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Abstract

We give rates of convergence in the almost sure invariance principle for sums of dependent
random variables with semi exponential tails, whose coupling coefficients decrease at a sub-
exponential rate. We show that the rates in the strong invariance principle are in powers of
log n. We apply our results to iid products of random matrices.
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1 Introduction

Let (Ω,A,P) be a probability space, and let (εi)i≥1 be independent and identically distributed
(iid) random variables defined on Ω, with values in a measurable space G and with common
distribution µ. Let W0 be a random variable defined on Ω with values in a measurable space X,
independent of (εi)i≥1, and let F be a measurable function from G ×X to X. For any n ≥ 1,
define

Wn = F (εn,Wn−1) ,

and assume that (Wn, n ≥ 1) has a stationary distribution ν. Let now h be a measurable
function from G×X to R and define, for any n ≥ 1,

Xn = h(εn,Wn−1) . (1)

Then (Xn)n≥1 forms a stationary sequence with stationary distribution, say π. Let (Gi)i∈Z be
the non-decreasing filtration defined as follows: for any i < 0, Gi = {∅,Ω}, G0 = σ(W0) and for
any i ≥ 1, Gi = σ(εi, . . . , ε1,W0). It follows that for any n ≥ 1, Xn is Gn-measurable.

We can also consider the following model

Xn = h(εn, εn−1, . . .) , (2)
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which is in fact included in the preceding situation, by taking W0 = (ε0, ε−1, . . .).
In what follows we assume that h is such that E(Xn) = 0. For any n ≥ 0, let us define the

sequence (δ(n))n≥0 by

δ(0) = E(|X1|) and δ(n) = ‖Xn −X∗n‖1 , n ≥ 1 ,

where X∗n is defined as follows : let W0 and W ∗0 be random variables with law ν, and such that
W ∗0 is independent of (W0, (εi)i≥1). For any n ≥ 1, let

X∗n = h(εn,W
∗
n−1) with W ∗n = F (εn,W

∗
n−1) . (3)

Note that the coefficients δ(n) are well defined if π has a moment of order 1.
In the paper [9], we assumed that the coupling coefficients δn decrease at a polynomial rate,

and we used a variant of the Berkes-Liu-Wu method (see [3]) to establish strong approximation
results for partial sums. Another more restrictive coefficient is also considered in [9] (see also [10]
for variants of these coefficients and the resulting conditions). In [9] we applied our results to
various classes of (possibly non irreducible) Markov chains; in particular, we obtained optimal
rates in the almost sure invariance principle (ASIP) for some functions of the left random
walk on GLd(R) under polynomial moment conditions. In [6] and [7] we adapted the proofs
of these results to Birkhoff sums of Hölder observables of non-uniformly expanding dynamical
systems, using a representation as functions of the trajectory of a particular Markov Chain
due to Korepanov [18]. In the paper [7], we consider dynamical systems with exponential or
sub-exponential decay of correlations, and we show that the rates in the ASIP are in powers of
log n.

In the present paper, we consider the context of [9], assuming that the coefficients δn decrease
at an exponential, sub-exponential or super-exponential rate (described by an index γ1, see
(4)), and that the variables have an exponential, sub-exponential or super-exponential moments
(described by an index γ2, see (5)). Using arguments from [7], we show that the rates in the
ASIP are in powers of log n (the exponent of the logarithm depending on γ1 and γ2). We apply
our results to the left random walk on GLd(R), to iid products of positive matrices, and to a
class of non-uniformly contracting auto-regressive processes.

2 Main results

We assume that there exist two positive constants γ1 and c such that

δ(n) ≤ exp(−cnγ1) for any positive integer n , (4)

and there are constant b ∈]0,∞[ and γ2 ∈]0,∞] such that

P(|X1| > t) ≤ exp(1− (t/b)γ2) for any positive t , (5)

Note that when γ2 =∞ (5) means that ‖Xn‖∞ ≤ b a.s. for any integer n. When X1 satisfies (5)
we say either that it has a semi exponential tail of order γ2 or that it admits a sub-exponential
or super-exponential moment of order γ2.

Theorem 1 Let (Xn)n≥1 be defined by (1) or (2). Let Sn =
∑n

k=1Xk. Assume that (4) and (5)
are satisfied. Then n−1E

(
S2
n

)
→ σ2 as n→∞ and one can redefine (Xn)n≥1 without changing
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its distribution on a (richer) probability space on which there exist iid random variables (Ni)i≥1

with common distribution N (0, σ2), such that, as n→∞,

Sn −
n∑
i=1

Ni = O((log n)1+λ) P-a.s. where λ =
1

γ1
+

1

γ2
. (6)

Proof of Theorem 1. Let α = 1 +λ. The proof uses similar arguments as those developed in the
proof of Theorem 1.6 in [7] with the main difference that the random variables Xk are no longer
bounded. we then have to truncate them. With this aim, let us first define for any positive
integer k,

Mk = c1k
1/γ2 where c1 = b(2 log 3)1/γ2 , (7)

(recall that b is the constant appearing in condition (5)) and

ϕk(x) =
(
x ∧Mk

)
∨
(
−Mk

)
.

Then we set

Xk,j = ϕk(Xj)− Eϕk(Xj) and Wk,` =

`+3k−1∑
i=1+3k−1

Xk,i .

For n ≥ 2, let hn = d(log n)/(log 3)e (so that hn is the unique integer such that 3hn−1 < n ≤ 3hn).
Note that

Sn =

hn−1∑
k=1

3k∑
i=1+3k−1

Xi +

n∑
i=1+3hn−1

Xi ,

and set

S†n =

hn−1∑
k=1

Wk,3k−3k−1 +
n∑

i=1+3hn−1

Xhn,i .

Let also S†1 = 0. We first prove that

max
1≤i≤n

∣∣Si − S†i ∣∣ = O((log n)α) P-a.s. (8)

With this aim, it suffices to prove via the Kronecker lemma and stationarity that∑
k≥1

k−α3kE(|X1| −Mk)+ <∞ . (9)

Obviously this holds when γ2 = ∞. Assume now that γ2 < ∞ and note that since 3k =

exp
(

1
2

(
Mk
b

)γ2),
3kE(|X1|−Mk)+ = 3k

∫ ∞
Mk

P(|X1| > t)dt ≤
∫ ∞
Mk

exp(1−2−1(t/b)γ2)dt ≤ b21/γ2

γ2
Γ((1−γ2)/γ2) <∞ .

Since α > 1, (9) is proved and so (8) also.
Now, for any k ≥ 1, let

mk = [c2k
1/γ1 ] + 1 where c2 =

(
2c−1(log 3)

)1/γ1 , (10)
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(recall that c is the constant appearing in condition (4)). We then define

X̃k,j = E
(
ϕk(Xj)|εj , εj−1, . . . , εj−mk

)
− E

(
ϕk(Xj)

)
for any j ≥ mk and W̃k,` =

`+3k−1∑
i=1+3k−1

X̃k,i .

Finally, set S̃1 = 0 and for n > 1,

S̃n =

hn−1∑
k=1

W̃k,3k−3k−1 + W̃hn,n−3hn−1 .

Note that by Lemma 24 in [9], for any j ≥ mk,

‖Xk,j − X̃k,j‖1 ≤
∫∫

E(|Xmk+1,x −Xmk+1,y|)ν(dx)ν(dy) ≤ δ(mk). (11)

Hence, for k ≥ k0 where k0 is such that for any ` ≥ k0, m` ≤ 3`−1, the upper bound (11) implies
that

∥∥ max
1≤`≤3k−3k−1

∣∣Wk,` − W̃k,`

∣∣∥∥
1
≤

3k∑
i=1+3k−1

‖Xk,i − X̃k,i‖1 ≤ 3kδ(mk)� 3k exp(−c× cγ12 k) .

Hence, since c× cγ12 ≥ log 3,∑
k≥k0

k−α
∥∥ max

1≤`≤3k−3k−1

∣∣Wk,` − W̃k,`

∣∣∥∥
1
<∞ ,

which entails by the Kronecker lemma that

max
1≤i≤n

∣∣S†i − S̃i∣∣ = o((log n)α) P-a.s. (12)

From (8) and (12), the theorem will follow if one can prove that there exists a standard Brownian
motion B such that such that, as n→∞,

max
1≤i≤n

∣∣S̃i −B(iσ2)
∣∣ = O((log n)α) P-a.s. (13)

To prove (13), we do exactly as in Steps 3 and 4 of the proof of [7, Theorem 1.6] by replacing the
upper bound ‖ψ‖∞ by 2Mk (which a bound of the sup norm of the truncated random variables
Xk,j), and by noticing that Mkmk � k1/γ . This leads to (3.20) in [7] which combined with
(3.9) in [7] gives the following strong approximation: there exists a standard Brownian motion
B such that such that, as n→∞,

max
1≤i≤n

∣∣S̃i −B(σ2
i )
∣∣ = O((log n)α) P-a.s. (14)

where σ2
i is defined by (3.21) in [7]. It remains to identify the variance of the Brownian motion

and to show that
max

1≤i≤n

∣∣B(σ2
i )−B(iσ2)

∣∣ = O((log n)α) P-a.s. (15)
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With this aim, we shall proceed as in step 3.4 in [3] (see also Step 5 in [7]). We set

νk = σ2 + 2

mk∑
i=−mk

(γ̃k,i − γi)− 2
∑

i≥mk+1

γi , (16)

where
γ̃k,i = cov(X̃k,mk , X̃k,i+mk) , γ̂k,i = cov(Xk,0, Xk,i) and γi = cov(X0, Xi) .

To prove (15), we need to prove that

(log n) max
k≤hn

(mkνk)
1/2 = O((log n)α) , (17)

and
3k(ν

1/2
k − σ)2 = O(k2α(log k)−1) . (18)

By using the upper bound (11), we have, for any i ≥ 0,∣∣γ̃k,i − γ̂k,i∣∣ =
∣∣cov(X̃k,mk −Xk,mk , X̃k,i+mk) + cov(Xk,mk , X̃k,i+mk −Xk,i+mk)

∣∣
≤ 2Mk‖X̃k,mk −Xk,mk‖1 + 2Mk‖X̃k,i+mk −Xk,i+mk‖1 � k1/γ2 exp(−c× cγ12 k) . (19)

Next, by using inequality (1.11a) in [21], note that∣∣γ̂k,i − γi∣∣ =
∣∣cov(Xk,0 −X0, Xk,i) + cov(X0, Xk,i −Xi)

∣∣
≤ 2

∫ 1/2

0
Q|ϕk(X)|(u)Q|gk(X)|(u)du+2

∫ 1/2

0
Q|X1|(u)Q|gk(X)|(u)du ≤ 4

∫ 1

0
Q(u)(Q(u)−Mk)+du ,

where gk(x) = (|x|−Mk)+ = x−ϕk(x). But, for any positive t, P(|X1| > t) ≤ exp(1−(t/b)γ2) :=
G(t). Therefore, for any u ∈]0, 1[,

Q(u) ≤ G−1(u) := b
(
1− log u

)1/γ2 .
But

G−1(u) > Mk ⇐⇒ u−1 > e2k log 3−1 .

So, overall,

∣∣γ̂k,i − γi∣∣ ≤ 4b2
∫ 1

0

(
log(e/u)

)2/γ21{u−1>e2k log 3−1}du = 4eb2
∫ ∞
e2k log 3

(
log x

)2/γ2x−2dx

= 4eb2
∫ ∞

2k log 3
x2/γ2e−xdx ≤ κγ2b2

(
1 + k2/γ2

)
e−2k log 3 ,

where κγ2 is a positive constant depending only on γ2.
Next, by using Proposition 1 in [13], we derive

∑
i≥mk

|cov(X0, Xi)| ≤ 2
∑
i≥mk

∫ δ(i)

0
Q ◦H−1(u)du ≤ 2

∑
i≥mk

∫ H(δ(i))

0
Q2(u)du ,
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where H is the function defined on [0, 1] by H(v) :=
∫ v

0 Q(u)du and H−1 is its inverse. Since

Q(u) ≤ b
(
1 − log u

)1/γ2 , we infer that there exists a positive constant κ depending on c, b, γ1

and γ2, such that, for any i ≥ 1,∫ H(δ(i))

0
Q2(u)du ≤ κi2γ1/γ2 exp(−ciγ1) .

Therefore, since mk = [c2k
1/γ1 ] + 1,∑
i≥mk

|γi| ≤ κ̃k
2
γ2

+ 1
γ1
−1

exp(−c× cγ12 k) ,

where κ̃ is a positive constant depending only on c, b, γ1, γ2 and c2. So, overall, for any positive
integer k, ∣∣νk − σ2

∣∣ ≤ K × k 2
γ2

+ 1
γ1

{
e−2k log 3 + exp(−c× cγ12 k)

}
. (20)

where K is a positive constant depending only on c, b, γ1, γ2 and c2. This shows that νk → σ2,
as k →∞. Hence (17) is satisfied since (log n) maxk≤hn(mk)

1/2 � (log n)1+1/(2γ1) = O((log n)α)

(indeed α = 1 + 1/γ1 + 1/γ2). Note now that since |ν1/2
k − σ|2 ≤ |νk − σ2|, (20) implies (18)

since we have selected c2 such that c× cγ12 = 2 log 3. The proof is complete. �

3 Applications

3.1 Products of iid invertible matrices

Let (εn)n≥1 be independent random matrices taking values in G = GLd(R), d ≥ 2, with common
distribution µ. Let A0 = Id and for every n ≥ 1, An = εn · · · ε1.

Let ‖ · ‖ be the euclidean norm on Rd and for any g ∈ G, let N(g) := max(‖g‖, ‖g−1‖) where
‖g‖ = sup‖x‖=1 ‖gx‖. Recall that µ has a moment of order p ≥ 1 if

∫
G(logN(g))pµ(dg) < ∞

and a sub-exponential moment of order γ ∈]0, 1] if there exists c > 0 such that∫
G

ec(logN(g))γµ(dg) <∞ . (21)

Recall also that if µ admits a moment of order 1 then

lim
n→∞

1

n
log ‖An‖ = λµ P-a.s., (22)

where λµ := limn→+∞ n
−1E(log ‖εn · · · ε1‖) is the so-called first Lyapunov exponent (see for

instance [16]).
Let X := Pd−1(Rd) be the projective space of Rd − {0} and write x̄ as the projection of

x ∈ Rd − {0} to X. G is acting on X as follows: g · x̄ = gx for every (g, x) ∈ G× Rd − {0}.

We assume that µ is strongly irreducible (i.e. that no proper finite union of subspaces of
Rd are invariant by Γµ, the closed semi-group generated by the support of µ) and proximal
(i.e. that there exists a matrix in Γµ admitting a unique (with multiplicity one) eigenvalue with
maximum modulus). Under those assumptions (see e.g. Bougerol-Lacroix [4] or Benoist-Quint

6



[1]) it is well-known that there exists a unique invariant measure ν on B(X), meaning that for
any continuous and bounded function f from X to R,∫

X
f(x)ν(dx) =

∫
G

∫
X
f(g · x)µ(dg)ν(dx) .

The left random walk of law µ on X is the process defined as follows. Let W0 be an X-valued
random variable independent of (εn)n≥1, and let Wn = εn ·Wn−1 for n ≥ 1. Note that, if W0

has distribution ν, then (Wn)n≥0 is a strictly stationary Markov chain.
Our aim is to study the partial sums associated with the random sequence (Xn)n≥1 given by

Xn := h(εn,Wn−1) , n ≥ 1 ,

where for every g ∈ G and every x̄ ∈ X,

h(g, x̄) = log
(‖gx‖
‖x‖

)
.

As usual, we shall denote by Xn,x̄ the random variable for which W0 = x̄. We then define
Sn,x̄ =

∑n
k=1Xn,x̄. Note that, for any x ∈ Sd−1,

Sn,x̄ =

n∑
k=1

Xk,x̄ = log ‖Anx‖ .

Then, when we keep the notation (Xn)n≥1, we have in mind that we are in stationary regime,
i.e. that W0 has law ν. In this case we also define

Sn =
n∑
k=1

Xn = log ‖AnV0‖ ,

where V0 is such that ‖V0‖ = 1 and W0 = V̄0.

We denote by ρ(g) the spectral radius of a matrix g. Applying Theorem 1, the following
strong approximation with rate holds.

Corollary 2 Let µ be a proximal and strongly irreducible probability measure on B(G). Assume
that µ has a sub-exponential moment of order γ ∈]0, 1]. Then n−1Eν

(
(Sn − nλµ)2

)
→ σ2 as

n→∞ and for every (fixed) x̄ ∈ X, one can redefine (Sn,x̄)n≥1 without changing its distribution
on a (richer) probability space on which there exist iid random variables (Ni)i≥1 with common
distribution N (0, σ2), such that,

Sn,x̄ − nλµ −
n∑
i=1

Ni = O((log n)1+2/γ) a.s.

Moreover, the result remains true if we replace the sequence (Sn,x̄)n≥1 with (Sn)n≥1, (log ‖An‖)n≥1,
(log ρ(An))n≥1 or (log |〈Anx, y〉|)n≥1, for some x, y ∈ Sd−1.

Remark 3 It follows from item c) of Theorem 4.11 of Benoist-Quint [1] that σ > 0 if µ is
strongly irreducible and the image of Γµ in PGLd(R) is unbounded.
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Remark 4 If µ has a super-exponential moment meaning that (21) holds with γ > 1, we infer
from the proof of Corollary 2 that for every (fixed) x̄ ∈ X, one can redefine (Sn,x̄)n≥1 without
changing its distribution on a (richer) probability space on which there exist iid random variables
(Ni)i≥1 with common distribution N (0, σ2), such that,

Sn,x̄ − nλµ −
n∑
i=1

Ni = O((log n)2+1/γ) a.s.

In particular if µ has compact support, the rate in the almost sure invariance principle is of
order O((log n)2). Again, this extension holds with (Sn)n≥1, (log ‖An‖)n≥1, (log ρ(An))n≥1 or
(log |〈Anx, y〉|)n≥1, for some x, y ∈ Sd−1.

Proof of Corollary 2. It follows from Theorem 2 (ii) in [5] that n−1Eν
(
(Sn − nλµ)2

)
→ σ2 as

n→∞. Then, the strong invariance principle in stationary regime, i.e. for (Sn)n≥1, is a direct
application of Theorem 1 by taking into account the estimate given in Proposition 5 below. The
proof of Proposition 5 is given in appendix.

Proposition 5 Assume that µ satisfies (21) with γ > 0. Then, there exists β > 0 such that,
for any positive integer k,

sup
x̄,ȳ∈X

E(|Xk,x̄ −Xk,ȳ|)� e−βk
min(γ,1)

. (23)

As in [5] we obtain the result for the matrix norms (log(‖An‖)n≥1 from the stationary regime,
using an argument from [4]. Indeed, it suffices to apply the estimate given just after equation
(66) of [5] to get the ASIP in that case. Similarly, we get the ASIP for (Sn,x̄)n≥1, for any
x ∈ Sd−1.

It remains to handle the case of the matrix coefficients and of the spectral radius. The proof
follows a well-known scheme that has been used in [2] under exponential moments and in [1]
and [12] under polynomial moments. Those proofs rely on large deviations inequalities. In the
case of sub-exponential moments, the needed large deviations estimates were obtained in [8].

We start with an auxiliary result of independent interest, see Theorem 2.6 of [17], for a
related result.

Proposition 6 Under the condition of Corollary 2, there exists η > 0 such that

sup
x̄∈X

∫
X

eη|log δ(x̄,ȳ〉|γdν(ȳ) <∞ ,

where δ(x̄, ȳ) = |〈x, y〉|/(‖x‖‖y‖).

We can now prove the result for the matrix coefficients.

Let η be as in Proposition 6. Let n ∈ N and x̄ ∈ X. Using that ν is µ-invariant and Markov’s
inequality, we have

P
(
− log δ(Wn, x̄) ≥ (2 log n/η)1/γ

)
= ν

({
ȳ ∈ X : eη|log δ(ȳ,x̄)|γ ≥ n2

})
≤ K/n2 .
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Hence, by the Borel-Cantelli lemma we see that, P-a.s.

− log δ(Wn, x̄) ≤ (2 log n/η)1/γ ,

for all but finitely many n ∈ N. Combining this with the computations after (67) (and page
1864) in [5], we infer that for every x̄, ȳ ∈ X,

|log δ(An · x̄, ȳ)| = O((log n)1/γ) ,

and the desired result follows since

log |〈Anx, y〉| = log ‖Anx‖+ log ‖y‖+ log δ(An · x̄, ȳ) .

It remains to prove the ASIP for the spectral radius. The result follows from the following
lemma, with ` ≥ (2 log n/c)1/γ , combined with the Borel-Cantelli lemma.

Lemma 7 Under the assumption of Corollary 2, for every ε > 0, there exists C, c > 0 and
`0 ∈ N such that for every `0 ≤ ` ≤ n,

P(log ρ(An)− ‖An‖ ≥ −ε`) ≥ 1− Ce−c`
γ
.

The lemma may be proved as Lemma 8 in [12] using our Lemma 12 from the Appendix
instead of Lemma 6 in [12].

3.2 Products of iid positive matrices

Let us assume now that G is the semi-group of d-dimensional positive allowable matrices: by
positive, we mean that all entries are greater than or equal to 0, by allowable, we mean that any
row and any column admits a strictly positive element.

In this case, G is acting on X = Sd−1 ∩ (R+)d as follows: g · x = gx/‖gx‖, and we define
N(g) by N(g) = max(‖g‖, 1/v(g)), where v(g) := infx∈X ‖gx‖. Here, ‖ ·‖ stands for the `1 norm
on Rd which is more convenient for the problem, see [11]. This change does not affect the final
results since all norms on Rd are equivalent.

Then, similarly to the previous section, we define polynomial moments of order p ≥ 1 for µ
as well as sub-exponential moments of order γ ∈]0, 1].

We shall also say that µ is strictly contracting if its support contains a matrix whose all
entries are strictly positive. When µ is stricty contracting there exists a unique µ-invariant
probability ν on B(X), see Section 3 of [11].

We have the following analogue to Corollary 2 with Sn,x = log ‖Anx‖, x ∈ X, where An =
εn · · · ε1 with (εn)n≥1 a sequence of independent random matrices taking values in G, d ≥ 2,
with common distribution µ. Let also W0 be an X-valued random variable with law ν and
independent of (εn)n≥1, and Sn = log ‖AnW0‖. The following corollary was announced in [11].

Corollary 8 Let µ be a strictly contracting probability measure on B(G). Assume that µ has a
sub-exponential moment of order γ ∈]0, 1]. Then n−1Eν

(
(Sn − nλµ)2

)
→ σ2 as n→∞ and for

every (fixed) x ∈ X, one can redefine (Sn,x)n≥1 without changing its distribution on a (richer)
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probability space on which there exist iid random variables (Ni)i≥1 with common distribution
N (0, σ2), such that,

Sn,x − nλµ −
n∑
i=1

Ni = O((log n)2+1/γ) a.s.

Moreover,the result remains true if we replace the sequence (Sn,x)n≥1 with (Sn)n≥1, (log ‖An‖)n≥1,
(log ρ(An))n≥1, (log v(An))n≥1 or (log |〈Anx, y〉|)n≥1, for some x, y ∈ X.

Remark 9 When µ is aperiodic, see Definition 5.1 of [11], then, by Proposition 5.2 of [11],
σ2 > 0. When µ admits super-exponential moments, it is possible to improve the rate as in the
remark after Corollary 2.

Proof of Corollary 8. Again, we start with the stationary regime. The existence of the asymptotic
variance follows from Proposition 5.2 of [11].

By Proposition 3.2 of [11], when µ is strictly contracting and admits a moment of order
greater than one, (23) holds. Then, the result (for (Sn)n≥1) follows from Theorem 1.

The ASIP for (log ‖An‖)n≥1 and (log v(An))n≥1 follows from (4.3) in [11] and the fact that
for every x ∈ X, v(An) ≤ ‖Anx‖ ≤ ‖An‖. Similary, we obtain the ASIP for (Sn,x)n≥1 for any
x ∈ X.

Then, the ASIP for (log ρ(An))n≥1 follows from (4.3) in [11], combined with the inequalities,
for every n ≥ 1, log v(An) ≤ log ρ(An) ≤ log ‖An‖.

The ASIP for the matrix coefficients is proved in [11], see Theorem 6.4.

3.3 Lipschitz autoregressive models

We consider the autoregressive Lipschitz model introduced by Dedecker and Rio [14]. Let
τ ∈ [0, 1), C ∈ (0, 1] and f : R→ R a 1-Lipschitz function such that

f(0) = 0 and |f ′(t)| ≤ 1− C

(1 + |t|)τ
for almost every t .

Let (εi)i≥1 be iid real-valued random valued with common law µ and define for any n ≥ 1

Wn = f(Wn−1) + εn , with W0 independent of (εi)i≥1. (24)

Let Sn(g) =
∑n

k=1 g(Wi) for any measurable function g. Assume that µ has a sub-exponential
moment of order η ∈]0, 1] (hence E(ec|ε0|

η
) < ∞, for some c > 0). For this model, there exists

an unique invariant probability measure ν (see Proposition 2 of [14]) and the following result
holds:

Corollary 10 Assume that µ has a sub-exponential moment of order η ∈]0, 1]. Let (Wn)n≥0

be defined by (24) with L(W0) = ν. Assume furthermore that g is Lipschitz and that, for
some ζ ∈ [0, 1] and some positive constant κ, |g(x)| ≤ κ(1 + |x|ζ). Suppose that τ + ζ > 0.
Then, n−1Var(Sn(g)) → σ2(g) as n → ∞ and one can redefine (Wn)n≥0 without changing its
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distribution on a (richer) probability space on which there exist iid random variables (Ni)i≥1

with common distribution N (0, σ2(g)), such that,

Sn(g)− nν(g)−
n∑
i=1

Ni = O((log n)1+1/γ1+1/γ2) P-a.s.

where γ1 = η(1− τ)(η(1− τ) + τ)−1 and γ2 = η(1− τ)/ζ.

Proof. The result comes from an application of Theorem 1 by taking into account Proposition
3 of [20] and its proof. More precisely, [20, (4.3)] and [20, Remark 5] ensure that g(W1)− ν(g)
satisfies (5) with index γ2 = η(1 − τ)/ζ. In addition, as it appears clearly in the proof of [20,
(4.4)], the control of the τ -coefficients is done via a control of the coupling coefficients δ(n) (see
[20, (4.6)]). �

4 Appendix

4.1 Proof of Proposition 5

The proof of the proposition is based on the following lemma whose statement needs the following
notation: For x̄, ȳ ∈ X, define

d(x̄, ȳ) :=
‖x ∧ y‖
‖x‖‖y‖

where ∧ stands for the exterior product, see e.g. [4, page 61] for the definition and some
properties. Then d is a metric on X.

Lemma 11 Assume that µ satisfies (21) with γ > 0. Then, for any positive integer k and any
κ > 0, there exists ` > 0, not depending on k, such that

max
k≤j≤2k

sup
x̄,ȳ∈X,x̄ 6=ȳ

P
(

log(d(Aj−1 · x̄, Aj−1 · ȳ)) ≥ −`k
)
� e−κk

min(γ,1)
.

Proof of Lemma 11. Without loss of generality, let us assume that c > 4 in condition (21). The
general case can be deduced by normalizing suitably the quantities of interest. We proceed with
similar arguments as in the proof of Lemma 6 in [5]; namely, we use a martingale decomposition.

Since
∫
G logN(g)µ(dg) <∞, we can define the following bounded function F1:

F1(x̄, ȳ) =

∫
G

log(d(g · x̄, g · ȳ)/d(x̄, ȳ))µ(dg) , ∀x̄, ȳ ∈ X, x̄ 6= ȳ .

Then we define the following centered cocycle:

σ1(g, (x̄, ȳ)) = log(d(g · x̄, d(g · ȳ)/d(x̄, ȳ))− F1(x̄, ȳ) .

Setting

Mn = Mn(x̄, ȳ) :=
n∑
k=1

σ1(εk, (Ak−1 · x̄, Ak−1 · ȳ)) and Rn = Rn(x̄, ȳ) :=
n∑
k=1

F1(Ak−1 · x̄, Ak−1 · ȳ) ,

11



we have
log(d(An · x̄, An · ȳ)/d(x̄, ȳ)) = Mn +Rn .

Hence, since d(x̄, ȳ) ≤ 1, the lemma will be proved if one can show that for any κ > 0, there
exists a ` > 0 such that

max
k≤j≤2k

sup
x̄,ȳ∈X,x̄ 6=ȳ

P
(
Rj(x̄, ȳ) ≥ −2`k

)
� e−κk

min(γ,1)
(25)

and
max
k≤j≤2k

sup
x̄,ȳ∈X,x̄ 6=ȳ

P
(
|Mj(x̄, ȳ)| ≥ `k

)
� e−κk

min(γ,1)
. (26)

The estimate (25) comes from the proof of (53) in [5]. Indeed from the last inequality in the
proof of [5, (53), page 1857], there exist ρ ∈]0, 1[, n0 ∈ N and α > 0 such that

max
k≤j≤2k

sup
x̄,ȳ∈X,x̄ 6=ȳ

P
(
Rj(x̄, ȳ) ≥ −αk

)
≤ Cρk/(2n0) .

Hence (25) follows by taking ` ≥ αn0/(| log ρ|).
We turn to the proof of (26). Let Dk = σ1(εk, (Ak−1 ·x̄, Ak−1 ·ȳ)) and Fk = σ(W0, ε1, . . . , εk).

Note that (Dk,Fk)k>0 is a sequence of martingale differences. Moreover setting X = 4 log(N(g)),
Lemma 4.2 page 56 in [4] (see also their Proposition 5.3 page 62) ensures that

‖P(Dk ≥ x|Fk−1)‖∞ ≤ P(X + E(X) ≥ x) ,

implying that∥∥∥ n∑
k=1

E(D2
k exp{|Dk|γ}|Fk−1)

∥∥∥
∞
≤ nE((X + E(X))2 exp{(X + E(X))γ}) := nK .

Note that since µ satisfies (21) with c > 4, we have K < ∞. It follows from [15, Theorem 2.1]
(in case γ ∈]0, 1[) or from [19, Theorem 1.1] (when γ ≥ 1) that there exist c1 and c2 such that,
for any k ≥ 1 and any ` > 0,

max
k≤j≤2k

sup
x̄,ȳ∈X,x̄ 6=ȳ

P
(
|Mj(x̄, ȳ)| ≥ `k

)
� exp(−c1`

2k/K) + exp(−c2(`k)min(γ,1)) ,

which proves (26) and ends the proof of the lemma. �

We turn now to the proof of Proposition 5.

Proof of Proposition 5. Let x̄, ȳ ∈ X and κ > 0. Let ` > 0 be as in Lemma 11. We start from
inequality (18) in [5], namely: setting

A = {logN(εk) ≥ `k/2} and B = {log(d(Ak−1 · x̄, d(Ak−1 · ȳ)) ≥ −`k},

we write

|Xk,x̄ −Xk,ȳ| ≤ |σ(εk, Ak−1 · x̄)− σ(εk, Ak−1 · ȳ)|1A + |σ(εk, Ak−1 · x̄)− σ(εk, Ak−1 · ȳ)|1B
+ |σ(εk, Ak−1 · x̄)− σ(εk, Ak−1 · ȳ)|1{Ac∩Bc} .

12



Recall the estimates (13) and (14) in [5]: there exists C > 0 such that for every x̄, ȳ ∈ X,

|σ(g, x̄)− σ(g, ȳ)| ≤ CN(g)d(x̄, ȳ) ,

and
|σ(g, x̄)| ≤ logN(g) .

We then infer that

E(|Xk,x̄ −Xk,ȳ|) ≤ 2E((logN(εk))1A) + 2E((logN(εk))1B)

+ CE
(
N(εk)d(Ak−1 · x̄, Ak−1 · ȳ)|1{Ac∩Bc}

)
. (27)

Now
E((logN(εk))1A) ≤ e−(`k/2)γE

(
logN(g)e(logN(g))γ

)
. (28)

On another hand, by independence between εk and B, and Lemma 11,

E((logN(εk))1B) = P(B)E(logN(g)) ≤ e−κk
γ
E(logN(g)) . (29)

Moreover,

E
(
N(εk)d(Ak−1 · x̄, Ak−1 · ȳ)|1{Ac∩Bc}

)
≤ e−`kE

(
N(g)1{logN(g)≤`k/2}

)
≤ e−`k/2 . (30)

Starting from (27) and taking into account the upper bounds (28)-(30), the lemma follows. �

4.2 Proof of Proposition 6

It suffices to find η > 0 such that (notice that δ(·, ·) ≤ 1)∑
n≥1

en
γ

sup
x̄∈X

ν({ȳ ∈ X : − log δ(x̄, ȳ) ≥ ηn}) <∞ .

Now, using that ν is µ-invariant, for every n ∈ N and x̄ ∈ X,

ν({ȳ ∈ X : − log δ(x̄, ȳ) ≥ ηn}) = ν ⊗ µ∗n({(ȳ, g) ∈ X ×G : − log δ(x̄, g · ȳ) ≥ ηn})
≤ sup

x̄,ȳ∈X
P(log δ(x̄, An · ȳ) ≤ −ηn) .

The fact that one may find such a η > 0 may be proved as Lemma 4.8 (and more particularly
(4.13)) of [1], using the next lemma.

Lemma 12 Under the assumption of Corollary 2, for every ε > 0, there exist C, c > 0, such
that

sup
x∈Sd−1

P
(

max
1≤k≤n

| log ‖Akx‖ − kλµ| > εn

)
≤ Ce−cn

γ
, (31)

P
(

max
1≤k≤n

| log ‖Ak‖ − nλµ| > εn

)
≤ Ce−cn

γ
; (32)

P
(

max
1≤k≤n

| log ‖Λ2(Ak)‖ − k(λµ + γµ)| > εn

)
≤ Ce−cn

γ
. (33)
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Remark 13 Let us recall that, for any A ∈ GLd(R), Λ2(A) is the matrix on Λ2(Rd) defined by
Λ2(A)(x∧ y) = Ax∧Ay, where ∧ is the exterior product. In addition, in (33) , γµ is the second
Lyapunov exponent of µ. With the notations of [2, Section 14], λµ is denoted either λ1,µ or λ1,
while γµ is either denoted λ2,µ or λ2.

Proof of Lemma 12. (31) follows directly from Theorem 2.2 of [8]. Then (32) follows from (31)
and the fact that there exists C > 0 such that for every g ∈ G and every x ∈ Sd−1,

‖gx‖ ≤ ‖g‖ ≤ C max
1≤i≤d

‖gei‖ ,

with {ei : 1 ≤ i ≤ d} the canonical basis of Rd.

The proof of (33) may be done similarly as above. The group G acts on P (∧2(Rd)), the
projective space of ∧2(Rd), by g · ξ̄ := ∧2(g)ξ/‖ξ‖, for every g ∈ G and ξ ∈ ∧2(Rd), where ξ̄
is the projection of ξ on P (∧2(Rd)). Then, (g, ξ̄) 7→ ‖ ∧2 (g)(ξ)‖/‖ξ‖ defines a cocycle and one
may prove, similarly to (31) that (see Section 6 of [8] where the situation of general cocycles is
considered)

sup
ξ∈∧2(Rd) : ‖ξ‖=1

P
(

max
1≤k≤n

| log ‖ ∧2 (Ak)(ξ)− k(λµ + γµ)| > εn

)
≤ Ce−cn

γ
.

Then, we deduce (33) as we deduced (32) from (31).
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