]1. When y represents
the random response of a linear regression model, sparsity has a well-known statistical interpretation:
identification of relevant explanatory variables. Clustering also has a statistical interpretation when
the design matrix X is standardized: the explanatory variables having the same regression coefficient
have the same impact on the response [15]. On the other hand, without restriction on the design
matrix, for a categorical variable having different levels, the equal regression coefficients represent
levels that can be grouped together [17, 10]. Therefore, SLOPE estimator can identify relevant
explanatory variables, group explanatory variables having the same impact on the response and, more
generally, reduce the dimension of the regression model.

The solution path gives the solution of a penalized optimization problem with respect to the reg-
ularization parameter γ > 0. For the LASSO, this path shows that the number of explanatory

1When X is an orthogonal matrix, the solution to the problem (1) is explicit and its sparsity and clustering
properties are straightforward [1, 5, 16, 19]).
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variables selected by this estimator tends to decrease when the regularization parameter becomes
large (see e.g. [9, 13]). Adjusting the regularization parameter γ allows a compromise between
selecting a small number of explanatory variables and constructing an accurate estimator. Similarly,
the construction of the solution path of SLOPE is useful to adjust the regularization parameter to
have a good trade-off between interpretability (by selecting a small number of clusters of explanatory
variables) and accuracy (with a small mean squared error or a small prediction error).

In this article, given a sequence of penalty parameters λ1 > · · · > λp > 0, we prove that the solution
path of SLOPE is piecewise linear on (0,+∞), we characterize its affine components, and we provide
an algorithm to compute the path.2

2 Basic notions on SLOPE

2.1 Sorted `1 norm and its dual norm

Definition 1 The sorted `1 norm associated to λ ∈ Rp with λ1 ≥ · · · ≥ λp ≥ 0 and λ1 > 0 is
defined as follows:

Jλ(b) =

p∑
i=1

λi|b|↓i, b ∈ Rp,

where |b|↓1 ≥ . . . ≥ |b|↓p are the sorted components of b with respect to the absolute value.

Given a norm ‖·‖ on Rp, we recall that its dual norm ‖·‖∗ is defined by ‖v‖∗ = max{b′v : ‖b‖ ≤ 1},
for v ∈ Rp.

Remark 1 The dual sorted `1 norm has an explicit expression given in [11] and reminded hereafter:

J∗λ(v) = max

{
‖v‖(1)
λ1

,
‖v‖(2)∑2
i=1 λi

, . . . ,
‖v‖(p)∑p
i=1 λi

}
, v ∈ Rp,

where ‖ · ‖(k) is the k−norm (the sum of the k largest components in absolute value).

2.2 SLOPE pattern

The SLOPE pattern introduced in [14], whose definition is reminded below, is a central notion in this
article.

Definition 2 The SLOPE pattern patt(b) ∈ Zp of b ∈ Rp is defined by

patt(b)i = sign(bi) rank(|b|)i, i ∈ {1, . . . , p},
where rank(|b|)i ∈ {0, 1, . . . , k}, k is the number of nonzero distinct values in {|b1|, . . . , |bp|},
rank(|b|)i = 0 if and only if bi = 0, and rank(|b|)i < rank(|b|)j if |bi| < |bj |.

We denote by Pslope
p = patt(Rp) the set of SLOPE patterns. Note in the definition above that

k = ‖patt(b)‖∞; it is the number of nonzero clusters of b.

Example 1 Let b = (4.2,−1.3, 0, 1.3, 4.2)′. Then patt(b) = (2,−1, 0, 1, 2)′.

Definition 3 Let m ∈ Zp be a SLOPE pattern with k := ‖m‖∞ > 0. The associated pattern matrix
Um ∈ Rp×k is defined by

(Um)ij = sign(mi)1(|mi|=k+1−j), i ∈ {1, . . . , p}, j ∈ {1, . . . , k}.

For k ≥ 1 we denote Rk+ = {s ∈ Rk : s1 > . . . > sk > 0}. Definition 3 is such that, for b ∈ Rp
and m ∈ Zp a SLOPE pattern with k := ‖m‖∞ > 0, we have

patt(b) = m ⇐⇒ ∃s ∈ Rk+ such that b = Ums.

Hereafter, the notation |m|↓ = (|m|↓1, . . . , |m|↓p)′ represents the components of m sorted non-
increasingly with respect to the absolute value.

2This question has been addressed recently in two preprints [12, 18] where, contrary to us, it is required that
ker(X) = {0} and the affine components are not characterized.
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Example 2 Let m = (2,−1, 0, 1, 2)′. Then

Um =

(
1 0 0 0 1
0 −1 0 1 0

)′
and U|m|↓ =

(
1 1 0 0 0
0 0 1 1 0

)′
.

Definition 4 Let m ∈ Zp be a SLOPE pattern with k := ‖m‖∞ > 0. The clustered matrix
X̃m ∈ Rn×k of X ∈ Rn×p is defined by X̃m = XUm; the clustered parameter λ̃m ∈ Rk of λ ∈ Rp
is defined by λ̃m = (U|m|↓)

′λ.

Note that the dimension of the design matrix X is reduced when it is clustered as X̃m by a pattern m:
a null component mi = 0 leads to discard the column Xi from the design matrix X , and a cluster
K ⊂ {1, . . . , p} of m (set of components of m equal in absolute value) leads to replace the columns
(Xi)i∈K by one column equal to the signed sum:

∑
i∈K

sign(mi)Xi.

Example 3 Let X = (X1|X2|X3|X4|X5), m = (2,−1, 0, 1, 2)′, λ = (λ1, λ2, λ3, λ4, λ5)′ ∈ R5.
Then the clustered matrix and the clustered parameter are given by:

X̃m = (X1 +X5| −X2 +X4) and λ̃m =

(
λ1 + λ2
λ3 + λ4

)
.

2.3 Subdifferential of the sorted `1 norm

The subdifferential of a norm is related to the dual norm ‖ · ‖∗ via the following formula [7, p. 180]:

∂‖ · ‖(b) = {v ∈ Rp : ‖v‖∗ ≤ 1 and b′v = ‖b‖} , b ∈ Rp.

In particular, ∂‖ · ‖(b) is a face of the dual unit ball. For the sorted `1 norm, the above formula can be
specified further with the pattern matrix and the clustered parameter associtated to m = patt(b) for
b 6= 0 [2, 14]:

∂Jλ(b) =
{
v ∈ Rp : J∗λ(v) ≤ 1 and U ′mv = λ̃m

}
. (2)

Remark 2 Let λ ∈ Rp+. The mapping m 7→ ∂Jλ(m) is a bijection between the set of SLOPE
patterns and the set of faces of the unit ball of J∗λ (the signed permutahedron) [14, Theorem 6]. It
is no longer true when λ1 ≥ · · · ≥ λp ≥ 0 is not a decreasing sequence. Therefore we restrict our
study to the case where λ ∈ Rp+, i.e. λ1 > · · · > λp > 0. The bijection is illustrated in Figure 1:

∂Jλ(−2, 1)

∂Jλ(−1, 2) ∂Jλ(1, 2)

∂Jλ(2, 1)

∂Jλ(2,−1)

∂Jλ(1,−2)∂Jλ(−1,−2)

∂Jλ(−2,−1)

∂Jλ(−1, 0)

∂Jλ(−1, 1)

∂Jλ(0, 1)

∂Jλ(1, 1)

∂Jλ(1, 0)

∂Jλ(1,−1)

∂Jλ(0,−1)

∂Jλ(−1,−1)

∂Jλ(0, 0)

Figure 1: Bijection between

Pslope
2 = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1),±(1, 2),±(1,−2),±(2, 1),±(2,−1)}

and the set of faces of the signed permutahedron for λ1 > λ2 > 0.

3



3 Solution, fitted value and gradient paths

3.1 Solution set and fitted value

Given X ∈ Rn×p, y ∈ Rn, λ ∈ Rp+, and γ > 0, we denote by SX,y,λ(γ) (or simply S(γ) when
there is no ambiguity) the set of solutions to the SLOPE optimization problem (1), namely:

min
b∈Rp

1

2
‖y −Xb‖22 + γJλ(b).

For any γ > 0, the objective function of the above problem is continuous and coercive thus the
solution set S(γ) is nonempty. Moreover, the fitted value fît(γ) = Xβ̂ does not depend on β̂ ∈ S(γ).
When S(γ) is a singleton, we denote by β̂(γ) its unique element. Note that uniqueness is rather a weak
assumption, indeed the set {X ∈ Rn×p : ∃y ∈ Rn,∃γ > 0 such that SX,y,λ(γ) is not a singleton}
has zero Lebesgue measure [14, Proposition 3].

Theorem 1 below shows that fît(·) and β̂(·) are piecewise linear functions. Moreover expressions of
fît(·) and β̂(·) restricted to the interval Im (depending on a SLOPE pattern m) are affine and explicit.
We denote hereafter by A+ the Moore-Penrose pseudo-inverse of a matrix A.

Theorem 1 Let X ∈ Rn×p, y ∈ Rn, λ ∈ Rp+, and m ∈ Zp be a non-null SLOPE pattern with
k := ‖m‖∞ > 0.

1. The set Im := {γ > 0 : ∃β̂ ∈ S(γ) such that patt(β̂) = m} is an interval, with the
following characterization:

γ ∈ Im
m{

∃s ∈ Rk+ such that X̃ ′my − γλ̃m = X̃ ′mX̃ms (positivity condition),
X ′(X̃ ′m)+λ̃m + 1

γX
′(In − (X̃ ′m)+X̃ ′m)y ∈ ∂Jλ(m) (subdifferential condition).

Moreover, β̂ := Ums ∈ S(γ) and patt(β̂) = m for any s ∈ Rk+ satisfying the positivity
condition at γ ∈ Im.

2. The fitted value path γ 7→ fît(γ) is continuous and piecewise linear on (0,+∞), with the
following affine expression on Im:

fît(γ) = (X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m, γ ∈ Im.

3. If S(γ) = {β̂(γ)} for all γ > 0, then the solution path γ 7→ β̂(γ) is continuous and
piecewise linear on (0,+∞), with the following affine expression on Im:

β̂(γ) = Um(X̃ ′mX̃m)−1(X̃ ′my − γλ̃m), γ ∈ Im.

The characterization of the interval Im above is closely related to Theorem 3.1 in [2].

3.2 Gradient path and clusters

A solution of the SLOPE optimization problem is characterized by the following two conditions

β̂ ∈ S(γ)⇔

{
J∗λ(X ′(y −Xβ̂)) ≤ γ
β̂′X ′(y −Xβ̂) = γJλ(β̂)

Note that X ′(y − Xβ̂) = X ′(y − fît(γ)) is the gradient at β̂ of the sum of residual squares
b 7→ 1

2‖y −Xb‖
2
2. Subsequently, we call gradient path the expression γ > 0 7→ X ′(y − fît(γ)). The

set of inequalities describing the ball of radius γ for the dual sorted `1 norm which are saturated by
the gradient is :

A(γ) :=

{
i ∈ [p] :

‖X ′(y − fît(γ))‖(i)∑i
j=1 λj

= γ

}
.

According to Proposition 1 below, the set A(γ) provides both the number of non-zero clusters, the
size of these clusters as well as the number of non-zero components.
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Proposition 1 Let λ ∈ Rp+, X ∈ Rn×p, y ∈ Rn, γ > 0 and β̂ ∈ S(γ).

1. Let 1 ≤ k1 ≤ · · · ≤ kl ≤ p be a subdivision such that:

|supp(β̂)| = kl and |β̂|↓1 = · · · = |β̂|↓k1 > · · · > |β̂|↓kl−1+1 = · · · = |β̂|↓kl > 0

(i.e. β̂ has l non-null clusters, the cluster of the largest value has k1 elements and so on and
β̂ has kl non-null components). Then, {k1, . . . , kl} ⊂ A(γ).

2. Conversely, if {k1, . . . , kl} = A(γ) then

|β̂|↓1 = · · · = |β̂|↓k1 ≥ · · · ≥ |β̂|↓kl−1+1 = · · · = |β̂|↓kl ≥ |β̂|↓kl+1 = · · · = |β̂|↓p = 0

(i.e. the number of non-null clusters of β̂ is smaller or equal to l and the number of non-null
components is smaller or equal to kl).

4 Algorithms to compute the solution path

To keep this section simple we assume that S(γ) = {β̂(γ)} for all γ > 0. Let J∗λ(X ′y) = γ0 >

γ1 > . . . γr > γr+1 = 0 be a subdivision such that γ 7→ β̂(γ) is affine with pattern m(i) on the
interval (γi+1, γi) for i = 0, . . . , r (i.e the interior of Im(i) is (γi+1, γi)).

First, let us explain how to compute the SLOPE solution path on [γ1, γ0]. By construction of m(0)

the following implication holds

∀γ ∈ (γ1, γ0),patt(β̂(γ)) = m(0) ⇒ 1

γ
X ′(y − fît(γ)) ∈ ∂Jλ(m(0)).

Moreover, since γ > 0 7→ fît(γ) is continuous, fit(γ0) = 0 and ∂Jλ(m(0)) is a closed set, we get
1

γ0
X ′(y − fît(γ0)) =

1

γ0
X ′y ∈ ∂Jλ(m(0)). (3)

Algorithm 1 provides the pattern M( 1
γ0
X ′y) of the smallest face of the signed permutahedron

containing 1
γ0
X ′y. Therefore, by construction

∂Jλ

(
M

(
1

γ0
X ′y

))
⊂ ∂Jλ(m(0))⇒

∥∥∥∥M (
1

γ0
X ′y

)∥∥∥∥
∞
≤ ‖m(0)‖∞ (4)

According to (4), if X
′y
γ0

lies onto a facet of the signed permutahedron, we have m(0) = M
(

1
γ0
X ′y

)
.

Algorithm 1 Pattern of the smallest face containing a vector
Require: λ ∈ Rp+ and z ∈ Rp such that J∗λ(z) ≤ 1

Define the set of saturated inequalities as follows

A(z) :=

{
i ∈ [p] :

‖z‖(i)∑i
j=1 λj

= 1

}
.

Define M(z) ∈ Pslope
p as follows

M(z) :=

{
0 if A(z) = ∅
∀j ∈ [p],Mj(z) = sign(zj)

∑
i∈A(z) 1(|zj | ≥ λi) if A(z) 6= ∅

return M(z)

Example 4 We provide illustrations of the solution path of SLOPE when y = (6, 2)′ ∈ R2, λ =
(4, 2) ∈ R2+ and X ∈ R2×2 is the matrix given below

X =

(
1 0.5

0.5 1

)
.
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Largest kink γ0: We have X ′y = (7, 5)′, therefore γ0 = J∗λ(X ′y) = 2.

Pattern m(0) in the left neighborhod of γ0: Since 1
γ0
X ′y = (3.5, 2.5)′ lies in the relative interior

of the permutahedron ∂Jλ(1, 1) = conv{(4, 2)′, (2, 4)′} then m(0) = M( 1
γ0
X ′y) = (1, 1).

Affine expression of β̂(γ) in the left neighborhod of γ0: According to statement 3 in Theorem 1
when γ < γ0 = 2 is sufficiently close to γ0 we have β̂(γ) = (8−4γ

3 , 8−4γ3 ).

Algorithm 2 uses the characterisation of Im(0) , based on the positivity and subdifferential conditions,
to provide both the kink γ1 as well as the pattern m(1).

Algorithm 2 Computing the next kink and the next pattern

Require: X ∈ Rn×p, λ ∈ Rp+, γi,m(i) and s(γ) = (X̃ ′
m(i)X̃m(i))−1(X̃ ′

m(i)y − γλ̃m(i))

Let k = ‖m(i)‖∞ and compute

γfuse =

{
sup{γ ∈ [0, γi) : s(γ) /∈ Rk+} if the set is not empty
0 otherwise

.

if γfuse = 0 then
Compute γsplit as follows

γsplit =

{
sup{γ ∈ [0, γi) : X ′(y − X̃m(i)s(γ)) /∈ γ∂Jλ(m(i))} if the set is not empty
0 otherwise

if γslpit = 0 then
return The SLOPE solution path is entirely computed

else
γi+1 = γsplit
Using Algorithm 1 compute m(i+1) = M( 1

γi+1
X ′(y − X̃m(i)s(γi+1)))

return γi+1,m
(i+1)

end if
else if γfuse > 0 and X ′(y − X̃m(i)s(γfuse)) ∈ γfuse∂Jλ(M) then
γi+1 = γfuse
m(i+1) = patt(Um(i)s(γfuse))
return γi+1,m

(i+1)

else
Compute γi+1 as follows

γi+1 = sup{γ ∈ [γfuse, γi) : X ′(y − X̃m(i)s(γ)) /∈ γ∂Jλ(m(i))}

Using Algorithm 1 compute m(i+1) = M( 1
γi+1

X ′(y − X̃m(i)s(γi+1))

return γi+1,m
(i+1)

end if

Using iteratively Algorithm 2 allows to compute entirely the SLOPE solution path3.

5 SLOPE solution path applied on data

Below we will use a data set describing the quality of red “Vinho Verde” wines [4]4. In this data set
explanatory variables X ∈ R1599×11 are physicochemical measurements such as density, acidity, the
amount of sugar and alcohol, etc and the response y ∈ R1599 is the wine quality score between 0

3An implementation in Python of these algorithms for computing the SLOPE solution path is available online:
https://anonymous.4open.science/r/slope-path-744C

4This data set is available online: http://archive.ics.uci.edu/ml/datasets/Wine+Quality
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and 10. For this numerical experiment we take λ = (11, 10, . . . , 1). The matrix X is mean-centered
(∀j ∈ {1, . . . , 11}

∑1599
i=1 Xij = 0) and standardized (∀j ∈ {1, . . . , 11}

∑1599
i=1 X2

ij = 1598).

Figure 2: This figure provides the solution of SLOPE, in absolute value, as a function of γ > 0 (the
x-axis is reported on the logarithm scale). One may observe that when 0.07 = γ(28) < γ < γ(4) =
17.79, at least two components of SLOPE are equal in absolute value. Moreover, in absolute value,
the SLOPE solution converges to the ordinary least squares estimator when γ tends to 0 (components
of the ordinary least squares estimator in absolute value are crosses on the y-axis).

6 Conclusion and future works

One of the main result in this article is Theorem 1 proving that the SLOPE solution path is piecewise
linear and providing the characterization of the intervals where the path is affine. Moreover algorithms
1 and 2 allow to compute numerically this path. The computational time of our numerical scheme
depends mainly on the number of kinks. In the illustration on real data set, the number of intervals is
rather small (29) and kinks are concentrated around zero. However the number of intervals where the
path is affine is bounded by the number of SLOPE patterns in Rp and potentially, similarly as for
LASSO [9], this huge upper bound might be reached for some pathological examples. In the future
we are going to test our method on various data sets and if kinks are too concentrated around zero we
would switch for another numerical scheme (like, for instance, the one developped in [8]) to compute
the SLOPE solution path in the neighborhood of zero.
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7 Appendix

Proof of Theorem 1

1: Im is an interval) Hereafter we suppose that Im 6= ∅. Let γ0, γ1 ∈ Im and pick β̂(γ0) ∈ S(γ0),
β̂(γ1) ∈ S(γ1) such that patt(β̂(γ0)) = patt(β̂(γ1)) = m. Let α ∈ [0, 1], γ̄ = αγ0 + (1 − α)γ1
and β̄ = αβ̂(γ0) + (1 − α)β̂(γ1) then patt(β̄) = m. Indeed, if m = 0 then clearly patt(β̄) = 0.
Otherwise, let k = ‖m‖∞ ≥ 1 then β̂(γ0) = Ums0 for some s0 ∈ Rk+, β̂(γ1) = Ums1 for some
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s1 ∈ Rk+ therefore β̄ = Ums̄ where s̄ = αs0 + (1− α)s1 ∈ Rk+. To prove that Im is an interval it
remains to show that β̄ ∈ S(γ̄). Because both β̂(γ0) and β̂(γ1) are SLOPE minimizers, we have

X ′(y −Xβ̂(γ0)) ∈ γ0∂Jλ(m) and X ′(y −Xβ̂(γ1)) ∈ γ1∂Jλ(m).

By construction of β̄ the following equality occurs:

αX ′(y −Xβ̂(γ0)) + (1− α)X ′(y −Xβ̂(γ1)) = X ′(y −Xβ̄).

Moreover, since ∂Jλ(m) is a convex set, we have αγ0∂Jλ(m) + (1 − α)γ1∂Jλ(m) ⊂ γ̄∂Jλ(m).
Consequently, X ′(y −Xβ̄) ∈ γ̄∂Jλ(m) = γ̄∂Jλ(β̄) thus β̄ ∈ S(γ̄).

1: characterization of Im) The proof of this characterization is closely related to the proof
of Theorem 3.1 in [2].

Necessity. If γ ∈ Im, then there exists β̂ ∈ S(γ) such that patt(β̂) = m. Consequently, β̂ = Ums

for some s ∈ Rk+. Because β̂ is a element of S(γ) whose pattern is m then X ′(y − fît(γ)) ∈
γ∂Jλ(β̂) = γ∂Jλ(m). Multiplying this inclusion by U ′m, due to (2), we get X̃ ′m(y− fît(γ)) = γλ̃m
and so

X̃ ′my − γλ̃m = X̃ ′mfît(γ) = X̃ ′mX̃ms. (5)

The positivity condition is proven.

We apply (X̃ ′m)+ from the left to (5) and use the fact that (X̃ ′m)+X̃ ′m is the projection onto col(X̃m).
Since fît(γ) ∈ col(X̃m), we have (X̃ ′m)+X̃ ′mfît(γ) = fît(γ). Thus,

(X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m = fît(γ).

The above equality gives the subdifferential condition:

∂Jλ(m) 3 1

γ
X ′(y − fît(γ)) =

1

γ
X ′(y − ((X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m)) (6)

= X ′(X̃ ′m)+λ̃m +
1

γ
X ′(In − (X̃ ′m)+X̃ ′m)y.

Sufficiency. Assume that the positivity condition and the subdifferential conditions hold true. Then,
by the positivity condition, one may pick s ∈ Rk+ for which

γλ̃m = X̃ ′my − X̃ ′mX̃ms. (7)

Let us show that Ums ∈ S(γ). By definition of Um, we have patt(Ums) = m thus ∂Jλ(Ums(γ)) =
∂Jλ(m). Moreover, using (6) and (7) one may deduce

∂Jλ(Ums) 3 1

γ
X ′(y − (X̃ ′m)+X̃ ′my + γ(X̃ ′m)+λ̃m)

=
1

γ
X ′(y − (X̃ ′m)+X̃ ′my + (X̃ ′m)+(X̃my − X̃ ′mX̃ms))

=
1

γ
X ′(y −XUms).

Consequently Ums ∈ S(γ).

2 and 3: continuity) Let γ ∈ (0,+∞), (γn)n∈N be a sequence converging to γ and
β̂(γn) ∈ SX,γnJλ(y). Both sequences (β̂(γn))n∈N and (fît(γn))n∈N are bounded therefore, up to
extract a subsequence, one may assume that both (β̂(γn))n∈N and (fît(γn))n∈N converge respectively
to a limit point l ∈ Rp and Xl ∈ Rn. Let β̂(γ) ∈ S(γ). Because β̂(γn) is a minimizer, the following
inequality occurs.

1

2
‖y − fît(γn)‖22 + γnJλ(β̂(γn)) ≤ 1

2
‖y − fît(γ)‖22 + γnJλ(β̂(γ)).

Taking the limit in the above expression gives
1

2
‖y −Xl‖22 + γJλ(l) ≤ 1

2
‖y − fît(γ)‖22 + γJλ(β̂(γ)).
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Because β̂(γ) ∈ S(γ), one may deduce that l ∈ S(γ) and thus Xl = fît(γ). Therefore, the unique
limit point of the bounded sequence (fît(γn))n∈N is fît(γ). Consequently, limn→+∞ fît(γn) = fît(γ)

and thus the function γ ∈ (0,+∞) 7→ fît(γ) is continuous. Similarly, if S(γ) is a singleton
then l = β̂(γ), the unique limit point of the bounded sequence (β̂(γn))n∈N is β̂(γ) and thus
limn→+∞ β̂(γn) = β̂(γ). Therefore the function γ ∈ (0,+∞) 7→ β̂(γ) is continuous.

2) When γ ∈ Im then multiplying both side of the positivity condition by (X̃ ′m)+ and using the fact
that (X̃ ′m)+X̃ ′m is the projection onto col(X̃m) gives

(X̃ ′m)+X̃ ′my − γ(X̃ ′m)+λ̃m = (X̃ ′m)+X̃ ′mX̃ms = X̃ms = fît(γ).

3) The proof of statement 3) relies on Lemma 1 proved in supplementary material.

Lemma 1 Let X ∈ Rn×p, y ∈ Rn and λ ∈ Rp+. There exists β̂ ∈ S(γ) for which the pattern
m = patt(β̂) satisfies ker(X̃m) = {0}.

Consequently, when γ ∈ Im and S(γ) is a singleton then ker(X̃m) = {0}, where m = patt(β̂(γ)).
Since X̃ ′mX̃m is invertible, the positivity condition gives

β̂(γ) = Ums = Um(X̃ ′mX̃m)−1(X̃ ′my − γλ̃m).
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