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A B S T R A C T

Exploiting the structural complexity of crystals at the scale of their unit cell is a well-established strategy in the
search for efficient materials for energy conversion, which aims at disentangling and separately engineering
heat and charge transport. This route has resulted in the discovery of clathrates with exceptionally low lattice
thermal conductivity but essentially unaffected and tunable electronic properties. Although their thermal
conductivity behaves similarly to the one of glasses, its origin is fundamentally different. Indeed, phonons
with long lifetime were observed over the whole Brillouin zone, thus excluding an interpretation in terms of
a reduced mean free path. However, the energy–momentum phase space which contains these heat carrying
phonons is capped by a dense spectrum of diffusive modes. The thermal properties of clathrates can therefore
be split in two parts: a narrow low energy regime that contains propagative modes which dominate the thermal
transport, and a broad high energy range consisting of diffusive modes that dominate the heat capacity. Based
on this understanding, a simple phenomenological model, based on a basic description in terms of Debye and
Einstein modes, is derived that allows for a meaningful interpretation of experimental data, by providing a
connection to the underlying microscopic origin. Finally, the criteria for determining the minimum lattice
thermal conductivity are redefined and strategies for decreasing the lattice conductivity are proposed.
Introduction

Designing the phonon spectrum of energy-efficient semiconductors,
i.e. controlling the channels through which heat is conveyed or photo-
electrons release their energy, is an important challenge, common to
many applications such as thermoelectric [1] and photovoltaic [2,3]
conversion, phase change memories [4], and battery electrodes [5,6].
Structural complexity, which can easily result in unit cells in the
nanometer range that contain a large number of atoms of various types,
is known to be an efficient way for designing thermal properties and
the underlying phonon spectra. In the search for low lattice thermal
conductivity (𝜅𝐿) in the field of thermoelectricity, one of the main
strategies is the use of complexity at multiple length scales, from
structural complexity within the crystal unit cell, to disorder, short
range order, and nanostructuring [7–9]. Crystals with a high structural
complexity and chemical bonding inhomogeneity [10], such as tetra-
hedrites [11], skutterudites [12] or type-I clathrates [13], often have a
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very low and almost temperature independent 𝜅𝐿 of ∼0.5–2 W m−1 K−1

in the 50–500 K range. In this article, we will focus on the case
of type-I inorganic clathrates where a large amount of experimental
and theoretical works has contributed to a detailed understanding of
the microscopic origin of their anomalous thermal properties. They
represent a large family of so-called cage compounds, which are built
up by a three-dimensional arrangement of polyhedra of typically group
14 elements in which mostly alkaline-earth guest atoms reside as ex-
emplified in Fig. 1(a) for a Ba-encapsulating Ge-based type-I clathrate.
Type-I clathrates are typically described in a cubic space group with a
lattice parameter of about 1 nanometer. While the chemistry of these
guest-host structures allows to vary their electrical properties going
from semiconductors, to metals or even superconductors, their probably
most fascinating property, associated with their structural complexity,
is their very low and smoothly temperature dependent lattice thermal
conductivity [7,8,10]. As illustrated in Fig. 1(b), the lattice thermal
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conductivity of a type-I Ge-based clathrate is typically two orders of
magnitude lower than that of pure Ge at room temperature and this
difference increases upon cooling. On the other hand, phonon measure-
ments by means of inelastic neutron/X-ray scattering (INS/IXS) have
revealed the existence of long-living acoustic phonons in clathrates,
thus questioning the origin of their low lattice thermal conductivity
[14–17]. However, this is not specific to clathrates and is found in
many crystalline materials with a complex crystallographic structure
such as in the thermoelectric skutterudites or tetrahedrites [11,18], in
photovoltaic hybrid perovskites [2], or in quasicrystals [19,20]. The
current understanding is that the heat conduction is mostly conveyed
by well-defined acoustic phonons, which exist only in a limited range
of the energy and momentum phase space, capped by a continuum of
nondispersive optical phonon bands [15–17,21–23]. This can be seen
in Fig. 1(b–c) where phonon spectra in pure Germanium and in a Ge
based type-I clathrate are compared. The large number of atoms in the
clathrate unit cell leads to a large number of vibrational states which
form a dense continuum of optical branches, thus limiting the phase
space available for the acoustic phonons and thus efficiently reducing
the heat conduction. The onset of this continuum defines the upper
limit in energy of the acoustic regime such that it has been associated
with a low-pass filter for acoustic phonons [17] or a modified Debye
energy [21,24]. Its position in energy controls the room temperature
value of the lattice thermal conductivity [24] while its temperature
dependence was found to be responsible for the smooth variation of
the lattice thermal conductivity with temperature [14,25]. On the other
hand, the onset of the optical continuum can be changed by varying
the chemical composition [15] or the structural topology [26], i.e. by
modification of the cage structure.

In this work, starting from a microscopic understanding of the
lattice dynamics in type-I clathrates [14–17,22,27,28], simple phe-
nomenological models – based on a description in terms of Debye
and Einstein modes – for thermal properties such as isochoric heat
capacity (C𝑣) and lattice thermal conductivity (𝜅𝐿) are derived. While
first principle approaches are in principle capable to give access to
these quantities, the proposed models can easily be applied to fit
experimental data and, despite their simplicity, allow to extract the
relevant microscopic parameters of the underlying phonon spectrum.
Apart from deriving physically meaningful models for the case of type–
I clathrates as well as other structurally complex materials, this paper
aims at highlighting the potential misinterpretations of unsuited fitting
approaches. Finally, an expression for the minimum of the lattice
thermal conductivity in type-I clathrates is given and the microscopic
parameters which enable reaching this limit are identified, guiding
future efforts to further decrease the lattice thermal conductivity and
thus optimize the thermoelectric efficiency.

A simplified description of the phonon spectrum

As sketched for the case of a Ge-based type-I clathrate (see Fig. 2),
the phonon spectrum of structurally complex crystals can typically be
divided in two main parts in energy on both sides of the energy labeled
ℏ𝜔𝑜𝑝 : the acoustic part, which contains well defined propagative Debye
like acoustic modes involving coherent collective motions of guest and
host atoms, and the optical part (red area), which contains a distribu-
tion of dispersion-less Einstein like optical phonons. The energies of
the optical modes spread up to a high energy cut-off labeled ℏ𝜔𝑚𝑎𝑥.
This partition of the phonon spectrum between a Debye and a Einstein
regime results from the large number of atoms within the crystal
unit cell while the values of the energies ℏ𝜔𝑜𝑝 and ℏ𝜔𝑚𝑎𝑥, the sound
velocities of the acoustic modes and the distribution of modes within
the Einstein part depend on the chemistry and the topology of the unit
cell.

It has been measured by Neutron Resonant Spin Echo (NRSE) spec-
troscopy that the lifetime of an acoustic phonon in a type-I clathrate,
located in the middle of the acoustic branch (with an energy of 2 meV),
2

Fig. 1. Impact of the structural complexity on the lattice dynamics. (a) The type-
I clathrate crystal unit cell (cubic, lattice parameter of about 1 nm), here the case
of Ba7.81Ge40.67Au5.33(BAG), contains tetrahedrally coordinated host atoms of group 14
elements (Si,Ge,Sn) arranged in a 3D covalent framework of face-sharing dodecahedra
(in gold color) and tetrakaidecahedra (in silver color) encapsulating guest cations. (b)
Temperature dependences of the lattice thermal conductivity measured in pure Ge (blue
open squares) [29] and in BAG (red filled circles) [15,30]. (b)–(c) Phonon dispersion
curves for pure Ge and BAG as obtained from DFT calculations using the meta-GGA
functional SCAN [27]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

amounts to about 30 ps. This results in a mean free path of about 30 nm
at room temperature, thus being one order of magnitude larger than
the size of the unit cell which confirms the propagative nature of these
modes [15]. On the other hand, optical phonons with energies higher
than ℏ𝜔𝑜𝑝 are almost dispersionless with very low group velocity, often
only involving vibrations of some specific atoms in the unit cell. As
they are numerous and with high energies, they dominate the heat
capacity but contribute much less efficiently to the heat transport than
the acoustic modes.

In this perspective, a simple description of the lattice isochoric heat
capacity (𝐶𝑣) and thermal conductivity (𝜅) can be obtained as a sum
of a Debye (D) and an Einstein (E) contribution directly related to the
acoustic and optic parts, respectively:

𝐶𝑣 = 𝐶𝐷
𝑣 + 𝐶𝐸

𝑣

𝜅 = 𝜅𝐷 + 𝜅𝐸 (1)

The energy ℏ𝜔𝑜𝑝 defines the transition between the Debye (ℏ𝜔 <
ℏ𝜔𝑜𝑝) and the Einstein (ℏ𝜔 ≥ ℏ𝜔𝑜𝑝) regimes. The cut-off energy ℏ𝜔𝑚𝑎𝑥
is the maximal optical phonon energy. These energies can be easily
measured by standard inelastic spectroscopy techniques (Raman, IXS or
INS) on polycrystalline samples. Furthermore, it will be shown below
that, with the appropriate model, they can also be extracted precisely
from heat capacity measurements.

The heat capacity of complex crystals

In the following, we start by reviewing the model commonly used
to fit heat capacities in type-I clatrates – and other cage based and com-
plex materials – which will be referred to as ‘‘classical Debye model’’
below. First, it will be shown that the microscopic picture on which
this model relies is not coherent with the phonon spectrum of a type-
I clathrate. After discussing the misconceptions of this approach, an
alternative and simple macroscopic model, ‘‘the capped Debye model’’,
is proposed.
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Fig. 2. Schematic representation of the phonon spectrum in a structurally complex
crystal. The phonon spectrum represented in the first Brillouin zone (BZ) can be split
in two spectral ranges at both sides of a threshold energy called ℏ𝜔𝑜𝑝: the acoustic and
the optic regime. The acoustic phonons describe a Debye-like linear branch, ℏ𝜔 = 𝑣𝑠𝑞
with 𝑣𝑠 the average sound velocity, which is stopped at (q𝑐 , ℏ𝜔𝑜𝑝) when it hits the
low energy edge of a dense continuum of dispersion-less optical Einstein phonons
which have energies distributed from ℏ𝜔𝑜𝑝 to a high energy cut-off at ℏ𝜔𝑚𝑎𝑥. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The classical Debye model: interpretation and failure

For a long time, the crystal structure of type-I clathrates has been
viewed as host network filled by loosely bound guest atoms, so-called
‘‘rattlers’’, which were assumed to be isolated from each other. To
model the lattice dynamics of such materials in a simple and intuitive
approach, the host network was considered as a stiff Debye solid,
while the network of rattlers was describes as a system of independent
Einstein oscillators. A well known representation of the corresponding
microscopic phonon spectrum has been illustrated in [31] (see Figure
4 of that paper). In this context, the rattling vibrations couple with
the host acoustic phonons only in a confined region of the energy
and momentum phase space, when their energies become compara-
ble, leading to a so-called ‘‘avoided crossing ’’ between the host and
guest phonon branches. In coherence with this microscopic picture,
the Debye and the Einstein contributions to heat capacity and lattice
thermal conductivity, as decomposed in Eq. (1), were attributed to
host and guest networks respectively [32]. The earlier experimental
reports of the lattice thermal properties in crystalline clathrates of type-
I like (Eu,Sr,Ba)8Ga16Ge30 [33–35], Ba8Ga16𝑋30 (X = Ge,Sn) [35,36],
Sr8Ga16Si30−𝑥Ge𝑥 [37], Ba8Ga16Sn30 [38,39], Ba8Zn7.7Ge38.3 [40] and
Ba8Ni𝑥Ge46−𝑥 (x = 3, 4, 6) [41] resulted in the derivation of this
heuristic model. Due to its apparent success, this model has become
very popular for the analysis and comparison of thermal properties in
type-I clathrates. Later, the application of this model has even been
extended to other cage-based materials, such as skutterudites [42] and
pyrochlores [43].

By applying this model to type-I clathrates, the Debye component
is assumed to describe the lattice vibrations of 𝑛𝐻 = 46 host atoms per
unit cell. In a 3D solid, each of these atoms has three independent vi-
brational degrees of freedom. Consequently, the number of vibrational
modes is given by 3𝑛𝐻 = 138. In the basic Debye approach, these modes
define a linear and isotropic dispersion following ℏ𝜔 = 𝑣𝑠|𝐪|, where
𝑣𝑠 is the average sound velocity, as calculated from the slope of the
two TA and the LA phonon dispersions: 3

𝑣3𝑠
= 2

𝑣3𝑇𝐴
+ 1

𝑣3𝐿𝐴
. It has to be

noted that optical phonons are not accounted for in the Debye model,
as it is originally based on a mono-atomic cubic lattice. The maximum
energy of this linear dispersion, called the Debye energy ℏ𝜔 (with the
3

𝐷

associated Debye temperature 𝑘𝐵𝛩𝐷), is then simply determined by the
total number of host phonon modes, i.e., 3𝑛𝐻 = ∫ 𝜔𝐷

0 𝑔(𝜔)𝑑𝜔. Here, 𝑔(𝜔)
is the phonon density of states (DOS), which in the Debye model is
given by:

𝑔(𝜔) =
𝑉𝑢𝑐
2𝜋2

𝜔2

𝑣3𝑠
(2)

with 𝑉𝑢𝑐 the unit cell volume.2
The Debye temperature can then be deduced as ℏ𝜔𝐷 = 𝑘𝐵𝛩𝐷 =

(

6𝑛𝐻𝜋2

𝑉𝑢𝑐

)1∕3
ℏ𝑣𝑠 [44–46], while the isochoric heat capacity in the Debye

model is then given as [47]:

𝐶𝐷
𝑣 = 9𝑛𝐻𝑁𝐴𝑘𝐵

(

𝑘𝐵𝑇
ℏ𝜔𝐷

)3

∫

ℏ𝜔𝐷∕𝑘𝐵𝑇

0

𝑥4𝑒𝑥

[𝑒𝑥 − 1]2
𝑑𝑥 (3)

where 𝑥 = ℏ𝜔
𝑘𝐵𝑇

, N𝐴 and k𝐵 are the Avogadro number and the Boltz-
mann constant. The Debye temperatures of type-I clathrates reported
in literature obtained from this approach are in the 200–300 K range
[31–35,37–39,41,48].

The Einstein-like phonon subsystem in clathrates is usually ascribed
to the guest atoms exhibiting large atomic displacement parameters,
which are assumed to behave as independent Einstein oscillators (‘‘rat-
tling modes’’) [32–35,37–39,41]. These oscillators (8 in the case of
type-I clathrates) have three degrees of freedom, therefore the number
of Einstein modes amounts to 𝑛𝐸 = 24. These modes, however, are not
all equivalent, which is due to the different cage geometries within the
unit cell. Assuming three different Einstein temperatures (or energies),
the isochoric heat capacity, 𝐶𝐸

𝑣 , associated to the Einstein guest sub-
system is then expressed as a discrete sum over the contributions of
these vibrations, 𝐶𝐸

𝑣 =
∑

𝑖=1−3 𝐶
𝐸𝑖
𝑣 with 𝐶𝐸𝑖

𝑣 being the isochoric heat
capacity of a single Einstein oscillator characterized by its energy 𝐸𝑖
(or temperature 𝛩𝐸

𝑖 ):

𝐶𝐸𝑖
𝑣 = 𝑁𝐴𝑘𝐵

(

𝐸𝑖
𝑘𝐵𝑇

)2 𝑒
𝐸𝑖
𝑘𝐵𝑇

(𝑒
𝐸𝑖
𝑘𝐵𝑇 − 1)2

(4)

To resume, in this specific heat model for type-I clathrates, the 3 N
(i.e. 162 vibrational modes) are shared between a stiff Debye solid
counting for 138 modes and a network of independent Einstein oscil-
lators which represents 24 modes. The four microscopic parameters of
this model are hence the Debye energy, ℏ𝜔𝐷, which can be fixed if the
average sound velocity and the three Einstein energies, E1−3.

Fig. 3(a) reports the specific heat divided by 𝑇 3 as a function of
temperature recorded for the Ge-type I clathrate Ba7.81Ge40.67Au5.33 in
comparison to fitting results obtained with the here described model.
This clearly highlights the excess of specific heat over the 𝑇 3 Debye-
dependence at low 𝑇 : a broad peak appears, with its maximum at a low
temperature of around 25 K. The observed broad hump above the low
temperature Debye part (∼𝑇 3), is a typical finding in type-I clathrates
[13,24,49]. It has often been linked to the physics of glasses and rather
misleadingly associated to the presence of disorder, mainly related to
the rattling motions of the guest atoms in the large cages [33,34,36–
39,49,50]. On the other hand, this excess of heat capacity has been
reproduced by ab initio lattice dynamics calculations using fully ordered
structural models with harmonic interactions, thus showing that it is
merely the consequence of an increased phonon density of states at low
energy [51].

In the applied model of 𝐶𝑣(𝑇 ), the Debye background originates
from the stiff cages and deviations over it are successfully reproduced
by the three Einstein peaks characterized by the energies 𝐸1−3. In

2 The elementary volume per phonon is (2𝜋)3

𝑉𝑢𝑐
. In the Debye model, the

volume between two iso-energy surfaces is 4𝜋𝑞2𝑑𝑞 = 4𝜋 𝜔2

𝑣3𝑠
𝑑𝜔 (with ℎ𝜔 = 𝑣𝑠𝑞).

Thus ∫ 𝑔(𝜔)𝑑𝜔 = ∫ 𝑉𝑢𝑐 𝜔2
𝑑𝜔.
2𝜋2 𝑣3𝑠
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Fig. 3. Specific heat and phonon spectrum interpreted in the classical Debye model.
(a) Measured isobaric heat capacity divided by 𝑇 3 versus 𝑇 in the type-I clathrate
Ba7.81Ge40.67Au5.33 (black solid points) [15,24]. The model fit (black line) is decomposed
into its Debye component (dashed blue line) and three Einstein peaks characterized by
the temperatures 𝜃𝐸1,2,3

. The electronic contribution has been considered in the fit at
low temperature (dashed gray line). (b) Corresponding microscopic representation of
the phonon spectrum obtained from the parameters extracted from the fit shown in (a).
The red points correspond to the measured acoustic dispersion in the first Brillouin zone
(BZ). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Source: Adapted from [14,15].

Fig. 3(a), the global fit as well as Debye and Einstein contributions
are shown. The Debye component dominates the heat capacity for
temperatures above 50 K. The fitting parameters obtained for this
model are ℏ𝜔𝐷 = 20.9 meV (𝛩𝐷 = 243 K), E1 = 4.9 meV (𝛩𝐸1

= 57.4 K),
E2 = 7.4 meV (𝛩𝐸2

= 85.4 K) and E3 = 10.4 meV (𝛩𝐸3
= 120.6 K). This

is in good agreement with the range of published Debye and Einstein
temperatures for type-I clathrates that were extracted in similar ways
[33–39,41].

Fig. 3(b) shows the microscopic translation of the parameters ex-
tracted from the fit by depicting the corresponding scenario of the
phonon spectrum in the energy–momentum phase space (q, 𝜔). The
straight line starting at the origin represents the acoustic linear dis-
persion which contains 138 phonon modes that disperse up to the
Debye energy ℏ𝜔𝐷. In the phase space, the three Einstein modes
result in three lines at constant energies E1, E2 and E3. For a direct
comparison, the measured acoustic dispersion (red open circles) is
also depicted [14,15]. Clearly, the phonon spectrum derived from the
applied fitting model is not consistent with what is experimentally
observed in clathrates. The experimental data emphasize the fact that
acoustic phonons do not propagate up to the Debye energy (21 meV),
but that the acoustic regime is instead restricted to a small energy range
roughly limited by the energy E1 (∼4–5 meV). Moreover, there are not
only three discrete energies corresponding to optical non–dispersive
phonon modes, but rather several spectral distributions consisting of
a large number of guest and host optical branches, whose energies
are distributed from ℏ𝜔𝐸1 to a cutoff energy of about 25 meV, see
Fig. 1(d). Still, the positions of the Einstein modes extracted from the
heat capacity model are consistent with the median energies of the
optical phonon distributions at low energy reported by spectroscopic
measurements and located at energies 5, 7.5, 10 and 12 meV [14,15].
This, on the other hand, is not true for the Debye temperature obtained
with this model, which clearly has no meaning at the microscopic
level. The formula, 𝑘𝐵𝛩𝐷 =

(

6𝑛𝐻𝜋2

𝑉𝑢𝑐

)1∕3
ℏ𝑣𝑠 with 𝑛𝐻 = 46, widely

used in the literature [48] to estimate the Debye temperature from the
sound velocity is meaningless with respect to a physical interpretation
and should be avoided. The Debye background in the heat capacity is
significantly overestimated, thus resulting in wrong relative weights of
Debye and Einstein components in the heat capacity. As we will see
below, the overestimation of the acoustic mode heat capacity results
in underestimation of their mean free path when determining the
4

lattice thermal conductivity via kinetic gas theory. The origin of this
mistake lies in the fact that the guest atoms should not be viewed as
independent and isolated Einstein oscillators and sole contributors to
the optical part of the spectrum. Indeed, the guest and the host atoms
are coherently coupled and their low energy dynamics in the acoustic
regime are completely entangled, see [28].

The capped Debye model: a meaningful microscopic model

In this section, we now derive a simple and meaningful model for
the heat capacity on the basis of the Einstein and Debye components
in line with the one proposed Agne et al. [52] and formerly introduced
by Toberer [8]. Moreover, the free parameters of the model are directly
related to the microscopic parameters determined by means of phonon
spectroscopy.

The capped acoustic dispersion
For setting up our model in the simplest manner, a single isotropic

acoustic branch with a sound velocity, 𝑣𝑠, is assumed, which extends up
to the limit of the acoustic regime, i.e. up to ℏ𝜔𝑜𝑝 with the associated
temperature 𝑘𝐵𝜃𝑜𝑝 = ℏ𝜔𝑜𝑝. The fundamental difference in our model
with respect to the classical one described above is thus the fact that
Debye and Einstein contributions are not assigned on the basis of
the atomic species but with respect to the nature of the phonon
modes. While in the classical Debye model, the Debye energy is defined
by the number of atoms in the host framework (see Eq. (2)), in the here
presented model, on the other hand, the total number of Debye modes,
named 3n𝐷 is determined from the phonon density of states and the
energy ℏ𝜔𝑜𝑝 which limits the acoustic range:

3𝑛𝐷 = ∫

ℏ𝜔𝑜𝑝

0
𝑔(ℏ𝜔)𝑑ℏ𝜔 (5)

In the case of a linear dispersion, this leads to the following relation
between the sound velocity, ℏ𝜔𝑜𝑝 and n𝐷:

𝑛𝐷 =
𝑉𝑢𝑐
6𝜋2

(𝜔𝑜𝑝

𝑣𝑠

)3
(6)

Hence, the acoustic contribution to the isochoric specific heat is
completely determined by the microscopic variables, ℏ𝜔𝑜𝑝 (or 𝑘𝐵𝜃𝑜𝑝)
and n𝐷:

𝐶𝑐𝑎𝑝𝑝𝑒𝑑
𝑣 (𝑇 ) = 9𝑛𝐷𝑁𝐴𝑘𝐵

(

𝑘𝐵𝑇
ℏ𝜔𝑜𝑝

)3

∫

ℏ𝜔𝑜𝑝∕𝑘𝐵𝑇

0

𝑥4𝑒𝑥

[𝑒𝑥 − 1]2
𝑑𝑥 (7)

As seen from Eq. (6), the number of the Debye modes 𝑛𝐷 is a
variable determined by 𝜔𝑜𝑝 and 𝑣𝑠, which should be less or equal 1.
The case 𝑛𝐷 = 1 corresponds to the integration of an acoustic branch
over the whole first Brillouin zone, meaning that the Debye dispersion
accounts for a maximum of three modes, the three acoustic modes. 𝑛𝐷
= N, on the other hand, would describe the scenario of the classical
Debye model in which the Debye branch integrates all 3 N degrees of
freedom of the 𝑁 atom unit cell. Assuming the same sound velocity, the
energy range of the Debye regime is thus reduced by a factor N1∕3 when
𝑛𝐷 changes from 𝑁 to 1. This renormalization of the Debye energy
by N1∕3 was formerly introduced by Roufose and Klemens [53], who
assumed that the acoustic phonons, i.e. three modes only, dominate
the thermal conduction in complex crystalline materials. They argued
that the flattening of the optical branches, caused by the structural
complexity, drastically lowers the group velocity of optical phonons,
thus minimizing their contribution to thermal transport (see also the
review by Slack [44]). Unfortunately, this renormalization has been for-
gotten especially when adapting the classical Debye model for complex
systems. However, there is also no reason to fix the value of 𝑛𝐷 to 1,
particularly in the case of the acoustic dispersion in complex materials.
Indeed, experimentally and theoretically, the acoustic dispersion is
not linear in the entire Brillouin zone but bends over and flattens
when approaching the edge of the optical continuum at ℏ𝜔 as it
𝑜𝑝
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can be seen in Fig. 1(d). As has been discussed earlier [16,17,27], the
acoustic modes progressively loose their acoustic character which is
experimentally seen as an abrupt decrease of their spectral weight and
theoretically associated to a drastic change of the phonon participation
ratio. In type-I clathrates, this has been related to an increase of the
guest atom contribution to the acoustic modes [16]. Hence, the case 𝑛𝐷
= 1 can be understood as the upper bound of the Debye contribution
to the heat capacity and therefore can be associated to the lowest
value of the phonon mean free path when describing the lattice thermal
conductivity in the framework of kinetic gas theory, as will be discussed
later.

In the following, we apply these considerations by using the capped
Debye model for energies lower than ℏ𝜔𝑜𝑝, while extending it with an
Einstein model at higher energies in order to clarify the respective roles
of the Debye and Einstein modes in the thermal properties of clathrates.

Einstein-like heat capacitors
For energies higher than ℏ𝜔𝑜𝑝, the phonon spectrum can be viewed

as a continuum of Einstein modes as sketched in Fig. 2. This continuum
spreads from ℏ𝜔𝑜𝑝 (or ℏ𝜔𝐷) to a maximum energy which will be called
ℏ𝜔𝑚𝑎𝑥 (𝑘𝐵𝜃𝑚𝑎𝑥 = ℏ𝜔𝑚𝑎𝑥). As the number of Debye modes is not any
more fixed by the number of atoms in the host network, the number
of Einstein modes cannot be related to the number of atoms in the
guest network either, but becomes a variable: 3𝑛𝐸 . Still, the number
of Debye, 3𝑛𝐷, and Einstein, 3𝑛𝐸 , modes remain related to each other,
as their sum must be equal to the total number of modes in the system.
Once the average sound velocity and the energy ℏ𝜔𝑜𝑝 are known, it is
straightforward to determine these two variables, through the following
relations:
⎧

⎪

⎨

⎪

⎩

3𝑛𝐸 + 3𝑛𝐷 = 3𝑁

𝑛𝐷 = 𝑉𝑢𝑐
6𝜋2

(𝜔𝑜𝑝
𝑣𝑠

)3 (8)

The distribution of phonon modes in the Einstein continuum can be
approximated as Dirac comb of equidistant optical phonon branches.
The density of states of such Einstein modes is then given as:

𝑔𝐸 (ℏ𝜔) =
3𝑛𝐸

ℏ𝜔𝑚𝑎𝑥 − ℏ𝜔𝑜𝑝
(9)

Consequently, the Einstein component of the heat capacity is ob-
tained by an integral over all the Einstein modes in the Dirac comb,
with the isochoric heat capacity of a single Einstein mode (𝐶𝐸𝑖

𝑣 ) given
in Eq. (4). With the above introduced density of states the heat capacity
of the Einstein continuum can be expressed as:

𝐶𝐸
𝑣 (𝑇 ) = 3𝑛𝐸𝑁𝐴𝑘𝐵

[

𝑘𝐵𝑇
(ℏ𝜔𝑚𝑎𝑥 − ℏ𝜔𝑜𝑝) ∫

ℏ𝜔𝑚𝑎𝑥∕𝑘𝐵𝑇

ℏ𝜔𝑜𝑝∕𝑘𝐵𝑇

𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

]

(10)

(C𝐸
𝑣 above is in J mol−1 K−1). In the high temperature limit, k𝐵T

≫ ℏ𝜔𝑚𝑎𝑥 (x→0), the term in brackets equals unity and the heat capacity
reaches the Dulong and Petit limit for the corresponding number of
Einstein modes: 𝐶𝐸

𝑣 (𝑘𝐵𝑇 ≫ ℏ𝜔𝑚𝑎𝑥) = 3𝑛𝐸𝑁𝐴𝑘𝐵 .

Application
The only free parameters of the model are ℏ𝜔𝑜𝑝, ℏ𝜔𝑚𝑎𝑥 and the

number of Debye (n𝐷) or Einstein modes (n𝐸), which are related by
Eq. (8). For the case of Ba7.81Ge40.67Au5.33 , a fit of the heat capacity
obtained with this simple model is shown in Fig. 4(a), with the different
contributions plotted separately. A fit without any constraints yields 𝜃𝑜𝑝
= 47.8 K (ℏ𝜔𝑜𝑝 = 4.12 meV), 𝜃𝑚𝑎𝑥 = 316.5 K (ℏ𝜔𝑚𝑎𝑥 = 27.3 meV) and
n𝐷 = 0.348. This leads to an average sound velocity v𝑠 = 2450 m s−1. In
Fig. 4(b), the microscopic representation of the model with these fitting
parameters is depicted by intentionally using the same momentum and
energy ranges as in Fig. 3(b). The microscopic parameters (ℏ𝜔𝑜𝑝, ℏ𝜔𝑚𝑎𝑥
and 𝑣 ) obtained from the fit are in a remarkable agreement with the
5

𝑠

Fig. 4. Heat capacity and phonon spectrum described in the capped Debye model. (a)
Measured heat capacity, C𝑝, divided 𝑇 3 versus temperature (𝑇 ) in Ba7.81Ge40.67Au5.33
(black solid points). The fit (black line) is decomposed into its Debye component (dotted
blue line) and its Einstein component (solid red line). The electronic contribution has
been considered in the fit at low temperature (dotted gray line). (b) Corresponding
microscopic representation of the capped Debye model in the energy–momentum space.
The TA branch disperses up to the edge of the Einstein continuum, ℏ𝜔𝐷 = ℏ𝜔𝑜𝑝. The
experimental TA dispersion is superimposed (red circles). The dotted gray lines indicate
the borders of the Brillouin zone. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

experimental acoustic phonon dispersion also reported in the figure
(red open circles). The difference with the classical Debye model is
the fact that the discrete number of Einstein modes associated to the
dynamics of the guest atoms is replaced by a continuum of modes which
dominate the phonon spectrum over a wide energy range, from ℏ𝜔𝑜𝑝 to
ℏ𝜔𝑚𝑎𝑥. At a macroscopic level, this results in the Einstein contribution
determining the heat capacity over a wide temperature range above
about ∼25 K, as illustrated in Fig. 4(a). In the classical model, on the
other hand, it is the Debye contribution which dominates, as shown
in Fig. 3(a). Hence, in the capped Debye model, clathrates are mostly
Einstein-like heat capacitors, which is in clear contrast to results obtained
with the standard Debye approach. In fact, the Debye component to the
heat capacity is only of importance at low temperature, 𝑇 ≪ 𝜃𝑜𝑝, which
is consistent with the spectroscopically evidenced confinement of the
acoustic phonons in a small energy range [0: ℏ𝜔𝑜𝑝].

In principle, if three acoustic branches are considered, n𝐷 might
be expected to be equal to unity. However, here, we actually find
n𝐷 ∼ 1∕3 which can be understood as a way to take the branch bending
and the loss of the propagative nature of the acoustic phonons into
account when approaching ℏ𝜔𝑜𝑝, as mentioned above and also reported
in several studies [16,17,22,27]. Indeed, the experimentally observed
depletion of the acoustic spectral weight, accompanied by a decrease
of the phonon participation ratio, is found for a critical wave-vector
well below the border of the first Brillouin zone [16,22]. This critical
wave-vector, 𝑞𝑐 , can be in principle also extracted from the capped
Deby model by defining 𝑞𝑐 = ℏ𝜔𝑜𝑝𝑡

𝑣𝑠
. If we consider the dispersion of

the transverse acoustic phonon branch propagating along the [110]
direction in Ba7.81Ge40.67Au5.33, the ratio between 𝑞𝑐 and the wave-
vector at the zone boundary of the first BZ, q𝐵𝑍 , can then be expressed
as:
𝑞𝑐
𝑞𝐵𝑍

=
ℏ𝜔𝑜𝑝

𝑣𝑠
𝑎

√

2𝜋
(11)

with 𝑎 the corresponding lattice parameter. An estimation of this ratio
using the experimental values for Ba7.81Ge40.67Au5.33for the transverse
acoustic branches [14,15], ℏ𝜔𝑜𝑝 ∼ 4.5 meV, 𝑣𝑠 ∼ 3000 m s−1, a =
10.8 Å, yields 𝑞𝑐

𝑞𝐵𝑍
∼0.6. Since the density of states in the Debye

model is proportional to the square of the energy and thus the square
of the wave-vector, we find that the fraction of propagative acoustic
modes, before the propagative character is lost (when the acoustic
branch starts to bend) amounts to

(

𝑞𝑐
)2

∼ 0.36. This is in remarkable
𝑞𝐵𝑍
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agreement with the value of n𝐷 that is obtained from the fit of the heat
apacity with the above described model. Hence, the heat capacity in
ype-I clathrates is indeed satisfactorily described by three microscopic
arameters: 𝑣𝑠, ℏ𝜔𝑜𝑝 (𝑣𝑠, ℏ𝜔𝑜𝑝 and n𝐷 are linked through the Eq. (6))

and ℏ𝜔𝑚𝑎𝑥.

Debye like thermal conductivity and its minimum

As shown in the previous section, the clathrate isochoric specific
eat at room temperature is strongly dominated by the Einstein-like
ontribution. Here, we now formally apply the above introduced simple
odel description of the specific heat for the determination of the

attice thermal conductivity divided in a Debye and a Einstein part as
xpressed in Eq. (1). It will be demonstrated that, in contrast to the
pecific heat, the thermal conductivity is dominated by the acoustic
honons. This leads to the specific situation of type-I clathrates being
instein-like heat capacitors but Debye-like thermal conductors.

ebye-like thermal conductors
As elaborated in the previous sections, the Debye part of the phonon

pectrum contains well-defined acoustic phonon modes with energies
ower than ℏ𝜔𝑜𝑝. Using the Boltzmann transport equation for phonons,
he thermal conductivity associated to this part of the phonon spectrum
an then be expressed as:

𝑐𝑎𝑝𝑝𝑒𝑑
𝐷 (𝑇 ) = 1

3 ∫

ℏ𝜔𝑜𝑝

0
𝐶𝑣(ℏ𝜔, 𝑇 )𝑣(ℏ𝜔)2𝜏(ℏ𝜔)𝑔(ℏ𝜔)𝑑ℏ𝜔 (12)

The additional microscopic information needed to calculate the
thermal conductivity of an acoustic phonon branch is the energy
dependence of the phonon lifetime as a function of temperature,
𝜏(ℏ𝜔, 𝑇 ). Unfortunately, it is not easy to experimentally access 𝜏(ℏ𝜔, 𝑇 ),
which explains the very few reports that can be found in literature,
Ba7.81Ge40.67Au5.33 being one of these rare cases [28]. By considering
the experimentally determined energy dependence of the relaxation
time in Ba7.81Ge40.67Au5.33 , 𝜅𝑐𝑎𝑝𝑝𝑒𝑑

𝐷 at 300 K can be estimated, yielding
a value of 1.18 W m−1 K−1. Since the experimentally determined
lattice thermal conductivity amounts to 1.1 W m−1 K−1, this result
indicates that most of the thermal transport is indeed ensured by
acoustic phonons [15].

For a further simplified description of the Debye part of the lat-
tice thermal conductivity, we assume the sound velocity and phonon
lifetime to be constant, which transforms Eq. (12) in the following
expression:

𝜅𝑐𝑎𝑝𝑝𝑒𝑑
𝐷 (𝑇 ) = 1

3
𝐶𝑣.𝑣𝑠.𝓁 (13)

here 𝑣𝑠 and 𝓁 are the average sound velocity and phonon mean
ree path (𝓁 = 𝑣𝑠.𝜏). This equation is well known from kinetic gas
heory [47,54–56], however, here solely the Debye part of the heat
apacity will be considered. At elevated temperature, the Dulong–Petit
imit for the isochoric molar heat capacity can be applied, meaning:
𝐷
𝑣,𝑚(300 K) ≈ C𝐷𝑃

𝑣,𝑚 = 3𝑛𝐷𝑁𝐴𝑘𝐵 (in J mol−1 K−1).
For the classical Debye model, where n𝐷 is assumed to correspond to

he number of host atoms (n𝐷 = n𝐻 = 46), the Dulong–Petit limit yields
𝐷𝑃
𝑣,𝑚 = 3𝑛𝐷𝑁𝐴𝑘𝐵 ∼ 1753 kJ m−3 K−1. By inserting the experimental

attice thermal conductivity of 1.1 W m−1 K−1 (at 300 K) and an
verage sound velocity of 3000 m s−1 in Eq. (13), the phonon mean
ree path can be deduced for this scenario. It amounts to 5–6 Å, which
s smaller than the dimensions of the clathrate unit cell (∼1 nm). In
he past, this small value has been related to the distance between
wo guest atoms, which were interpreted as scattering centers [31,48].
n the other hand, in the capped Debye model, the number of Debye
honon modes is drastically reduced, resulting in a value of n𝐷 = 0.35,
s discussed above. Thus C𝐷𝑃

𝑣,𝑚 amounts to only ∼11 kJ m−3 K−1 for
𝐷 = 0.35 and ∼32 kJ m−3 K−1 for n𝐷 = 1 and the corresponding
honon mean free path varies in the nanometer range between 30–
0 nm. This significantly increased mean free path is in good agreement
6

ith experimental findings from neutron scattering [15] and validates
he assumption that the thermal conductivity in clathrates is mainly
ominated by Debye-like phonons.

In order to understand the key parameters determining the high
emperature (‘‘high’’ relatively to 𝜃𝑜𝑝, i.e. 𝑇 ≫ 𝜔𝑜𝑝) limit of the Debye
ontribution to the lattice thermal conductivity, we explicitly rewrite
q. (13), using 𝑛𝐷 = 𝑉𝑢𝑐

6𝜋2
𝜔3
𝑜𝑝

𝑣3𝑠
as derived for the capped Debye model

(see Eq. (6)). Doing so, 𝜅𝐿 can be expressed as a function of the sound
velocity, the DP limit of the isochoric heat capacity, 𝐶𝐷𝑃

𝑣 = 3𝑛𝐷𝑘𝐵∕𝑉𝑢𝑐 ,
and the low frequency edge of the Einstein continuum, 𝜔𝑜𝑝:

𝜅𝑐𝑎𝑝𝑝𝑒𝑑
𝐷 (𝑇 ≫ 𝜃𝑜𝑝) =

𝑛𝐷𝑘𝐵𝑣𝑠𝑙
𝑉𝑢𝑐

=
𝑘𝐵
6𝜋2

𝜔3
𝑜𝑝

𝑣2𝑠
𝓁 (14)

In this formula, the thermal conductivity decreases with the inverse
of the square of the sound velocity. While this seems counterintuitive
at first glance, microscopically an increase of the sound velocity for
a fixed acoustic limit ℏ𝜔𝑜𝑝 actually implies a decrease of the number
of available phonon states (or a decrease of the phase space volume
for the acoustic branches). Thus, the maximum 𝜅𝐿 is obtained when
the number of acoustic states in the interval from 0 to ℏ𝜔𝑜𝑝 reaches its
upper limit, i.e. for n𝐷 = 1, meaning a total of three acoustic modes. The
maximum value of the high temperature thermal conductivity, 𝜅𝑚𝑎𝑥

𝐿 ,
becomes:

𝜅𝑐𝑎𝑝𝑝𝑒𝑑,𝑚𝑎𝑥
𝐷 (𝑇 ≫ 𝜃𝑜𝑝) =

𝑘𝐵
𝑉𝑢𝑐

𝑣𝑠𝓁 (15)

Hence, the upper limit of the lattice thermal conductivity at high
emperature (T ≫ 𝜔𝑜𝑝) is determined by the product of the mean free
ath and the sound velocity. In the case of type-I clathrates, considering
𝑢𝑐 ∼ 1 nm3 and 𝑣𝑠 ∼ 3000 m s−1, Eq. (15) yields 𝜅𝑚𝑎𝑥

𝐿 = 0.04𝓁 with 𝓁 in
nm. Assuming 𝓁 ∼ 30 nm as the average of the acoustic phonon mean
free path in Ba7.81Ge40.67Au5.33 [15], one obtains 𝜅𝑚𝑎𝑥

𝐿 ∼ 1.2 W m−1 K−1,
very close to the experimental value.

A more accurate expression of the thermal conductivity can be ob-
tained from the frequency integral of 𝜅𝐷 given in Eq. (12), by inserting
the high temperature limit of 𝐶𝑣 = 3𝑛𝐷𝑘𝐵∕𝑉𝑢𝑐 and assuming the typical
uadratic frequency dependence of the phonon lifetime due to Umklapp
U) phonon scattering processes, 𝜏(𝜔) = 𝑎𝑈𝜔−2. This then cancels out

with the frequency dependence of the phonon density of states (see
Eq. (2)), thus, after integration, yielding a linear 𝜔𝑜𝑝 dependence:

𝜅𝑐𝑎𝑝𝑝𝑒𝑑,𝑈
𝐷 (𝑇 ) =

𝑘𝐵
2𝜋2

𝑎𝑈
ℏ𝜔𝑜𝑝

𝑣𝑠
(16)

The prefactor 𝑎𝑈 associated to the amplitude of the Umklapp pro-
cesses is often given as 𝑎𝑈 = 𝑀̄𝑣3𝑠

𝑉 1∕3
𝑢𝑐 𝛾𝑇

with 𝑀̄ the average mass and 𝛾

the Grüneisen parameter [8]. Considering the latter expression for 𝑎𝑈 in
Eq. (16) leads to: 𝜅 ∝ 𝑣2𝑠𝜔𝑜𝑝. This expression is actually close to the phe-
nomenological relation reported by Ikeda et al. [24] for different type-I
clathrates, where 𝜅 is found to scale with 𝑣𝑠𝜔𝑜𝑝. However, as there
are always significant discrepancies among the values of the sound
velocity extracted from different techniques, we want to emphasize the
consistent main finding that the thermal conductivity scales with the
energy ℏ𝜔𝑜𝑝, which determines the size of the energy range available
for acoustic phonons. This shows that, despite being confined to a small
energy range and largely outnumbered by optical phonons, the acoustic
phonons are still the dominant heat carriers in type-I clathrates.

In the light of such findings, it is clear that a strategy for reducing
𝜅𝐷 would imply choosing a heavy guest atom, leading to small values
for ℏ𝜔𝑜𝑝 since ℏ𝜔𝑜𝑝 roughly scales with 1

√

𝑀𝐺𝑢𝑒𝑠𝑡
. An alternative and

interesting strategy, recently proposed by Viennois et al. [26] is to
decrease ℏ𝜔𝑜𝑝 by using other clathrate families with different cage sizes.
Looking at the type-IX binary clathrate Ba24Si100, these authors have
found guest modes with energies as low as 2 meV. For an even further
reduction of 𝜅 , the phonon mean free path could be limited, e.g. by
𝐷
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introducing defects or nanostructuring, or eventually exchanging atoms
for increasing the sound velocity. Based on the just discussed findings
a minimum value of the lattice thermal conductivity is derived in the
next section.

Approching the minimum lattice thermal conductivity

In the context of the capped Debye model, a minimum of the lattice
thermal conductivity is obtained when the momentum–energy phase
space for the acoustic phonons is suppressed (assuming a non-zero
lifetime for these modes). In order to estimate the resulting limit, the
well-known models for minimum lattice thermal conductivity [44,45,
47] have to be adapted to the case of the capped Debye model. Based on
the microscopic description of the phonon spectrum discussed above,
the minimal thermal conductivity, 𝜅𝑇 𝑜𝑡

𝑚𝑖𝑛 , can then be assumed to consist
f an Einstein, 𝜅𝐸

𝑚𝑖𝑛, and a Debye, 𝜅𝐷
𝑚𝑖𝑛, minimum contribution:

𝑇 𝑜𝑡
𝑚𝑖𝑛 = 𝜅𝐸

𝑚𝑖𝑛 + 𝜅𝐷
𝑚𝑖𝑛 (17)

The minimum lattice thermal conductivity: The Debye contribution

Slacks model for the minimum thermal conductivity [44] assumes a
minimum mean free path, 𝑙𝑚𝑖𝑛, of half the phonon wavelength, which
in case of a linear dispersion relation (𝜔 = 𝑣𝑠𝑞) results in:

𝓁𝑚𝑖𝑛(𝜔) = 𝜋
𝑣𝑠
𝜔

(18)

(note here we use the angular frequency 𝜔 = 2𝜋𝜈 while in Slack’s
paper the frequency 𝜈 is used). By displaying the dimensionless fraction
𝑥 = ℏ𝜔

𝑘𝐵𝑇
, 𝓁𝑚𝑖𝑛 is rewritten as : 𝓁𝑚𝑖𝑛 = 𝜋𝑣𝑠

ℏ
𝑘𝐵𝑇

1
𝑥 .

To get an idea about the order of magnitude of the minimum Debye
ontribution, phonons within the acoustic regime of Ba7.81Ge40.67Au5.33
an be considered. An acoustic mode, at e.g. an energy of 3 meV
xhibits a group velocity of around 2000 m s−1. This results in 𝓁𝑚𝑖𝑛 = 12
, which is in the order of the unit cell dimensions. Experimentally, the
ean free path of such phonons was observed to be ∼30 nm (at 300

K) [15]. Hence, the situation in Ba7.81Ge40.67Au5.33 is still far from the
Slack criterion for minimum thermal conductivity.

Assuming an acoustic phonon mean free path corresponding to 𝓁𝑚𝑖𝑛
in combination with the heat mode capacity of the capped Debye model
which corresponds to the integrand in the integral given in Eq. (7), the
minimum thermal conductivity of the Debye part of the spectrum, 𝜅𝐷

𝑚𝑖𝑛,
in the context of the kinetic gas theory (see Eq. (13)) reads:

𝜅𝐷
𝑚𝑖𝑛 =

1
4𝜋

𝑘𝐵
𝜔2
𝑜𝑝

𝑣𝑠
[

2
(

𝑘𝐵𝑇
ℏ𝜔𝑜𝑝

)2

∫

ℏ𝜔𝑜𝑝∕𝑘𝐵𝑇

0

𝑥3𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

] (19)

(expressed in W m−1 K−1). One can rewrite Eq. (19) as function of
𝜃𝑜𝑝(=

ℏ𝜔𝑜𝑝
𝑘𝑏

) and 𝑛𝐷 and find the expression derived by Cahill and Pohl
[45]3

In the high temperature limit, defined by k𝐵T ≫ ℏ𝜔𝑜𝑝, the term
in brackets goes to one and the minimum thermal conductivity of the
Debye contribution becomes:

𝜅𝐷
𝑚𝑖𝑛(𝑘𝐵𝑇 ≫ ℏ𝜔𝑜𝑝) ∼

𝑘𝐵
4𝜋

𝜔2
𝑜𝑝

𝑣𝑠
(20)

3 Eq. (19) rewritten as function of 𝜃𝑜𝑝 and 𝑛𝐷 reads as Cahill
nd Pohl’s formula reported in [45] (see their formula (19)): 𝜅𝐷

𝑚𝑖𝑛 =
9𝜋
16

)1∕3
𝑘𝐵

(

𝑛𝐷
𝑎3

)2∕3
𝑣𝑠

[

2
(

𝑇
𝜃𝑜𝑝

)2
∫ 𝜃𝑜𝑝∕𝑇
0

𝑥3𝑒𝑥

(𝑒𝑥−1)2
𝑑𝑥

]

. There is a factor 3 between our

onstant 1∕
(

9𝜋
16

)1∕3
= 1∕0.827 and their: 1∕2.48 which is due to the 3 different

olarizations. Deriving their formulas, Cahill and Pohl were considering 1
ebye mode while in our formula in Eq. (19), we have considered the average

ound velocity for the three polarization.
7

leading to a quadratic dependence on the energy ℏ𝜔𝑜𝑝. In the case of
Ba7.81Ge40.67Au5.33, with the experimental values ℏ𝜔𝑜𝑝 = 4.5 meV and
𝑣𝑠 = 3000 m s−1 [15], we find 𝜅𝐷

𝑚𝑖𝑛(𝑘𝐵𝑇 ≫ ℏ𝜔𝑜𝑝) ∼ 0.02 W m−1 K−1.
his value is coherent with the calculations for 𝜅𝐷

𝑚𝑖𝑛 calculated by Ikeda
t al. [24], by using a similar modified Debye model. Thus, when the
coustic phonon mean free path is reduced at its minimum value, the
inimum of the total lattice thermal conductivity is mostly determined

y its Einstein part which is roughly one order of magnitude higher. In
he SI, we discuss the value of the mean free path of acoustic phonons
or which the Debye and Einstein contribution to the thermal transport
qualize.

hermal conductivity of the Einstein-like phonons

For the 𝑛𝐸 Einstein like phonon modes spread in an energy range
etween ℏ𝜔𝑜𝑝 and ℏ𝜔𝑚𝑎𝑥, the concept of a random walk of the thermal
nergy is used to determine the minimum thermal conductivity. Assum-
ng an oscillator 𝑖, characterized by its temperature 𝜃𝑖𝐸 or energy ℏ𝜔𝑖

𝐸 ,
the oscillation period is given by:

𝑇 𝑖
𝐸 = 2𝜋

𝜔𝑖
𝐸

= 2𝜋ℏ
𝑘𝐵𝜃𝑖𝐸

(21)

After a certain time, 𝜏 𝑖𝐸 , an excited oscillator will release its energy
to its nearest neighbors. The oscillation times can be expressed as a
multiple of the oscillation period, i.e., 𝜏𝑖𝐸 = 𝛼𝑖𝐸𝑇

𝑖
𝐸 .

In the limit of strong damping, typically used to describe the ther-
al transport in disordered materials, the smallest oscillation time is

ssumed to be half the oscillation period, resulting in 𝜏𝐸 = 𝑇𝐸/2 with
𝛼𝐸 = 1∕2 [45,47]. In the type-I clathrates Ba7.81Ge40.67Au5.33, four
distributions of optical modes with energies E1,2,3 = 4.5, 7, 9.6 and 11.5
meV, have been experimentally observed [14,15]. Among them, only
the first one at E1 can be viewed as a well defined one-phonon peak,
showing an oscillation period of 𝑇𝐸1

∼ 0.9 ps. Hence, the oscillation
time of this mode, as derived from its lifetime, ∼1.35 ps, corresponds
to about 1.5 times its period (i.e. 𝛼𝑖𝐸 = 1.5). The oscillation periods of
the other peaks at E2,3,4 are 𝑇𝐸2,3,4

∼ 0.6, 0.43 and 0.36 ps. Since these
peaks rather consist of a distribution of optical phonon branches, they
cannot be viewed as one-phonon peaks. Thus, the observed lifetimes
(0.66, 0.64 and 0.54 ps [15]), can only be transferred in a lower limit
for the oscillation time of the optical phonons contained in these peaks,
yielding 𝜏𝐸2

≥ 1.1𝑇𝐸2
, 𝜏𝐸3,4

≥ 1.5𝑇𝐸3,4
. The situation in type-I clathrates

s thus different from the strong damping limit applied in disordered
aterials, as the Einstein oscillators store their energies significantly

onger than half a oscillation period.
After an average time equal to the oscillation time, the oscillator can

elease its energy through different channels. The minimum distance
hat this amount of released energy will travel in the material is
asically given by the interatomic distance. Thus, from the oscillation
ime and the smallest distance between two Einstein oscillators, one can
efine a velocity for the diffusive energy propagation, called thermal
elocity [45]. Here, the average interatomic distance can simply be
stimated as 𝓁 =

(

𝑉𝑢𝑐
𝑁

)1∕3
. Note that the notation 𝓁 – earlier used for

the phonon mean free path – is kept as this distance can be understood
as a sort of energy mean free path. The thermal velocity is then given
by:

𝑣𝑖𝐸 = 𝓁
𝛼𝑖𝐸𝑇

𝑖
𝐸

= 1
𝛼
1
𝜋

(

𝑉𝑢𝑐
𝑁

)1∕3 𝑘𝐵𝜃𝐸𝑖

ℏ
(22)

where the same 𝛼𝑖𝐸 = 𝛼 = 1.5 has been assumed for all modes. The
larger 𝛼, the smaller is the thermal velocity and thus the thermal
conductivity. This is due to the fact that the energy rather than being
transferred, is stored in the oscillations of the Einstein phonons (for
large 𝛼 values). In the following, the lower limit of the lattice thermal
conductivity of the optical phonons in intermetallic clathrates will be

estimated for 𝛼 = 1.5. From Eq. (22), the thermal velocity of the
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optical mode at E1 amounts to about 250 m s−1, which is one order
f magnitude smaller than the sound velocity.

Using the above expression of the thermal velocity, the oscillating
ime and in combining it with the density of states and the mode heat
apacity as given in Eq. (4), the thermal conductivity for the continuum
f Einstein oscillators, 𝜅𝐸 (𝑇 ) can finally be expressed as:

𝐸 (𝑇 ) =
𝑛𝐸𝑘𝐵

3𝜋𝛼𝑁2∕3
1
𝑎
𝜔𝑜𝑝 + 𝜔𝑚𝑎𝑥

2
[

2𝑘2𝐵𝑇
2

ℏ2𝜔2
𝑚𝑎𝑥 − ℏ2𝜔2

𝑜𝑝
∫

ℏ𝜔𝑚𝑎𝑥∕𝑘𝐵𝑇

ℏ𝜔𝑜𝑝∕𝑘𝐵𝑇

𝑥3𝑒𝑥

(𝑒𝑥 − 1)2
𝑑𝑥

] (23)

In the high temperature limit defined by k𝐵T ≫ ℏ𝜔𝑚𝑎𝑥 the term in
brackets is equal to 1. Moreover, for the case of a unit cell with a large
number of atoms, as in the type-I clatrathes, Eq. (23) simplifies due to
n𝐸 ∼ 𝑁 (since n𝐷 ≪ n𝐸). The high temperature limit of 𝜅𝐸 is thus:

𝜅𝐸 (𝑇 ≫ 𝜃𝑚𝑎𝑥) ∼
𝑘𝐵
3𝜋𝛼

1
𝓁

𝜔𝑜𝑝 + 𝜔𝑚𝑎𝑥

2
(24)

here 𝓁 = 𝑎
𝑁1∕3 is the interatomic distance defined above and 𝜔𝑜𝑝+𝜔𝑚𝑎𝑥

2
can be viewed as the average Einstein energy of the continuum.

At this point, it is interesting to notice that in order to decrease
𝜅𝐸
𝑚𝑖𝑛, not the lowest lying optical mode but the center of mass of the

continuum is the most important parameter. Hence, for the case of type-
I clathrates and, more generally, for complex materials ℏ𝜔𝑚𝑎𝑥 ≫ ℏ𝜔𝑜𝑝,
nd therefore the expression further simplifies to:

𝐸 (𝑘𝐵𝑇 ≫ ℏ𝜔𝑚𝑎𝑥) ∼
𝑘𝐵
3𝜋𝛼

1
𝓁
𝜔𝑚𝑎𝑥
2

(25)

This indeed clearly shows that the key parameters are the maxi-
um energy of the optical phonon spectrum – mainly dominated by

ibrations of the host lattice – and the number of oscillations 𝛼. The
ependence on the 𝛼 coefficient is also an interesting, pointing out once
ore that the minimum value of the lattice thermal conductivity is ob-

ained for the longest oscillation times of the optical Einstein phonons,
.e. for long storage time before re-emission in the system. However, the
nterpretation of the measured optical phonon lifetime may have to be
econsidered within the context of newly evolving theories in which the
utual coherence effects are taken into consideration [57–59]. Indeed,

he low energy optical spectrum in clathrates contains dense and highly
egenerate modes that can mutually interfere, resulting in excitations
hat are more coherent. Thus, the observed phonon lifetimes might be a
esult of such a mutual coherence. Eq. (25) furthermore shows that the
inimum of the lattice thermal conductivity decreases by increasing

he interatomic distance, i.e. by lowering the particle density of the
aterial.

In the case of Ba7.81Ge40.67Au5.33, with 3n𝐸 = 3 ∗ 56 − 3, 𝜃𝐸1
47.8 K and ℏ𝜔𝑚𝑎𝑥 = 27.3 meV as found from the fit of the heat

apacity, we obtain: 𝜅𝐸
𝑚𝑖𝑛(𝑇 ≫ 𝜃𝑚𝑎𝑥) ∼ 0.11 W m−1 K−1 for 𝛼 = 1.5

nd 0.16 W m−1 K−1 for 𝛼 = 1.

onclusion

Even nowadays, the Deybe model is still widely used to extract
icroscopic information from specific heat and thermal conductivity
easurements. However, typically the origin of this model – simple

ystems with one atom per (cubic) unit cell – is neglected. This in
urn results in applications of the model for situations, which it is not
uited for. This becomes particularly problematic when complex crystal
tructures with many atoms per unit cell and certain particularities in
heir lattice dynamics are described. Structural complexity, as discussed
ith respect to intermetallic clathrates, often implies a phonon spec-

rum that can be divided in two main regimes: the acoustic part, which
ontains well defined propagative Debye like acoustic modes involving
oherent collective motions, and the optical part which contains a
road distribution of dispersion-less Einstein like optical phonons. The
ow energy edge of the optical continuum, determined by ℏ𝜔𝑜𝑝, defines
8

he transition between the Debye and the Einstein regime. This splitting e
f the phonon spectrum is the main effect of the structural complexity
nd is common to any organic or inorganic complex crystals. For such
ases, the classical Debye model fails badly. The reason for this failure
s the limited energy range for acoustic phonon modes which has to
e taken into account. To allow for a proper description of such a
cenario, the capped Debye model has been derived by considering
nly modes below the optic continuum and by, moreover, introducing
𝑛𝐷 (instead of 3𝑁) as the number of Debye-like phonons (acoustic
odes with a dispersive character). This modified Debye is based on a
icroscopically meaningful picture. In combination with a continuum

f Einstein-like optical modes 3(𝑁−𝑛𝐷), it allows for an excellent fitting
f the specific heat, furthermore, yielding microscopic parameters that
orrespond to insights gained from spectroscopic measurements. While
his modified description of the specific heat has been applied for the
ase of clathrates, it is evident that it in principle can be applied to any
ype of material.

With the modified description of the specific heat it is then also
ossible to gain insight in the lattice thermal conductivity of type-I
lathrates. For the case of Ba7.81Ge40.67Au5.33, it was shown that starting
rom the modified Debye model, a microscopically correct description
f the lattice thermal conduction can be achieved. The experimentally
bserved phonon mean free paths of more than 30 nm can only be
econciled with usually applied models for the lattice thermal conduc-
ivity, if a reduction of the acoustic regime and thus a specific heat as
escribed in the capped Debye model is considered. The Einstein part
f the phonon spectrum contains the highest number of phonon modes,
ypically ∼3N (as 𝑁 ≫ 𝑛𝐷), and therefore dominates the heat capacity.
n the other hand, while the number of Debye modes is small, these
odes remain propagative with large mean free paths and consequently

ontribute largely to the lattice thermal conductivity. Thus, as a result
f the structural complexity, the phonon states that dominate the lattice
hermal conductivity and the heat capacity are different. Hence, these
ystems can be viewed as Einstein-like heat capacitors and Debye-like
hermal conductors.

Finally, it has to be emphasized again that the number of Debye
odes is determined by the sound velocity and the energy ℏ𝜔𝑜𝑝,
oreover, being limited to a maximum value of 𝑛𝐷 = 1. Its value

s not only determined by the number of atoms in the unit cell but
lso the chemical composition and the topology of the unit cell. Thus,
aving an infinite number of atoms in the unit cell (𝑁 → ∞) is not
nough to minimize the acoustic (or Debye) part of the lattice thermal
onductivity. In addition, increasing 𝑁 adds the number of modes in
he optical continuum which consequently rises the optical (or Einstein)
ontribution to the lattice thermal conductivity. Hence, an efficient way
o reduce the Debye contribution to the lattice thermal conductivity is
ither to reduce the number of Debye modes (which can be achieved
y decreasing ℏ𝜔𝑜𝑝) or to decrease the acoustic phonon mean free path.
n type-I clathrates, the latter one is still a few orders of magnitude
igher than its minimum value, such that nanostructurating the grain
ize below 100 nm by either sintering bulk powders or the growth
f nano-films, or introducing extended defects are possible options
or bulk materials. On the other hand, the Einstein contribution to
he lattice thermal conductivity can be minimized by lowering the
aximum energy ℏ𝜔𝑚𝑎𝑥 and by increasing the storage time of the mode

nergy, i.e. the average time after which an excited oscillator releases
ts energy. Thus, in type-I clathrates, a further reduction of the lattice
hermal conductivity to about 0.5 W m−1 K−1 (at 300 K), going along
ith an increase in thermoelectric efficiency, seems reasonable.
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