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Impact of learning effect modeling in flowshop scheduling with 
makespan minimization based on the Nawaz-Enscore-Ham algorithm. 

Inspired by real-life applications, mainly in hand-intensive manufacturing, the 
incorporation of learning effects into scheduling problems has garnered attention 
in recent years. This paper deals with the flowshop scheduling problem with a 
learning effect, when minimizing the makespan. Four approaches to model the 
learning effect, well-known in the literature, are considered. Mathematical models 
are providing for each case. A solver allows us to find the optimal solution in small 
problem instances, while a Simulated Annealing algorithm is proposed to deal with 
large problem instances. In the latter, the initial solution is obtained using the well-
known Nawaz-Enscore-Ham algorithm, and two local search operators are 
evaluated. Computational experiments are carried out using benchmark datasets 
from the literature. The Simulated Annealing algorithm shows a better result for 
learning approaches with fast learning effects as compared to slow learning effects. 
Finally, for industrial decision makers, some insights about how the learning effect 
model might affect the makespan minimization flowshop scheduling problem are 
presented. 

Keywords: scheduling, flowshop, learning effect, simulated annealing, 
metaheuristic 

1 Introduction 

Human workers are still an essential resource in manufacturing systems and 
assembly lines, particularly in developing countries, where production systems are 
largely manual and factories are often perceived as a source of employment (Baudin 
2002). As industrial automation technologies have limited flexibility (Kadir, Broberg and 
Da Conceicao 2019), complex tasks do still require certain skills typical of human beings 
(e.g., precision, intelligence, analysis and logic) (Sánchez-Herrera, Montoya-Torres and 
Solano-Charris 2019). People are inherently more flexible than machines (Daniels, 
Mazzola and Shi 2004; Hashemi-Petrood et al. 2020) and have been involved in 
production systems implicitly or explicitly since the appearance of the latter (Dessouky, 
Moray and Kijowski 1995).  

Some examples of hand-intensive systems in industry are the luxury industry, 
artisan production, manual palletizing and un-palletizing (Calzavara et al. 2019), manual 
feeding of materials to assembly, and order picking (Vijayakumar et al. 2022; Katiraee et 
al. 2022; Calzavara et al. 2019). The last two are perhaps the ones that have received the 
most attention recently. Manual assembly lines have been designed to produce a variety 
of product variants (Bortolini et al. 2016), and order preparation systems meet a complex, 
highly customized global demand that requires the processing of many orders in short 
time windows (Vanheusden et al. 2022). 

Yet theories such as scheduling, dating back to the 1950’s, have incorporated 
assumptions and simplifications with regard to humans, such as the claim that workers 
are not a major resource, or that their performance is deterministic (Lodree, Geiger and 
Jiang 2009). As a result, there is a dichotomy between ergonomics and operations 
management. This is witnessed in the fact that publications on workers’ well-being are 
seldom published in engineering, management, or business journals (Neumann and Dul 



2010). In recent years, some authors have nevertheless recognized the importance of 
involving human workers in production systems. They have highlighted the opportunities 
for research in the production, operations management, and operational research fields to 
integrate human behavior and ergonomics (Boudreau et al. 2003; Hashemi-Petrood et al. 
2020; Lodree, Geiger and Jiang 2009; Sánchez-Herrera, Montoya-Torres and Solano-
Charris 2019). 

Of all the human characteristics that have an impact on the productivity of 
industrial environments, the learning effect is one of the most studied. This effect was 
induced scientifically by Wright (1936), but it was not until 1998 that Dondeti and 
Mohanty (1998) spoke about the role of learning and fatigue in single-machine problems, 
when the job processing time depends on the content of both the present and the 
previously processed jobs. Biskup (1999) formalized the effect of learning on one 
machine. Since then, a significant number of papers have proposed different ways of 
modeling the learning effect on scheduling problems (Paredes-Astudillo, Montoya-Torres 
and Botta-Genoulaz 2022a; Pei et al. 2022). Over the last 20 years, some learning 
approaches have been applied in practical scenarios involving humans, summarized by 
Pei et al. (2022) in their review paper. Examples include automotive assembly lines, 
processing of memory chips and automotive components, catalytic processes in the 
chemical industry, and order picking, among others. 

The most commonly used approaches are the position-based learning effect 
(Biskup 1999; Cheng and Wang 2000; Dolgui, Gordon and Strusevich 2012), and the 
sum-of-processing-time-based learning effects (Kuo and Yang 2006a, 2006b, 2006c; 
Koulamas and Kyparisis 2007), as well as its variations, including truncated parameters 
(Wang et al. 2013; Wu, Yin and Cheng 2011). 

In recent years, researchers have focused on this problem mainly in the single 
machine environment, because it is possible to conceptualize the problem and extrapolate 
alternatives for other types of configurations. However, flowshop configurations and their 
variations are frequently encountered in complex manufacturing systems, due to the 
necessity to perform sequential operations, as in the case of textiles, footwear and in the 
automotive industry (Chen et al. 2017; Fernandez-Viagas 2022; Rudek, 2011). While the 
existing articles do analyze the complexity of problems and propose solution methods, 
they do not compare the efficiency of solution methods based on the learning effect 
approach. 

The main contributions of this paper, which deals with the flowshop scheduling 
problem (FSSP) with learning effect, are: 

• To provide FFSP mathematical models that address the learning effect with 
the four approaches referred to in the literature. 

• To solve small-problem instances with a mathematical programming solver.  
• To solve large-size instances, a simulated annealing (SA) algorithm testing is 

proposed, using the NEH algorithm to get the initial solution, and two local 
search operators. 

• To discuss the effectiveness of the SA algorithm and its performance 
regarding the way the learning effect is modeled through a sensitivity analysis. 

It is true that NEH and SA have previously been used to solve the FSS with 
learning effects. Those early studies chose a learning model and developed a solution 
algorithm. The current study differs from them, however, since both NEH and SA 
algorithms are adapted to analyze the impact of the different learning models and their 
parameters on the efficiency of such algorithms. Experimental results are expected to be 
useful for application in real-world situations, particularly in hand-intensive 



manufacturing systems where the learning process is a determining factor in productivity 
rates.  

The remainder of this paper is organized as follows. Section 2 reviews the related 
literature. Section 3 presents the description of the problem and the mathematical models 
of the learning effect. The proposed solution approach for large instances is presented in 
Section 4, while Section 5 is devoted to the computational experiments and the analysis 
of results. Finally, conclusions and future research opportunities are outlined in Section 
6. 

2 Literature review  

Wright (1936) introduced the concept of the learning effect in manufacturing systems – 
an effect stemming from practical experience (Arditi, Tokdemir and Suh 2001), 
particularly in monotonous activities. In recent years, the inclusion of the learning effect 
when dealing with operations management problems has become more widespread and 
has produced several learning models published in the literature. The baseline of 
scheduling with learning effects was established by Biskup (1999), who modeled a 
position-based learning effect into a single-machine scheduling problem. This case 
defines the actual processing time 𝑝𝑝𝑗𝑗𝑗𝑗 of the job  𝑗𝑗 located in position 𝑟𝑟 of the schedule to 
be computed as 𝑝𝑝𝑗𝑗𝑗𝑗 = 𝑝̅𝑝𝑗𝑗𝑟𝑟𝛼𝛼 where 𝑝̅𝑝𝑗𝑗 is the baseline processing time of job j (e.g., without 
learning) and 𝛼𝛼 < 0 is a constant learning index. From this approach, several 
modifications have been introduced, to adapt them to other system configurations and 
integrate additional parameters. This is the case of truncated position-based learning 
effects, where learning is not considered to be infinite, and the actual processing time 
depends on the job position and a control parameter. Wu et al. (2014) modeled this 
learning effect in a single machine scheduling problem as 𝑝𝑝𝑗𝑗𝑗𝑗 = 𝑝𝑝𝑗𝑗 ∗ 𝑚𝑚𝑚𝑚𝑥𝑥{𝑟𝑟𝛼𝛼,𝛽𝛽}, where 
𝛽𝛽 is a control parameter (0 < 𝛽𝛽 < 1). 

Other authors have also considered learning effect approaches based on the sum-
of-processing-time. Kuo and Yang (2006a) introduced a new model with the premise that 
the performance will improve if the workers practice for longer. The actual processing 
time 𝑃𝑃𝑗𝑗𝑗𝑗 in a single machine system of a job j scheduled in position r is defined as 𝑝𝑝𝑗𝑗𝑗𝑗 =
(1 + ∑ 𝑝𝑝𝑘𝑘𝑟𝑟−1

𝑘𝑘=1 )𝛼𝛼𝑝𝑝𝑗𝑗, where ∑ 𝑝𝑝𝑘𝑘𝑟𝑟−1
𝑘𝑘=1  is the cumulative processing time of jobs from position 

1 to position 𝑟𝑟 − 1, and 𝑝𝑝𝑗𝑗 is the baseline processing time of job j. Based on this premise 
and considering that learning is limited, Wu et al. (2012b) proposed, for a single-machine 
scheduling problem, a truncated sum-of-processing-time model, which is computed as 
𝑝𝑝𝑗𝑗𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚��1 + ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝑟𝑟−1

𝑘𝑘=1 �
𝛼𝛼

,𝛽𝛽�𝑝𝑝𝑗𝑗. Some other models of learning effects are available 
in detail in the reviews of Azzouz, Ennigrou, and Ben Said (2018), Glock et al. (2019), 
Paredes-Astudillo, Montoya-Torres and Botta-Genoulaz (2022a) and Pei et al. (2022). 

The flowshop scheduling problem without learning and with makespan 
minimization is known to be NP-hard for the case of more than two machines (Wang and 
Xia 2005). When dealing with learning in processing times, the problem becomes NP-
hard even for the case of two machines (Pinedo 2018). This means that optimal solutions 
cannot be obtained for large-sized datasets in reasonable computational time. Because of 
this computational intractability, the literature has witnessed a variety of solution methods 
to solve flowshop scheduling problems with learning effects. To deal with a two-machine 
flowshop scheduling problem with truncated learning effects, both Cheng et al. (2013) 
and Wu et al. (2012a) propose a genetic algorithm (GA) and a branch-and-bound 
algorithm, while minimizing the makespan and the total completion time by applying 



some dominance rules. Zou et al. (2020) addressed a two-stage three-machine flowshop 
scheduling problem with a sum-of-processing-times-based learning effect to minimize 
the makespan. They proposed a branch-and-bound algorithm incorporating dominance 
properties, three heuristics based on Johnson’s rule, and a GA. Wu et al. (2020) studied a 
two-stage three-machine flowshop scheduling problem with a truncated sum-of-
processing-time-based learning effect, where the makespan is intended to be minimized. 
They present some dominance rules, and develop a branch-and-bound algorithm and a 
GA to obtain near-optimal solutions. Wu et al. (2018a) deal with the re-entrant 
permutation flowshop scheduling with a sum-of-processing-times-based learning effect 
to minimize the makespan. They propose four heuristics and a SA to approximate 
solutions. 

In addition to genetic algorithms, other metaheuristics such as simulated 
annealing (SA) have been widely used. Sun, Geng and Liu (2020) consider the flowshop 
problem of minimizing the total weighted completion time, where the job processing time 
is computed according to a general position-weighted learning effect. SA and branch and 
bound algorithms are proposed. Liu (2020) also proposes a SA to solve the two-stage 
three-machine flowshop, while approaching the learning effect as a truncated function of 
sum-of-processing time in order to minimize makespan. Azizi, Jabbari, and Kheirkhah 
(2016) studied the m-machine flowshop scheduling problem, considering sequence-
dependent setup times and truncated learning function to minimize the makespan. To do 
so, they developed both GA and SA. Lai and Wu (2015) used GA, SA, ant colony 
optimization (ACO) and particle swarm optimization (PSO) to minimize the makespan. 
They incorporated three kinds of variations of learning effect models: job-dependent, 
machine-dependent, and job- and machine-dependent learning effects, depending on the 
position.  

Rudek and Rudek (2013) and Wu et al. (2018b) deal with two- and three-machine 
flowshop problems to minimize makespan and describe the job processing time by 
learning based on the position. They construct a Nawaz-Encore-Ham (NEH) algorithm, 
tabu search (TS) with neighborhood search, and SA algorithms that solve the problem. 

Some authors have recently addressed this problem through hybrid-
metaheuristics. For example, Wu et al. (2018b) and Zou et al. (2020) alternatively include 
a cloud theory-based simulated annealing algorithm (CSA). Fu et al. (2019) consider a 
flowshop scheduling problem with learning and deterioration effects and propose an 
artificial-molecule-based chemical reaction optimization algorithm (ACRO). Vahedi 
Nouri, Fattahi, P and Ramezanian (2013) study a flowshop scheduling problem with 
learning effects and maintenance activities. They develop a hybrid meta-heuristic 
algorithm based on an SA algorithm and a firefly algorithm (HFSA) to solve it. Muştu 
and Eren (2018) address a flowshop scheduling problem under a position-based learning 
effect and minimize the makespan. They propose a kangaroo algorithm (KA) and a 
genetic-kangaroo hybrid algorithm (GAKA) to solve large instances of this problem. Arık 
(2021) deals with flowshop scheduling problems with position-dependent learning effects 
and linear deterioration. He proposes a population-based tabu search algorithm (TSPOP) 
with evolutionary strategies. 

In terms of multi-objective problems, Hosseini and Tavakkoli-Moghaddam 
(2013) deal with a two-machine flowshop scheduling problem with learning effects that 
minimizes the total idle time and the mean deviation from a common due date. They solve 
the problems with a multi-objective genetic algorithm (MOGA) and a multi-objective 
simulated annealing (MOSA) algorithm. Eren and Güner (2008) studied a two-machine 
flowshop scheduling problem with learning effects based on the position, the objective 
function of which is the minimization of a weighted sum of total completion time and 



makespan. This author presents heuristic algorithms and a TS algorithm to solve large-
sized problems. Chen, Wu, and Lee. (2006) addressed a bi-criteria two-machine flowshop 
scheduling problem with learning effects based on the position. They proposed a branch-
and-bound algorithm, a heuristic and a SA algorithm to approximate solutions for large 
instances of the problem. Table 1 summarizes the information previously described. 

Table 1. Synthesis of current works 

[Table 1 near here] 

3 The flowshop scheduling problem under study 

We consider the permutation flowshop scheduling problem with a set I of workers, and a 
set J of independent jobs, which are processed in the same sequence to minimize the 
makespan (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚). Each worker can process one job at a given time, and preemption of a 
job is not allowed (that is, the execution of a job cannot be interrupted once its processing 
has started). All workers are available at the beginning of the scheduling horizon and have 
a 100% production rate, and scheduling is performed through the permutation sequence. 
The inclusion of intermediate buffers between workers is not considered in this approach. 
The normal (baseline) processing time of the ith operation of the jth job is noted as 𝑝̅𝑝𝑖𝑖𝑖𝑖. As 
an illustration, the production system under study might refer to a chocolate truffle 
production line or a sequential zone-picking line, where the work is entirely manual.  

The standard flowshop scheduling problem with makespan minimization can be 
modeled as a mixed-integer linear programming (MILP) model. The definition and 
notations are shown below: 
Sets 
𝐼𝐼: workers   
𝐽𝐽: jobs  
𝑅𝑅: positions   
Parameters 
𝑝̅𝑝𝑖𝑖𝑖𝑖: normal (baseline) processing time of job 𝑗𝑗 executed by worker 𝑖𝑖 
𝑀𝑀: 𝑟𝑟epresents a very big number or Big M  
Decision Variables: 
𝑥𝑥𝑗𝑗𝑗𝑗: �1: if the job 𝑗𝑗 is processed in position 𝑟𝑟 of the schedule

0: otherwise
  

𝑐𝑐𝑖𝑖𝑖𝑖: completition  time of job 𝑗𝑗 on worker 𝑖𝑖 
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚: makespan value 
Objective function 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑍𝑍 =  𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (1) 
Subject to: 

�𝑥𝑥𝑗𝑗𝑗𝑗 = 1
𝑟𝑟∈𝑅𝑅

                       𝑗𝑗 = 1, … , 𝐽𝐽 (2) 

�𝑥𝑥𝑗𝑗𝑗𝑗 = 1
𝑗𝑗∈𝐽𝐽

                      𝑟𝑟 = 1, … ,𝑅𝑅 (3) 

𝑐𝑐1𝑗𝑗 ≥ 𝑝̅𝑝1𝑗𝑗                         𝑗𝑗 = 1, … , 𝐽𝐽 (4) 

𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑝̅𝑝𝑖𝑖𝑖𝑖 ≥ 𝑐𝑐(𝑖𝑖−1)𝑗𝑗         𝑖𝑖 = 2, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽 (5) 



𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑝̅𝑝𝑖𝑖𝑖𝑖 + 𝑀𝑀�1 − 𝑥𝑥𝑗𝑗(𝑟𝑟+1)� ≥ 𝑐𝑐𝑖𝑖ℎ − 𝑀𝑀(1 − 𝑥𝑥ℎ𝑟𝑟)          𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽; 
ℎ = 1, … , 𝐽𝐽;  𝑟𝑟 = 1, … ,𝑅𝑅 − 1 (6) 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑐𝑐𝑖𝑖𝑖𝑖                        𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽 (7) 
𝑥𝑥𝑗𝑗𝑗𝑗  ∈ {0,1}                        𝑗𝑗 = 1, … , 𝐽𝐽;  𝑟𝑟 = 1, … ,𝑅𝑅 (8) 

The objective function (1) corresponds to the minimization of the completion time 
of the last job of the sequence, i.e. the makespan. Constraints (2) and (3) guarantee that 
every job is assigned to one position in the sequence, and each position has only one job. 
Constraints (4) are related to the completion time of jobs for the first worker (i.e. first 
operation). This ensures the non-negativity constraint, which is usually formalized with 
constraints (9) and (10). Constraints (5) and (6) calculate the completion time of jobs for 
the remaining workers. Constraints (7) define the makespan. Constraints (10) define the 
values of binary decision variables.  

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0                       (9) 
𝑐𝑐𝑖𝑖𝑖𝑖 ≥ 0                               𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽 (10) 

The previous mathematical model can be modified to take into account the 
different approaches for modeling the learning effect, as proposed by several authors such 
as Biskup (2008), and Azzouz, Ennigrou, and Ben Said (2018). The models have been 
selected because they are the basis for other approaches (Paredes-Astudillo, Montoya-
Torres and Botta-Genoulaz 2022b). 
• Case 1: with position-based learning 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝̅𝑝𝑖𝑖𝑖𝑖𝑟𝑟𝛼𝛼 

• Case 2: with truncated position-based learning   𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑝̅𝑝𝑖𝑖𝑖𝑖 max{𝑟𝑟𝛼𝛼,𝛽𝛽}  

• Case 3: with sum-of-processing-time-based learning    𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖 = �1 + 𝜃𝜃 ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟−1
𝑘𝑘=1 �

𝛼𝛼
𝑝̅𝑝𝑖𝑖𝑖𝑖 

• Case 4: with truncated sum-of-processing-time-based learning 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑚𝑚𝑚𝑚𝑚𝑚��1 + 𝜃𝜃 ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟−1

𝑘𝑘=1 �
𝛼𝛼

,𝛽𝛽�𝑝̅𝑝𝑖𝑖𝑖𝑖   

 

Where 𝛼𝛼 is the learning index (𝛼𝛼 < 0),𝛽𝛽 is a control parameter with 0 < 𝛽𝛽 < 1 , 
and 𝜃𝜃 is a conversion factor (e.g., 1/60 to convert hours to minutes). In case 1, the job 
processing time is based on the position, so taking the baseline flowshop model, a new 
decision variable is added:  
𝑝𝑝𝑖𝑖𝑖𝑖: actual processing time of job 𝑗𝑗 by worker 𝑖𝑖 

To calculate the job processing time, constraints (11) and (12) are needed: 

𝑝𝑝𝑖𝑖𝑖𝑖 = �𝑝̅𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗
𝑟𝑟∈𝑅𝑅

𝑟𝑟𝛼𝛼         𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽 (11) 
 

𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0                              𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽 (12) 
We replace Constraints (4), (5) and (6) by (13), (14) and (15) respectively. 

𝑐𝑐1𝑗𝑗 ≥ 𝑝𝑝1𝑗𝑗                           𝑗𝑗 = 1, … , 𝐽𝐽 (13) 
𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 𝑐𝑐(𝑖𝑖−1)𝑗𝑗          𝑖𝑖 = 2, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽 (14) 

𝑐𝑐𝑖𝑖𝑖𝑖 −  𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑀𝑀�1 − 𝑥𝑥𝑗𝑗(𝑟𝑟+1)� ≥ 𝑐𝑐𝑖𝑖ℎ − 𝑀𝑀(1 − 𝑥𝑥ℎ𝑟𝑟)  𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽; 
ℎ = 1, … , 𝐽𝐽;  𝑟𝑟 = 1, … ,𝑅𝑅 − 1 (15) 

From case 1 and changing constraints (11) for (16), we would get case 2: 



𝑝𝑝𝑖𝑖𝑖𝑖 = �𝑝̅𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗
𝑟𝑟∈𝑅𝑅

max {𝑟𝑟𝛼𝛼,𝛽𝛽}     𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽 (16) 

In case 3, the decision variables 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖𝑖𝑖 are replaced by 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑝𝑝𝑖𝑖𝑖𝑖, where 𝑐𝑐𝑖𝑖𝑖𝑖 
is the competition time of the job scheduled in the position r ∈  𝑅𝑅 for the worker 𝑖𝑖 ∈ 𝐼𝐼, 
and 𝑝𝑝𝑖𝑖𝑖𝑖 is the actual processing time of the job scheduled in the position r ∈  𝑅𝑅 for the 
worker 𝑖𝑖 ∈ 𝐼𝐼  

Furthermore, equations (17) and (18) are included and replace equation (11) from 
case 1: 

𝑝𝑝𝑖𝑖𝑖𝑖 = �1 + 𝜃𝜃�𝑝𝑝𝑖𝑖𝑖𝑖

𝑞𝑞<𝑟𝑟

𝑞𝑞∈𝑅𝑅

�

𝛼𝛼

��𝑝̅𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐽𝐽

�     𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 1, … ,𝑅𝑅 − 1 (17) 

𝑝𝑝𝑖𝑖1 = ��𝑝̅𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗1
𝑗𝑗∈𝐽𝐽

�                𝑖𝑖 = 1, … , 𝐼𝐼 (18) 

Constraints (19), (20) and (21) control the completion times of the jobs at the 
machines, and ensure the non-negativity constraint, which is usually formalized with 
Constraints (22). 

𝑐𝑐1𝑟𝑟 ≥ 𝑝𝑝1𝑟𝑟                           𝑟𝑟 = 1, … ,𝑅𝑅 (19) 
𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 𝑐𝑐(𝑖𝑖−1)𝑟𝑟          𝑖𝑖 = 2, … , 𝐼𝐼;  𝑟𝑟 = 1, … ,𝑅𝑅 (20) 
𝑐𝑐𝑖𝑖𝑖𝑖 −  𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑀𝑀�1 − 𝑥𝑥𝑗𝑗(𝑟𝑟+1)� ≥ 𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑀𝑀(1 − 𝑥𝑥ℎ𝑟𝑟)          
 

𝑖𝑖 = 1, … , 𝐼𝐼;  𝑗𝑗 = 1, … , 𝐽𝐽; 
ℎ = 1, … , 𝐽𝐽;  𝑟𝑟 = 1, … ,𝑅𝑅 − 1 (21) 

𝑐𝑐𝑖𝑖𝑖𝑖 ≥ 0                               𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 1, … ,𝑅𝑅 (22) 
For case 4, the set E, which states {1: Learning 2: Truncate} was taken into 

consideration, as were the two variables which are defined: 
𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖: actual processing time of the job scheduled in position 𝑟𝑟 ∈ 𝑅𝑅 for the worker 𝑖𝑖

∈ 𝐼𝐼 in the state  𝑒𝑒 ∈ 𝐸𝐸 
𝜉𝜉𝑖𝑖𝑖𝑖: maximun processing time of the job scheduled  in position 𝑟𝑟

∈ 𝑅𝑅 for the worker 𝑖𝑖 ∈ 𝐼𝐼 
Equations (23), (24), (25), (26) and (27) are used to calculate the job processing 

time instead of equations (17) and (18). Constraint (28) and (29) are the non-negative 
constraint: 

𝑝𝑝𝑖𝑖1 = ��𝑥𝑥𝑗𝑗1
𝑗𝑗∈𝐽𝐽

�                𝑖𝑖 = 1, … , 𝐼𝐼 (23) 

𝑢𝑢𝑖𝑖𝑖𝑖1 = �1 + 𝜃𝜃�𝑝𝑝𝑖𝑖𝑖𝑖

𝑞𝑞<𝑟𝑟

𝑞𝑞∈𝑅𝑅

�

𝛼𝛼

��𝑝̅𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐽𝐽

�            𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 2, … ,𝑅𝑅 (24) 

𝑢𝑢𝑖𝑖𝑖𝑖2 = �𝑝̅𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗∈𝐽𝐽

𝛽𝛽           𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 2, … ,𝑅𝑅 (25) 

𝜉𝜉𝑖𝑖𝑖𝑖 ≥  𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖                         𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 1, … ,𝑅𝑅;  
𝑒𝑒 = 1, … ,𝐸𝐸 (26) 

𝑝𝑝𝑖𝑖𝑖𝑖 = 𝜉𝜉𝑖𝑖𝑖𝑖                            𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 2, … ,𝑅𝑅 (27) 

𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0                             𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 1, … ,𝑅𝑅;  
𝑒𝑒 = 1, … ,𝐸𝐸 (28) 

𝜉𝜉𝑖𝑖𝑖𝑖 ≥ 0                              𝑖𝑖 = 1, … , 𝐼𝐼;  𝑟𝑟 = 1, … ,𝑅𝑅 (29) 



 

We thus obtain two MILP models (case 1 and case 2) and two mixed-integer non-
linear programming (MINLP) models (case 3 and case 4). 

4 Simulated annealing approach 

As pointed out above, the flowshop scheduling problem is known in the literature to be 
NP-hard with learning effects and makespan minimization, even for the case of two 
resources (workers in this case) (Wang and Xia 2005). This paper therefore proposes a 
SA algorithm to solve the problem. The NEH algorithm was proposed as a start point 
because of its efficiency in minimizing the makespan in the FSSP (Turner and Booth 
1987; Ruiz and Maroto 2005). Likewise, it corresponds to one of the heuristics commonly 
referred to in the FSSP approach with a learning effect (Mosheiov and Pruwer 2021; 
Rudek and Rudek 2013; Wang and Wang 2014; Wu et al. 2018a; Wu et al. 2018b). 

Simulated annealing, first proposed by Kirkpatrick, Gelatt and Vecchi (1983), is 
a popular metaheuristic widely used to solve different variants of the flowshop scheduling 
problem (with or without learning effects), as discussed in Section 2. SA is a local search 
metaheuristic capable of escaping from a local optimum due to the hill-climbing moves 
(Henderson, Jacobson and Johnson 2003). The analysis sensitivity of SA parameters such 
as initial temperature (𝑇𝑇0), cooling velocity (𝜆𝜆), and final temperature (𝑇𝑇𝑓𝑓) are presented 
in Section 5.4.  The solution representation used in this paper is shown in Figure 1 
(permutation of jobs). 

Figure 1 Caption: Solution representation 

Figure 1 Alt Text: Example of permutation sequence encoding in a problem with 5 jobs. 

[Figure 1 near here] 

4.1 Initial solution: the Nawaz-Enscore-Ham algorithm (NEH) 

The initial solution is obtained by a greedy heuristic proposed by the Nawaz-Enscore-
Ham algorithm (NEH) (Nawaz, Enscore and Ham 1983), consisting of the following 
steps: 

(1) Calculate the Total Processing Time (TPT) on all machines for each job j. This 
initial TPT per job is calculated with the normal (baseline) processing time and 
does not account for the learning effect. 

(2) Sort all the jobs in decreasing order of TPT in a list. 
(3) Select the two jobs with the highest TPT and remove them from the list. Two 

possible sequences are obtained with these jobs. 
(4) Calculate the actual processing time of each job j according to the equation of the 

respective case (Case 1, 2, 3 or 4). 
(5) Compute the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 for each sequence and select the sequence with the minimal 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚. 
(6) If the list is not empty, select the next job from the list and calculate all possible 

inserts within the sequence. Return to steps 4 and 5. Keep the sequence with the 
lowest makespan. This will be the initial solution (S). 



4.2 Neighborhood generation phase  

After obtaining the original solution S, the neighborhood generation phase is 
implemented, which is composed of a diversification strategy (DS) and a local search 
operator (LS).  

The diversification strategy is based on a randomized insertion, and follows these 
steps: 

(1) Randomly choose a job-j and position-r as part of the solution S. 
(2) Insert the j-th job on the r-th position (Figure 2), to obtain a new solution 𝑆𝑆0. 

Compute the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆0)  
(3) Replace S by 𝑆𝑆0. 

Figure 2 Caption: Diversification strategy representation 

Figure 2 Alt Text: Starting with the current permutation, where a random job is inserted 

into a new random position to obtain a new permutation. 

[Figure 2 near here] 

 
Once solution 𝑆𝑆 is obtained, a first improvement local search (LS) operator is 

implemented to improve the quality of this solution. In this case, the Adjacent Pairwise 
Interchange (API) and Non-Adjacent Pairwise Interchange (NAPI) operators were 
selected as they are commonly used to solve flowshop scheduling problems, and have 
yielded good results (Della Croce, Narayan and Tadei 1996; Li 2018). The SA algorithm 
with the API and NAPI operators will be named SAAPI  and SANAPI  respectively. 𝐾𝐾1 and 
𝐾𝐾2  are the selected positions within the permutation sequence to be switched. 

The API operator swaps jobs from adjacent positions as follows: 
(1) If 𝐾𝐾1 = 1 and 𝐾𝐾2 = 𝐾𝐾1 + 1, then the jobs between position 𝐾𝐾1 and 𝐾𝐾2 are swapped 

(Figure 3).  
(2) The new solution is denoted 𝑆𝑆0.  
(3) If 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆0) is less than 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆), then 𝑆𝑆 is replaced by 𝑆𝑆0 and the local search 

algorithm stops. 
(4) Otherwise, 𝐾𝐾1 = 𝐾𝐾1 + 1 and 𝐾𝐾2 = 𝐾𝐾2 + 1 and the process is repeated until the 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆) can be improved or up to 𝐾𝐾1  =  𝑅𝑅 − 1, or until all the position’s 
permutations have been evaluated. 

Figure 3 Caption: API operator 

Figure 3 Alt Text: In a current permutation, swap jobs are performed between adjacent 

positions. For example, job in the first position is swapped with job in second position 

and vice versa. 

[Figure 3 near here] 

 
 

The NAPI operator swaps jobs from non-adjacent positions as follows. 



(1)  If 𝐾𝐾1 = 1 and 𝐾𝐾2 = 𝐾𝐾1 + 2, then the jobs between position 𝐾𝐾1 and 𝐾𝐾2 are 
swapped respectively (Figure 4).  

(2) The new solution is denoted 𝑆𝑆0.  
(3) If 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆0) is less than 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆), then 𝑆𝑆 is replaced by 𝑆𝑆0 and the local search 

algorithm stops. 
(4) Otherwise, 𝐾𝐾1 = 𝐾𝐾1 + 1 and 𝐾𝐾2 = 𝐾𝐾2 + 2 and the process is repeated until the 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆) can be improved or up to 𝐾𝐾1  =  𝑅𝑅 − 2, or until all the position’s 
permutations have been evaluated. 

Figure 4 Caption: NAPI operator 

Figure 4 Alt Text: In a current permutation, swap jobs are performed between non-

adjacent positions. For example, job in the first position is swapped with job in third 

position and vice versa. 

[Figure 4 near here] 

4.3 Acceptance probability 

A new given solution is accepted if its 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 value is lower than the 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 value of the 
stored solution (Δ𝑓𝑓 ≤ 0). However, when a worse solution is found (Δ𝑓𝑓 > 0), a uniform 
random number is generated. If this random number is less than the probability of 
acceptance (equation 30), then the solution is acceptable. 

𝑃𝑃(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) =  �
1                Δ𝑓𝑓 ≤ 0     

𝑒𝑒
− Δ𝑓𝑓
𝑇𝑇             Δ𝑓𝑓 > 0       

 (30) 

Where 𝑃𝑃(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) is the probability of acceptance, Δ𝑓𝑓 is the change in objective 
function and 𝑇𝑇 is the current temperature. 

4.4 Stopping condition 

In this algorithm, the current temperature (T) decreases. Once the final temperature (𝑇𝑇𝑓𝑓) 
is reached (stopping condition), the SA stops.  

The flowchart in Figure 5 details the components and operation of the SA algorithm. 

Figure 5 Caption: SA flowchart 

Figure 5 Alt Text: It corresponds to the flowchart of the proposed algorithm, describing 

four main elements such as: initial solution, neighborhood generation, the probability of 

acceptance and stopping condition. 

[Figure 5 near here] 



5 Computational experiments and results analysis 

5.1 Description of data sets 

A set of problem instances containing 1440 independent data sets (480 small and 960 
large-sized instances) was used to test the performance of the proposed algorithm. The 
characteristics of each instance are briefly outlined in Table 2. The rationale for the values 
of alpha (α)  and beta (𝛽𝛽) is based on the most common values used in the literature (e.g., 
Amirian and Sahraeian 2015; Rudek and Rudek 2013; Muştu and Eren 2018; Wu et al. 
2020). For the small-size instances, integer values of processing times were generated 
using an integer uniform distribution between 1 and 100. For the case of large-size 
datasets, the instances proposed by Taillard (1993) were used. In practice, combinations 
are referred to in the characteristics of instances. Each combination was encoded as 
Case_i_j_α_β (for example, C2_10_100_-0.515_0.5, corresponds to Case 2 with 10 
workers, 100 jobs, 𝛼𝛼 = -0.515 and 𝛽𝛽 = 0.5). A set of 10 instances for each combination 
was considered. 

Table 2. Summary of set of problem instances 

[Table 2 near here] 

5.2 Experimental results small-size instances 

The mathematical models were coded on Python and solved using Pyomo (Hart, Watson 
and Woodruff 2011). Glpk and Bonmin solvers were used for solving the linear (case 1 
and case 2) and non-linear cases (case 3 and case 4) respectively.   

The experiments were carried out for up to 7 jobs because for non-linear models 
(case 3 and case 4), instances with 2 workers and 8 jobs could not be solved within less 
than 8 hours. The error percentage of the solution obtained by the simulated annealing 
algorithm (SAAPI  and SANAPI ) from the optimal solution is calculated as (Equation 31): 

𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 =  
𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂
 (31) 

Where 𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 is the optimal solution for each instance and 𝑆𝑆𝑆𝑆𝑆𝑆 is the makespan 
value obtained from the metaheuristic (SAAPI in this case). Table 3 provides a comparison 
of the mean percentage and the standard deviation of error and CPU time (of all instances 
by combination). For small-size instances, both SAAPI  and SANAPI  achieved mean error 
percentages are below 1%. As there is no significant difference between the error 
percentage of SAAPI  and that of SANAPI , it is not possible to conclude at this point with 
which one the SA triggers a better performance. 

As can be expected, and is shown in Table 3, that for the exact method the CPU 
time increases significantly as the size of the problem increases. The CPU time for 
metaheuristics is significantly lower than the exact method. In particular, its advantages 
regarding the CPU time and error percentage are remarkable for nonlinear models (case 
3 and case 4).  

Table 3. Comparison for small instance problems 



[Table 3 near here] 

5.3 Experimental results - large-size instances 

An experimental design was conducted to evaluate the performance of the SA algorithm. 
Three main parameters required for the SA (𝑇𝑇0,𝑇𝑇𝑓𝑓 and 𝜆𝜆) were included in the experiment. 
The algorithms were codified in Python 3.8 and run on a 64-Core server with CPU AMD 
EPYC 7702 and 512 G RAM. Table 4 summarizes the data used. Three replications per 
instance were run for a total of 155.520 executions. 

Table 4. Summary experiment 

[Table 4 near here] 

 
We performed a complete factor-blocking design where the local search operator 

is the factor with two levels and the instance of each combination corresponds to a block.  
As we cannot compute the optimal solution, we use the makespan value obtained 

by the NEH algorithm as the reference. The percentage of improvement of the initial 
solution obtained by NEH with respect to the simulated annealing algorithm (SAAPI  and 
SANAPI ) is calculated as follows (Equation 32): 

Δ𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁𝑁𝑁 =  
𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁

𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁
 (32) 

where  SNEH is the solution obtained with the heuristic NEH and SSA is the solution 
achieved with the simulated annealing algorithm (with SAAPI for this case) for each 
instance. With a p-value of 2x10−16 and a confidence level of 95%, the percentage of 
improvement of SAAPI  with the NEH (Δ SAAPI − NEH) is better than the improvement 
obtained with SANAPI (Δ SANAPI − NEH). Table 5 shows a comparison of the mean 
percentage and standard deviation of improvement and CPU time. Because the quality of 
the initial solution of NEH is good, the API operators work as intensive operators, without 
making any drastic modification to the solution obtained constructively from NEH. 
Meanwhile, by making a major change to the solution, NAPI operators seem to be moving 
away from a promising search zone, which explains the predominance of SAAPI over 
SANAPI. 

 
Table 5. Comparison for large instances problem. 

[Table 5 near here] 

 
Figure 6 shows a representative example with 10 workers and 50 jobs, to show 

the improvement of the two simulated annealing algorithms (SAAPI and SANAPI) in 
relation to the NEH, segmented by combination. 

Figure 6 Caption: Comparison of  𝛥𝛥 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁𝑁𝑁  vs. 𝛥𝛥 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑁𝑁𝑁𝑁 

Figure 6 Alt Text: Example of performance of all combinations of a problem with 10 

workers and 50 jobs, regarding SAAPI and SANAPI improvements with respect to the NEH. 



[Figure 6 near here] 

 
In most of the cases, SAAPI outperforms SANAPI. And the example in Figure 6 and 

Table 4 is evidence that the simulated annealing algorithms proposed (both SAAPI and 
SANAPI) achieve a better solution than does the NEH solution. This applies to 
combinations with small 𝛼𝛼 values or strong learning rates (remembering that 𝛼𝛼 =
𝑙𝑙𝑙𝑙𝑙𝑙2𝐿𝐿𝐿𝐿, where LR is the learning rate, e.g., 𝐿𝐿𝐿𝐿 = 70% ,𝛼𝛼 = −0.515), for cases 1 and 3 
without truncation parameters. In the same way, we note that for fast learning effects, the 
convergence of the algorithm is fast with respect to CPU time (Table 5), as described in 
the findings of Muştu and Eren (2018). For example, going back for combinations 
C3_10_100_-0.515_0.0 and C3_10_100_-0.152_0.0 solved with SAAPI, the mean CPU 
time is respectively 27.36 ± 9.88, 36.59 ± 18.97 seconds. 

For learning models with truncation, the improvement by SAAPI or SANAPI of the 
solution obtained from NEH turns out to be quite poor when 𝛽𝛽 is larger. This could be 
explained by the fact that a larger 𝛽𝛽 means that the learning effect stops quickly as it 
reaches the asymptote in a short planning horizon (units or accumulated time as the case 
may be). Therefore, the NEH solution might be a good approach because the processing 
time ceases to vary quickly. When β is smaller, the learning effect remains over a longer 
horizon, therefore metaheuristics are more likely to improve the initial solution. 

5.4 Sensitivity analysis  

For the evaluation of SAAPI parameters, an ANOVA test was applied. Experimental 
factors refer to 𝑇𝑇𝑓𝑓, 𝑇𝑇0 and 𝜆𝜆 with three, three, and two levels, respectively.  The statistical 
test results showed that the double interaction 𝑇𝑇0𝑇𝑇𝑓𝑓 and 𝑇𝑇𝑓𝑓𝜆𝜆 have an effect on the 
algorithm performance with a p-value of 0.0013 and 3.47𝑥𝑥10−6, respectively. Figure 7 
shows plots of double interaction effects for each case. A more favorable mean of the 
∆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑁𝑁𝑁𝑁𝑁𝑁 is found in the four cases where for the double interaction 𝑇𝑇𝑓𝑓𝜆𝜆 , the levels 
are  𝑇𝑇𝑓𝑓 = 0.00001 and 𝜆𝜆 = 0.9. In both linear and non-linear models, this combination 
of parameters improves the initial solution obtained through the NEH. It can be assumed 
that the small values of 𝑇𝑇𝑓𝑓 reinforce the intensification, and that the large values 𝜆𝜆, 
together with the acceptance probability, contribute to diversify the solution.  

The maximum mean improvement is close to 3%, which would show that if the 
NEH produces a good quality initial solution, this may be because this heuristic makes 
the best choice at every step, particularly regarding to the processing times of jobs that 
vary from step to step. 

Figure 7 Caption: Double interaction plot 

Figure 7 Alt Text: This shows the double interaction effects (𝑇𝑇0𝑇𝑇𝑓𝑓 and 𝑇𝑇𝑓𝑓𝜆𝜆) for the 

performance of the SAAPI algorithm, for each case studied. The 𝑇𝑇𝑓𝑓𝜆𝜆 is more efficient at 

levels 𝑇𝑇𝑓𝑓 = 0.00001 and 𝜆𝜆 = 0.9. 

[Figure 7 near here] 



6 Conclusions 

This article addresses makespan minimization of flowshop scheduling problems with 
learning effects, modeling this phenomenon from 4 linear and non-linear models reported 
in the literature. We present the mathematical models and use a mathematical programing 
solver to solve small-instances problem. A simulated annealing algorithm is also 
proposed, which obtains the initial solution by means of the NEH algorithm, and which 
has shown remarkable results in addressing these problems (Rudek and Rudek 2013). In 
addition, two local search operators were tested.  

The computational results support the hypothesis that the flowshop scheduling 
problem with learning effects is NP-hard even in the case of two resources (Wang and 
Xia 2005).  Therefore, for problems with 2 workers and 8 jobs (cases 3 and 4, non-linear 
models), it was not possible to reach the optimum through the mathematical model within 
a time limit of 8 hours. Two variants of the simulated annealing algorithm were developed 
(SAAPI, SANAPI), which get the initial solution from NEH and apply the different local 
search operators. SAAPI shows improved performance in relation to SANAPI.  

Similarly, it was found that both simulated annealing algorithms achieve 
significant improvements over the NEH for combinations implying a fast learning effect 
(small values of 𝛼𝛼 ). For combinations with slow learning effects (big values of 𝛼𝛼) the 
proposed metaheuristic does not improve NEH solutions significantly. This is because 
the problem quickly resembles a “classical” flowshop scheduling problem with makespan 
minimization, for which NEH has reported exceptional results.  

In cases 2 and 4 (where a truncation parameter is included), the simulated 
annealing algorithms offered better improvements of the NEH solution for combinations 
with low β levels. For bigger β values, the algorithm does not significantly improve the 
initial solution. This may be explained by the fact that the problem quickly becomes a 
classic makespan minimization flowshop scheduling problem, for which the NEH finds 
a reasonably acceptable solution (Turner and Booth 1987; Ruiz and Maroto 2005). 

This would mean that industries with less experienced employees and 
monotonous tasks could use a metaheuristic, as proposed here. On the other hand, if these 
are experienced workers or the learning effect is weak (highly personalized jobs), and a 
heuristic such as the NEH achieves good enough results for the makespan minimization 
flowshop, it could help the production planner to adapt the most suitable algorithm 
according to the workforce’s characteristics. 

Concerning the SAAPI parameters’ sensitivity, the double interaction 𝑇𝑇𝑓𝑓𝜆𝜆  (𝑇𝑇𝑓𝑓 =
0.00001 and 𝜆𝜆 = 0.9) has a positive effect on metaheuristic performance for the four 
cases studied here.  

As future research opportunities, we can highlight the integration of variable 
learning rates and truncation parameters per worker. The inclusion of different learning 
models into the same system can also be considered. It would be useful to investigate the 
differences of workers in production systems and their impact on the performance 
production system (Katiraee et al. 2021). The incorporation of buffers or intermediate 
stations can also be evaluated as these configurations are closer to real-life production 
systems, such as assembly or zone-picking lines. Addressing the problem based on a 
multi-objective optimization that includes economic and social objectives would be a 
promising line of research. The learning effect could be combined with other phenomena 
such as fatigue and/or recovery (Dode et el. 2016; Givi, Jaber and Neumann 2015; 
Ostermeier 2020), for example, which implies interdisciplinary work and allows progress 
in modeling human factors. Finally, application in industrial contexts with real data (e.g., 
real learning rates) is crucial to address the challenge that comes with the arrival of the 



paradigm that the European Commission (2022) has called Industry 5.0: designing 
sustainable, human-centered, human-friendly production systems (Katiraee et al. 2022) 
with favorable working conditions. 
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Table 4. Synthesis of current works 

Author and Year Metaheuristics Objective function (minimization) 
Learning 

effect 
model 

Arık (2021) TSPOP makespan P-LE 
Azizi, Jabbari, and 
Kheirkhah (2016) GA, SA makespan Other 

Chen, Wu, and Lee. 
(2006) SA weighted sum of the total completion time & 

maximum tardiness P-LE 

Eren and Güner (2008) TS weighted sum of total completion time & 
makespan P-LE 

Fu et al. (2019) ACRO makespan P-LE 

Lai and Wu (2015) GA, SA, ACO, 
PSO makespan P-LE 

Liu (2020) SA makespan TSM-LE 
Muştu and Eren (2018) KA, GAKA makespan P-LE 
Sun, Geng and Liu (2020) SA total weighted completion time P-LE 
Hosseini and Tavakkoli-
Moghaddam (2013)  MOGA, MOSA total idle time & mean deviation from a common 

due date P-LE 

Vahedi Nouri, Fattahi, P 
and Ramezanian (2013) HFSA makespan P-LE  

Wu et al. (2018a) SA makespan SM-LE 
Wu et al. (2018b) SA, CSA makespan P-LE 
Wu et al. (2020)  GA makespan TSM-LE 

Wu et al. (2012a) GA maximum lateness & total weighted completion 
time SM-LE 

Zou et al. (2020) GA, CSA makespan SM-LE 
Position-based learning effect (P-LE); Truncated position-based learning effect (TP-LE), Sum-of-processing-time 
based learning (SM-LE); Truncated sum-of-processing-time based learning (TSM-LE)  

 
 
 
 

Table 5. Summary of set of problem instances 

  Case 1 and Case 2 Case 3 and Case 4 

Sm
al

l-s
iz

e 
in

st
an

ce
s 

Number of workers (I) 2 

Number of jobs (J) 5, 7 

Learning index - alpha (α) – 0.152, –0.322, – 0.515 

Truncation parameter - beta (𝛽𝛽) - 0.25, 0.5, 0.75 

L
ar

ge
-s

iz
e 

in
st

an
ce

s 

Number of workers (I) 5, 10 

Number of jobs (J) 50, 100 

Learning index - alpha (α) – 0.152, –0.322, – 0.515 

Truncation parameter - beta (𝛽𝛽) - 0.25, 0.5, 0.75 

 
  



Table 6. Comparison for small instance problems 

Case I J 𝜶𝜶 𝜷𝜷 𝑶𝑶𝑶𝑶𝑶𝑶 − 𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨 𝑶𝑶𝑶𝑶𝑶𝑶 − 𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨 (sec) 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (sec) 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐎𝐎𝐎𝐎𝐎𝐎 (𝐬𝐬𝐬𝐬𝐬𝐬) 
Mean Std Mean Std Mean Std Mean Std Mean Std 

C1 2 

5 
-0.152 - 0.02% ± 0.06% 0.02% ± 0.07% 0.02 ± 0.02 0.05 ± 0.04 0.16 ± 0.02 
-0.322 - 0.15% ± 0.37% 0.21% ± 0.41% 0.03 ± 0.02 0.04 ± 0.04 0.15 ± 0.01 
-0.515 - 0.27% ± 0.62% 0.51% ± 1.00% 0.03 ± 0.02 0.05 ± 0.07 0.17 ± 0.01 

7 
-0.152 - 0.03% ± 0.12% 0.04% ± 0.09% 0.05 ± 0.05 0.11 ± 0.09 2.32 ± 0.05 
-0.322 - 0.07% ± 0.28% 0.21% ± 0.49% 0.06 ± 0.05 0.10 ± 0.09 2.26 ± 0.09 
-0.515 - 0.11% ± 0.28% 0.37% ± 0.90% 0.06 ± 0.10 0.10 ± 0.08 2.10 ± 0.11 

C2 2 

5 

-0.152 0.25 0.02% ± 0.06% 0.03% ± 0.08% 0.03 ± 0.02 0.05 ± 0.04 0.15 ± 0.01 
-0.152 0.5 0.02% ± 0.06% 0.02% ± 0.08% 0.03 ± 0.02 0.05 ± 0.04 0.15 ± 0.00 
-0.152 0.75 0.02% ± 0.06% 0.02% ± 0.07% 0.03 ± 0.02 0.05 ± 0.04 0.15 ± 0.01 
-0.322 0.25 0.13% ± 0.34% 0.22% ± 0.42% 0.02 ± 0.02 0.05 ± 0.04 0.15 ± 0.01 
-0.322 0.5 0.12% ± 0.34% 0.21% ± 0.41% 0.02 ± 0.02 0.04 ± 0.04 0.14 ± 0.01 
-0.322 0.75 0.00% ± 0.00% 0.01% ± 0.13% 0.02 ± 0.02 0.03 ± 0.03 0.15 ± 0.01 
-0.515 0.25 0.31% ± 0.69% 0.46% ± 0.94% 0.03 ± 0.02 0.04 ± 0.04 0.14 ± 0.01 
-0.515 0.5 0.72% ± 2.12% 0.47% ± 1.58% 0.02 ± 0.02 0.04 ± 0.03 0.15 ± 0.01 
-0.515 0.75 0.01% ± 0.12% 0.01% ± 0.12% 0.03 ± 0.02 0.03 ± 0.02 0.15 ± 0.01 

7 

-0.152 0.25 0.03% ± 0.09% 0.04% ± 0.09% 0.05 ± 0.04 0.13 ± 0.16 2.32 ± 0.06 
-0.152 0.5 0.02% ± 0.08% 0.04% ± 0.10% 0.05 ± 0.04 0.13 ± 0.22 2.37 ± 0.07 
-0.152 0.75 0.02% ± 0.09% 0.04% ± 0.12% 0.05 ± 0.04 0.11 ± 0.09 2.31 ± 0.06 
-0.322 0.25 0.07% ± 0.31% 0.22% ± 0.48% 0.05 ± 0.04 0.10 ± 0.09 2.25 ± 0.09 
-0.322 0.5 0.07% ± 0.27% 0.19% ± 0.40% 0.05 ± 0.04 0.10 ± 0.09 2.25 ± 0.06 
-0.322 0.75 0.02% ± 0.03% 0.02% ± 0.03% 0.03 ± 0.03 0.04 ± 0.03 2.29 ± 0.06 
-0.515 0.25 0.08% ± 0.19% 0.28% ± 0.67% 0.05 ± 0.04 0.10 ± 0.09 2.10 ± 0.10 
-0.515 0.5 0.11% ± 0.44% 0.31% ± 1.11% 0.04 ± 0.03 0.06 ± 0.05 2.17 ± 0.07 
-0.515 0.75 0.00% ± 0.04% 0.01% ± 0.09% 0.03 ± 0.04 0.03 ± 0.02 2.33 ± 0.07 

C3 2 

5 
-0.152 - 0.00% ± 0.00% 0.00% ± 0.01% 0.03 ± 0.03 0.07 ± 0.05 18.48 ± 3.53 
-0.322 - 0.06% ± 0.22% 0.06% ± 0.20% 0.04 ± 0.03 0.07 ± 0.06 19.12 ± 3.05 
-0.515 - 0.01% ± 0.03% 0.06% ± 0.41% 0.04 ± 0.03 0.07 ± 0.06 19.33 ± 2.88 

7 
-0.152 - 0.00% ± 0.00% 0.00% ± 0.01% 0.08 ± 0.06 0.18 ± 0.15 1580.88 ± 22.66 
-0.322 - 0.00% ± 0.00% 0.00% ± 0.02% 0.08 ± 0.06 0.17 ± 0.14 1591.90 ± 48.29 
-0.515 - 0.00% ± 0.01% 0.07% ± 0.21% 0.08 ± 0.07 0.17 ± 0.14 1586.26 ± 98.26 

C4 2 

5 

-0.152 0.25 0.01% ± 0.01% 0.01% ± 0.01% 0.07 ± 0.06 0.12 ± 0.10 20.60 ± 3.48 
-0.152 0.5 0.01% ± 0.01% 0.01% ± 0.01% 0.07 ± 0.06 0.12 ± 0.10 22.32 ± 2.74 
-0.152 0.75 0.01% ± 0.01% 0.01% ± 0.01% 0.07 ± 0.06 0.12 ± 0.09 23.76 ± 3.77 
-0.322 0.25 0.11% ± 0.22% 0.09% ± 0.19% 0.08 ± 0.06 0.12 ± 0.10 24.16 ± 4.15 
-0.322 0.5 0.09% ± 0.21% 0.10% ± 0.21% 0.08 ± 0.06 0.12 ± 0.10 25.23 ± 7.50 
-0.322 0.75 0.00% ± 0.00% 0.01% ± 0.05% 0.06 ± 0.05 0.10 ± 0.09 25.53 ± 5.07 
-0.515 0.25 0.31% ± 0.70% 0.34% ± 0.73% 0.07 ± 0.06 0.12 ± 0.10 22.87 ± 3.06 
-0.515 0.5 0.31% ± 0.70% 0.33% ± 0.71% 0.07 ± 0.06 0.12 ± 0.10 23.78 ± 2.67 
-0.515 0.75 0.00% ± 0.00% 0.00% ± 0.05% 0.06 ± 0.05 0.09 ± 0.07 27.36 ± 8.29 

7 

-0.152 0.25 0.02% ± 0.04% 0.02% ± 0.04% 0.16 ± 0.14 0.36 ± 0.30 2570.01 ± 919.55 
-0.152 0.5 0.02% ± 0.04% 0.02% ± 0.04% 0.16 ± 0.15 0.36 ± 0.30 2172.26 ± 209.46 
-0.152 0.75 0.02% ± 0.04% 0.02% ± 0.04% 0.16 ± 0.13 0.36 ± 0.29 2457.82 ± 724.04 
-0.322 0.25 0.04% ± 0.08% 0.04% ± 0.08% 0.16 ± 0.13 0.35 ± 0.29 2494.90 ± 725.52 
-0.322 0.5 0.04% ± 0.08% 0.04% ± 0.08% 0.16 ± 0.13 0.35 ± 0.29 2207.21 ± 241.34 
-0.322 0.75 0.00% ± 0.02% 0.00% ± 0.03% 0.11 ± 0.10 0.19 ± 0.18 2292.46 ± 440.64 
-0.515 0.25 0.05% ± 0.09% 0.10% ± 0.24% 0.17 ± 0.14 0.34 ± 0.28 2385.95 ± 436.48 
-0.515 0.5 0.01% ± 0.03% 0.03% ± 0.05% 0.14 ± 0.12 0.33 ± 0.27 2496.02 ± 994.31 
-0.515 0.75 0.00% ± 0.02% 0.01% ± 0.04% 0.10 ± 0.09 0.13 ± 0.13 2069.05 ± 222.70 

 
  



Table 4. Summary experiment 

  Parameter Levels Values 

Factors 
 

Local search operator 2 API, NAPI 

Initial temperature – (𝑇𝑇0) 3 0.5, 0.3, 0.1 
Final temperature – (𝑇𝑇𝑓𝑓) 3 0.001, 0.0001, 0.00001 
Cooling velocity – (𝜆𝜆) 2 0.9, 0.5 

Total of treatments (2*3*3*2) = 36 
Total of combinations 144 

Total instances per combination (144*10) =1440 
Total instances per combination x treatments  (1440 * 36) = 51840 

Size of the experiment (51840 * 3) = 155520 
 
  



Table 5. Comparison for large instances problem 

Case I J 𝜶𝜶 𝜷𝜷 𝚫𝚫𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨 − 𝑵𝑵𝑵𝑵𝑵𝑵 𝚫𝚫𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 − 𝑵𝑵𝑵𝑵𝑵𝑵 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨 (sec) 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (sec) 
Mean Std Mean Std Mean Std Mean Std 

C1 

10 

100 
-0.152 - 0.55% ± 0.39% 0.43% ± 0.38% 29.82 ± 19.61 255.58 ± 247.18 
-0.322 - 1.25% ± 0.74% 1.06% ± 0.68% 27.57 ± 18.60 199.49 ± 204.12 
-0.515 - 1.92% ± 1.01% 1.48% ± 0.92% 20.95 ± 10.12 136.46 ± 138.62 

50 
-0.152 - 1.06% ± 0.68% 0.82% ± 0.57% 12.53 ± 13.25 53.82 ± 50.18 
-0.322 - 2.14% ± 1.40% 1.68% ± 1.15% 9.20 ± 9.53 44.19 ± 44.06 
-0.515 - 3.43% ± 2.10% 2.80% ± 1.84% 6.19 ± 5.87 30.83 ± 31.74 

5 

100 
-0.152 - 0.47% ± 0.30% 0.41% ± 0.28% 13.77 ± 7.58 116.41 ± 119.11 
-0.322 - 1.41% ± 0.78% 1.14% ± 0.70% 12.76 ± 6.24 101.79 ± 101.48 
-0.515 - 2.98% ± 1.35% 2.28% ± 1.19% 11.15 ± 4.60 74.33 ± 74.41 

50 
-0.152 - 0.73% ± 0.41% 0.62% ± 0.36% 4.29 ± 4.22 24.77 ± 24.69 
-0.322 - 1.56% ± 0.99% 1.22% ± 0.83% 4.23 ± 4.21 23.37 ± 23.13 
-0.515 - 3.19% ± 1.43% 2.49% ± 1.26% 3.26 ± 2.78 18.47 ± 19.29 

C2 

10 

100 

-0.152 0.25 0.50% ± 0.35% 0.35% ± 0.32% 29.71 ± 12.54 142.74 ± 87.91 
-0.152 0.5 0.51% ± 0.35% 0.36% ± 0.30% 29.34 ± 12.21 140.76 ± 89.08 
-0.152 0.75 0.37% ± 0.37% 0.15% ± 0.21% 54.32 ± 36.32 72.82 ± 54.85 
-0.322 0.25 1.06% ± 0.60% 0.79% ± 0.55% 27.02 ± 12.36 107.23 ± 81.50 
-0.322 0.5 0.68% ± 0.48% 0.38% ± 0.37% 46.69 ± 33.39 59.46 ± 44.12 
-0.322 0.75 0.54% ± 0.39% 0.23% ± 0.28% 61.12 ± 40.76 86.40 ± 68.92 
-0.515 0.25 1.12% ± 0.77% 0.47% ± 0.69% 38.10 ± 30.91 39.40 ± 23.06 
-0.515 0.5 0.63% ± 0.57% 0.22% ± 0.36% 58.46 ± 42.07 61.50 ± 45.99 
-0.515 0.75 0.47% ± 0.35% 0.19% ± 0.22% 65.50 ± 44.62 83.53 ± 64.26 

50 

-0.152 0.25 0.99% ± 0.63% 0.76% ± 0.53% 8.45 ± 5.36 36.34 ± 24.32 
-0.152 0.5 1.00% ± 0.63% 0.72% ± 0.51% 8.41 ± 5.27 36.34 ± 24.05 
-0.152 0.75 0.86% ± 0.65% 0.46% ± 0.51% 12.50 ± 7.51 26.69 ± 21.39 
-0.322 0.25 2.12% ± 1.43% 1.61% ± 1.11% 8.05 ± 5.66 33.53 ± 25.48 
-0.322 0.5 1.90% ± 0.90% 1.33% ± 0.83% 9.97 ± 7.46 21.05 ± 17.89 
-0.322 0.75 1.29% ± 0.66% 0.67% ± 0.54% 14.77 ± 10.32 28.16 ± 21.86 
-0.515 0.25 2.72% ± 1.81% 1.80% ± 1.81% 7.75 ± 7.31 9.62 ± 6.87 
-0.515 0.5 2.08% ± 1.04% 1.48% ± 1.01% 11.26 ± 9.05 19.04 ± 15.84 
-0.515 0.75 1.44% ± 1.07% 0.82% ± 0.88% 16.22 ± 11.31 27.24 ± 21.50 

5 

100 

-0.152 0.25 0.44% ± 0.27% 0.36% ± 0.25% 14.75 ± 5.80 82.86 ± 59.67 
-0.152 0.5 0.45% ± 0.28% 0.37% ± 0.25% 14.68 ± 5.77 82.37 ± 59.31 
-0.152 0.75 0.17% ± 0.26% 0.05% ± 0.12% 42.32 ± 29.65 23.93 ± 12.26 
-0.322 0.25 1.27% ± 0.71% 0.91% ± 0.62% 13.52 ± 5.43 64.83 ± 50.93 
-0.322 0.5 0.41% ± 0.28% 0.20% ± 0.23% 25.80 ± 20.57 24.07 ± 12.48 
-0.322 0.75 0.24% ± 0.29% 0.08% ± 0.14% 38.04 ± 30.00 23.97 ± 12.51 
-0.515 0.25 1.27% ± 0.78% 0.80% ± 0.83% 18.10 ± 13.82 23.11 ± 11.57 
-0.515 0.5 0.58% ± 0.51% 0.22% ± 0.34% 33.80 ± 28.03 23.75 ± 11.98 
-0.515 0.75 0.24% ± 0.25% 0.05% ± 0.09% 42.84 ± 32.28 24.05 ± 12.53 

50 

-0.152 0.25 0.70% ± 0.39% 0.58% ± 0.34% 4.43 ± 2.92 19.86 ± 15.04 
-0.152 0.5 0.69% ± 0.38% 0.57% ± 0.32% 4.43 ± 2.93 19.99 ± 14.99 
-0.152 0.75 0.29% ± 0.29% 0.12% ± 0.19% 10.08 ± 7.19 5.94 ± 4.06 
-0.322 0.25 1.51% ± 0.99% 1.12% ± 0.76% 4.51 ± 3.07 19.55 ± 14.86 
-0.322 0.5 0.68% ± 0.45% 0.16% ± 0.21% 9.39 ± 7.35 5.33 ± 3.34 
-0.322 0.75 0.47% ± 0.41% 0.18% ± 0.28% 10.85 ± 8.33 5.54 ± 3.85 
-0.515 0.25 2.37% ± 1.22% 1.27% ± 1.05% 5.78 ± 5.99 5.18 ± 3.33 
-0.515 0.5 0.57% ± 0.47% 0.32% ± 0.41% 9.03 ± 7.63 5.25 ± 3.32 
-0.515 0.75 0.56% ± 0.44% 0.28% ± 0.36% 10.29 ± 8.30 5.62 ± 3.81 

C3 

10 

100 
-0.152 - 0.29% ± 0.27% 0.23% ± 0.25% 36.59 ± 18.97 224.76 ± 149.59 
-0.322 - 0.56% ± 0.56% 0.35% ± 0.41% 32.89 ± 16.50 214.97 ± 153.84 
-0.515 - 1.11% ± 1.00% 1.07% ± 0.96% 27.36 ± 9.88 177.34 ± 143.78 

50 
-0.152 - 0.73% ± 0.58% 0.57% ± 0.51% 16.07 ± 17.74 76.51 ± 65.82 
-0.322 - 1.03% ± 0.83% 0.81% ± 0.67% 10.72 ± 10.63 63.96 ± 56.64 
-0.515 - 1.37% ± 0.85% 1.21% ± 0.88% 10.29 ± 10.56 56.34 ± 54.35 

5 

100 
-0.152 - 0.11% ± 0.18% 0.09% ± 0.14% 19.98 ± 8.64 127.00 ± 112.24 
-0.322 - 0.25% ± 0.40% 0.12% ± 0.21% 18.64 ± 6.79 139.82 ± 117.37 
-0.515 - 0.42% ± 0.61% 0.37% ± 0.60% 18.79 ± 7.52 136.64 ± 117.23 

50 
-0.152 - 0.25% ± 0.28% 0.15% ± 0.19% 5.28 ± 4.90 36.44 ± 37.26 
-0.322 - 0.47% ± 0.57% 0.35% ± 0.50% 4.96 ± 4.21 37.63 ± 37.84 
-0.515 - 0.62% ± 0.79% 0.49% ± 0.63% 5.01 ± 4.33 34.13 ± 35.02 

C4 10 100 

-0.152 0.25 0.27% ± 0.25% 0.23% ± 0.24% 48.44 ± 17.42 270.22 ± 162.62 
-0.152 0.5 0.29% ± 0.26% 0.22% ± 0.23% 48.33 ± 17.21 271.38 ± 164.23 
-0.152 0.75 0.34% ± 0.36% 0.14% ± 0.22% 82.48 ± 43.82 155.47 ± 115.06 
-0.322 0.25 0.55% ± 0.53% 0.35% ± 0.42% 47.10 ± 18.13 256.40 ± 170.64 
-0.322 0.5 0.43% ± 0.51% 0.25% ± 0.33% 71.07 ± 45.40 134.68 ± 105.81 
-0.322 0.75 0.39% ± 0.36% 0.17% ± 0.22% 98.19 ± 58.10 154.63 ± 116.75 



Case I J 𝜶𝜶 𝜷𝜷 𝚫𝚫𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨 − 𝑵𝑵𝑵𝑵𝑵𝑵 𝚫𝚫𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 − 𝑵𝑵𝑵𝑵𝑵𝑵 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺𝑨𝑨𝑨𝑨𝑨𝑨 (sec) 𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑺𝑺𝑺𝑺𝑺𝑺𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 (sec) 
Mean Std Mean Std Mean Std Mean Std 

-0.515 0.25 0.77% ± 0.91% 0.47% ± 0.69% 42.80 ± 18.59 119.17 ± 82.63 
-0.515 0.5 0.52% ± 0.60% 0.31% ± 0.54% 81.85 ± 53.20 119.77 ± 86.46 
-0.515 0.75 0.49% ± 0.44% 0.21% ± 0.28% 99.01 ± 62.21 160.01 ± 122.57 

50 

-0.152 0.25 0.66% ± 0.54% 0.50% ± 0.44% 13.43 ± 7.61 66.44 ± 39.02 
-0.152 0.5 0.68% ± 0.53% 0.51% ± 0.45% 13.12 ± 7.49 66.32 ± 39.17 
-0.152 0.75 1.01% ± 0.78% 0.59% ± 0.58% 17.19 ± 10.74 46.96 ± 36.02 
-0.322 0.25 1.01% ± 0.80% 0.77% ± 0.62% 12.15 ± 7.82 60.74 ± 41.52 
-0.322 0.5 1.10% ± 0.82% 0.77% ± 0.68% 15.29 ± 11.20 37.65 ± 29.96 
-0.322 0.75 0.88% ± 0.70% 0.47% ± 0.53% 23.87 ± 14.81 48.79 ± 36.04 
-0.515 0.25 1.61% ± 0.98% 1.30% ± 0.94% 12.35 ± 8.61 54.03 ± 42.13 
-0.515 0.5 1.54% ± 0.83% 1.10% ± 0.79% 19.84 ± 13.63 39.12 ± 30.65 
-0.515 0.75 1.13% ± 0.97% 0.57% ± 0.67% 23.51 ± 15.39 44.51 ± 34.54 

5 

100 

-0.152 0.25 0.12% ± 0.18% 0.09% ± 0.15% 33.57 ± 11.68 168.48 ± 127.62 
-0.152 0.5 0.11% ± 0.17% 0.09% ± 0.13% 33.73 ± 11.99 168.45 ± 128.98 
-0.152 0.75 0.05% ± 0.06% 0.03% ± 0.04% 79.31 ± 53.00 65.13 ± 36.41 
-0.322 0.25 0.24% ± 0.38% 0.12% ± 0.21% 32.40 ± 10.84 186.74 ± 132.94 
-0.322 0.5 0.11% ± 0.20% 0.06% ± 0.13% 49.40 ± 37.95 63.46 ± 34.01 
-0.322 0.75 0.10% ± 0.10% 0.04% ± 0.07% 86.04 ± 67.31 56.53 ± 27.82 
-0.515 0.25 0.37% ± 0.50% 0.23% ± 0.40% 31.09 ± 10.78 95.11 ± 63.07 
-0.515 0.5 0.22% ± 0.32% 0.10% ± 0.17% 58.28 ± 44.58 58.42 ± 28.61 
-0.515 0.75 0.15% ± 0.17% 0.05% ± 0.11% 88.55 ± 65.61 57.29 ± 27.50 

50 

-0.152 0.25 0.26% ± 0.31% 0.14% ± 0.18% 7.91 ± 5.13 43.49 ± 33.79 
-0.152 0.5 0.27% ± 0.30% 0.15% ± 0.19% 8.05 ± 5.30 43.91 ± 33.96 
-0.152 0.75 0.22% ± 0.27% 0.09% ± 0.17% 17.21 ± 12.99 15.30 ± 10.83 
-0.322 0.25 0.52% ± 0.64% 0.34% ± 0.50% 7.80 ± 5.16 44.45 ± 33.57 
-0.322 0.5 0.28% ± 0.36% 0.16% ± 0.27% 11.27 ± 9.60 17.70 ± 12.88 
-0.322 0.75 0.33% ± 0.26% 0.17% ± 0.23% 22.24 ± 17.42 14.34 ± 10.16 
-0.515 0.25 0.58% ± 0.80% 0.32% ± 0.42% 8.34 ± 5.53 42.69 ± 32.98 
-0.515 0.5 0.47% ± 0.49% 0.19% ± 0.30% 19.11 ± 14.71 13.42 ± 8.97 
-0.515 0.75 0.32% ± 0.34% 0.17% ± 0.29% 22.08 ± 17.68 13.06 ± 8.93 
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