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HAL is a

Introduction

Let (Ω, A, P) be a probability space, and let (ε i ) i≥1 be independent and identically distributed (iid) random variables defined on Ω, with values in a measurable space G and with common distribution µ. Let W 0 be a random variable defined on Ω with values in a measurable space X, independent of (ε i ) i≥1 , and let F be a measurable function from G × X to X. For any n ≥ 1, define W n = F (ε n , W n-1 ) , and assume that (W n , n ≥ 1) has a stationary distribution ν. Let now h be a measurable function from G × X to R and define, for any n ≥ 1,

X n = h(ε n , W n-1 ) . (1) 
Then (X n ) n≥1 forms a stationary sequence with stationary distribution, say π. Let (G i ) i∈Z be the non-decreasing filtration defined as follows: for any i < 0, G i = {∅, Ω}, G 0 = σ(W 0 ) and for any i ≥ 1, G i = σ(ε i , . . . , ε 1 , W 0 ). It follows that for any n ≥ 1, X n is G n -measurable. We can also consider the following model

X n = h(ε n , ε n-1 , . . .) , (2) 
which is in fact included in the preceding situation, by taking W 0 = (ε 0 , ε -1 , . .

.).

In what follows we assume that h is such that E(X n ) = 0. For any n ≥ 0, let us define the sequence (δ(n)) n≥0 by

δ(0) = E(|X 1 |) and δ(n) = X n -X * n 1 , n ≥ 1 ,
where X * n is defined as follows : let W 0 and W * 0 be random variables with law ν, and such that W * 0 is independent of (W 0 , (ε i ) i≥1 ). For any n ≥ 1, let

X * n = h(ε n , W * n-1 ) with W * n = F (ε n , W * n-1 ) . (3) 
Note that the coefficients δ(n) are well defined if π has a moment of order 1.

In the paper [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF], we assumed that the coupling coefficients δ n decrease at a polynomial rate, and we used a variant of the Berkes-Liu-Wu method (see [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF]) to establish strong approximation results for partial sums. Another more restrictive coefficient is also considered in [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF] (see also [START_REF] Cuny | An alternative to the coupling of Berkes-Liu-Wu for strong approximations[END_REF] for variants of these coefficients and the resulting conditions). In [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF] we applied our results to various classes of (possibly non irreducible) Markov chains; in particular, we obtained optimal rates in the almost sure invariance principle (ASIP) for some functions of the left random walk on GL d (R) under polynomial moment conditions. In [START_REF] Cuny | Rates in almost sure invariance principle for slowly mixing dynamical systems[END_REF] and [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF] we adapted the proofs of these results to Birkhoff sums of Hölder observables of non-uniformly expanding dynamical systems, using a representation as functions of the trajectory of a particular Markov Chain due to Korepanov [START_REF] Korepanov | Rates in almost sure invariance principle for dynamical systems with some hyperbolicity[END_REF]. In the paper [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF], we consider dynamical systems with exponential or sub-exponential decay of correlations, and we show that the rates in the ASIP are in powers of log n.

In the present paper, we consider the context of [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF], assuming that the coefficients δ n decrease at an exponential, sub-exponential or super-exponential rate (described by an index γ 1 , see ( 4)), and that the variables have an exponential, sub-exponential or super-exponential moments (described by an index γ 2 , see [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]). Using arguments from [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF], we show that the rates in the ASIP are in powers of log n (the exponent of the logarithm depending on γ 1 and γ 2 ). We apply our results to the left random walk on GL d (R), to iid products of positive matrices, and to a class of non-uniformly contracting auto-regressive processes.

Main results

We assume that there exist two positive constants γ 1 and c such that δ(n) ≤ exp(-cn γ 1 ) for any positive integer n ,

and there are constant b ∈]0, ∞[ and γ 2 ∈]0, ∞] such that

P(|X 1 | > t) ≤ exp(1 -(t/b) γ 2 ) for any positive t , (5) 
Note that when γ 2 = ∞ (5) means that X n ∞ ≤ b a.s. for any integer n. When X 1 satisfies (5) we say either that it has a semi exponential tail of order γ 2 or that it admits a sub-exponential or super-exponential moment of order γ 2 .

Theorem 1 Let (X n ) n≥1 be defined by (1) or (2). Let S n = n k=1 X k . Assume that (4) and (5) are satisfied. Then n -1 E S 2 n → σ 2 as n → ∞ and one can redefine (X n ) n≥1 without changing its distribution on a (richer) probability space on which there exist iid random variables (N i ) i≥1 with common distribution N (0, σ 2 ), such that, as n → ∞,

S n - n i=1 N i = O((log n) 1+λ ) P-a.s. where λ = 1 γ 1 + 1 γ 2 . ( 6 
)
Proof of Theorem 1. Let α = 1 + λ. The proof uses similar arguments as those developed in the proof of Theorem 1.6 in [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF] with the main difference that the random variables X k are no longer bounded. we then have to truncate them. With this aim, let us first define for any positive integer k,

M k = c 1 k 1/γ 2 where c 1 = b(2 log 3) 1/γ 2 , (7) 
(recall that b is the constant appearing in condition ( 5)) and

ϕ k (x) = x ∧ M k ∨ -M k .
Then we set

X k,j = ϕ k (X j ) -Eϕ k (X j ) and W k, = +3 k-1 i=1+3 k-1 X k,i .
For n ≥ 2, let h n = (log n)/(log 3) (so that h n is the unique integer such that 3 hn-1 < n ≤ 3 hn ). Note that

S n = hn-1 k=1 3 k i=1+3 k-1 X i + n i=1+3 hn-1 X i ,
and set

S † n = hn-1 k=1 W k,3 k -3 k-1 + n i=1+3 hn-1
X hn,i .

Let also S † 1 = 0. We first prove that max

1≤i≤n S i -S † i = O((log n) α ) P-a.s. (8) 
With this aim, it suffices to prove via the Kronecker lemma and stationarity that k≥1

k -α 3 k E(|X 1 | -M k ) + < ∞ . (9) 
Obviously this holds when γ 2 = ∞. Assume now that γ 2 < ∞ and note that since

3 k = exp 1 2 M k b γ 2 , 3 k E(|X 1 |-M k ) + = 3 k ∞ M k P(|X 1 | > t)dt ≤ ∞ M k exp(1-2 -1 (t/b) γ 2 )dt ≤ b2 1/γ 2 γ 2 Γ((1-γ 2 )/γ 2 ) < ∞ .
Since α > 1, ( 9) is proved and so (8) also. Now, for any k ≥ 1, let

m k = [c 2 k 1/γ 1 ] + 1 where c 2 = 2c -1 (log 3) 1/γ 1 , (10) 
(recall that c is the constant appearing in condition (4)). We then define

Xk,j = E ϕ k (X j )|ε j , ε j-1 , . . . , ε j-m k -E ϕ k (X j ) for any j ≥ m k and W k, = +3 k-1 i=1+3 k-1
Xk,i .

Finally, set S1 = 0 and for n > 1,

Sn = hn-1 k=1 W k,3 k -3 k-1 + W hn,n-3 hn-1 .
Note that by Lemma 24 in [START_REF] Cuny | On the Komlós, Major and Tusnády strong approximation for some classes of random iterates[END_REF], for any j ≥ m k ,

X k,j -Xk,j 1 ≤ E(|X m k +1,x -X m k +1,y |)ν(dx)ν(dy) ≤ δ(m k ). (11) 
Hence, for k ≥ k 0 where k 0 is such that for any ≥ k 0 , m ≤ 3 -1 , the upper bound [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF] implies that max

1≤ ≤3 k -3 k-1 W k, -W k, 1 ≤ 3 k i=1+3 k-1 X k,i -Xk,i 1 ≤ 3 k δ(m k ) 3 k exp(-c × c γ 1 2 k) .
Hence, since c × c γ 1 2 ≥ log 3,

k≥k 0 k -α max 1≤ ≤3 k -3 k-1 W k, -W k, 1 < ∞ ,
which entails by the Kronecker lemma that max 1≤i≤n

S † i -Si = o((log n) α ) P-a.s. (12) 
From ( 8) and [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF], the theorem will follow if one can prove that there exists a standard Brownian motion B such that such that, as n → ∞,

max 1≤i≤n Si -B(iσ 2 ) = O((log n) α ) P-a.s. (13) 
To prove [START_REF] Dedecker | A new covariance inequality and applications[END_REF], we do exactly as in Steps 3 and 4 of the proof of [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF]Theorem 1.6] by replacing the upper bound ψ ∞ by 2M k (which a bound of the sup norm of the truncated random variables X k,j ), and by noticing that M k m k k 1/γ . This leads to (3.20) in [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF] which combined with (3.9) in [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF] gives the following strong approximation: there exists a standard Brownian motion B such that such that, as n → ∞,

max 1≤i≤n Si -B(σ 2 i ) = O((log n) α ) P-a.s. ( 14 
)
where σ 2 i is defined by (3.21) in [START_REF] Cuny | Rates in almost sure invariance principle for quickly mixing dynamical systems[END_REF]. It remains to identify the variance of the Brownian motion and to show that max

1≤i≤n B(σ 2 i ) -B(iσ 2 ) = O((log n) α ) P-a.s. (15) 
With this aim, we shall proceed as in step 3.4 in [START_REF] Berkes | Komlós-Major-Tusnády approximation under dependence[END_REF] (see also Step 5 in [7]). We set

ν k = σ 2 + 2 m k i=-m k (γ k,i -γ i ) -2 i≥m k +1 γ i , (16) 
where γk,i = cov( Xk,m k , Xk,i+m k ) , γk,i = cov(X k,0 , X k,i ) and γ i = cov(X 0 , X i ) .

To prove [START_REF] Fan | Deviation inequalities for martingales with applications[END_REF], we need to prove that

(log n) max k≤hn (m k ν k ) 1/2 = O((log n) α ) , (17) 
and

3 k (ν 1/2 k -σ) 2 = O(k 2α (log k) -1 ) . ( 18 
)
By using the upper bound [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF], we have, for any i ≥ 0,

γk,i -γk,i = cov( Xk,m k -X k,m k , Xk,i+m k ) + cov(X k,m k , Xk,i+m k -X k,i+m k ) ≤ 2M k Xk,m k -X k,m k 1 + 2M k Xk,i+m k -X k,i+m k 1 k 1/γ 2 exp(-c × c γ 1 2 k) . (19) 
Next, by using inequality (1.11a) in [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF], note that

γk,i -γ i = cov(X k,0 -X 0 , X k,i ) + cov(X 0 , X k,i -X i ) ≤ 2 1/2 0 Q |ϕ k (X)| (u)Q |g k (X)| (u)du+2 1/2 0 Q |X 1 | (u)Q |g k (X)| (u)du ≤ 4 1 0 Q(u)(Q(u)-M k ) + du , where g k (x) = (|x|-M k ) + = x-ϕ k (x). But, for any positive t, P(|X 1 | > t) ≤ exp(1-(t/b) γ 2 ) := G(t). Therefore, for any u ∈]0, 1[, Q(u) ≤ G -1 (u) := b 1 -log u 1/γ 2 . But G -1 (u) > M k ⇐⇒ u -1 > e 2k log 3-1 . So, overall, γk,i -γ i ≤ 4b 2 1 0 log(e/u) 2/γ 2 1 {u -1 >e 2k log 3-1 } du = 4eb 2 ∞ e 2k log 3 log x 2/γ 2 x -2 dx = 4eb 2 ∞ 2k log 3 x 2/γ 2 e -x dx ≤ κ γ 2 b 2 1 + k 2/γ 2 e -2k log 3 ,
where κ γ 2 is a positive constant depending only on γ 2 . Next, by using Proposition 1 in [START_REF] Dedecker | A new covariance inequality and applications[END_REF], we derive

i≥m k |cov(X 0 , X i )| ≤ 2 i≥m k δ(i) 0 Q • H -1 (u)du ≤ 2 i≥m k H(δ(i)) 0 Q 2 (u)du ,
where H is the function defined on [0, 1] by

H(v) := v 0 Q(u)du and H -1 is its inverse. Since Q(u) ≤ b 1 -log u
1/γ 2 , we infer that there exists a positive constant κ depending on c, b, γ 1 and γ 2 , such that, for any i ≥ 1,

H(δ(i)) 0 Q 2 (u)du ≤ κi 2γ 1 /γ 2 exp(-ci γ 1 ) . Therefore, since m k = [c 2 k 1/γ 1 ] + 1, i≥m k |γ i | ≤ κk 2 γ 2 + 1 γ 1 -1 exp(-c × c γ 1 2 k) ,
where κ is a positive constant depending only on c, b, γ 1 , γ 2 and c 2 . So, overall, for any positive integer k,

ν k -σ 2 ≤ K × k 2 γ 2 + 1 γ 1 e -2k log 3 + exp(-c × c γ 1 2 k) . ( 20 
)
where K is a positive constant depending only on c, b, γ 1 , γ 2 and c 2 . This shows that 18) since we have selected c 2 such that c × c γ 1 2 = 2 log 3. The proof is complete.

ν k → σ 2 , as k → ∞. Hence (17) is satisfied since (log n) max k≤hn (m k ) 1/2 (log n) 1+1/(2γ 1 ) = O((log n) α ) (indeed α = 1 + 1/γ 1 + 1/γ 2 ). Note now that since |ν 1/2 k -σ| 2 ≤ |ν k -σ 2 |, (20) implies (
3 Applications

Products of iid invertible matrices

Let (ε n ) n≥1 be independent random matrices taking values in G = GL d (R), d ≥ 2, with common distribution µ. Let A 0 = Id and for every n ≥ 1, A n = ε n • • • ε 1 .
Let • be the euclidean norm on R d and for any g ∈ G, let N (g) := max( g , g -1 ) where g = sup x =1 gx . Recall that µ has a moment of order p ≥ 1 if G (log N (g)) p µ(dg) < ∞ and a sub-exponential moment of order γ ∈]0, 1] if there exists c > 0 such that

G e c(log N (g)) γ µ(dg) < ∞ . ( 21 
)
Recall also that if µ admits a moment of order 1 then

lim n→∞ 1 n log A n = λ µ P-a.s., (22) 
where

λ µ := lim n→+∞ n -1 E(log ε n • • • ε 1 )
is the so-called first Lyapunov exponent (see for instance [START_REF] Furstenberg | Products of Random Matrices[END_REF]).

Let X := P d-1 (R d ) be the projective space of R d -{0} and write x as the projection of

x ∈ R d -{0} to X. G is acting on X as follows: g • x = gx for every (g, x) ∈ G × R d -{0}.
We assume that µ is strongly irreducible (i.e. that no proper finite union of subspaces of R d are invariant by Γ µ , the closed semi-group generated by the support of µ) and proximal (i.e. that there exists a matrix in Γ µ admitting a unique (with multiplicity one) eigenvalue with maximum modulus). Under those assumptions (see e.g. Bougerol-Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] or Benoist-Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF]) it is well-known that there exists a unique invariant measure ν on B(X), meaning that for any continuous and bounded function f from X to R,

X f (x)ν(dx) = G X f (g • x)µ(dg)ν(dx) .
The left random walk of law µ on X is the process defined as follows. Let W 0 be an X-valued random variable independent of (ε n ) n≥1 , and let

W n = ε n • W n-1 for n ≥ 1. Note that, if W 0 has distribution ν, then (W n ) n≥0 is a strictly stationary Markov chain.
Our aim is to study the partial sums associated with the random sequence (X n ) n≥1 given by

X n := h(ε n , W n-1 ) , n ≥ 1 ,
where for every g ∈ G and every x ∈ X, h(g, x) = log gx x .

As usual, we shall denote by X n,x the random variable for which W 0 = x. We then define S n,x = n k=1 X n,x . Note that, for any x ∈ S d-1 ,

S n,x = n k=1 X k,x = log A n x .
Then, when we keep the notation (X n ) n≥1 , we have in mind that we are in stationary regime, i.e. that W 0 has law ν. In this case we also define

S n = n k=1 X n = log A n V 0 ,
where V 0 is such that V 0 = 1 and W 0 = V0 .

We denote by ρ(g) the spectral radius of a matrix g. Applying Theorem 1, the following strong approximation with rate holds.

Corollary 2 Let µ be a proximal and strongly irreducible probability measure on B(G). Assume that µ has a sub-exponential moment of order γ ∈]0, 1]. Then n -1 E ν (S n -nλ µ ) 2 → σ 2 as n → ∞ and for every (fixed) x ∈ X, one can redefine (S n,x ) n≥1 without changing its distribution on a (richer) probability space on which there exist iid random variables (N i ) i≥1 with common distribution N (0, σ 2 ), such that,

S n,x -nλ µ - n i=1 N i = O((log n) 1+2/γ ) a.s.
Moreover, the result remains true if we replace the sequence (S n,x ) n≥1 with (S n ) n≥1 , (log

A n ) n≥1 , (log ρ(A n )) n≥1 or (log | A n x, y |) n≥1 , for some x, y ∈ S d-1 .
Remark 3 It follows from item c) of Theorem 4.11 of Benoist-Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] that σ > 0 if µ is strongly irreducible and the image of Γ µ in P GL d (R) is unbounded.

Remark 4 If µ has a super-exponential moment meaning that (21) holds with γ > 1, we infer from the proof of Corollary 2 that for every (fixed) x ∈ X, one can redefine (S n,x ) n≥1 without changing its distribution on a (richer) probability space on which there exist iid random variables (N i ) i≥1 with common distribution N (0, σ 2 ), such that,

S n,x -nλ µ - n i=1 N i = O((log n) 2+1/γ ) a.s.
In particular if µ has compact support, the rate in the almost sure invariance principle is of order O((log n) 2 ). Again, this extension holds with (S n ) n≥1 , (log

A n ) n≥1 , (log ρ(A n )) n≥1 or (log | A n x, y |) n≥1 , for some x, y ∈ S d-1 .
Proof of Corollary 2. It follows from Theorem 2 (ii) in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF] that n -1 E ν (S n -nλ µ ) 2 → σ 2 as n → ∞. Then, the strong invariance principle in stationary regime, i.e. for (S n ) n≥1 , is a direct application of Theorem 1 by taking into account the estimate given in Proposition 5 below. The proof of Proposition 5 is given in appendix.

Proposition 5 Assume that µ satisfies (21) with γ > 0. Then, there exists β > 0 such that, for any positive integer k,

sup x,ȳ∈X E(|X k,x -X k,ȳ |) e -βk min(γ,1) . ( 23 
)
As in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF] we obtain the result for the matrix norms (log( A n ) n≥1 from the stationary regime, using an argument from [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Indeed, it suffices to apply the estimate given just after equation (66) of [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF] to get the ASIP in that case. Similarly, we get the ASIP for (S n,x ) n≥1 , for any x ∈ S d-1 .

It remains to handle the case of the matrix coefficients and of the spectral radius. The proof follows a well-known scheme that has been used in [START_REF] Benoist | Random walks on reductive groups[END_REF] under exponential moments and in [START_REF] Benoist | Central limit theorem for linear groups[END_REF] and [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF] under polynomial moments. Those proofs rely on large deviations inequalities. In the case of sub-exponential moments, the needed large deviations estimates were obtained in [START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA Lat[END_REF].

We start with an auxiliary result of independent interest, see Theorem 2.6 of [START_REF] Grama | Limit theorems on the coefficients of random walks on the general linear group[END_REF], for a related result. We can now prove the result for the matrix coefficients.

Let η be as in Proposition 6. Let n ∈ N and x ∈ X. Using that ν is µ-invariant and Markov's inequality, we have

P -log δ(W n , x) ≥ (2 log n/η) 1/γ = ν ȳ ∈ X : e η|log δ(ȳ,x)| γ ≥ n 2 ≤ K/n 2 .
Hence, by the Borel-Cantelli lemma we see that, P-a.s.

-log δ(W n , x) ≤ (2 log n/η) 1/γ , for all but finitely many n ∈ N. Combining this with the computations after (67) (and page 1864) in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], we infer that for every x, ȳ ∈ X,

|log δ(A n • x, ȳ)| = O((log n) 1/γ ) ,
and the desired result follows since

log | A n x, y | = log A n x + log y + log δ(A n • x, ȳ) .
It remains to prove the ASIP for the spectral radius. The result follows from the following lemma, with ≥ (2 log n/c) 1/γ , combined with the Borel-Cantelli lemma.

Lemma 7 Under the assumption of Corollary 2, for every ε > 0, there exists C, c > 0 and 0 ∈ N such that for every 0 ≤ ≤ n,

P(log ρ(A n ) -A n ≥ -ε ) ≥ 1 -Ce -c γ .
The lemma may be proved as Lemma 8 in [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF] using our Lemma 12 from the Appendix instead of Lemma 6 in [START_REF] Cuny | Berry-Esseen type bounds for the matrix coefficients and the spectral radius of the left random walk on GL d (R)[END_REF].

Products of iid positive matrices

Let us assume now that G is the semi-group of d-dimensional positive allowable matrices: by positive, we mean that all entries are greater than or equal to 0, by allowable, we mean that any row and any column admits a strictly positive element.

In this case, G is acting on X = S d-1 ∩ (R + ) d as follows: g • x = gx/ gx , and we define N (g) by N (g) = max( g , 1/v(g)), where v(g) := inf x∈X gx . Here, • stands for the 1 norm on R d which is more convenient for the problem, see [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF]. This change does not affect the final results since all norms on R d are equivalent.

Then, similarly to the previous section, we define polynomial moments of order p ≥ 1 for µ as well as sub-exponential moments of order γ ∈]0, 1].

We shall also say that µ is strictly contracting if its support contains a matrix whose all entries are strictly positive. When µ is stricty contracting there exists a unique µ-invariant probability ν on B(X), see Section 3 of [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF].

We have the following analogue to Corollary 2 with S n,x = log A n x , x ∈ X, where

A n = ε n • • • ε 1 with (ε n ) n≥1 a sequence of independent random matrices taking values in G, d ≥ 2,
with common distribution µ. Let also W 0 be an X-valued random variable with law ν and independent of (ε n ) n≥1 , and S n = log A n W 0 . The following corollary was announced in [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF].

Corollary 8 Let µ be a strictly contracting probability measure on B(G). Assume that µ has a sub-exponential moment of order γ ∈]0, 1]. Then n -1 E ν (S n -nλ µ ) 2 → σ 2 as n → ∞ and for every (fixed) x ∈ X, one can redefine (S n,x ) n≥1 without changing its distribution on a (richer) probability space on which there exist iid random variables (N i ) i≥1 with common distribution N (0, σ 2 ), such that,

S n,x -nλ µ - n i=1 N i = O((log n) 2+1/γ ) a.s.
Moreover,the result remains true if we replace the sequence (S n,x ) n≥1 with (S n ) n≥1 , (log

A n ) n≥1 , (log ρ(A n )) n≥1 , (log v(A n )) n≥1 or (log | A n x, y |) n≥1 , for some x, y ∈ X.
Remark 9 When µ is aperiodic, see Definition 5.1 of [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF], then, by Proposition 5.2 of [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF], σ 2 > 0. When µ admits super-exponential moments, it is possible to improve the rate as in the remark after Corollary 2.

Proof of Corollary 8. Again, we start with the stationary regime. The existence of the asymptotic variance follows from Proposition 5.2 of [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF]. By Proposition 3.2 of [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF], when µ is strictly contracting and admits a moment of order greater than one, (23) holds. Then, the result (for (S n ) n≥1 ) follows from Theorem 1.

The ASIP for (log A n ) n≥1 and (log v(A n )) n≥1 follows from (4.3) in [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF] and the fact that for every x ∈ X, v(A n ) ≤ A n x ≤ A n . Similary, we obtain the ASIP for (S n,x ) n≥1 for any x ∈ X.

Then, the ASIP for (log ρ(A n )) n≥1 follows from (4.3) in [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF], combined with the inequalities, for every

n ≥ 1, log v(A n ) ≤ log ρ(A n ) ≤ log A n .
The ASIP for the matrix coefficients is proved in [START_REF] Cuny | Limit theorems for iid products of positive matrices[END_REF], see Theorem 6.4.

Lipschitz autoregressive models

We consider the autoregressive Lipschitz model introduced by Dedecker and Rio [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF]. Let τ ∈ [0, 1), C ∈ (0, 1] and f : R → R a 1-Lipschitz function such that

f (0) = 0 and |f (t)| ≤ 1 - C (1 + |t|) τ
for almost every t .

Let (ε i ) i≥1 be iid real-valued random valued with common law µ and define for any n ≥ 1

W n = f (W n-1 ) + ε n , with W 0 independent of (ε i ) i≥1 . (24) 
Let S n (g) = n k=1 g(W i ) for any measurable function g. Assume that µ has a sub-exponential moment of order η ∈]0, 1] (hence E(e c|ε 0 | η ) < ∞, for some c > 0). For this model, there exists an unique invariant probability measure ν (see Proposition 2 of [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF]) and the following result holds:

Corollary 10 Assume that µ has a sub-exponential moment of order η ∈]0, 1]. Let (W n ) n≥0 be defined by (24) with L(W 0 ) = ν. Assume furthermore that g is Lipschitz and that, for some ζ ∈ [0, 1] and some positive constant κ, |g(x)| ≤ κ(1 + |x| ζ ). Suppose that τ + ζ > 0. Then, n -1 Var(S n (g)) → σ 2 (g) as n → ∞ and one can redefine (W n ) n≥0 without changing its distribution on a (richer) probability space on which there exist iid random variables (N i ) i≥1 with common distribution N (0, σ 2 (g)), such that,

S n (g) -nν(g) - n i=1 N i = O((log n) 1+1/γ 1 +1/γ 2 ) P-a.s.
where

γ 1 = η(1 -τ )(η(1 -τ ) + τ ) -1 and γ 2 = η(1 -τ )/ζ.
Proof. The result comes from an application of Theorem 1 by taking into account Proposition 3 of [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF] and its proof. More precisely, [20, (4.3)] and [START_REF] Merlevède | A Bernstein type inequality and moderate deviations for weakly dependent sequences[END_REF]Remark 5] ensure that g(W 1 ) -ν(g) satisfies ( 5) with index γ 2 = η(1 -τ )/ζ. In addition, as it appears clearly in the proof of [20, (4.4)], the control of the τ -coefficients is done via a control of the coupling coefficients δ(n) (see [20, (4.6)]).

Appendix

Proof of Proposition 5

The proof of the proposition is based on the following lemma whose statement needs the following notation: For x, ȳ ∈ X, define d(x, ȳ) :=

x ∧ y x y

where ∧ stands for the exterior product, see e.g. [4, page 61] for the definition and some properties. Then d is a metric on X.

Lemma 11 Assume that µ satisfies (21) with γ > 0. Then, for any positive integer k and any κ > 0, there exists > 0, not depending on k, such that 1) .

max k≤j≤2k sup x,ȳ∈X,x =ȳ P log(d(A j-1 • x, A j-1 • ȳ)) ≥ -k e -κk min(γ,
Proof of Lemma 11. Without loss of generality, let us assume that c > 4 in condition [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF]. The general case can be deduced by normalizing suitably the quantities of interest. We proceed with similar arguments as in the proof of Lemma 6 in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]; namely, we use a martingale decomposition. Since G log N (g)µ(dg) < ∞, we can define the following bounded function F 1 :

F 1 (x, ȳ) = G log(d(g • x, g • ȳ)/d(x, ȳ))µ(dg) , ∀x, ȳ ∈ X, x = ȳ .
Then we define the following centered cocycle:

σ 1 (g, (x, ȳ)) = log(d(g • x, d(g • ȳ)/d(x, ȳ)) -F 1 (x, ȳ) .
Setting

M n = M n (x, ȳ) := n k=1 σ 1 (ε k , (A k-1 • x, A k-1 • ȳ)) and R n = R n (x, ȳ) := n k=1 F 1 (A k-1 • x, A k-1 • ȳ) , we have log(d(A n • x, A n • ȳ)/d(x, ȳ)) = M n + R n .
Hence, since d(x, ȳ) ≤ 1, the lemma will be proved if one can show that for any κ > 0, there exists a > 0 such that

max k≤j≤2k sup x,ȳ∈X,x =ȳ P R j (x, ȳ) ≥ -2 k e -κk min(γ,1) (25) 
and max k≤j≤2k sup

x,ȳ∈X,x =ȳ

P |M j (x, ȳ)| ≥ k e -κk min(γ,1) . (26) 
The estimate (25) comes from the proof of (53) in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]. Indeed from the last inequality in the proof of [5, (53), page 1857], there exist ρ ∈]0, 1[, n 0 ∈ N and α > 0 such that

max k≤j≤2k sup x,ȳ∈X,x =ȳ P R j (x, ȳ) ≥ -αk ≤ Cρ k/(2n 0 ) .
Hence (25) follows by taking ≥ αn 0 /(| log ρ|).

We turn to the proof of (26). Let

D k = σ 1 (ε k , (A k-1 • x, A k-1 • ȳ)) and F k = σ(W 0 , ε 1 , . . . , ε k ). Note that (D k , F k ) k>0
is a sequence of martingale differences. Moreover setting X = 4 log(N (g)), Lemma 4.2 page 56 in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] (see also their Proposition 5.3 page 62) ensures that

P(D k ≥ x|F k-1 ) ∞ ≤ P(X + E(X) ≥ x) , implying that n k=1 E(D 2 k exp{|D k | γ }|F k-1 ) ∞ ≤ nE((X + E(X)) 2 exp{(X + E(X)) γ }) := nK .
Note that since µ satisfies [START_REF] Rio | Théorie asymptotique des processus aléatoires faiblement dépendants[END_REF] 

P |M j (x, ȳ)| ≥ k exp(-c 1 2 k/K) + exp(-c 2 ( k) min(γ,1) ) ,
which proves (26) and ends the proof of the lemma.

We turn now to the proof of Proposition 5.

Proof of Proposition 5. Let x, ȳ ∈ X and κ > 0. Let > 0 be as in Lemma 11. We start from inequality (18) in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF], namely: setting

A = {log N (ε k ) ≥ k/2} and B = {log(d(A k-1 • x, d(A k-1 • ȳ)) ≥ -k}, we write |X k,x -X k,ȳ | ≤ |σ(ε k , A k-1 • x) -σ(ε k , A k-1 • ȳ)|1 A + |σ(ε k , A k-1 • x) -σ(ε k , A k-1 • ȳ)|1 B + |σ(ε k , A k-1 • x) -σ(ε k , A k-1 • ȳ)|1 {A c ∩B c } .
Recall the estimates ( 13) and ( 14) in [START_REF] Cuny | Limit theorems for the left random walk on GL d (R)[END_REF]: there exists C > 0 such that for every x, ȳ ∈ X, |σ(g, x) -σ(g, ȳ)| ≤ CN (g)d(x, ȳ) , and |σ(g, x)| ≤ log N (g) .

We then infer that

E(|X k,x -X k,ȳ |) ≤ 2E((log N (ε k ))1 A ) + 2E((log N (ε k ))1 B ) + CE N (ε k )d(A k-1 • x, A k-1 • ȳ)|1 {A c ∩B c } . (27) Now E((log N (ε k ))1 A ) ≤ e -( k/2) γ E log N (g)e (log N (g)) γ . ( 28 
)
On another hand, by independence between ε k and B, and Lemma 11, E((log N (ε k ))1 B ) = P(B)E(log N (g)) ≤ e -κk γ E(log N (g)) .

(29)

Moreover,

E N (ε k )d(A k-1 • x, A k-1 • ȳ)|1 {A c ∩B c } ≤ e -k E N (g)1 {log N (g)≤ k/2} ≤ e -k/2 . ( 30 
)
Starting from ( 27) and taking into account the upper bounds (28)-(30), the lemma follows.

Proof of Proposition 6

It suffices to find η > 0 such that (notice that δ(•, •) ≤ 1) The fact that one may find such a η > 0 may be proved as Lemma 4.8 (and more particularly (4.13)) of [START_REF] Benoist | Central limit theorem for linear groups[END_REF], using the next lemma.

Lemma 12 Under the assumption of Corollary 2, for every ε > 0, there exist C, c > 0, such that

sup x∈S d-1 P max 1≤k≤n | log A k x -kλ µ | > εn ≤ Ce -cn γ , (31) 
P max 1≤k≤n | log A k -nλ µ | > εn ≤ Ce -cn γ ; ( 32 
) P max 1≤k≤n | log Λ 2 (A k ) -k(λ µ + γ µ )| > εn ≤ Ce -cn γ . ( 33 
)
Remark 13 Let us recall that, for any A ∈ GL d (R), Λ 2 (A) is the matrix on Λ 2 (R d ) defined by Λ 2 (A)(x ∧ y) = Ax ∧ Ay, where ∧ is the exterior product. In addition, in (33) , γ µ is the second Lyapunov exponent of µ. With the notations of [2, Section 14], λ µ is denoted either λ 1,µ or λ 1 , while γ µ is either denoted λ 2,µ or λ 2 .

Proof of Lemma 12. (31) follows directly from Theorem 2.2 of [START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA Lat[END_REF]. Then (32) follows from (31) and the fact that there exists C > 0 such that for every g ∈ G and every x ∈ S d-1 , gx ≤ g ≤ C max 1≤i≤d ge i , with {e i : 1 ≤ i ≤ d} the canonical basis of R d .

The proof of (33) may be done similarly as above. The group G acts on P (∧ 2 (R d )), the projective space of ∧ 2 (R d ), by g • ξ := ∧ 2 (g)ξ/ ξ , for every g ∈ G and ξ ∈ ∧ 2 (R d ), where ξ is the projection of ξ on P (∧ 2 (R d )). Then, (g, ξ) → ∧ 2 (g)(ξ) / ξ defines a cocycle and one may prove, similarly to (31) that (see Section 6 of [START_REF] Cuny | Large and moderate deviations for the left random walk on GL d (R). ALEA Lat[END_REF] where the situation of general cocycles is considered)

sup ξ∈∧ 2 (R d ) : ξ =1 P max 1≤k≤n | log ∧ 2 (A k )(ξ) -k(λ µ + γ µ )| > εn ≤ Ce -cn γ .
Then, we deduce (33) as we deduced (32) from (31).

Proposition 6

 6 Under the condition of Corollary 2, there exists η > 0 such that sup x∈X X e η|log δ(x,ȳ | γ dν(ȳ) < ∞ , where δ(x, ȳ) = | x, y |/( x y ).

n≥1 e n γ sup

  x∈X ν({ȳ ∈ X : -log δ(x, ȳ) ≥ ηn}) < ∞ . Now, using that ν is µ-invariant, for every n ∈ N and x ∈ X,ν({ȳ ∈ X : -log δ(x, ȳ) ≥ ηn}) = ν ⊗ µ * n ({(ȳ, g) ∈ X × G : -log δ(x, g • ȳ) ≥ ηn}) ≤ sup x,ȳ∈X P(log δ(x, A n • ȳ) ≤ -ηn) .