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Abstract

Topology optimization is widely used to design heat exchangers and may involve
different expressions of objective functions to increase heat exchange. This work
proposes a new thermal objective function based on the local orientation of ve-
locity and temperature gradient fields. The latter is then defined as the cosine
of these two vector fields and thus our approach has connections with the field
synergy principle. The cosine objective function is compared with a more clas-
sical one in a multi-objective optimization framework whose resolution is done
with the adjoint method. Our results reveal that the cosine objective function
lead to results that are comparable with those obtained with the classical cost
function and may be used by designers to look for optimized design by taking
into account the synergy of the fields. A study of the field synergy principle
reveals that it is only an accurate indicator of heat exchange in some cases
discussed in this article.

Keywords: Topology optimization, natural convection, objective function,
adjoint sensitivity analysis, field synergy principle

1. Introduction

Thermal systems involving energy transfer and fluid flow are essential com-
ponents in numerous industries such as civil engineering, aeronautics, spatial,
transport, chemicals industry or mechanical industry. These thermal systems
comprise specific components like pumps, compressors, heat exchangers, ducts
and related devices. If a thermal system meets all the requirements and per-
forms as expected during the design process, it can be manufactured efficiently.
However, due to the need for more and more efficient thermal systems, optimiz-
ing the existing systems to find an “optimal” design in terms of some predefined
criteria has become essential. From a physics perspective, the ideas to increase
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the heat exchanged through a domain are [1]: (a) mixing the main flow and
near wall flow; (b) reducing the boundary layer thermal thickness ; (c) gener-
ating vortex or secondary flow ; (d) raising the turbulence intensity. This heat
exchange enhancement often decreases the mechanical performance of the flow
through the domain. These principles have been (and are still) considered and
applied for designing more efficient thermal systems. Over the years, different
computational optimization design techniques have been proposed to optimize
flow and thermal components. Among them, from the world of structural me-
chanics, came parametric optimization, shape optimization, and then topology
optimization. Topology optimization aims to go beyond the designer’s intuition
and provide the shape that best suits the physical goals the designer prescribes.
The resulting design can take any shape or topology from a geometrical point
of view. Topology optimization in fluid mechanics started with [2] and have
been applied to many types of flow as (for extensive reviews, see [3, 4]) steady
laminar flow, unsteady flow, turbulent flow, non-Newtonian fluids, and for dif-
ferent kind of physics as conjugate heat transfer, fluid-structure interaction,
microstructure in porous media. Different modes of heat transfer were studied:
forced convection by [5, 6] and natural convection by [7].

In the field of topology optimization, several objective functions related to
thermal exchanges are used to suit the need of the designer. The thermal per-
formance of a thermal system can be evaluated by considering the following
objective functions: maximize the thermal energy exchange of a fluid system
using the quantities defined at the boundaries [8, 9, 10, 11], maximize recov-
erable thermal power [12], minimize thermal compliance [7, 13, 14, 6], maxi-
mize averaging temperature on the boundary [15], minimize mean temperature
[16, 17, 18, 5, 16], minimize capacity dissipation [15], maximize heat generation
[19, 20], minimize thermal resistance [21], minimize entropy generations [22, 23].

Each of the previous objective functions arises from different quantities de-
rived from different insights of continuum mechanics and thermodynamics. In
order to enhance thermal exchange, the current paper proposes a new objective
function based on local observations of physic fields inside a studied domain.
Based on physical justification, the local angle between the local velocity vector
and the local temperature gradient vector will be used to create an objective
function involving their cosine cos(∠[u,∇θ]) to encourage the whole flow to be
in the same direction as the heat flux. Mathematically, that means the cosine
will be close to 1 in the main flow. This approach can be linked to the field
synergy principle (FSP) proposed by [24], where it is argued that the heat ex-
change in convection is increased when the velocity field of the flow tends to be
in the same direction as the vector field of the temperature gradient. Since the
field synergy is directly measured by the average of the mean angle formed by
the velocity field and the temperature gradient over the domain [25], the con-
structed cosine objective function, which involves the summation of the cosine
cos(∠[u,∇θ]) over the domain, complies with the FSP.
Bejan has criticized the FSP concept in [26], which states that this concept
cannot be useful in a whole flow domain since heat exchanges arise mainly near
heated boundaries. This has been acknowledge by [27], which shows that for
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better results, the field synergy should be evaluated only within the thermal
boundary. The FSP principle also shows some limitations with turbulent flow
[28]. It would therefore be interesting to ask ourselves about the limits of our
objective function and to consider them in the light of the literature on the
subject. Still, the working group of the original authors produced answers, re-
views and explanations [28, 29] citing various applications of this concept on
successful optimization of various thermal devices. The applications studied
with an analysis of the FSP cover multiple domains such as heat exchangers,
fuel cells, porous medium, friction resistance reduction, solar energy receivers,
vortex generator and diesel particulate filter. Most articles use classical opti-
mization techniques, and compare then the field synergy before and after opti-
mization with the conclusion that enhanced thermal performance led to a better
synergy between flow and heat transfer. For example, in [15], thins added to a
latent heat storage device thanks to topology optimization technique led to a
performance gain of 80% and synergy fields (∠[u,∇θ]) tend near 0 to 10 ◦ while
it was near 175◦ before optimization. For finned tube banks heat exchangers,
the articles [30, 31, 32] show that heat transfer performance increase is linked
to the field synergy increase. In [33], the authors showed that optimizing the
performance of a pre-heater in a solar-assisted desalination unit by 23% boosts
the field synergy of 36%. In [34], it is shown that the best heat exchanger design
through double-layered micro-channels with cavities and rib also had a better
field synergy. In the current paper, we influence the synergy field directly by
use of topology optimization problem considering an objective function linked
to the FSP. To the best of our knowledge, this the first attempt to apply the
FSP concept to topology optimization.

The current paper is organized as follows: Section 2 presents the studied
physical problem and its modeling. Section 3 explains the construction of the
cosine objective function. Section 4 demonstrates the derivation of the adjoint
solver and its numerical implementation. Section 5 illustrates the newly defined
objective function on two studied cases of the literature (the single and bend
pipe), a comparison with the classical approach and a confrontation with the
FSP principle. Lastly, Section 6 offers the conclusion.

2. Modelling

The topology optimization method used herein is based on the classical
density approach proposed first for computational fluid mechanics by Borrvall
and Petersson [2]. The working domain is characterized by a scalar field α
(called the design variable) representing the pseudo-permeability of the fluid.
This field penalizes the flow equations thanks to some term hτ (α)u which makes
them similar to a Brinkman-type model of Darcy’s law for flow through a porous
medium [3]. Equations (2)-(3) given below then describe a fluid if hτ (α) is zero
and a solid if hτ (α) is large enough since, in that case, the velocity of the fluid in
these zones is close to zero. The localization of the fluid-solid zones can then be
done thanks to hτ (α) by using α as optimization parameter. The conductivity of
the matter (fluid, solid) is also adjusted via the term kτ . This formalism allows
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studying heat exchange between fluid and solid with a single unified approach,
unlike the classical conjugate heat transfer approach, where different physics are
solved for the solid and flow parts.

The flow considered in this paper is incompressible, Newtonian, laminar and
stable. The physics of the flow is described by the non-dimensional equations
(1),(2),(3),(4) given below with the notation ∇n = n · ∇ :

∇ · u = 0, (1)

(u · ∇)u = −∇p+Re−1∆u− hτ (α)u+Ri θ, (2)

∇ · (uθ) = Re−1Pr−1∇ · (kτ (α)∇θ) , (3)

u = 0, ∇np = 0, θ = 1 on Γ1,

u = 0, ∇np = 0, ∇nθ = 0 on Γ2,

u = uiex, ∇np = 0, θ = 0 on Γi,

∇nu = 0, p = 0, ∇nθ = 0 on Γo.

(4)

The flow enters the domain Ω by the inlet on boundary Γi and goes out by
the outlet Γo. The domain is enclosed partially surrounded by hot walls Γ1

and some adiabatic walls on Γ2, as presented on Figure 2. The non-dimensional
velocity u is defined by u = u⋆

U where U = 1 is related to the inlet velocity. The

non-dimensional pressure p is defined as p = p⋆

0.5ρU2 where ρ is the volumic mass
of the fluid. The fields u⋆ and p⋆ are the dimensioned velocity and pressure
fields. The non-dimensional temperature θ is defined as θ = T−Tref

Twall−Tref
where

T is the dimensioned temperature field, Twall is the temperature imposed on
the heated boundary Γ1 and Tref is a reference temperature. Note that the
non-dimensional temperature on the hot wall is thus θwall = 1.

In the above system, we have some non-dimensional numbers that are de-
fined below. The Reynolds number is Re = UL

ν where ν is the kinematic vis-

cosity of the fluid. The Richardson number is Ri = Grb
Re2

and represents the
balance between gravitational energy and the flow’s kinetic energy. The modi-

fied Grashof Grb =
gβ∆TL3

ν2 , where ∆T = Twall−Tref represents the flow balance
of the magnitude of buoyancy force towards the magnitude of the viscous force.
The Prandtl number Pr = ν

k is the ratio between the momentum and thermal
diffusivities.

2.1. Interpolation functions

Note that hτ (α) ideally take only binary values hτ (α) ∈ {0,+∞} where
hτ (α) = 0 indicates the fluid zones and hτ (α) = +∞ the solid zones. Since such
constraint can be hardly used in an optimization algorithm, the latter is relaxed
first by considering 0 ≤ α ≤ αmax for large enough αmax and next with so-called
interpolation function that are smooth regularization of step-like functions.
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Figure 1: Orientation of heat flux field (red arrow) towards velocity field (blue arrows).The
dashed lines represent iso-thermal of hot (red dashed-line) and cold temperature. (yellow
dashed-line). — Left: Fields are collinear, heat is well convected. — Right: There is an angle
between field, heat is less convected to the right of the domain.

Since the pseudo-inverse permeability α is a scalar field where α ∈ [0, αmax],
using it directly to penalize the physical equations may lead to some parts of
the domain Ω where the physical matter has an intermediate physical behavior
between solid and fluid. This may lead to optimization results that are not
physical. To overcome this issue, several penalization techniques are used in
the literature. One common approach is the RAMP function [2, 7, 8],but the
approach used herein is the one proposed by Ramalingom et al. [9] with some
sigmoid function which shows smaller transitions area between the fluid and solid
behavior than the RAMP approach. Some comparisons between the RAMP and
sigmoid interpolation functions have been done in [12] and it has been shown
that any choice give similar results.

The pseudo-inverse permeability can be then interpolated with the expres-
sion (5) where α0 and τ are, respectively, the pseudo inverse permeability thresh-
old and the slope of the sigmoid function, and αmax is the maximum value that
can be taken by the design parameter α. The thermal diffusivity is interpolated
with the sigmoid function (6) where kf and ks are, respectively, the fluid and
the solid thermal diffusivities.

hτ (α) = αmax

(
1

1 + e−τ(α−α0)
− 1

1 + eτα0

)
, (5)

kτ (α) =

(
ks
kf
− 1

)(
1

1 + e−τ(α−α0)
− 1

1 + eτα0

)
+ 1. (6)

It is worth noting that lim
α→0

hτ (α) = 0, lim
α→0

kτ (α) = 1, lim
α→αmax

hτ (α) = αmax

and lim
α→αmax

kτ (α) =
ks

kf
.

3. Definition of the cosine cost function

The objective function we propose is closely related to the inner orientation
within the domain of the velocity and the heat flux fields. As it is pictured on
the left part of Figure 1, if the velocity field is collinear towards the heat flux, it
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can be assumed that the heat is well convected towards the velocity direction.
The right part of Figure 1 represents a heat flux vector field that is not collinear
to the velocity field. The heat will be less effectively convected towards the
direction of the velocity field than in the first case. The angle between these
two vector fields is directly linked to the definition of cosine. Hence, it can
be natural to define an objective function based on the cosine field between
the velocity and heat flux. The idea is that obtaining a cosine of 1 (collinear
vectors) leads to better heat transfer than other values. Therefore, it should be
interesting to maximize the following cost function:

Jcos(u, θ) =
∫
U

(
u · ∇θ
∥u∥ ∥∇θ∥

)
dΩ, (7)

where the fraction in the integral is the cosine between the two vector fields u
and ∇θ. This angle is commonly called β in the FSP framework. In its critique
of the FSP, Bejan stated in [26] :
”The angle β is not a degree of freedom, a knob to be turned by the designer.
There is an infinity of angles β distributed throughout the flow field, and each
β depends on its neighbors (β is a field). The distribution of β is one, and it is
fixed, just like the distribution of T and (u, v) in the specified flow configuration.”
This paper fairly tries to influence the flow field and heat exchange performances
by having an objective function based actually on the β field in order to try ”to
turn down the knob”.

To go further the above considerations, it can be shown that our approach
is related to the classical cost function that aims at maximizing thermal power

J2(u, θ) =
∫
∂Ω

u · n θ dΓ. (8)

Such functional that involves the values of physical quantities at the inlet and
outlet of the system are going to be referred as global cost function. Local cost
functions are then going to be functions defined on the whole computational
domain Ω. The idea behind local cost function is to use cost functions to define
correlations between local flow parameters and their global impact.

Using Green’s formula and the incompressibility condition, one gets

J2(u, θ) =
∫
Ω

∇ · (uθ) dΩ =

∫
Ω

u · ∇θ dΩ.

From Cauchy-Schwarz inequality, we have

−∥u∥ ∥∇θ∥ ≤ u · ∇θ ≤ ∥u∥ ∥∇θ∥ ,

and thus the maximal values of the function x ∈ Ω 7→ u(x) · ∇θ(x) are reached
as soon as u · ∇θ = ∥u∥ ∥∇θ∥. From the definition of the scalar product, this
translates to

cos(∠[u,∇θ]) = u · ∇θ
∥u∥ ∥∇θ∥ = 1,
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which indicates that the vector fields x ∈ Ω 7→ u(x) and x ∈ Ω 7→ ∇θ(x) are
collinear pointing in the same direction.

To highlight further the effect of the angle between u and ∇θ on heat trans-
fer, we now estimate the heat flow across some surface ∂U where U is a sub-
set of Ω. We then consider two sets of velocity fields/temperatures u1, θ1 and
u2, θ2 such that both velocities, respectively gradient of temperature, have same
length but the angle between them is varying (see e.g. what is shown in Figure
1). Hence:

∀x ∈ U : ∥u1(x)∥ = ∥u2(x)∥ , ∥∇θ1(x)∥ = ∥∇θ2(x)∥ ,
cos(∠[u1(x),∇θ1(x)]) < cos(∠[u2(x),∇θ2(x)]).

Integrating the energy equation (3) over U and using Green’s formula give∫
∂U

Re−1Pr−1kτ (α)∇θ · ns dΓ =

∫
U
∥u∥ ∥∇θ∥ cos(∠[u,∇θ]) dx,

where ns is the outward unitary normal to ∂U . Introducing the heat flux density
j(θ) = kτ (α)∇θ · ns and using the previous computation, we obtain

Φ(θ,u) =

∫
∂U
j(θ) · ns dΓ = RePr

∫
U
∥u∥ ∥∇θ∥ cos(∠[u,∇θ]) dx, (9)

where Φ(θ,u) is the heat flow. From (9), it follows that the heat flows associated
to (u1,∇θ1) and (u2,∇θ2) verify

Φ(θ1,u1) < Φ(θ2,u2).

From this inequality, we see that for velocity and gradient of temperature with
same length, the heat flow increases with the decreases of the angle between u
and ∇θ, namely with the increases of the value of cos(∠[u,∇θ]) (see also [25,
Eq. (4)] for a similar conclusion). Therefore, it is expected that maximizing
cos(∠[u,∇θ]) will increase the heat flux which motivates using Jcos as cost
function.

Remark 1. Similarly, if we consider velocity ui and temperature gradients ∇θi
having same angle but different norms, namely satisfying

∀x ∈ U : ∥u1(x)∥ ∥∇θ1(x)∥ ≤ ∥u2(x)∥ ∥∇θ2(x)∥ ,
0 < cos(∠[u1(x),∇θ1(x)]) = cos(∠[u2(x),∇θ2(x)]).

In that case, one can see from (9), we get

Φ(θ1,u1) < Φ(θ2,u2).

As a result, the heat flux can also be increased by increasing the norm of the
velocity field and the temperature gradient. Nevertheless, as indicated in the
introduction, since the field synergy angle is widely used in the literature [28, 29],
we are going to use the cosine as cost function in our topology optimization
problem defined in the next section (see (11)).

7



To end, this section, we emphasize that in the solid zones of the computa-
tional domain, the velocity is penalized so that we have u ≈ 0. This could yield
indeterminate values (e.g. 0/0) in the cosine cost function (7). To avoid such
behavior, we will consider the following modification of the cosine cost function

Jcos(u, θ) =
∫
U

(
u · ∇θ

∥u∥ ∥∇θ∥+ s

)
dΩ, (10)

where a small scalar s fixed to 10−6 has been added to the denominator to
regularize the function near zero. The function is then zero when the velocity
or heat flux magnitudes are zero.

4. Adjoint-based solver for the topology optimization problem

We now want to minimize the following multi-objective functional :

min J (u, p, θ) = c1 J1(u, p, θ)− c2 J2(u, p, θ)− c3 Jcos(u, p, θ),

where (u, p, θ) are subject to (1, 2, 3), (4),
(11)

where the first cost function J1 aims at minimizing pressure losses and is defined
by

J1(u, p) = −
∫
∂Ω

u · n
(
p+

1

2
∥u∥2

)
dΓ. (12)

The cost function J2 is defined by (8) and will be maximised. We emphasize
that J2 is a classical objective function used in the literature, aiming to improve
the thermal power gain through the domain. The constants c1, c2 and c3 are
the so-called weigh factors of the objective functions in the framework of multi-
objective optimization. Since J2 and Jcos objective functions are meant to be
maximized, it is equivalent to minimize their opposite. This explains the minus
sign facing these objective functions in (11).

We solve the topology optimization problem (11) with a gradient-descent
algorithm. The gradient of the cost function with respect to the design variable
α is computed with the continuous adjoint method (see e.g. [35]). The adjoint
system is defined as the critical point of the following Lagrangian with respect
to the so-called primal variables (u, p, θ)

L (u, θ, p,u∗, θ∗, p∗, α) = J (u, θ, p)

+

∫
Ω

p∗∇ · u dΩ

+

∫
Ω

u∗ [(u · ∇)u+∇p−A∆u+ hτ (α)u−Bθey] dΩ

+

∫
Ω

θ∗ [∇ · (uθ)−∇ · (Ckτ (α)∇θ)] dΩ,

(13)
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where (u∗, p∗, θ∗) are the adjoint variables. In the sequel, we first compute
the derivative of J with respect to (u, p, θ) and give next the adjoint problem.
We end this section with the algorithm used to solve the topology optimization
problem (11) involving the local cost function.

4.1. Derivatives of the cost functions

For any function F : X → R where X is a normed space, the Gateaux
(directional) derivative is defined as

∂F

∂x
[δx] = lim

t→0

F (x+ t δx)− F (x)

t
.

Assuming also that X is a Hilbert space equipped with an inner product (·, ·)X,
we can define the gradient of F , denoted here by ∂F

∂x thanks to the identification

∂F

∂x
[δx] =

(
∂F

∂x
, δx

)
X

.

Below, we will identify gradients of the functionals using the L2-inner product

(u,v) :=

∫
Ω

u · v dΩ,

which is defined accordingly for scalar valued functions.
For the cost function considered in this paper, we have

∂J
∂(u, p, θ)

[δu, δp, δθ] = c1
∂J1

∂(u, p, θ)
[δu, δp, δθ]− c2

∂J2
∂(u, p, θ)

[δu, δp, δθ]

− c3
∂Jcos

∂(u, p, θ)
[δu, δp, δθ],

and we now compute each term. For the pressure losses functional, we have

∂J1
∂(u, p, θ)

[δu, δp, δθ] = −
∫
Γ

u · n δp dΓ−
∫
Γ

(ptn+ (u · n)u) · δu dΓ,

where pt = p+∥u∥2 /2 is the total pressure. For the thermal power cost function,
one has

∂J2
∂(u, p, θ)

[δu, δp, δθ] =

∫
Γ

u · n δθ dΓ +

∫
Γ

θ n · δu dΓ.

Before computing the derivative of the proposed local cost function, we recall
that the derivative of the Euclidean norm N : x ∈ RN 7→ ∥x∥ ∈ R is

∂N

∂x
[δx] =

x

∥x∥ · δx.
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Using this, the derivative of the local (cosine) cost function is

∂Jcos
∂(u, p, θ)

[δu, δp, δθ] =
∂Jcos
∂u

[δu] +
∂Jcos
∂θ

[δθ]

=

∫
Ω

δu · 1

(∥u∥ ∥∇θ∥+ s)
2

[
∇θ (∥u∥ ∥∇θ∥+ s)− (u · ∇θ) u

∥u∥ ∥∇θ∥
]

dΩ

+

∫
Ω

∇δθ · 1

(∥u∥ ∥∇θ∥+ s)
2

[
u (∥u∥ ∥∇θ∥+ s)− (u · ∇θ) ∇θ∥∇θ∥ ∥u∥

]
dΩ

=

∫
Ω

δu · (ψ(u, θ)) dΩ +

∫
Γ

δθ ϕ(u, θ) · n dΓ−
∫
Ω

δθ∇ · (ϕ(u, θ)) dΩ,

where

ψ(u, θ) =
1

(∥u∥ ∥∇θ∥+ s)
2

[
∇θ (∥u∥ ∥∇θ∥+ s)− (u · ∇θ) u

∥u∥ ∥∇θ∥
]
,

ϕ(u, θ) =
1

(∥u∥ ∥∇θ∥+ s)
2

[
u (∥u∥ ∥∇θ∥+ s)− (u · ∇θ) ∇θ∥∇θ∥ ∥u∥

]
.

Using the previous computations, the derivatives of the cost function J can be
written as

∂J
∂(u, p, θ)

[δu, δp, δθ] =

∫
Ω

∂JΩ
∂(u, p, θ)

[δu, δp, δθ] dΩ+

∫
Γ

∂JΓ
∂(u, p, θ)

[δu, δp, δθ] dΓ,

with

∂JΓ
∂u

[δu] = c3

∫
Ω

δu ·ψ(u, θ) dΩ,

∂JΓ
∂θ

[δθ] = −c3
∫
Ω

δθ∇ · (ϕ(u, θ)) dΩ,

∂JΓ
∂p

[δp] = 0,

and:

∂JΩ
∂u

[δu] = −c1
∫
Γ

(ptn+ (u · n)u) · δu dΓ + c2

∫
Γ

θ n · δu dΓ,

∂JΩ
∂θ

[δθ] = +c2

∫
Γ

u · n δθ dΓ + c3

∫
Γ

ϕ(u, θ) · n δθ dΓ,

∂JΩ
∂p

[δp] = −c1
∫
Γ

u · n δp dΓ.

4.2. Adjoint equations

The continuous adjoint system is defined as the critical points of the La-
grangian, defined in (13), with respect to the primal variables (u, θ, p). The
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latter has already been computed for instance in [9] and reads as

∇ · u∗ =
∂JΩ
∂p

,

Re−1∆u∗ + (u · ∇)u∗ + (∇u∗)
T · u+∇p∗ + θ∇θ∗ − hτ (α)u

∗ =
∂JΩ
∂u

,

u · ∇θ∗ +Re−1Pr−1∇ · (k (α)∇θ∗) = ∂JΩ
∂θ

,

(14)
supplemented with the following boundary conditions on Γ1 and Γi:

on Γ1 ∪ Γi : −u∗ · n = ∂J
∂p , −Re

−1u∗ · t = ∂J
∂u · t, Ri kτ (α)θ

∗ = ∂J
∂θ

on Γ2 : −u∗ · n = ∂J
∂p , −Re

−1u∗ · t = ∂J
∂u · t,

−Rikτ (α)∇nθ
∗ − (u · n)θ∗ = ∂J

∂θ ,

on Γo : −Re−1∇nu
∗ − (u · n)u∗ − np∗ − nθθ∗ = ∂J

∂u ,
−Rikτ (α)∇nθ

∗ − (u · n)θ∗ = ∂J
∂θ .

(15)

The full adjoint system is therefore given by (14),(15).

4.3. Algorithm to update conception variable

Given some design variable αk, the sensibility ∇Jk :=
∂J
∂α

(αk) is defined

with the following equation:

∇Jk =
∂J
∂α

(α) = −∂hτ

∂α
u · u∗ − Ri

∂kτ

∂α
∇θ · ∇θ∗ on Ω. (16)

Once the adjoint set of equation is solved and the sensibility is computed, the
design field αk is then updated across the k-th update step with the gradient
method using

αk+1 = αk + λkdk, (17)

where dk is the descent direction and λk the step which will be constant. The
design variables are evaluated by using the conjugated-gradient descent direction
method associated to Polack-Ribiere method. The descent direction dk+1 is
given by :

dk+1 = ∇Jk+1 + βk+1dk

where :

βPR
k+1 =

∇J T
k+1 (∇Jk+1 −∇Jk)
∇J T

k ∇Jk
.

The implementation follows the Algorithm 1. The systems of equations have
been solved with the finite volume library OpenFoam [36]. The algorithm fol-
lows the SIMPLE algorithm philosophy. The primal equations (1) to (4) and
adjoint equations (14),(15) are solved, the sensitivity is computed with equa-
tion (16) and the design field α is updated with equation (17). The generalized
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Algorithm 1 Optimization algorithm

1: initialization of constant Re, Ri, Pr, α0, τ0, s
2: evaluation of cost function J0
3: while ϵ ≥ 0.01 over 1000 iterations do
4: solve primal equation (2) to (4) with a SIMPLE algorithm loop.
5: solve adjoint equations (14), (15) with a SIMPLE algorithm loop.
6: update sensitivity according to (16)
7: update design field α with (17), along with hτ (α), kτ (α)

8: evaluation of Jk ; ϵ← Jk
Jk−1

9: Jk−1 ← Jk
10: k ← k + 1
11: end while

Geometric-Algebraic Multi-Grid (GAMG) solver with a cell-centered colocal-
ized finite volume approach is used. First order numerical schemes are used to
discretize the convective terms. The optimization process is stopped when the
evaluation of function remains stable at 1% over 1000 iterations of the optimiza-
tion process. The current algorithm has been used in [9, 12] and will be used
to get all our numerical results.

5. Numerical results

In this section, we present first the result of the CFD analysis without op-
timization on two geometries (single pipe and bend pipe). After that, the op-
timized results considering the classical multi-optimization approach (J1,J2),
denominated by SP1 for the single pipe and BP1 for the bend pipe, will be
quantitatively and qualitatively compared to the approach proposed by this pa-
per, namely using cost functions (J1,Jcos) in a multi-objective optimization
framework for the single pipe and the bend pipe (denominated SP2 and BP2).
It will be demonstrated that the results are very similar. The FSP principle will
be finally confronted with the thermal power gain.

Figure 2 represents the studied geometries, their design domain Ω and their
boundaries for the single pipe and the bend pipe. These configurations are
some common shapes studied in the literature [9, 8, 37] to develop some new
approaches to topology optimization. Both geometries are squares of side L,
regularly meshed with 40,000 cuboid cells. The single pipe is a straightforward
symmetrical geometry with hot walls on the top and lower walls. The inlet is
located on the middle of the left wall, and the outlet on the middle of the right
wall. The bend pipe has its inlet on the upper part of the left wall and its outlet
on the left of the bottom wall, forcing the flow to curve its trajectory through
the domain. The hot wall is on the left part of the lower wall. The inlet and
outlet sizes for both geometries are L

5 . The hot walls have a fixed temperature,
and the other walls are adiabatic. For the two representative cases studied in
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Figure 2: Right: Single pipe geometry. Left: Bend pipe geometry.

this section, the thermal diffusivity ratio used in the energy equation (3) with
(6) is fixed to

ks
kf

= 4.4,

representing, for example, aluminum for the solid and air for the fluid. For the
sigmoid interpolation factor in (5) and (6), we set

α0 = 20, τ = 0.7 and αmax = 200.

Prandtl number is set to Pr = 0.71. The Reynolds and Richardson numbers
that are investigated in this paper are

Re = 100, 200, 400, Ri = 0, 0.3, 3.

Finally, the inlet non-dimensional velocity is set to uiex with ui = 1.

5.1. Results for the single pipe without optimization

Figure 3 shows the ∥u∥, θ, ∥∇θ∥ and cos(∠[u,∇θ]) fields without optimiza-
tion for the single pipe with Re=200 and Ri=0.3. The flow is straightforwardly
directed from left to right, with some slight recirculation areas appearing out-
side the central part of the flow. The temperature field from the hot walls is
diffused through the domain and is then convected by the flow through the out-
let. The heat flux is pronounced near the interfaces of the main flow path. The
Figure 3-(d) illustrates the cosine field, which is the integrant of the objective
function Jcos we experiment with in this article. Maximizing Jcos will increase
the average value of this field to a value closer to one. With the exception of the
area of the outlet, it displays that the main flow shows positive cosine values
(shade of red color on the figure) and is outlined by a negative cosine field (blue
color). Areas with a zero cosine are in white. We clearly see a horizontal line
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with cos(∠[u,∇θ]) ≈ 1 which reveals a huge synergy. According to the FSP
principle, this huge synergy should lead to a local high contribution of the flow
to heat transfer. However, it can be seen on the Figure 3-(c) that the magnitude
of the heat flux on this line is near zero. This observation is clearly the critic of
Bejan in [26].

It is worth mentioning that the fields are not strictly symmetric because
of the Richardson number and gravity, which apply a force over the vertical
direction.

5.2. Results for the bend pipe without optimization

Figure 4 presents the fields for the bend pipe with Re=200 and Ri=0. The
Figure 4-(d) shows the cosine field. As for the single pipe, the main part of the
flow leads to a positive cosine. On the lower left part of the domain where a
recirculating flow appears, the cosine alternatively takes positive and negative
values. The upper part of the flow contour shows an area with cos(∠[u,∇θ]) ≈ 1
while the heat flux shown on 4-(c) has minimal values near this area. This reveals
some limitations of the FSP in areas distant from where local heat exchanges
are low, as stated previously for the single pipe.

5.3. Comparison of Local VS global approaches: Selected cases

The shapes and flow obtained with optimization using local approaches are
qualitatively comparable with the ones in [37, 9] and bring new designs of topol-
ogy optimization for the single and bend pipe cases. Among all the investigated
configurations tested for each set of Reynolds and Richardson numbers, and
geometries, the representative cases for Re = 200 and Ri = 0.3, denoted as SP1,
SP2, BP1 and BP2 whose parameters are shown in Table 1 will be presented.
These couples have been chosen to have nearly the same performance as it will
be outlined.

First of all, one can see that our algorithm succeeds in minimizing/maximizing
one or other cost functions for each investigated geometry. Table 1 gives J
values before and after optimization. We observe that the objective function
decreases up to a factor 6.0 in the bend pipe, for example, and up to a factor 7.6
in the single pipe. So, our algorithm converges to an optimized solution for these
studied cases. The Figure 5 presents the fields resulting from the multi-objective
optimization of (J1,J2) for the single pipe case SP1 in a configuration where
the heat exchange is favored over the mechanical power. The optimized shape
leads the flow to be split through the upper and lower part of the domain near
the heating wall to gain heat and convect it through the outlet. This example
outlines that our optimization process is doing its purpose since the more the
fluid travels near the hot wall, the more it will gain heat and transfer it through
the domain.

Figure 6 displays the optimized single pipe for the case SP2. The hτ (α)
shows roughly the same shape as the case SP1 shown on Figure 5 except that
some solid is put in a part of the outlet. The solid in the middle of the domain
also shows some fluid within the solid, meaning that fluid is trapped inside
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(a) velocity field (b) temperature field

(c) heat flux field (d) cosine field

Figure 3: Field of the single pipe – no optimization – Re = 200 and Ri = 0.3

Name Geometry c1 c2 c3 J0 Jopt Ropt

SP1 Single pipe 0.016 0.984 0. -0.0063 -0.0224 3.5
SP2 Single pipe 1. 0 1.9 -0.0078 -0.0591 7.6
BP1 Bend pipe 0.01 0.99 0. -0.0024 -0.0062 2.6
BP2 Bend pipe 1. 0 9.6 -0.0895 -0.5380 6.0

Table 1: Abbreviation used for several cases in the present paper, for Re = 200 and Ri=0.3.
J0 is the cost function evaluated without optimization. Jopt is the value of the cost function
with optimization. Ropt is the ratio of improvement of the objective function.
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(a) velocity field (b) temperature field

(c) heat flux field (d) cosine field

Figure 4: Field of the bend pipe – no optimization – Re = 200 and Ri = 0.3
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(a) hτ (α) (b) ∥u∥

(c) θ (d) cos(∠[u,∇θ])

Figure 5: Fields for the single pipe case SP1 – Optimization of (J1,J2)
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(a) hτ (α) (b) ∥u∥

(c) θ (d) cos(∠[u,∇θ])

Figure 6: Fields for the single pipe case SP2 – Optimization of (J1,Jcos)
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(a) hτ (α) (b) ∥u∥

(c) θ (d) cos(∠[u,∇θ])

Figure 7: Fields for the bend pipe BP1 – Optimization of (J1,J2)
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(a) hτ (α) (b) ∥u∥

(c) θ (d) cos(∠[u,∇θ])

Figure 8: Fields for the bend pipe BP2 – Optimization of (J1,Jcos)
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the solid region. This phenomenon is a known drawback of the density-based
topology optimization approaches and may appear with multi-physics problems
[3].

For the single pipe cases SP1 and SP2, even if the shape differs a little,
the plot of the magnitude of the velocity shows that in both cases, the flow
is split in two by a solid internal shape, with comparable velocity amplitude.
One part of the flux is directed toward the heating wall to gain heat, while
the other goes more straightforwardly to the outlet. We can see on the hτ (α)
field for (J1,Jcos) (case SP2) that even if the solid part is less closed than the
one with the classical approach (case SP1), the flow is well canalized as it can
be seen on the magnitude of the velocity figures. Looking at the cos(∠[u,∇θ])
field, we can see that the case SP2 shows less negative cosine (blue area) than
the SP1 case. This was attended since, in the SP2 case, the objective function
involves the maximization of Jcos, which tend to increase the mean values of the
cos(∠[u,∇θ]) field. It can be concluded that even if the density field hτ (α) may
look different, nearly the same velocity and temperature fields are obtained for
both cases. This correspondence qualitatively confirms that the cosine objective
function Jcos is closed to the classical J2 objective function in this case.

Figures 7 and 8 display the optimized bend pipe cases, BP1 and BP2. For
both cases, the optimized shape presents a huge solid in most of the middle to
right part of the domain. This shape makes the flow be pushed through the
hot wall in order to gain heat that will be convected to the outlet, leading to
increased heat exchanges. For BP2 the temperature field hτ (α) shows a shape
of bulbs near the outlet. This make the temperature field spread a little more
away from the hot wall. The amplitude of velocity and the velocity field are
comparable even if a ”leak” occurs inside the upper middle part of the solid BP2
shape. For the BP2 case with the optimization of (J1,Jcos), as for the case SP2,
the solid area is less continuously defined as it is the case for the use of (J1,J2).
As for the single pipe SP1 and SP2, and for the same reason, the cosine field for
BP2 shows nearly only positive values (in red on the figure) when more negative
values are present for BP1. Nevertheless, from a qualitative point of view, both
cases BP1 and BP2 are considered very similar.

The thermal power gain in each couple of cases is comparable from a quanti-
tative point of view. Table 2 shows the values obtained for each case. Comparing
SP1 and SP2, the mechanical power loss is lower by 0.5% for SP2, and the ther-
mal power gain is nearly the same, close to 0.06%. Between BP1 and BP2, the
mechanical power loss is lower by 5.% for BP2, and the thermal power gain is
nearly the same, close to 0.006%. Meaning that BP2 shows better mechanical
performance for the same heat exchanged. Note that these points have been
voluntarily chosen to be close in performance. A panorama of all the tested
configurations will be presented in the following subsection.

5.4. Local VS global approaches: Pareto fronts

Since we wish to study the effect of the optimization of the local cost function
on the heat transfer, we are going to consider the following multi-objective cases
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Case Mechanical power loss Thermal power gain

SP1 0.1592 0.02537
SP2 0.1584 0.02549
BP1 0.1724 0.00795
BP2 0.1649 0.00796

Table 2: Numerical values obtained after for different optimized cases

in the frame of optimization problem (11):

c1 ∈ [0, 1], c2 ∈ [0, 1], c3 = 0 for J = c1J1 − c2J2 (classical approach)

c1 = 1, c2 = 0, c3 ∈ [0, 50] for J = c1J1 − c3Jcos (local approach)

Several weight factors c1, c2 and c3 for each objective have been chosen in
order to sweep the space between favoring the flow (12) or enhancing thermal
exchange ((8) or (10)). This will allow next to present each performance on a
Pareto front where it has been chosen to plot the performance of each numerical
experiment regarding thermal power gain and mechanical power loss.

In order to represents the whole set of weights factor of each couple of
Reynolds and Richardson, Pareto front showing the performance of each case
has been computed. The Pareto front including the cases SP1 and SP2 for the
single pipe is shown on Figure 9 while the one including BP1 and BP2 is shown
on Figure 10 for the bend pipe. The couple SP1, SP2 and BP1, BP2 are each
time presented with cross marker instead of circle markers. As stated above,
they are nearly superposed because they were chosen to give the same perfor-
mance. The abscissa is the mechanical power loss between the inlet and the
outlet. This power loss corresponds to the objective function J1 defined in (12).
The ordinate represents the thermal power gain between the inlet and outlet,
corresponding to the objective function J2 defined in (8). For each Pareto front,
the unreachable point corresponding to the best performance of thermal power
gain and power loss of the considering set of results of all cases for a geome-
try, Reynolds and Richardson are shown as the ”Utopia” point. Proposition :
The ”Utopia” point is defined for each Pareto front as the unreachable point
corresponding to the best performance of thermal power gain and power loss,
among obtained results for a given geometry, Reynolds numbers and Richardson
numbers. The blue, yellow and gray point represent the performance of the ob-
jective function J1, J2 and Jcos optimized alone. The purple point presents the
performance without optimization. The green points represent the performance
for each tested couple of (c1, c3) for (J1,Jcos) while the red points represent the
performance for each tested couple of (c1, c2) for (J1,J2). The points indicating
the most important performance are linked by a blue dashed line representing
the Pareto front.

For the single pipe, Figure 9 highlights that in the tested range of weighting
factor, the (J1,J2) and (J1,Jcos) points are mostly superposed with sometimes
(J1,Jcos) dominating the Pareto front when sometimes (J1,J2) dominating
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the Pareto front. It should be noted that when approaching the mechanical
power loss of J2 alone (yellow point), the limits of the current methodology
is reached since the domain are mostly all filled with solid and the solids show
many leaks with no clear path of the flow from the inlet to the outlet. Although,
the objective functions are still minimized. For the bend pipe, the Pareto front
Figure 9 shows that most of the time, the (J1,J2) points dominate the other
point except in an area where mechanical power loss ranges from 0.1 to 0.2
where (J1,Jcos) lead to better performance.

This comforts the previous assertion that the Jcos objective function leads to
optimized results which may be comparable to those obtained with the classic
approach, meaning that a designer could consider this multi-objective optimiza-
tion of thermal power gain and mechanical power reduction by also taking into
account the fields synergy principle.
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Figure 9: Pareto front for the single pipe – Re = 200 and Ri = 0.3
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Figure 10: Pareto front for the bend pipe – Re = 200 and Ri = 0.3

5.5. Thermal power gain VS field synergy angle

The field synergy principle will be now confronted to the thermal power gain.
To achieve this, we rely on the mean field synergy angle which is defined in e.g.
[25] by:

1

Vtot

∑
i

Vi arccos

(
ui · ∇θi
∥ui∥ ∥∇θi∥

)
,

Figures 11 and 12 depict the mean synergy angle versus the thermal power
gain for the cases represented on the Pareto front from Figures 9 and 10. Two
statements can be made from these plots.
First, even optimizing (J1,J2) (reds points) increases the synergy field, it can
be established that the mean synergy angle tends to decrease when the thermal
power gain increases for those red points.
Secondly, a better field synergy doesn’t automatically lead to a better heat
transfer. Some green points over these plots show better synergy than some
other points but with less heat exchanged. For example, for the single pipe we
can see that the SP2 (green cross) has a mean synergy of 80% while SP1 (red
cross) has a mean synergy field of 55% although both cases has nearly the same
thermal power gain (see Table 2). This confirms the critic of Bejan [26] that a
good synergy field doesn’t automatically link to good heat transfer.

Even if these results are not presented, the same conclusion can be estab-
lished for the other tested couple of Reynolds and Richardson numbers.
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Figure 11: Mean synergy versus thermal power gain for the single pipe – Re=200 Ri=0.3
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Figure 12: Mean synergy versus thermal power gain for the bend pipe – Re=200 Ri=0.3
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6. Conclusions and perspectives

This paper used a topology optimization method for Newtonian laminar
flow involving heat transfer. A new objective function involving the local angle
between the velocity field and the temperature gradient has been proposed.
This approach connects with the so-called field synergy principle (FSP). This
objective function is tested along and compared with more classical ones in a
multi-objective optimization process based on an adjoint solver. The single pipe
and bend pipe configurations are studied with several Reynolds and Richardson
numbers. The performance of the cosine objective function has been compared
with the classical thermal power objective function with the use of Pareto front.
The field synergy principle has been analyzed by comparing the mean field
synergy angle to the thermal power gain between the inlet and outlet of the
geometry.

The research findings of the present paper can be summarized as follows:

1. The proposed cosine objective function enhances the thermal transfer.

2. Compared to the classical approach, the cosine objective function leads to
comparable performance. Sometimes, better performances are shown for
the studied cases.

3. Improvement of the field synergy principle generally leads to better heat
transfers.

4. High field synergy sometimes leads to less heat transfer than low field
synergy, meaning that the field synergy principle is not always the best
indicator of heat exchange through a domain.

Since a criticism of the FSP principle is that this principle is more advanta-
geous near the heat exchange interfaces, further studies should design a cosine
objective function involving only areas with some high gradient temperature
to see if this could lead to a further increase of the heat exchange through a
domain.
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